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Abstract—Energy consumption caused by wireless transmission 

poses a big challenge to the battery lifetime of mobile devices. 

While the potential of using lossless compression for saving 

energy has been long acknowledged, no general solution has been 

proposed for applying lossless compression to energy adaptation 

for mobile services. We propose a proxy-based energy adaptation 

framework, in which the data to be transmitted is losslessly 

compressed on a proxy server according to context-aware 

policies. The context includes factors relevant to computational 

and communication cost, as well as the user’s preferences. We 

showcase a context-aware policy which aims at minimizing client-

side energy consumption caused by transmission and 

decompression. Using our framework, we implement an energy-

aware mobile e-mail service, and present power measurement 

results that show significant energy savings. 
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I.  INTRODUCTION 

As mobile services that use wireless data transmission have 
gained popularity, the energy consumption caused by wireless 
data transmission has become a real challenge to the battery 
lifetime of mobile devices. Energy consumption of wireless 
data transmission highly depends on the amount of data to be 
transmitted. It is also known that wireless transmission of a 
single bit can consume over 1000 times more energy than a 
single 32-bit computation [1]. Therefore using compression to 
reduce the amount of transmitted data is desirable from the 
perspective of energy consumption. 

The efficiency of energy saving using compression depends 
on the tradeoff between the computational overhead caused by 
the compression/decompression operations and the energy 
saved in network transmission. The computational cost relates 
to the computational complexity of compression algorithms 
and the processing performance of the mobile devices. The 
energy reduction in transmission relies on the reduced traffic 
size and the network conditions during transmission. The 
reduction in data size is determined by the compression ratio 
which varies with the compression algorithm and data type, 
while the network conditions can be evaluated by the network 
throughput, signal-to-noise ratio, or bit error rate. The 
estimation of network conditions is essential for the estimation 
of communication cost and, further, the efficiency of energy 
adaptation. As pointed out in [2], under bad network 
conditions, receiving and decompressing the compressed data 
may consume more energy than transmitting the original data.  

Many solutions have been published since the first proposal 
[1] of using compression for energy savings. Each addresses an 
individual part of the whole problem, and there is no general 
solution about how to apply lossless compression to energy-
aware mobile services. For example, [1] analyzed the 
communication-to-computation energy ratio for different 
compression algorithms, but only provided quantitative results 
of communication cost at 2.8Mb/s and 5.6Mb/s and did not 
propose any model for estimating communication cost under 
different network data rates.  

In this paper, we propose a proxy-based framework for 
mobile services using energy-aware lossless compression, and 
exemplify the approach through a proof-of-concept 
implementation of an energy-aware mobile e-mail service. The 
framework includes two parts, a proxy responsible for the 
decision-making of compression-based energy adaptations and 
the execution of compression, and mobile clients in charge of 
decompression. We model the decision-making based on the 
tradeoff between computational and communication cost. To 
the best of our knowledge, ours is the first approach towards a 
complete framework that considers all the relevant factors of 
computational and communication cost such as data 
characteristics, compression algorithm characteristics, and 
network conditions. 

Our contribution includes, but is not limited to, the 
following three aspects. 

 Proposing a practical solution adopting a decision-making 
mechanism based on context-aware policies. The decision-
making mechanism supports the selection among multiple 
compression algorithms which is based on the estimation 
of computational and communications cost. 

 Taking into account the compression ratios of different 
data types, and the client contexts such as the energy 
utility of decompression when estimating the 
computational cost.  

 Taking network conditions in terms of network throughput 
and network signal-to-noise-ratio (SNR) into account 
when estimating the communication cost.  

The remainder of this paper is structured as follows. We 
review the related work in Section 2. Section 3 illustrates the 
system model of our energy-aware lossless compression 
framework, and explains the selection of data compression 
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mechanisms. The implementation and evaluation of our 
framework is described in Section 4, taking a mobile e-mail 
service as an example. Finally, we conclude the paper and 
present our future work in Section 5. 

II. RELATED WORK 

Data compression has been applied for saving storage space 
[3], shortening network latency [4, 5], saving computing power 
[6, 7], and reducing transmission cost [2, 8] in mobile 
computing. The core issues of these applications consist of the 
performance of different compression algorithms, and the 
compression mechanisms adopted by different application 
scenarios. The performance of compression algorithms is 
evaluated in terms of compression ratio, compression time, 
decompression time,  memory allocation, and the energy 
consumption of compression and decompression, while the 
compression mechanisms determine when and where to 
execute compression, which compression algorithm to use, and 
who makes these decisions. 

The comparison of the compression performance of a 
number of popular compression algorithms such as compress, 
gzip, bzip2, LZO, and zlib has been presented in [1, 5, 8]. 
According to the results, there is no single compression 
algorithm that performs the best on all types of data. This 
means that in order to gain a high compression performance, 
the compression algorithm should be chosen according to data 
type. In addition, the priority of different aspects of 
compression performance varies from application scenario to 
another. For instance, Krintz and Sucu [5] aimed at improving 
network transmission performance with on-the-fly compression 
of network traffic streams, and thus chose the compression 
algorithms to be used based on the compression ratio, the 
compression time and the decompression time. In this paper, 
we focus on energy savings for data receivers. Hence, we select 
the compression algorithms based on compression ratio and the 
decompression energy consumption.  

Compression mechanisms can be divided into always-
compression and adaptive compression. The latter one only 
compresses data when certain requirements are met. Lossless 
data compression does not always result in energy savings to 
the data receivers in a network transmission due to the 
computational cost of decompression. If aiming for energy 
savings, always-compression is better to be replaced with an 
adaptive compression scheme based on the tradeoff between 
the computational cost and the communication cost saved by 
the reduced data size does.  

The performance of decompression operations on data 
receivers depends on the processing performance of the 
receivers and the computational complexity of the compression 
algorithms. Xu et al. [8] assumed that the rate of energy 
consumption is fixed during decompression, and they 
calculated the energy consumption of decompression as the 
product of assumed fixed rate of energy consumption and the 
predicted decompression time.  As decompression time 
depends on the CPU load [5], which is difficult to predict 
beforehand, we propose predicting the energy consumption of 
decompression based on the compressed file size and the 
energy utility of decompression, instead of decompression 
time. 

The communication cost of receiving compressed data 
relies on multiple underlying factors such as network signal 
strength [2] and network throughput. However, most of the 
previous work only takes some of these network conditions 
into account and ignores the others. For example, [8] assumed 
that the energy consumption of downloading a unit size of data 
is fixed in spite of network conditions. Maddah and 
Sharafeddine [2] compared the energy savings of using 
compression on different network signal levels, but did not take 
other network conditions such as network throughput into 
account. Our work overcomes the limitations of previous work 
and takes network throughput and possible network fluctuation 
into account when predicting transmission cost. 

Previous work [2, 8] usually adopted threshold-based 
adaptive policies for energy-aware data compression. For 
instance, [2] chose to compress data when the network signal 
level was higher than a certain threshold, while [8] did a block-
by-block compression when the block size was bigger than a 
certain threshold. Differently from the adaptations based on a 
single threshold, of the decision we make on when to compress 
and what compression algorithm to use depends on the analysis 
of compression effectiveness defined in Section 3. The 
compression effectiveness reflects the tradeoff between 
computational and communication cost. 

When designing system architecture for energy-aware data 
compression, it is important to define where to execute 
compression and where to make the decisions on compression. 
For example, in the proxy-based architecture used in [6, 7], the 
proxies transcoded the video streams into lower playback 
quality levels, and chose the targeted quality level based on the 
clients’ battery budget and playback power consumption. 
Similarly, we adopt a proxy-based structure. However, 
differently from [6, 7], we take transmission cost in different 
network contexts into account when deciding whether to 
compress. In addition, we choose the most well-suited 
compression algorithm for the data at hand and take the 
availability of compression algorithms on mobile clients into 
consideration. 

III. MOBILE SERVICES USING ENERGY-AWARE LOSSLESS 

COMPRESSION 

The aim of our framework is to reduce the energy 
consumption of mobile devices by compressing the data prior 
to the data transmission to/from the mobile devices. In this 
paper, we focus on the scenarios in which mobile devices 
receive data transmitted from the network. Accordingly, we 
propose a proxy server performing lossless compression before 
forwarding the data to the mobile clients. The proxy server is 
also responsible for the selection of the compression 
mechanism. The selection will take into account both the 
transmission and decompression energy usage on the client 
side. In this section, we will first present the system model of 
our framework, and then explain how to select the compression 
mechanism automatically and transparently. 

A. System Model 

We assume a system of servers such as e-mail and media 
streaming servers, and mobile clients that request content from  



Figure 1. Framework of energy-aware lossless compression in mobile services. 

the servers through intermediate proxy servers. The mobile 
clients are powered by batteries, while the proxy servers use 
external power supplies. The status of hardware, operating 
system, wireless networks, and applications running on the 
mobile device are defined as the context information of a 
mobile client. Examples of this context information are the 
residual battery status, the list of compression algorithms 
supported by the hardware/OS, and the network signal-to-
noise-ratio. The user’s preferences included in the status of 
applications describe the compression mechanisms preferred 
by the user. For instance, a user may prefer compressing all the 
data only when the battery status is low.  

The system model of our framework as illustrated in Fig.1 
includes two parts, namely, the proxy server and the mobile 
client. The mobile client provides its context information to the 
proxy server upon request, while the proxy server makes 
compression decisions based on the client’s context 
information. The proxy server can be further divided into four 
abstract components, namely, data analyzer, policy base, 
adaptation manager, and network transmitter. The data 
analyzer detects the data type and data size. The policy base is 
a container of adaptive policies which describe what 
compression decisions to use under what conditions. Based on 
the predefined adaptive policies stored in the policy base, the 
adaptation manager makes compression decisions using data 
information and the context information of the mobile client as 
its input.  

There are two system components that collect the context 
information from the mobile device, namely, the system 
monitor and adaptor, residing on the mobile client. The system 
monitor collects and forwards the device status to the adaptor, 
and the adaptor generates messages by combining the device 
status with the user’s preferences obtained from applications. 
In addition, the adaptor is also responsible for sending the 
messages to the proxy server, and invoking the corresponding 
decompressor to restore the received data. 

On the proxy server, the compression decisions made by 
the adaptation manager describe the compression algorithm to 
be used and  the traffic shaping instructions which control 
when and how to transfer data. If no compression is needed, 
the original data will be forwarded to the transmitter directly. 
Otherwise, the original data will be first compressed by the 
specific compressor identified in the compression decision, and 
then forwarded to the transmitter. The transmitter sends the 

processed data to the mobile client according to the traffic 
shaping instructions. For example, it might shape the traffic 
into bursts [12], or choose to transfer data only when the 
network signal level is high enough [2]. 

B. Adaptation Management 

As discussed in Section 3.1, the adaptation manager on the 
proxy server decides whether to compress or not, and which 
compression algorithm to use. Concerning the energy 
consumption of mobile devices as data receivers, energy 
savings can be gained from an adaptation only if the energy 
consumption of receiving and decompressing the compressed 
data is less than that of receiving the original data.  

Let the original file size be s, the file size after compression 

be 𝑠𝑐 , and the compression ratio be ratio. According to the 

definitions in [2, 8], compression ratio can be calculated as the 

ratio of the compressed file size to the uncompressed file size 

as shown in (1).  

ratio =  
sc

s
                                (1) 

In 802.11 WLANs, the energy consumed by receiving a 
unit of data to the same device varies with network data rates 
[9]. We hence define the energy utility of transmission on a 
mobile device as the energy consumed by receiving a unit of 
data, and denote it by E0(r) with network data rate r. The values 
of E0(r) are device-dependent.  

We select several network data rates as reference rates, and 
measure the energy utility of transmission at each reference 
rate from our experimental devices. During runtime, we predict 
the network data rate, and compare it with its closest reference 
rate from the reference rate list. Let the predicted network data 
rate be 𝑟𝑝 , and the closest reference rate be 𝑅𝑟 .We use  E0(r) as 

a baseline for estimating the transmission cost at data rate 𝑟𝑝 .  

Derived from [9] that E0(r) linearly decreases with r, we 
introduce an adaptive factor α which reflects the linear 
relationship as shown in (2). The energy consumption of 
receiving the compressed or the original data to the mobile 
device can be calculated as (3) and (4) respectively. 

𝛼 =
𝑅𝑟

𝑟𝑝
   

Energy receiving the compressed data = Sc × E0(Rr) × α 
(3) 

Energy receiving the original data =  s × E0 𝑅𝑟 × α  (4) 

The energy cost of decompression depends on the 

computation complexity of the compression algorithm used, 

and the power characteristics of the hardware device. 

According to previous work [8], the rate of energy 

consumption during decompression is stable when the CPU 

load is stable.  Although the decompression time might 

increase when the CPU load is higher, the increase in the 

decompression time is caused by the sharing of the CPU with 

other processes, and the computation of decompression itself 
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can be assumed to be fixed.  

Instead of using the uncertain decompression time for 

estimating decompression energy cost, we define the energy 

utility of decompression as the energy consumed by restoring 

a unit data, and denote it by 𝐸𝑑 . According to our empirical 

power measurement, the energy utility of decompression 

linearly depends on the compression ratio. For example, we 

got a linear regression model (5) from the power measurement 

of decompression using gunzip on Nokia N810. The minimum 

squared error of (5) is 0.761. The total energy cost of 

decompression can be expressed as (6).  

𝐸𝑑 = 0.2635 × ratio + 0.4302                 (5) 

Energy decompression =  𝐸𝑑 × s            (6) 

To evaluate the effectiveness of different compression 

algorithms and to select the algorithms with a maximum 

energy saving, we define Compression Effectiveness as the 

ratio of the energy cost without compression to that with 

compression. Let the compression effectiveness be ce. As 

shown in (7), the greater ce is, the more energy savings will be 

gained. 

ce =
Energy  consumption  wit hout  compression

Energy  consumption  wit h compression
  

=
E0 Rr  ×α×s

s×ratio ×E0 Rr  ×α+Ed ×s
                                  (7) 

 

Derived from (7), to achieve energy savings from 
compression-based adaptation, the decompression-to-

transmission energy utility ratio, 
Ed

E0(Rr )
, must be smaller than a 

certain threshold. The threshold depends on the compression 
ratio, and the estimated network throughput as shown in (8). 

Ed

E0(Rr )
<

Rr

rp
 1 − ratio                      (8) 

Based on the above models, we define adaptive policies 
which guide the decision-making in the adaptation manager 
during runtime. The adaptive policies define the conditions and 
the corresponding operations. The conditions are described 
using contexts, such as the value of the compression 
effectiveness, the user’s preference and battery status. Under 
different conditions, for example, when the value of 
compression effectiveness is bigger or smaller than 1, the 
operations are different. The operations could be compression 
using a certain algorithm or delivering without compression. In 
Section 4, we will present an example of adaptive policy used 
in energy-aware mobile e-mail service and a proof-of-concept 
implementation of it.  

IV. ENERGY-AWARE MOBILE E-MAIL 

E-mail is one of the most popular Internet services on 
mobile devices. A mobile e-mail system consists of the Mail 
User Agent (MUA) running on mobile devices, the Mail 
Delivery Agent (MDA), and the Mail Transfer Agent (MTA). 
In modern systems, the MDA can also be replaced by the 
MTA, which is responsible for the delivery of mails. 

Accordingly, the user creates and sends e-mails from the 
sender’s MUA, which is also called the e-mail client. After 
that, the mails will go through the sender’s MTA, the 
recipient’s MTA, and finally reach the recipient’s MUA.  

Currently, various types of files with sizes up to tens of 
megabytes can be attached to a mail. However, downloading 
big attachments to mobile devices consumes much energy. 
Hence, we introduced energy-awareness into a mobile e-mail 
system, and implemented an energy-aware e-mail MTA and 
MUA using the framework discussed in Section 3. We will 
present the implementation in Section 4.1, and the 
experimental setup and result analysis in Section 4.2. 

A. System Implementation 

Our energy-aware e-mail service aims at saving energy for 
the recipient’s MUA by delivering compressed attachments to 
it. The recipient’s MTA compresses the attachments before 
forwarding them to the recipient’s MUA according to the 
predefined adaptive policies. As a proof-of-concept of our 
framework, the adaptive policies takes into account the data 
type of attachments, the battery status of mobile recipient, 
network conditions, as well as the list of the compression 
algorithms supported by the mobile recipient. 

We implemented the MTA based on Qmail
1
, an open 

source message transfer agent designed for Internet-connected 
Unix hosts. In addition, we added the functions of context 
awareness into Claws Mail

2
, an open source e-mail client 

application, and ported it to the Maemo platform like the Nokia 
N810.  

We adopted POP3 (Post Office Protocol-version 3) for 
retrieving mails from the MTA in our experiment. The signal 
sequence of retrieving mails from the MTA is illustrated in Fig. 
2. The e-mail recipient’s MUA sends a STAT message to the 
MTA asking for the maildrop state which means information 
on new mails. After getting the notification from the MTA, the 
MUA queries the remaining battery charge of the device and 
network conditions, and searches for the list of compression 
algorithms installed in the system. We described the network 
conditions using the mean and standard deviation of the 
network signal-to-noise ratio (SNR) in a certain past period. In 
our experiments, we set it to 30 seconds.  

 

Figure 2. Sequential graph of retrieving emails from Mail Transfer Agent. 

                                                           
1
 Qmail website: www.qmail.org 

2
 Claws mail website: www.claws-mail.org 
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[3] Get the battery status and the list of supported compression 
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Figure 3. Command RETR Format. 

TABLE I.  DESCRIPTION OF SNR RANGE 

Low Mean of SNR less than 15 

Median Mean of SNR between 15 and 20 

High and Stable Mean of SNR mean bigger than 20, and the standard 

deviation of SNR less than 5 

High but 

Fluctuating 

Mean of SNR higher than 20, and the standard 

deviation of SNR bigger than 5 

 

 

Figure 4. Flow chart of adaptive policy on Mail Transfer Agent (MTA) 

All the context information is combined and coded into the 
RETR command as shown in Fig. 3. We used an 8-bit data  
structure, with the first 2 bits for battery status, the next 2 bits 
for the SNR range, and the last 4 bits indicating the 
compression algorithms that are supported. The battery status 
was divided into 4 levels from 0 to 3, with 0 as the lowest level 
and 3 as the highest level. We divided the SNR range into four 
types, namely, Low, Median, High and Stable, and High but 
Fluctuating. The descriptions of each type are listed in Table I. 
In addition, if the compression algorithm is supported, the 
corresponding bit will be set to 1. Otherwise, it is set to 0. 

The e-mail recipient’s MTA receives the RETR command, 
and parses the context information. Based on the SNR range, 
the MTA predicted the network throughput of the next 
transmission based on the history of the network throughput 
[10] in the same SNR range. We applied in detail the moving 
average with window size 5. Together with the file information 
obtained from the file analyzer, the user’s preference and the 
other context information from the MUA, the MTA selects the 
compression algorithm following the policy described in Fig. 4. 
In our prototype, we assume that users prefer compression only 
when the battery status is low, since the decompression 
requires an additional manual operation. 

TABLE II.  COMPARISON OF COMPRESSION RATIOS AMONG DIFFERENT 

FILE EXTENSIONS AND COMPRESSORS 

File 

Extension 

File Size 

(Byte) 

RAR Gzip Bzip2 7Zip LZO 

.mp3* 6379692 1 0.99 1 1 1 

.wav 3089060 0.09 0.13 0.08 0.08 0.22 

.jpeg 3446116 1 1 0.99 1 1 

.pgm 12582931 0.17 0.33 0.22 0.20 0.44 

.bmp* 4149414 0.28 0.30 0.21 0.24 0.55 

.xls 9824768 0.21 0.30 0.23 0.15 0.43 

.doc* 4168192 0.20 0.24 0.22 0.19 0.28 

.txt* 2988578 0.21 0.29 0.19 0.20 0.47 

.hlp* 4121418 0.17 0.21 0.17 0.15 0.32 

.log* 20617071 0.04 0.07 0.04 0.04 0.12 

.exe* 3870784 0.36 0.45 0.44 0.36 0.59 

.dll* 3782416 0.49 0.58 0.56 0.48 0.73 

.dic* 4067439 0.26 0.26 0.30 0.21 0.43 

.pdf* 4526946 0.83 0.85 0.84 0.82 0.88 

*Benchmark files from www.maximumcompression.com 

TABLE III.  ENERGY UTILITY OF NETWORK TRANSMISSION AT DIFFERENT 

DATA RATES IN WLAN 

Reference Data rate (KB/s) Energy per KB(mJ/KB) 

16 55.744 

32 28.107 

64 14.446 

96 10.063 

128 7.448 

160 6.345 

192 5.403 

224 4.767 

256 4.211 

 

We tested the compression ratios using RAR, Gzip, Bzip2, 
7Zip and LZO for selected benchmarks. The compression ratios 
are stored in the forms of tables on MTA as shown in Table II. 
The compression ratios vary with the file extensions. For 
example, the compression ratios of mp3 and JPEG files are 
close to 1, whereas bmp, doc and txt files have much smaller 
ratios. In addition, the compression ratio varies with 
compression algorithms. For example, LZO

3
, designed for real 

time compression, shows a lower compression ratio. Hence, 
other algorithms are preferable in our case. 

We chose the Nokia N810 as an experimental device and 

measured the transmission cost at reference data rates through 

WLANs in our campus. In our power measurement setup, we 

used a multimeter for measuring voltage over a resistance 

which was serially connected to the Nokia N810. The Nokia 

N810 and the resistance were powered by an external DC 

power supply instead of batteries. The power consumption P 

was then calculated as 𝑃 = (𝑈 − 𝑈𝑅) × 𝑈𝑅 𝑅 , where U is the 

voltage of the DC power supply, 𝑈𝑅  is the reading from the 

multimeter,and R is the resistance value.  

                                                           
3
 LZO website: http://www.oberhumer.com/opensource/lzo/ 
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TABLE IV.  COMPARISON OF ENERGY CONSUMPTION AND DURATION 

WITH/WITHOUT COMPRESSION (FILE SIZE: 2MB, COMPRESSOR: GZIP) 

File 

Extension/Type 

With compression Without Compression ce 

 
Energy 

(J) 

Duration 

(s) 

Energy 

(J) 

Duration 

(s) 

.doc 9.61 7.0 18.31 11.8 6.90 

.bmp 5.86 5.4 15.74 9.7 2.67 

.pdf 25.55 22.8 28.45 23.0 1.03 

.txt 13.80 12.2 18.97 13.0 2.68 

Binary data 12.8 11 17.57 11.8 2.68 

*ce: compression effectiveness defined in Section 3.2. 
 

 The measurement results listed in Table III were pre-stored 
on the proxy server together with the compression ratio and the 
energy model of decompression (5). 

B. Performance Evaluation 

We evaluated the energy-aware e-mail service by 
measuring the energy savings gained from adaptations. We 
adopted the same power measurement settings as the 
transmission cost at reference rates. The e-mail client was then 
running on the Nokia N810. We selected attachments of five 
different types shown in Table IV and measured the power 
consumption during data transmission and decompression. In 
Table IV, the duration of the cases with compression includes 
the transmission and decompression durations measured on the 
mobile client. The compression effectiveness was calculated 
based on the predicted network throughput, compression ratio, 
and the energy utility of decompression and transmission.  

According to the results shown in Table IV, the 
compression of attachments could gain significant energy 
savings of 10% to 60%, depending on the data types of the 
attachments and underlying network conditions. In addition, 
the compression could also save transmission time, and the 
total duration of retrieving attachment in spite of the 
decompression time.  

Compression effectiveness is the basis for the decision-
making on compression. It shows the potential for energy 
savings through adaptations but not the exact amount of energy 
savings. The preciseness of the predicted compression 
effectiveness is limited by the accuracy of network throughput 
prediction, the energy model of decompression and network 
transmission, and the compression ratios obtained from 
benchmarks. However, since the decision-making is based on a 
threshold value, the values bigger than the threshold lead to the 
same decision. Therefore, the influence of the preciseness of 
compression effectiveness prediction is limited. As our 
experimental results have shown significant energy savings, 
our estimation of compression effectiveness has proved to be 
reasonably accurate. 

Though we focus on the scenarios in which the proxy 
server is not battery-powered in this paper, our model is 
scalable to mobile-to-mobile communications scenarios with 
regard to future work. In such cases, the sender can play the 
role of proxy server. The energy models described in Section 
3.2 could be updated by including the energy consumption of 
sending and compressing data. 

The compression ratio that can be achieved varies with the 
data type. Certain types of files, such as PDF documents, may 
contain different types of data objects like images and text 
blocks. Hence, the prediction of compression ratio can be 
further refined by being based on the statistics of the data 
objects included in the file.  

The prediction of network SNR [11] could be integrated 
into the prediction of network throughput, since this is 
influenced by the SNR value especially when the value is low. 
In addition, compression-based adaptations together with 
traffic shaping would be a practice worthy of consideration in 
the near future. 

I. CONCLUSION 

In this paper we have proposed a proxy-based energy 
adaptation framework which utilizes lossless data compression. 
Our framework aims at saving energy on mobile devices when 
receiving data from wireless networks. To improve the 
compression effectiveness, our framework takes into account 
the data characteristics, network transmission environment, as 
well as the context information of the mobile client during 
adaptation. The above framework has shown a gain in 
significant energy savings through this case study of an energy-
aware e-mail service. 
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