Decentralized Authorization - a survey

Licentiate’s Thesis

Sanna Liimatainen

Helsinki University of Technology
Department of Computer Science and
Engineering

Telecommunications Software and
Multimedia Laboratory

Espoo 2002

Teknillinen korkeakoulu
Tietotekniikan osasto

Tietoliikenneohjelmistojen ja
multimedian laboratorio

HELSINKI UNIVERSITY OF ABSTRACT OF
TECHNOLOGY LICENTIATE’S THESIS

Author: Sanna Liimatainen
Name of thesis:
Decentralized Authorization - a survey

Date: Autumn 21, 2002 Pages: 10 + 135

Department: Department of Computer Science Chair: T-110
and Engineering

Supervisor: Professor Teemupekka Virtanen
Instructor: Docent, D.Sc. (Tech) Pekka Nikander

Currently used centralized, identification and authentication based secu-
rity systems do not scale well in heterogeneous computing environment.
Other common problem for all security systems is usability. The systems
are based on complex technology and there are no working metaphors for
functioning in the systems.

Better solutions for trust management and access control in heterogeneous
computing environment are decentralized authorization systems. These
systems suites well even for electronic commerce.

This work introduces a comparison methodology based on Common Cri-
teria and heuristic evaluation usability method. The basic functions of
decentralized authorization systems are identified with Common Criteria.
Based on these basic functions, central tasks of users in different decen-
tralized authorization systems are described. The usability of the systems
is evaluated with heuristic evaluation.

The decentralized authorization systems evaluated in this work are Pol-
icyMaker and KeyNote trust management systems, Simple Distributed
Security Infrastructure / Simple Public Key Infrastructure (SDSI/SPKI),
and Telecommunications Software Security Architecture (TeSSA).

Keywords: decentralized authorization, trust management, usability
Language: English

1l

TEKNILLINEN LISENSIAATINTYON

KORKEAKOULU TIIVISTELMA
Tekiji: Sanna Liimatainen
Ty6n nimi: Hajautettu valtuutus
Pdivimaira: 21. elokuuta 2002 Sivuja: 10 + 135
Osasto: Tietotekniikan osasto Professuuri: T-110

Ty6n valvoja: Professori Teemupekka Virtanen
Tyon ohjaaja: Dosentti, TkT Pekka Nikander

Nykyisin kaytetyt keskitetyt, tunnistamiseen ja todentamiseen perus-
tuvat tietoturvajirjestelmét eivit skaalaudu hyvin heterogeenisessé tie-
tokoneympéristossd. Toinen niille jérjestelmille yhteinen ongelma on
kiytettdvyys. Jarjestelmdt perustuvat monimutkaiseen tekniikkaan ja
sopivia metaforia jarjestelmissi toimimiselle ei ole.

Parempia ratkaisuja luottamuksen hallintaan ja padsynvalvontaan hetero-
geenisessd ymparistossi ovat hajautetut valtuutusjirjestelmét. Ne sopivat
hyvin jopa sdhkoiseen kaupankiyntiin.

Tamé tyo esittelee vertailumetodologian, joka perustuu Common Crite-
riaan ja heuristisen evaluoinnin kiytettdvyysmenetelmédin. Hajautettu-
jen valtuutusjirjestelmien perustoiminnot on tunnistettu Common Crite-
rian avulla. Perustuen néihin toimintoihin, keskeiset kiyttdjan tehtavit
on kuvattu erilaisissa hajautetuissa valtuutusjirjestelmissi. Jarjestelmien
kiytettavyyttd on arvioitu heuristisen evaluoinnin avulla.

Tésséd tyossa arvoidut hajautetut valtuutusjarjestelmét ovat PolicyMaker
ja KeyNote luottamuksenhallintajirjéstelmét, Simple Distributed Secu-
rity Infrastructure / Simple Public Key Infrastructure (SDSI/SPKI) ja
Telecommunications Software Security Architecture (TeSSA).

Avainsanat: hajautettu valtuutus,luottamuksen hallinta, kiytettavyys
Kieli: englanti

v

Acknowledgements

My instructor, Pekka Nikander has helped me a lot in writing this thesis. I
thank him for giving ideas and framing. I thank professor Hannu Kari for
his help for making a working comparison methodology. Thanks to professor
Arto Karila and professor Teemupekka Virtanen for allowing me to continue
studies in an interesting field of computer science.

I want to thank my friends, Ursula Holmstrom and Kristiina Karvonen, for
their valuable comments. I also thank Tero Hasu, Jan Hlinovsky, Janne
Lindqvist and Mika Ranta for their help.

Finally, I thank my family. Especially my husband Janne has supported me
and taken care of me and everything during this work.

Thanks to all!

Otaniemi, August 21st, 2002

Sanna Liimatainen

vi

Contents

Abstract
Tiivistelma
Acknowledgements
1 Introduction

2 Background
2.1 Public Key Cryptography
2.1.1 Encryption and Decryption Algorithms
2.1.2 Digital Signatures L.
2.2 Public Key Infrastructures
2.2.1 Certificationo
2.2.2 Validationo
223 Problemsof PKIs
2.3 Authorization Lo
2.3.1 Certificate Chains and Loops
2.4 Decentralized Authentication and Authorization

2.5 The Problem Statement

3 Comparison Aspects
3.1 Usabilityo
311 Users. o 0 o i e e

vii

ii

iii

iv

10
11
15
16
18
19

viil

CONTENTS

3.1.2 Goals and Tasks of User Groups 24
3.1.3 Usability Evaluation Methods 25

3.2 Applicabilityo 26
3.2.1 Network Layer Policy Management 27
3.2.2 Secure Middleware 29
3.2.3 Policy Management for Mobile Code 31
3.2.4 Electronic Payment Systems 33

3.3 Scalability 35
3.3.1 Dimensions of Scalability 35
3.3.2 The Problems of Scale 36
3.3.3 Users and Scalability 38
Different Approaches 39
4.1 PolicyMaker oo 39
4.1.1 General Principles for Trust Management System . . . 40
4.1.2 Architecture of PolicyMaker 40
4.1.3 The PolicyMaker Credentials and Queries 42
4.1.4 PolicyMaker Example 48
4.1.5 Compliance Checker of PolicyMaker 50

4.2 KeyNote Trust-Management System Version 2 52
4.2.1 Components of KeyNote Trust-Management System . . 53
4.2.2 KeyNote Syntax 55
4.2.3 KeyNote Queries 57
4.2.4 Differences between PolicyMaker and KeyNote 59

4.3 Simple Distributed Security Infrastructure (SDSI) 60
4.3.1 SDSI Terminology 60
4.3.2 SDSI Data Structures 61
4.3.3 Communication with SDSI Servers 65

4.4 Simple Public Key Infrastructure (SPKI) 66

4.4.1 SPKI Certificates 67

CONTENTS ix
4.4.2 Syntax of SPKI Certificates 69
4.4.3 Use of SPKI Certificates 71
4.4.4 Access Control List in SPKI 75
4.4.5 Certificate Revocation 75
4.5 Telecommunication Software Security Architecture. 76
4.5.1 Building Blocks of the TeSSA Architecture 7
4.5.2 Four Kindsof Trust. 80
4.5.3 Security Policy 0. 81
4.5.4 Decentralized Management 82
5 Comparison Methodology 85
5.1 Common Criteria, 86
5.1.1 CC Classes and Families 86
5.1.2 Elements of Decentralized Authorization Systems . . . 89
5.2 Usability Test Method 90
5.2.1 Choosing Usability Test Method 90
5.2.2 Heuristic Evaluation for Decentralized Authorization . 91
5.2.3 Cognitive Walkthrougs for Decentralized Authorization 93

5.2.4 Applying Heuristic Evaluation and Cognitive Walk-
througs to Decentralized Authorization 94
5.3 The Test Problems 94
531 Test Cases 95
6 Comparison and Evaluation 99
6.1 Tests 99
6.1.1 Case 1: Authorization of Entities 99
6.1.2 Case 2: Definition of Security Policy for a Node 104
6.1.3 Case 3: Definition of Security Policy for a Piece of Codel08
6.1.4 Case 4: Handling of Certificates 110
6.1.5 Case 5: Revocation of Certificates 113
6.1.6 Case 6: Checking Validity of a Set of Certificates . . . 116

X CONTENTS

6.1.7 Case 7: Privacy of Users 118
6.1.8 Case 8: Distinguishing Trusted Channels from Un-

trusted Channels 0oL 122

6.2 Results of the Comparison 124

6.3 Experiences 125

7 Conclusions 127

List of Tables

4.1

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Central differences between PolicyMaker and KeyNote [10] . . 60
Usability method comparison [66] 91
Summary of Usability Problems of Case 1 104
Summary of Usability Problems of Case 2 107
Summary of Usability Problems of Case 3 110
Summary of Usability Problems of Case 4 113
Summary of Usability Problems of Case 5 115
Summary of Usability Problems of Case 6 119
Summary of Usability Problems of Case 7 121
Summary of Usability Problems of Case 8 123
Number of found usability problems 124

xi

xii

LIST OF TABLES

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5

Encryption and decryption o000 L.)
Signing and verifying a message 6
Transitivity of Trust 14
Identification certificate bindings [58] 15
Authorization certificate bindings [58] 16
An authorization certificate loop [58] 17
Authorization in CORBA [57] 30
Micropayment architecture 34
PolicyMaker Lo 41
(a) An example of an assertion (b) Corresponding directed graph 44
An example of bank loano o000 48
Pseudocode for Compliance Checking algorithm [12] 52
The conceptual building blocks of the TeSSA [67] 7

xiii

Xiv

LIST OF FIGURES

Chapter 1

Introduction

Security is a necessary component of almost every computing system. Secu-
rity issues becomes complex when the system grows. For example, the phys-
ical protection of the system is not enough when the parts of the systems
are connected through a network. Valuable information, expensive resources,
and precious services must be protected from disclosure, illegal changes, and
misuse.

Currently used security management systems are based on identification and
authentication. The system keeps up a list of names of the authorized users,
and the user identifies herself to the system in order to get access to infor-
mation, resource, or service. Basis of these systems lies on governmental way
of doing business: a citizen is identified based on her identification number
before she can even explain her problem. Eventually, this two phase method
of identification and authentication is clumsy and often unnecessary.

Better security management solutions are based on authorization. Often the
identity of the user is unessential information. The system needs only to
know that the user has authorization to use the system and not who the
user really is. Other great benefit of authorization systems is that the issuer
of the authorization is often also the entity who finally decides weather the
user is authorized to perform the requested action, i.e. external trusted third
parties are unnecessary.

One of the biggest problems of security systems is that they are not easy
to use. Security solutions have complex mathematical background and the
systems are often complicated. The problem of unusable security slows down
the electronic commerce and other businesses on top of an unsecured net-
work such as Internet. Common users and companies do not trust to the
security solutions because they do not understand how the solutions works.

2 CHAPTER 1. INTRODUCTION

A solution, that is sometimes suggested, is that the security is hidden from
the users. This is not a good choice because when the user is completely
uninformed about the underlying security, she cannot base her trust towards
the system on knowledge.

This thesis compares different solutions that provide decentralized autho-
rization from usability point of view. The purpose is to identify usability
problems of decentralized authorization mechanisms.

Organization of this Thesis

The chapters are organized as follows. In the second chapter, the background
for security management information is introduced. Firstly, the basis of pub-
lic key cryptography, and secondly, the basis for currently used public key
infrastructures are described. The second chapter discusses also why authen-
tication should be replaced with authorization, and how authentication and
authorization works in a decentralized system.

The third chapter gives different kinds of aspects for the comparison: usabil-
ity, applicability, and scalability.

The fourth chapter describes five different kinds of approaches to solve de-
centralized authorization. The first decentralized trust management system
is PolicyMaker. Other solution, Keynote, is based on same kind of architec-
ture than PolicyMaker. Other kind of solution is a PKI called Simple Public
Key Infrastructure. Last decentralized authorization system described in this
thesis is the TeSSA architecture.

The fifth chapter describes the comparison methodology that is based on
Common Criteria and two usability test methods, heuristic analysis and
cognitive walkthroughs. This chapter also introduces the test cases which
are used in the comparison of the different decentralized authorization ap-
proaches.

Results of the comparison are presented in chapter six, as well as the expe-
rience gathered from the comparison.

Finally, the chapter seven concludes this work.

Chapter 2

Background

Service providers offer services for their customers. Developing and maintain-
ing services cost money and service providers collect that money from the
customers. In order to do that, a service usually identifies and authenticates
its users or checks that a user has authorization to use the service. Several
methods have been developed for providing authentication or authorization.

In a distributed system, computing and data are spread to several computers
usually connected by a network. Problems are divided to smaller problems
and divided among computers, i.e. a computer solves the part of the prob-
lem where it is the most efficient. Usually, the distributed system still has
common administration. When a distributed system is no more under single
administration, the system is decentralized. Its parts are independent but
still working together. If one part of the system cannot answer to a ques-
tion, it forwards it to others. For example, authorization information needed
by a service provider can be issued by several different authorities, and the
information must be gathered from different sources.

In this chapter, the background of decentralized systems and their security
are introduced. Firstly, I present the techniques that are needed in public
key infrastructures. The second section concerns authorization, and the last
section introduces decentralized systems.

2.1 Public Key Cryptography

As we will see, public key cryptography and public key infrastructures (PKI)
are the base technology decentralized authorization is built upon. In this sec-
tion, Firstly, I introduce methods that are needed for establishing a public

3

4 CHAPTER 2. BACKGROUND

key infrastructure. In the next section I describe what a public key infras-
tructure is and give examples of such.

The following names are commonly used for clarifying the roles of actors in
a system based on public key cryptography: Alice, Bob and Carol are users
that want to perform some actions. Eve is an evil user that usually wants to
do something illegal or harmful. Some actions need external actors. One of
such actors is Trent who is a trusted third party.

As an example, let us consider a situation where Alice wants to send a mes-
sage over the Internet to Bob and wants to be sure that Eve cannot read or
modify the message. Alice encrypts the message with an either symmetric or
public key cryptographic algorithm to ensure confidentiality of the message.
She also digitally signs the message to make sure that Eve cannot modify
the message without being detected. Thereby Bob knows that the message
is really coming from Alice, it has not been changed during transportation,
and Eve has not read the message.

Alice needs a secure way to exchange encryption/decryption key (depend-
ing on the cryptographic algorithm) with Bob to ensure that the key really
belongs to Bob. One possibility is that someone trusted, Trent, ensures Al-
ice that Bob’s public key is really his key. The function of a public key
infrastructure is to ensure that users get the right keys.

Even though in the previous example a key is bound to an identity of a
party, that is not always the situation. A public key infrastructure can bind
also authorization to a key, that can be used to represent authority to do
something. This chapter presents the traditional public key infrastructures
which are mainly used for binding identity to a key.

In the following subsections, I first discuss basics of cryptographic techniques
that are needed in PKIs and then more about PKIs and how they work.

2.1.1 Encryption and Decryption Algorithms

An encryption algorithm changes a plaintext message to an unreadable form,
a ciphertext, and a decryption algorithm operates to the opposite direction.
Both algorithms use keys. Figure 2.1 clarifies the situation where a mes-
sage is transferred confidentially through an untrusted network. First, the
encryption algorithm uses a key to change the plaintext to the ciphertext.
The ciphertext can be transmitted over untrusted channel. The decryption
algorithm changes the ciphertext back to the plaintext using either the same
key or another key depending on the used algorithm.

2.1. PUBLIC KEY CRYPTOGRAPHY 5

— | encryption : > decryption —————®
plaintext ciphertext plaintext
key key

Figure 2.1: Encryption and decryption

A keyspace is a large set of possible keys and the key is usually a long number
picked out from the keyspace. In general, cipher algorithms are divided in
two groups: symmetric and public-key algorithms.

Symmetric algorithms use same key in both encryption and decryption. Com-
municating peers need to securely agree on the key. If members of a group
trust each others, they can use one common key. The possibility to cheat
grows when the group becomes larger. For example, one member can give
the key to an outsider who then can follow the communication. If a group of
people want to communicate together in a secure way, they all need to agree
keys with each other member of the group. To allow confidential communi-
cation between each pair of users in a group, n*(n-1)/2 keys are needed. The
key agreement may also be problematic. Usually a key distribution center
(KDC) is used to make key agreement more efficient.

In public-key cryptosystems, a pair of mathematically related keys is used.
One key is used to encrypt data, and only its pair key can decrypt data, not
even the encryption key reveals the original data. Usually, the encryption key
is called a public key and the decryption key is called a private key. The public
key can be published, for example, in a WWW page and everyone can use it
to encrypt messages. Only the owner of the corresponding private key can
decrypt the messages. Public key cryptosystems have their own problems.
Algorithms are considerably slower than symmetric ones and keys are longer
than in symmetric cryptosystems [78]. Thus, public-key cryptosystems are
often used to protect a key exchange that creates a session key for symmetric
cryptosystems. Then the actual messages are encrypted with the symmetric
algorithm.

Public-key cryptosystems have one more problem: how can Alice know that
the public key at Bob’s WWW page is really Bob’s key? The web page could
be spoofed, anyway. One way is that the public key is digitally signed by
Carol whose key Alice has got directly from Carol and to who Alice trust.
This is one kind of simple PKI, but before we go deeper we look what other

6 CHAPTER 2. BACKGROUND

cryptographic methods PKIs need.

2.1.2 Digital Signatures

A digital signature ensures that a message or a document is integral and that
the signer is the originator of the document. Signing documents with public-
key cryptography works in the opposite direction than encrypting with it:
the originator signs the document by encrypting it with her private key and
then everyone can verify the signature by decrypting the document with the
originator’s public key. In some public key systems, there is a separate key
pair for signing and for encrypting. It is also possible to use a symmetric
cryptosystem to sign documents but then an arbitrator, a trusted third party,
is needed.

: Sender E Receiver

' | Message : i »| Message

| > Message |, | | Message

| functio

| A

' hash an message OK
' _functio hash hash Hash :

b T
comparison

verifying _» Hash

signature

Figure 2.2: Signing and verifying a message

Like encrypting and decrypting with a public-key algorithm, also signing
a large document with public-key cryptography is inefficient. Figure 2.2
illustrates more efficient method of signing documents or messages. Instead
of signing a whole document only a hash calculated from the document is
signed. A hash function compresses an arbitrary length message to fixed
number of bits. Good hash functions are collision-free, i.e., it is not possible
to find two messages that have same hash value. The signed hash is sent

2.2. PUBLIC KEY INFRASTRUCTURES 7

together with the original message to the recipient. She verifies the signature
by first calculating the hash from the original message and “decrypting” the
signed hash and then comparing the hashes.

2.2 Public Key Infrastructures

Whitfield Diffie and Martin Hellman presented in their article the idea of
public key cryptography in 1976 [23|. As I already mentioned, the main
problem in public key cryptography is the users knowing that they have the
key of the right recipient. A solution was suggested to form a list of name
- public key pairs stored in a Public File, similarly to a telephone directory
that contains name - telephone number pairs. In his bachelor thesis in 1978,
Loren Kohnfelder stated that a Public File is not useful because fetching keys
from it is not efficient and such a centralized system is hard to maintain [55].
He proposed the use of certificates in binding the public keys to names. The
certificates could be issued by the administrator of the Public File and this
way the first public key infrastructure was introduced.

The purpose of this most simple form of public key infrastructures is to
publish the public keys used in public key cryptography. In other words,
a PKI ensures that the public key belongs to the entity that is claimed to
belong to and this entity has the corresponding private key. Basically, a PKI
consists of two parts: certification and validation [19]. A certificate binds
the public key to a name of a person or an entity, or even to some other
information like a permission. Validation process verifies that the certificate
is still valid in the moment of use. In the next subsections, certification
and validation are discussed more widely with examples. Later in this thesis,
other kinds of credentials that are used to denote authorization are discussed.

2.2.1 Certification

A certificate is a digitally signed record that states properties of some entity.
A certificate attaches some information to a public key. Certificates can be
divided into three groups based on that information: Identity certificates
state the identity, a name, of the public key holder. Credential or authoriza-
tion certificates express permissions or credentials. Attribute certificates are
little different: they bind authorization to a name and they are used with
identity certificates that bind the information to public keys.

In this section, I introduced these three kinds of certificates, what kinds of

8 CHAPTER 2. BACKGROUND

structures there are for granting them, and what kind of certificate systems
there are in use.

Certificate Types

When a word certificate is mentioned in the context of computer secu-
rity, people usually think about identity certificates. They are the old-
est form of public key certificates introduced by Kohnfelder in 1978 [55].
Identity certificates and certification authorities (CA) work in similar way
than labels in French wines [48]. French Institut National des Appellations
d’Origine (INAO) organization manages a classification system called Ap-
pellation d’Origine Controlée. This organization certifies that a wine bottle
comes from the vineyard mentioned in the label of the bottle. Similarly to
the labeling system, a certification authority assures that a public key be-
longs to an entity which name is mentioned in the certificate. There are
two widely used identity certification systems: X.509 [47] and Pretty Good
Privacy (PGP) [84]. Both of these are briefly introduced later in this sec-
tion. Nevertheless, the Appelation d’Origine Controlée organization does not
guarantee the quality of the wine and same way, the identity certificate do
not guarantee that the person do have authorization to perform an action.

An other form of certificates are authorization certificates, which are often
also called credentials. They bind an authorization to a public key. This
authorization might be, for example, execution permission for a program
downloaded from the Internet. Authorization certificates do not use names
in the certificates but a permission is given directly to a public key. Thus,
the owner of the corresponding secret key becomes a holder of the permission
denoted in the certificate. Issuing authorization certificates is different from
issuing identity certificates. There might not be an actual certification au-
thority, but the owner of a resource can be and usually is the primary source
of authorization.

Identity certificates are like passports. Sometimes, a passport is not enough
for entering to a country, but an additional document, a visa, is needed.
Attribute certificates are like visas [34]. An attribute certificate combines
authorization to an identity. Attribute certificates are used together with
identity certificates: An attribute certificate binds authorization to an iden-
tity, and an identity certificate binds identity to a public key.

2.2. PUBLIC KEY INFRASTRUCTURES 9

Granting Certificates

There exits several different kinds of certificate granting schemes. X.509
identity certificates are usually used with hierarchical certification authorities
and globally unique names. In PGP, an electronic mail address acts as an
unique identifier of a user, and a friend of a user certifies that a public key
really belongs to that user. Thus, a group of friends forms a “web of trust”.
Authorization certificates of Simple Public Key Infrastructure (SPKI) can
form a certification loop that is originated from the owner of the resource
and gives a right to use the resource to a user. Below are examples from each
of these.

Examples

FINEID. Since December 1999, Finnish citizens have been able apply for an
electronic identification (FINEID) card [20]. The Finnish Population Reg-
ister Centre acts as a certification authority and issues the certificates. It
also certifies services and servers. The FINEID card contains two X.509 cer-
tificates and RSA key pairs. One certificate is used for authenticating the
user to services, and another certificate is used for encrypting and signing of
documents. Services can be offered by authorities, communes, and private
sector organizations such as banks. The Population Register Centre main-
tains a list of all the public keys of FINEID card holders and their public keys
on its WWW pages. Certificates in the FINEID card binds a RSA public
key to name of the card holder. Because several people can have exactly
same name, an unique number called electronic identification number is also
stored in the card. A problem arises, for example, when Alice want to send
an encrypted message to Bob using public key verified by Population Reg-
ister Centre. There might be several Bobs in the list and the only way to
distinguish them is to know the electronic identification number.

PGP at HUT. In Telecommunications Software and Multimedia Labora-
tory (TML) at Helsinki University of Technology (HUT), Pretty Good Pri-
vacy (PGP) is used to authenticate students of basic courses when they return
their homework assignment answers by electronic mail [59]. A student writes
her answers to a file, signs it with PGP, and sends it to the course electronic
mail address. Before sending answers of any basic course assignment, the
student must physically authenticate herself to the course staff. The student
brings a fingerprint (a hash) of her public PGP key printed in a piece of
paper and shows her student card or other identification card to the course
assistant. The assistant then signs the public PGP key of the student with

10 CHAPTER 2. BACKGROUND

the PGP key of the course. When the same student enroll to another course
in the TM-Laboratory, she does not need to authenticate herself again. Staff
of this course can see that another course has verified that this key to belongs
to this student. This way, the students and the courses form a structure “web
of trust”.

Authorizing Java code with SPKI. Java programming language has
made mobile code reality: everyone can download a program from a WWW
page and execute it in her own computer. Pekka Nikander and Jonna Par-
tanen have introduced authorization certificate based system for authorizing
mobile Java code [68, 72]. Their system makes execution of mobile code
safe. They give an example to clarifies how the system works [68]: Alice
as an administrator of a computer wants to give file access permissions to
a program developed by Bob. Firstly, one certificate denotes that Alice has
right to define any permissions for her computer. A second certificate issued
by Alice gives to Bob a right to authorize programs to access files in Alices
computer. In the third certificate, Bob gives the file access rights to his new
program. These three certificates form a chain that gives Bob’s program
the right to access files in Alices computer. The program can proof with
the certificates to the computer that it really has that right. Section 3.2.3
clarify more precisely how authorizing Java code with SPKI authorization
certificates works and why such a system is necessary. The example above
shows that everybody can act as certificate authority and issue authorization
certificates. There is no actual trust hierarchy in the case of authorization
certificates.

After the examples above, we can see that there must be some way to check
that the certificates are valid in the moment of use. The next subsection
shows different methods to check the validity of certificates and what kinds
of problems there are in validation.

2.2.2 Validation

First of all, the receiver of a certificate must check that the certificate itself
is not forged. This is done by checking the signature of the certificate. But
it is not enough because the situation might have changed since the signing
of the certificate. Some external validation of information is needed, and
first in this subsection, I discuss offline and online validation. Then I intro-
duce the concept of revocation and how certificate revocation lists (CRL)
are used. Finally, last in this section I discuss the problems of public key
infrastructures.

2.2. PUBLIC KEY INFRASTRUCTURES 11

Online and Offline Validation

Offline validation means that validity information is stored in the certifi-
cate. Let us consider the examples about the different certification granting
schemes from previous subsection. The FINEID identification card is valid
for three years. After the three year time period, the keys stored in the card
are still usable but they are not considered valid anymore. In the case of
authorization certificates in the example above, Bob could have given the file
access permissions to his program for just one day. After that day, the pro-
gram does not have the right to access files in Alice’s computer. As we can be
see, the offline validation must be considered when the certificate is created.
But what can be done if the public key in the certificate is compromised?
This kinds of threats can be handled with online validation. The certificate
also contains locations (URLSs) of validation services and the public key that
the service use to denote validation.

When buying an expensive thing with a credit card, the cash register will
call to a validation number in order to check that the credit card is not on
a list of stolen cards. Similarly, some certification schemes support online
validation. A service can check from the certification authority that the used
certificate is still valid. If a certificate is invalid, it has been revoked.

Certification Revocation List (CRL)

Pure online validation system requires much, for example, the service must
be reachable all the time and it must be able to handle many simultaneous

queries. Usually revoked certificates are collected to a certificate revocation
list (CRL).

A certification authority can publish certificate revocation lists. A list is
digitally signed by the CA to ensure that it is real. For example, the Finnish
Population Register Centre publishes FINEID certificate revocation list every
hour and the list is valid for two hours. This example illustrates one particular
problem of CRLs: a certificate may need to be revoked just after the previous
CRL has been published. Solutions such as delta-CRLs are developed for this
problem, but they do not belong to the scope of this work.

2.2.3 Problems of PKIs

Public Key Infrastructures solves problem of knowing to whom a public key
belongs or what kinds of actions a keyholder is authorized to perform. Still,

12 CHAPTER 2. BACKGROUND

PKIs are far from being perfect solution. Carl Ellison and Bruce Schneier
gives ten problems of PKIs [30]. The list consists of following items which
some I introduce in more details:

Necessity of PKI

e Trusting to a certification authority

e Authority of a certification authority

e Identification process before granting a certificate
e Human names are not global

e Secure practices to use certificates

e Protecting the private key

e Security of a certification authority, i.e. that it is implemented and
secured with care

e Security of a verifying computer, i.e. it cannot be cheated or break into

e Security of an application, i.e. the application is working trustworthy
and tell necessary information to the user

First of all, one should ask if a public key infrastructure is really necessary.
Public key infrastructures has said to solve, for example, the problems in
electronic commerce, but the currently used systems are not “beautiful”. Most
of the systems secure the underlying connection between a client machine
and a vendor server , and uses the common practices from the non-electronic
world. They does not really solve problems of electronic commerce.

A user must trust to a certification authority in two ways: that the certi-
fication authority is trustworthy and that it has authority to issue the au-
thorization. For example, a widely used WWW security system is based on
Secure Socket Layer (SSL) protocol defined by Netscape and X.509 identity
certificates. Usually, a WWW client program gives a list of certification au-
thorities that are implicitly trusted to certify servers. The user must decide
if she trusts to Canadian post.

2.2. PUBLIC KEY INFRASTRUCTURES 13

Problem of naming

Centralized systems does not scale well, and identity certificate systems such
as X.509 is a centralized system. In this subsection I give one justification for
the above claim. I describe more precisely later in section 3.3 what scalability
means and what other problems makes a system non-scalable.

One of the main problem of X.509 identity certificates is naming. Names
works well as identifiers in a family [30]. When names are used in global
scale under one authority, a problem arises: human names are not globally
unique. For example, the most common family name in Finland is Virtanen
and the most common man’s name is Juhani [21]. When Alice want to send
secure electronic mail to Juhani Virtanen, a problem arises. How she can
know which public key certified by a FINEID identity certificate described
above belongs to that Juhani Virtanen she knows? Like describe earlier in
section 2.2.1, some additional information such as an identification number,
an address, or a working place can be used to distinguish the names.

One solution for globally unique names is hierarchical naming as given in
the example above. A name have two parts, the name of a person and some
additional information like the organization where this person is working.
Still, the additional information does not solve the problem. For example,
when a person change her working place, the name of the organization will
change.

Later in this thesis, in section 4.3.1, a solution for the naming problem is
presented. The solution is base on linking of local names which is natural to
humans.

Problems of Authorization PKIs

The problems listed above are mainly problems of such public key infras-
tructures that provide identity bindings. There are also problems in the
authorization public key infrastructures. Decentralized systems have usually
both human and non-human (such as computer programs etc) actors. Trust
in computer world is considered to be transitive, but this is not true in human
relationships [1|. For example in figure 2.3(a), if Alice trusts to Bob and Bob
trusts to Carol, it does not necessary means that Alice trusts to Carol. On
the other hand, this is just what delegation in the authorization certificate
chain means. Of course, some restrictions to the trust can be defined.

As a matter of fact, trust is considered to be transitive also in the tradi-
tional identity certificates. The granting of certificates is based on a tree of

14 CHAPTER 2. BACKGROUND

Alice

transitive
tru&

trust /

Bob @
t@\
Caral l l
Alice Bob Carol
(@) Transitive trust (b) CA hierarchy

Figure 2.3: Transitivity of Trust

certification authorities like presented in figure 2.3(b). The CAs trust each
other and the use of identification certificates assumes that all users trust to
all CAs. In the example, Alice must trust to the certification authority C'A,
that it has truly identified Carol with secure manners.

Public key infrastructure offers powerful tool for surveillance of individual
acting on networks, which threaten privacy of people [45]. Traditional public
key infrastructures uses identity more than is necessary. For example, in
electronic commerce merchants do not need the true identity of a client, a
pseudonym is enough for profiling purposes. Authorization certificates offer
alternative where a user can have several keys for different purposes. SPKI
authorization certificate documentation is even worried that a set authoriza-
tion certificates can reveal identity of the certificate holder [27].

As denoted in the Introduction of this thesis, there are two kinds of public
key infrastructures: one PKI binds a public key to a name and identifies the
owner of the public key, and other PKI binds a public key to a right and
authorizes the owner of the public key. In the next section, these two ways
to express rights of a user are compared.

2.3. AUTHORIZATION 15

2.3 Authorization

Authentication and authorization are two basic parts of security systems.
They can both be used when access control situations need to be solved.
In this section, I first briefly check what is access control and authentica-
tion and then discuss why identity authentication should be replaced with
authentication of direct authorization expressions.

The function of access control is to decide weather to let someone to use
a resource or not. This information can be conceptually represented as an
access control matrix [5]. Subjects (e.g. users) are listed in the rows of the
matrix and objects (e.g. services) are columns of the matrix. How a subject
can act upon an object is defined in the cell of the matrix. An access control
list (ACL) is a simple representation of the access control matrix where each
object is altered with a list of its legal users and their rights. That is, in
addition to the users, the ACL can also contain more detailed information
regarding what the subjects can do to the objects.

But access control as such is not enough. When a user want to use a ser-
vice to which she has access rights, she first somehow has to show that she
really is who she claims to be, i.e., authenticate her identity to the ser-
vice. Traditionally, the user first identifies herself by giving a user name and
then authenticates herself by giving a passphrase for the service. In this ex-
ample, authentication is based on something known only by this user: the
passphrase. Other forms of authentication are based on something embodied
and something held [5]. Something embodied, for example, a fingerprint, is
used long time for solving crimes. Something held is also an old concept in
access control: keys have been used for opening locks for quite a long time.

Keys
certificates
Person Name challenge
ACL
Operation

Figure 2.4: Identification certificate bindings [58]

Most of the services do not actually need the identity information about the
user. Often a service simply needs to know if the user is authorized to do what

16 CHAPTER 2. BACKGROUND

she wants to do. Joan Feigenbaum argues [35] that authentication should be
replaced with authorization because then systems will become simpler. In
traditional ACL and identity based systems, there are two questions to be
answered: “does this user own the secret key corresponding to this public
key” and “does the owner of the secret key have the authorization to perform
an action”. The figure 2.4 illustrates the bindings that an traditional public
key infrastructure creates to be able to answer these question [58|. For the
first question, a public key infrastructure can answer, for example, by giving
a X.509 certificate that binds a name to a public key. The access control
list describes what operations a person (the name) is authorized to perform.
When the person want to perform the action, authorization is checked by
challenging the public key.

certificates
Keys —— Operation

~_ 7

challenge

Per son

Figure 2.5: Authorization certificate bindings [58]

The first question above is irrelevant for the service. Actually, it needs an
answer only to the second question. For example, when a company makes
an electronic contract with someone, it is not so essential who the signer of
the contract is but that she has the authorization to sign the contract [36].
Joan Feigenbaum states that “rather than supporting signed requests with
name-key binding certificates, requesters should support them with more
flexible and general credentials that prove that keys are authorized to take
actions” [35]. The credential based certificate bindings is presented in the
figure 2.5. The authorization is directly given to a public key in a certificate
and the verification of authorization is also directly between the operation
and the public key.

2.3.1 Certificate Chains and Loops

Authorization certificates may support delegation. Delegation means that
a right given in a certificate can be further given to someone else in a new
certificate. The certificates form a chain from the issuer of the first certificate
to the subject of the last certificate. The chain is valid if all the certificates,

2.3. AUTHORIZATION 17

except the last one, give right to their subjects to further delegate the right
given in the certificates. Of course, the issuers cannot give extra rights that
they do not have to anyone. Certificates are closely related to trust relation-
ships |58]. In a certificate chain, the trust is transitively propagated from
one entity to the next entity and further on.

Server's User's

policy admin (PASPA, policy admin
PAgkey may delegate, PAukey
limited accessto "Server:,
forever)
(Self, PA g }Xi (PAOI gl User,
may delegate, no egaﬁ'g;)
access to " Server" accessto " server,
time constraint) time constraint)

7 * i

Server User
Sdf key User key

proves possession
of User key

Figure 2.6: An authorization certificate loop [58|

Usually, an entity who has issued the first certificate of a certificate chain is
also the entity who finally checks that the certificate chain is valid. Figure 2.6
presents a certificate loop that is formed from a certificate chain and a query.
In the example of the figure, a server offering a resource issues a certificate to
its administrator and gives the right to further delegate the authorization to
use the resource. The administrator grants a certificate with limited access
right to another administrator. This administrator grants a certificate with
no delegation rights to a user. When the user wants to use the resource in
the server, she gives to the server the certificates of the chain as a proof that
she has the rights to use the system. The server checks that the chain is valid
by firstly verifying the signatures of the certificates, and then checking that
the chain is unbroken.

Certificate loops work also to the opposite direction. When a user want to

18 CHAPTER 2. BACKGROUND

know that a server is the right server, another certificate loop is formed. The
user gives certificate to a certificate authority who she trust, and the CA
further delegates the right to identify other servers. Finally, some trusted
CA gives a certificate to the server. The server can then prove that it is the
right server trusted by those trusted third parties that the user trusts.

2.4 Decentralized Authentication and Autho-
rization

As a motivation example, let us consider a centralized service that uses cer-
tificates for making access control decisions. The certificates are issued by
a certification authority of a public key infrastructure and the service uses
online validation. The service works in a similar manner to buying things
with a credit card where the credit limit is checked. There are two central
points in this service. The first central point is the PKI that issues certifi-
cates and the second is the validation server. The more vital for the every
day use of the service is the validation service: For the globally used system,
the online validation service needs to be working 24 hours a day, seven days
in a week, and there are lots of validation queries. If the validation service
is not reachable, nothing will work. For making the validation system more
reliable, the validation system can be duplicated and the duplicates can be
distributed to different locations. But this adds the need of administration
and the system still has central points that at least one must works.

This background chapter has introduces systems that can be used for de-
veloping a service like the one described in the above example: X.509 or
PGP certificates binds a name of a user to a public key and an access con-
trol list defines which user are allowed to use the service. Nevertheless, this
traditional approach does not suite to every kinds of situation or cover all
problems of trust management such as how an administrator of the service
defines the access control policy.

Since the middle of 1990s, several decentralized solutions for trust manage-
ment are presented. The previous sections have also described background
for these other kinds of solutions that can suite better for large scale services.
Instead of centralized certification authority and validation, a decentralized
authorization can be used to make the service more flexible and still reliable
and secure.

Eventually, the access control mechanism is one part of a trust management
system. Here, access control can be considered in its wide significance mean-

2.5. THE PROBLEM STATEMENT 19

ing any means to get assurance that an entity is in legal path. For access
control, a trust management system describes trusted actions and trust re-
lationships with a common language [11], i.e. both the access control policy
and the credentials use the same syntax. This makes comparison of the
policy, the credentials and the requested action easier.

Decentralized systems may have two kind of actors: humans and computer
systems. Trust means little different thing to both of these actors: A human
user is trusted if she is believed to be honest, i.e she does not have malicious
intents. A system is trusted if it is believed to be secure, i.e. it opposes
malicious intents directed towards it [49]. The basis of trust, the belief,
should be based on knowledge.

In decentralized system, anyone can denote her believes, which makes cen-
tralized certification authorities unnecessary. The belief can be both an au-
thentication of an entity or an authority that an entity has. For example,
someone can certify the identity of Alice, or what kinds of rights Bob’s pro-
gram has. Of course, a belief can be deliberately or accidentally based on
lies.

Often, decentralized systems use transitive trust. Because trust in human
contacts is not transitive, the given trust is somehow limited. The limitation
can be time, restriction of authorization, restriction based on a level of believe
(e.g. certain - quite certain - probably), or a method that must be used to
verify the belief from its origin.

Because trust in decentralized systems is based on believes, it is essential to
check that the believes are correct. In transitive system, trust is delegated
from one entity to another. In verification, the chain of trust is traced back to
its first issuer. Usually this first entity is the same that receives a request, and
the chain and the request form a certificate loop presented in section 2.3.1.

Some decentralized trust management systems uses a common compliance
checking entity to checks that requests are acceptable. However, this does
not mean that the entity is centralized, it just is for general use and every
service can still have its own copy of the compliance checking entity.

2.5 The Problem Statement

The main objective of this thesis is to create evaluation method for trust
management systems. The purpose is to find out what kind of authoriza-
tion system is usable for users of the system, and still suite well for varying

20 CHAPTER 2. BACKGROUND

applications. Other types of comparisons are out of scope of this work, and
can be found from elsewhere. For example, Stephen Weeks has compared
the mathematical background of existing trust management systems [80].

Chapter 4 introduces five different decentralized authorization systems. They
are compared later in this thesis based on the evaluation criteria and com-
parison methodology that I present in the next chapters.

Chapter 3

Comparison Aspects

This chapter introduces three aspects that are used as basis in comparison
of authorization mechanism, and describes how each aspects can be tested.
The first section discusses usability and its testing methods. The main focus
of this thesis is the usability evaluation of different authorization systems
presented in chapter 4. Another aspect is applicability, and the second section
introduces different areas where the authorization mechanism are or could
be used. The third section defines scalability. The comparison methodology
used in this thesis and the main focus of the comparison is presented in
chapter 5.

3.1 Usability

ISO standard 9241 defines usability as “the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in specified context of use” [71]. Product can be a piece
of hardware or software and, of course, the user is a person who use the
product. The user should be able to reach her goals effectively (efficiency)
without errors and shortcomings (effectiveness). Finally, the user should be
pleased to the use of the product (satisfaction).

Jacob Nielsen specifies that usability consists of five attributes [66]. His
definition is more wide than the ISO standards definition but contains all
same properties that ISO definition. According to Nielsen, the usability
attributes are [66]:

e Learnability. The user interface of a system should be so easy to learn

21

22 CHAPTER 3. COMPARISON ASPECTS

that users can do some work rapidly after start of using the system.
e Efficiency. The user can use the system efficiently.

e Memorability. The system should be easy to remember so that a
user who has not used the system for some time can easily start using
it again.

e Errors. If the user makes an error, she should be able to easily recover
from it. There should not be many errors and none catastrophic errors
that a user can accidentally do.

e Satisfaction. The user should be able to enjoy using the system.

These much-used and much-tested lists of usability attributes provide the
backbone of usability. However, such lists of usability factors should not be
regarded in any way as exhaustive, and the current discussion around usabil-
ity is moving towards a more holistic approach towards usability towards an
ingredient inside the broader concept of "user experience". Still, more re-
fined elements of user experience can then build upon of the lists of usability
attributes. They describe the essentials of usability for most systems and
services.

When usability of a product is measured, the measurer need to know the
users, and their goals, tasks, equipment, and the physical and social envi-
ronment [41]. She should be familiar with the product and discover how
effectiveness, efficiency, and satisfaction can be measured. The user works
with the user interface of the product. Designers of the user interface should
understand the user in addition to knowing the underlying technology. De-
signers must know who the user is and what she tries to do [41]. In these
days when usability and user-centered design is a common practice in many
application areas, within computer security and authorization mechanisms
especially, usability is still taking its first steps.

In this section I describe suitable usability evaluation methods for autho-
rization mechanism analysis but first I introduce what kinds of users an
authorization system has and what kinds of tasks they perform.

3.1.1 Users

Authorization mechanisms have several user groups. For a completed prod-
uct, the most obvious user is an end-user who tries to access a resource or a
service. Still their primary task is not security but to use the resource or the

3.1. USABILITY 23

service. The group of end-users is growing because World Wide Web based
services are becoming general. This user group consists of various kinds
of people: some know the system and the underlying technology like their
own pockets (expert users) while some others (casual users) know something
about the system and computers, for example, how to use the mouse and
that the icon that looks like a diskette usually means “save”. Finally, there is
a user group that does not know at all how to use a computer (novice users).
However, the novice users are unlikely users of the computer authorization
mechanisms because they more likely use human to human communication
without computers.

Different groups of users will start using a service in different life time of
the service [70]. The expert users buy any new “gadget” with any price as
long as they feel the need for (at least part of) the service. A technological
product must satisfy basic needs before there can be enough casual users to
make the product profitable for the seller. The product must be customer-
driven and human-centered before the casual users make the product becomes
productive for the seller. The casual user want to perform tasks with a
reasonable price and easily.

Another user group is formed by the (system) administrators, who maintain
and administer the service. This other user group is the administrators.
An administrator can also be a owner of the service or the resource, not
just a hired employee. They should have more information about how an
authorization mechanism works and how to configure it because, for example,
if they do something wrong, many users suffer from misconfiguration or the
whole service does not work correctly.

Last but not least user group is program designers and programmers. At
first, they make the programs that other user groups use. They should know
all user groups and their goals in order to make a usable service. The pro-
grammers may use an authorization mechanism to give some access rights to
a program which is then used by the users. Section 3.2.3 gives an example
of this case. To create usable authorization services, the programmer needs
to understand also the access control mechanism that she is implementing.
Probably the usability of the specifications of the authorization mechanisms
some day gain attention.

Security is a chain that is only as strong as it’s weakest link. The user
is usually named to be this weakest link. Thus the designer of a program
should know the users and her tasks and create a handy user interface to the
program. The designer has also to inform the user why, for example, authen-
tication is necessary. Otherwise the user tries to circumvent the mechanism

24 CHAPTER 3. COMPARISON ASPECTS

because she has no motivation to use the mechanism correctly [2].

3.1.2 Goals and Tasks of User Groups

The purpose of a decentralized authorization system is to proof that a user
has an authorization to perform an action or use a resource. The system
may not be interested in about the identity of the user. The system may
even authorize software agents that act on behalf of the user. Decentralized
authorization systems has different user groups presented in previous section.
These groups have different goals and tasks.

A goal of a common user is to perform an action in a decentralized system.
She does not particularly want to authenticate herself or proof that she has
authorization to perform the action. Thus, the common user usually sees the
security policy that requires authorization /authentication as necessity for the
system, not as a part of her own particular task [83]. Security mechanisms
themselves are so complex and hard to understand that common users have
difficulties to perform security related tasks correctly |82].

Analyzing the tasks of administrators is more demanding because they need
to interact with the security part of the system and perform more compli-
cated, critical and sometimes unexpected actions. Generally speaking, the
main task of administrators is to make the system works. The administrators
of a decentralized system may be independent from each others and thus their
tasks can vary from one part to other part of the system. For example, the
system may have different administrator for common software and hardware
of the system and for security policy and security credential management,
as well as for different phase in the system lifetime, i.e. for installing a new
node or maintaining a node. One task of the administrators is to maintain
the delegation of the credentials.

The third user group, the software developers also interact with the security
system of the decentralized system. Their task is to delegate credentials to
the software agents they have created. They also have to define what kinds
of requirements the agent has in order to work correctly and securely, i.e.
what kinds of requirements the agent has for a node where it is executed.

The goals and tasks of different user groups of decentralized systems are
introduced here briefly and discussed more precisely in section 5.2 where
the main tasks of different user groups are introduced for the comparison of
different decentralized authorization systems.

3.1. USABILITY 25

3.1.3 Usability Evaluation Methods

Different usability evaluation methods are suitable for different phases of
design and implementation. If the system is ready, the user interface can
be tested with a usability test and real users. The test can also be done
for a similar system and find out what kind of difficulties users have in it.
Standard review, cognitive walkthrough and formal evaluation are applicable
in the beginning of developing process. This subsection introduces several
usability testing methods that are suitable for making comparison of different
authorization mechanisms.

User and Task Analysis

In user and task analysis, the developers of the system first find out who
is going to use their system. Then the developers observe ordinary users in
action. The developers try to find out what users’ goals are, what the users
do to achieve their goals, how the person (culture etc) of the user influence to
the task, and how physical environment influences the user [41]. This method
is suitable for the beginning of the developing procedure, for gathering the
user needs requirements for product specification.

Inspection

In inspection methods, specialists who have knowledge of both technology
and the users collect a list of usability problems. Jenny Preece lists several
inspection methods: expert reviews/usage simulations, heuristic evaluation,
walkthroughs, standard and consistency inspections [74]. For example, in
standard inspection an expert inspects that the interface complies with in-
ternational standards. The inspection method is useful in the beginning of
the design process when the problems can still be fixed. In usability inspec-
tion methods, no real users are involved, but the inspection is performed by
usability experts, often together with system designers.

Cognitive Walkthrough

Walkthrougs are on kind of inspection method. First the tester design a
task from the system specification of screen mock-ups. Then the tester walk
through the task and tries to figure out what the users most probably do [74].
This method can be used in the beginning of the design process and do
need good knowledge of the users but not need the real users to be testers.

26 CHAPTER 3. COMPARISON ASPECTS

Cognitive walkthrough can also serve as basis for the design of a further
usability testing with real users in later phases of the development process.

Formal Evaluation

Formal methods are conquering new field: usability evaluations. Researcher
tries to develop a better notation for the formal specification of dialogues.
They assume that better descriptions what will happen in a dialogue is nec-
essary. If the specification is (very) good, the user interface may be au-
tomatically generated from the specification [66]. In formal evaluations, the
system’s usability is evaluated against design guidelines and standards. Even
it is a good tool for checking e.g. consistency across a large product or prod-
uct family, it does not provide any information about the real end-users of
the specific product.

Usability Test

A usability test is the most important testing method in usability because it
really tells how users are able to use a system [66]. The purpose of the test is
either make the system better in development phase or evaluate the usability
of a ready made system. In usability tests, chosen users will complete ready
made test cases for a system. This sounds like an easy task but it is not.
Choosing users is crucial: they represent all the users of a system and their
experience of using similar systems will show in the test results. Also test
cases may affect the test results, so it should be taken care when designing
the tasks for the test and in choosing the users.

This section has introduced what usability means and how it can be tested.
The next section discusses about applicability and gives examples of using
the decentralized authorization systems.

3.2 Applicability

Decentralized authorization systems are suitable for many kinds of applica-
tions, from the network layer to the application layer. This section presents
various applications based on different authorizations systems. First, mid-
dleware solutions based on authorization systems are introduced. Then I
discuss about electronic commerce and other applications that uses autho-
rization systems.

3.2. APPLICABILITY 27

3.2.1 Network Layer Policy Management

Internet Protocol Security (IPsec)

Internet Protocol Security (IPsec) [52] provides network layer security for
the Internet. IPsec offers two protocols for securing an Internet connection:
Encapsulated Security Payload (ESP) [54] secures confidentiality and/or in-
tegrity of a datagram, and Authentication Header (AH) [53] ensures integrity
of an Internet Protocol header and its content, i.e. the datagram. Both of
these protocols work on top of the Internet Protocol (IP) securing the con-
tent of IP datagrams, i.e. the upper layer protocol datagrams such as the
datagram of the Transmission Control Protocol (TCP) or the User Data-
gram protocol (UDP) and finally the application data packed inside those
transport layer datagrams.

The use of IPsec is transparent for applications and their users, but it needs
a security policy for connections. A security policy defines what kinds of
connections are allowed. It gives, for example, security methods, and au-
thentication and encryption algorithms that can be used with ESP and AH.
[Psec defines that possible policies are stored in a Security Policy Database
(SPD), but it not describe how this database should be implemented [52].

Similarly, IPsec defines another database, a Security Association Database
(SAD) for storing the security parameters of the ongoing connections. The
agreed set of security parameters used in one way in a connection is called a
security association (SA). The header of IPsec AH or ESP datagram contains
only an index number for the security association that defines how this con-
nection is protected. The correct security association is found from the SAD
database and the datagram can be unpacked based on the SA information.

[Psec proposes Internet Key FExzchange (IKE) [43] protocol for creating se-
curity associations needed in Virtual Private Network (VPN) connections.
IKE is a two phase protocol. In the first phase, a security association for
secure forthcoming negotiations is established between two network nodes.
Then, in the second phase the actual security association for protecting the
communication of the specific purpose protocol is established. The idea is,
that between two communicating parties, there may be several connections
protected in different ways.

28 CHAPTER 3. COMPARISON ASPECTS

Trust Management for IPsec

Matt Blaze, John Ioannidis and Angelos Keromytis suggested the use of a
trust management system for managing network layer security (IPsec) pro-
tocols in 1999 [15]. They argue that the trust management architecture must
be efficient because from every incoming and every outgoing packets must be
examined that what kind of protection they need. Their other claim is that
for common purpose network layer security the language used to describe
policy must be expressive, so that every kind of situation can be handled.

The problem of network layer policy management can be divided to two: the
first is to establish a new security association for a new connection (trust
management) and the second is the handling of every incoming and outgo-
ing packet (packet filtering) [14]. The creation of new security association
happens rarely compared to the handling of incoming and outgoing packets.
The creation of SA can use more expressive method than a common packet
filter needed for handling efficiently the packets [42].

SA establishment with trust management system raises two now problems:
how to discover all the needed credentials and what capabilities the creden-
tials give to an entity [14]. The first problem is solved with a simple protocol
that ask from the peer, the responder, all the credentials issued to the other
peer, the initiator. The responder can also give hints about servers that may
contain more credentials. When all credentials is collected, the trust manage-
ment system of the initiator can check what kinds of connections are allowed
between the initiator and the responder. Finding out in advance what capa-
bilities the initiator has, gives change to avoid unacceptable propositions of
security associations.

Matt Blaze, John Ioannidis and Angelos Keromytis has published an Inter-
net draft about the compliance checking and IPsec policy management [13]
but the draft is expired. Niklas Hallqvist and Angelos Keromytis have imple-
mented an IKE protocol that uses KeyNote trust management system for the
phase two negotiation [42]. The phase one negotiation is simple and using
of complex trust management is not necessary. When a new security asso-
ciation for a connection (in the phase two negotiation) is established, first
the SPD database is checked for need of protection. If the connection needs
protection, a negotiation with the communicating peer is initiated with IKE.
KeyNote credentials are used in the negotiation for denoting what kinds of
security associations can be used. When the security association for the con-
nection is established, the databases are updated: The needed credentials are
stored in a credential database, used security association is stored in the SAD
database, and the SPD database is updated that packets of this connection

3.2. APPLICABILITY 29

uses IPsec.

3.2.2 Secure Middleware
CORBA

Common Object Request Broker Architecture (CORBA) [40] is developed
to make distributed object-oriented infrastructures easy to implement in a
heterogeneous environment. CORBA works as transparent middleware be-
tween clients in different kinds of environments and resources in different
kinds of environments, too. It hides from the client objects where the target
objects are and how the objects are implemented. In the CORBA architec-
ture, objects communicate with each others through Object Request Brokers
(ORBs) and operations offered by objects are described with Interface Defi-
nition Language (IDL) that is independent from programming languages.

CORBA offers basic services such as search of services based on their proper-
ties or names, informing about events, methods for several objects to partic-
ipate a transaction and using of concurrent services. CORBA provides also
security services offered by ORB, i.e. the service is almost invisible for the
object. When a secure ORB is used, the client object first identify itself to
the ORB. After identification, the client object can contact to services and
the ORB will automatically provide credentials of the client for the services
access control, and the connection is secured according to a security policy.

Even though CORBA specifies several security services, they are not usu-
ally used [56]. Many CORBA products have not implemented the security
services, or use only the network traffic encryption. Applications may de-
liver the credentials directly to a centralized service that makes the access
control decision. But centralized access control method is not scalable, and
thus something else is needed. As an example, the next subsection describes
credential based access control method that uses CORBA security services
and authorization certificates.

Authorization in CORBA

In his master’s thesis project, Tuomo Lampinen has implemented a certificate
based authorization in CORBA [57]. Purpose of the work was to solve a
situation given in the figure 3.1. A service provider (e.g. Alice) delegates
selling of his service to a retailer (e.g. Bob), and a customer (e.g. Carol)
buys from the retailer the access rights for the server of the service provider.

30 CHAPTER 3. COMPARISON ASPECTS

Authorization certificates are used as credentials to prove the access rights
of the customer, and also for identifying the retailer to the service provider.
CORBA security services provides the transparent delivery of credentials
between customers and servers and making the access control decisions.

(I
=
use Alice's offer
services services services

/% service store
Caol ~— | RetilerBob

credentials

Figure 3.1: Authorization in CORBA [57]

First, the service provider Alice gives for the retailer Bob the right to resell
her service by issuing an authorization certificate. This certificate gives right
to delegate the access rights of the service. When the customer Carol needs
a service, she first has to find a retailer who sells the service. This can be
done, for example, with the trader service of CORBA. The trader service
checks the given description of a service, e.g. a service store, and it gives
the location of the service to the customer if it knows such a service. Then,
Carol can contact to the retailer and buy access right for a service she wants
to use. She gets a certificate that denotes the right she has bought. The
certificate may be valid, for example, for one month or for one turn.

The security service of CORBA is used to pass the authorization certificates
from the customer to the server. Carol form a connection to her ORB broker
and gives the credentials she has bought to the broker. CORBA offers a
challenge response service for verifying that the requester really have the
corresponding secret key of the public key stored in the certificate. The
ORB broker delivers transparently the credentials and verification result to
the service provider when Carol uses the service.

In the service side, the access control mechanism of CORBA verifies that
the certificates give authorization to perform the requested action, i.e. the
certificates form a valid chain. All credentials may not be in the request, and
then the service must fetch missing certificates from directory services.

3.2. APPLICABILITY 31

Tuomo Lampinen gives several advantages of using authorization certificates
for access control in CORBA based applications |56, 57|. The use of au-
thorization certificates in CORBA access control makes the access control
policy transparent to the application developers. The customer object can
be anonymous and still prove that it has the right to use a service. The
authorization to do something may be derived from several sources and the
authorization can be delegated further.

In CORBA based applications, services in unknown location are used trans-
parently probably through a network. In the next subsection, I give an
example of how a program found from a network can be safely used in an
environment.

3.2.3 Policy Management for Mobile Code

Mobile code is a piece of code that is received from a potentially untrusted
place and is requested to be executed in a host [9]. Because using of unknown
code in a host may, for example, infect a virus to the host or create a back
door for a cracker, some method for access control of pieces of code must be
created. These threats are not new but the mobile code has made the scale
of the problems larger |37].

One attempt to create secure mobile code is based on the signing the pro-
grams. But, signing the code is not enough [37]: The host should somehow
be able to know if the signer can be trusted, i.e. know the signer of the code.
Other problem is that signature just gives “on off” property for the program.
It cannot tell what kinds of execution rights are enough for executing the
piece of code in this particular host.

Matt Blaze et al. |9] gives two roles for trust management in mobile code
security: expressing trust relationships between entities involved and denot-
ing the minimal set of capabilities that is needed for the execution of the
program. Jonna Partanen has implemented such a system for Java 2 policy
management |72|.

Java 2 Security Architecture

Java offers operating system independent programming language and Java
applets have made the mobile code widely used. A Java program can be
packed in a container called jar-file, and that jar-file can be signed and dis-
tributed through network. Java access control divides code to trusted and
untrusted code based on the signer of the code and a location where the code

32 CHAPTER 3. COMPARISON ASPECTS

is fetched. Security policy of Java environment is written in a configuration
file, and it denotes which signing keys are trusted and what kinds of access
rights are given to the code.

Based on the security policy, a piece of mobile code is placed in a protection
domain. The protection domains gives certain permissions to all the objects
that belongs to it. A permission gives the right to use a protected resource.
When the piece of code is executed, it have only the permissions given to
the protection domain that it belongs to. Java programs cannot extend
their permission by calling another programs that have more rights. When
a program calls another program and this program tries to use a protected
resource, the access control checks also the permission of the calling program.

Distributed Policy Management for Java 2

Access control in Java 2 is based on a configuration file that contains al-
lowed signers of program code and permissions given to the signed code.
This kind of solution does not scale well to work on a large network [68].
Instead of centralized access control, authorization certificates can be used
to provide distributed policy management for Java code. The distributed
policy management for Java 2 was briefly introduced in an example above
in section 2.2.1. In this subsection, I give more detailed description of the
solution.

For providing distributed policy management with authorization certificates,
a new subclass must be added to the general Java certificate interface. The
current Java 2 provides only an interface for X.509 identity certificates. Jonna
Partanen and Pekka Nikander have implemented SPKI authorization certifi-
cates for Java |73]. A new certificate has two parts, the certificate and its
signature. The certificate consists of all the fields of the SPKI authoriza-
tion certificate. The SPKI certificates are introduced later in section 4.4 in
details.

The Java policy is changed to support authorization certificates instead of
configuration file. In the new system, the Java permissions are presented
as authorization certificates. The protection domains has set of certificates
presenting the permissions it can give to code. In standard Java, the protec-
tion domains are static and cannot be modified after creation. The policy
based on authorization gives also a possibility to dynamically change the
permissions of a protection domain.

When a piece of mobile code stored in a jar-file requests to be executed, the
authorization certificates stored to the file are given to policy to be evaluated.

3.2. APPLICABILITY 33

Each program get its own protection domain which permissions are given in
the certificates. Of course, the certificates must be verified first. The policy
firstly checks that all the certificates are valid, i.e. signatures are correct, the
chain is intact from the first issuer to the last subject and that the delegation
is allowed by all but the first certificate. The first certificate of the chain must
be issued by the policy itself, like in figure 2.6, because the policy decides
who are authorized to use what protected resources. If everything is integral,
the chain is valid and ends up to the piece of mobile code, the code has the
permissions to use the protected resources given in the certificates.

SPKI authorization certificate based distributed policy management can be
used to solve both the problems of mobile code security given in the beginning
of this subsection. The certificate can describe precisely what permission the
code needs in order to work. Because of delegation, the certificates can form
chain that denote trust delegated from one entity to another and finally to
this code [68].

Decentralized Trust Management for Jini

Jini is Java based networking technology that provides framework for building
distributed applications [6]. The framework provides lookup service. The
service providers register their services to the lookup service for certain time
period. When a client want to use a service, she asks from the lookup service
who offers the service she needs. She gets a proxy that will provide connection
to the actual service.

In his Master’s Thesis, Pasi Eronen has extended the Jini to use decentralized
trust management [32]. In his implementation, trust relationships between
the entities of the Jini architecture are presented with SPKI authorization
certificates. The entities are Java programs that can use SPKI certificates
for access control management as presented earlier in this section.

3.2.4 Electronic Payment Systems

Many systems have been proposed to provide secure electronic commerce
and banking but none have spread to world wide use. Nowadays electronic
commerce often means that a user order something from a WWW shop and
pay it with her credit card like any other merchandise. More problematic
situation occurs if the merchandise has little value, i.e. the user wants to pay
a purchase with a cash-like system because currently used systems are too
heavy for micropayment. Decentralized authorization systems can provide

34 CHAPTER 3. COMPARISON ASPECTS

solutions to electronic payment in small scale.

Matt Blaze et al. has introduced a micropayment system [16]. The par-
ticipants of the system are presented in the figure 3.2. A merchant has
something to sell that a payer wants. Both signs up to a Provisioning Agent
(PA). The payer can use, for example, mobile phone or other personal digital
assistants (PDA), and the merchant uses Merchant Payment Processor. The
system contains also Clearing and Settlement Center (CSC) for conciliation
in conflict situations.

N Merchant
\ Merchant | “
% Payment
o Processor
PDA || =~ Provisioning Agent (PA) | =~| " pp)

Figure 3.2: Micropayment architecture

In the trust management based micropayment system, the merchant issues
authorization certificates that defines her security policy. The security policy
defines trusted Provisioning Agents that act as trusted third parties for the
merchant. PA delegates the right to use an shop application of the merchant
to payers. Each payer may have different kind of right to the shop.

When the payer finds something to buy from the shop of the merchant,
the merchant will generate an offer for the purchase and sends it to the
payer. The payer then creates a microcheck, i.e. a certificate, based on
the information given in the offer. The changing of the offer is not possible
because the merchant uses statefull system which remembers the offers for a
certain time.

The three certificates, issued by the merchant, PA, and the payer, will form a
certificate loop. If all certificates are valid, then the merchant can trust that
the check of the payer is valid and she can send the purchase to the payer.

The authorization certificate based micropayment system presented here is
simple. It allows to define what kinds of risks are possible to take for a
merchant.

3.3. SCALABILITY 35

This section has introduced several kinds of fields where decentralized access
control management can be used. In the next section, I discuss about scala-
bility and its problems. Even though scalability is out of scope of this thesis,
the next section shows one aspect why decentralized authorization systems
are better than identification based systems.

3.3 Scalability

Clifford Neuman argues that scale in distributed system has three dimen-
sions: number of users and objects (numerical dimension), distance between
parts of the system (geographical dimension), and amount of administrate
work that the system needs to work correctly (administrative dimension) |64].
He defines that a system is scalable if the number of users and/or objects
and distance between parts of the system can increase without a significant
increase in amount of administrative work or losses in performance. Distri-
bution of a system gives more flexibility for creating more scalable systems
but it also brings forth new problems that can increase the amount of ad-
ministrative work.

Testing of scalability is out of scope of this thesis. Still, I want to describe
what scalability means and what kinds of problems scale causes for systems.
Scalability is one good reason for changing from a centralized system to a
decentralized system, and from identification and authentication to autho-
rization of the acting parties of the system.

3.3.1 Dimensions of Scalability

Let us consider the numerical dimension of scalability from the first point of
view. A larger number of users will require more capacity from a service or
otherwise its load will increase beyond the usable limits. One way to reduce
the load is to build a distributed system. Other solutions include replication
of the service and caching [64]. Actually, replication and distribution are
quite similar, and caching can be considered as a form of replication. The
difference between replication and distribution is that when building of a
distributed system, the needs of users “near by” can be taken better into
account instead of just replicating the system.

Other point of view to the numerical dimension is the number of organizations
that participate to a system. If the system grows from one organization to two
or even more organizations, the amount of administrative work will increase.

36 CHAPTER 3. COMPARISON ASPECTS

In a large decentralized system, no single entity is responsible for management
of the system. The organizations may have, for example, different security
policies which may need to be somehow unified that the service is able to
define legitime users. The decision making will take more time because every
decision have to be discussed in the participating organizations and also
together.

When the amount of users increases, usually also the amount of computers
and other resources increase. If the service is decentralized and used in several
organizations, these computer may vary from their operating systems and
application layer solutions. This will lead to increase in the administrative
work load.

The geographical dimension of scalability must be considered when a system
is distributed to several locations. The communication between the parts
must taken care of in a efficient and secure manner. The network solutions
will effect to the communication by causing delay and unreliability from both
reachability and security points of view. Remote resources may leave more
tasks to the user part of a system. This reduces communication between
parts and load on the remote resource but the clients become more complex
and need the more local information [64].

3.3.2 The Problems of Scale

Among the largest problems of decentralized systems are naming and se-
curity. The problems can be seen in the X.509 public key infrastructure.
Simply, human names do not scale to globally unique names, and centralized
but hierarchical structure of certification authorities issuing of certificates,
i.e. evidence of trust, do not provide global trust. In this subsection, I
discuss about problems of scalable naming, security, and trust.

Naming

As mentioned earlier in subsection 2.2.3, human names work well for iden-
tifying members of a family. When the group of users grows up, the unique
identifiers will be problematic. Human names are not the only problem,
people use names also for files and computers.

As described earlier in section 2.2.3, hierarchical solution is used to solve the
problem of scalable naming. However, hierarchical naming does not solve
global naming, but may offer more scalable solution for the problem.

3.3. SCALABILITY 37

Security

Security of a large and versatile system is hard to organize because there are
more possible vulnerabilities [64]. A decentralized service administered by
several organizations may work upon different kinds of underlying technolo-
gies. Unified mechanisms can be hard to find but may not be needed either.
For example, if one security solution of one part of the decentralized system
fails, the system can still work securely based on the other parts.

Compared to a centralized system, decentralized systems are also more com-
plex from the security point of view. It is not enough that a node is sure that
a user of it has authorization to use resources offered by the node. The user
or an agent acting on behalf of the user need to sure that the node is trust-
worthy and complete the given task securely and honestly. Both the user (or
her agent) and the node can try to misuse the system either by accident or
on purpose which must be taken into account when establishing a security
for scalable decentralized systems.

Security systems express trust between entities of a system. For example, an
access control list gives users that can use resources of the system and are
trusted to be honest, i.e. even than they could misuse the system the do not
do so. The next subsection discusses about trust in scalable systems.

Trust

Trust between humans does not scale large amount of people because human
trust is not transitive [1]. Contradictory, global certification authorities are
based on transitive trust. The certificate authorities form a hierarchical tree
with one root CA. CAs can also be seen as a forest with several trees and
several root CAs that trust each others. A user gets her certificate from some
lower layer CA. When the users interact, they have to trust all the CAs of
the system.

The hierarchy and transitivity of trust is not the only problem in scalable
systems. The root of a CA tree must be trustworthy. For example, some
scepticism could be point at towards the currently used X.509 based WWW
server certification. The most trustworthy CA is considered to be VeriSign.
VeriSign is not a governmental organization, it is a company listed in the
Nasdaq stock exchange. Nowadays, everybody is expected to trust VeriSign.
But can a company whose purpose eventually is to produce money to its
owners be trustworthy? For example, many has trusted to Enron that was
a large electricity company. Surprisingly, Enron went bankrupt in December

38 CHAPTER 3. COMPARISON ASPECTS

2001 and many lost their life savings but some managers sell their stocks
before the value of stock collapsed.

It is not enough to trust to the CAs. Users must also trust to the imple-
mentations of programs they use. In a decentralized system, there may be
several software developers. Let us consider commonly used WWW browsers
as an example. They lists several dozens of trusted CAs. The implementa-
tions of WWW browsers are far from perfect. For example, in August 2002
a bug was found from Internet Explorer (a popular WWW browser). The
bug allows anyone who has a valid VeriSign certificate for her WWW site to
forge any other VeriSign site certificate because the browser does not verify
the certificate chains [39].

As discussed earlier in the previous chapter (in sections 2.2.3 and 2.4), trust
does not scale well. One solution to provide trust for larger system is to
divide the system to “partial networks”. Each parts is trusted differently and
more fine classification of trust is used for entities of the same “network”.

3.3.3 Users and Scalability

Scale influence to users as well as to a system but how the scale effects to the
user is not much researched [64]. For example, users must be able to handle
naming and security issues. Users should have a mental model of the system
and, in some level, understand how the system works [74|. Otherwise, the us-
ing of system cause problems when user does not understand why something
happened. For example, the underlying network in a decentralized system
should not be hidden from the user because it effects lot to the functioning
of the network. How much to hide and what to show to the user for the
system to remain as simple as possible, and yet to be understandable and
informative enough to enable the user to build a mental model of the basic
structure and logic behind the system, is a difficult question, to which there
is no easy answer [82].

Even than the testing of scalability is beyond the scope of this thesis, I want to
note that authorization systems are as such more scalable than authentication
systems. They do not need centralized authorities, and there may be several
location for needed information and resources. In a decentralized system
there can even be several servers offering same kind of service with same
conditions. However, trust may become problematic in a very large scale
system where users and parts of the system does not know each others.

Chapter 4

Different Approaches

In this thesis, I have concentrated on five different approaches of decentralized
authorization. The first trust management system was PolicyMaker |11, 12].
KeyNote was developed according the same principles as the PolicyMaker
system [8]. Both of these are partly work of same people (Matt Blaze and
Joan Feigenbaum). The IETF Simple Public Key Infrastructure (SPKI)
working group has developed a (simple) certificate structure and operating
procedures for Internet trust management [29, 27|. At the same time, in
Massachusetts Institute of Technology the Simple Distributed Security In-
frastructure (SDSI) was developed to be a simple public key infrastructure
that provides groups that have clear terminology for design access-control
lists and security policies [77]. Development of SPKI and SDSI has been
combined together in 1997 [22]. The Telecommunications Software Security
Architecture (TeSSA) is an infrastructure for trust and policy management
created at Helsinki University of Technology [67]. It is based on SPKI certifi-
cates among other work of IETF Security Area development. This chapter
introduces all the above mentioned authorization systems.

4.1 PolicyMaker

Matt Blaze, Joan Feigenbaum and Jack Lacy introduced the PolicyMaker
Trust Management System in their paper in IEEE’s Symposium on Security
and Privacy in the year 1996 [11]. It was the first tool for processing signed
requests and check if they comply with the policy [9]. Existing services
for trust management were PGP and X.509 which left open the question
how to express the security policy and how to use the information gained

39

40 CHAPTER 4. DIFFERENT APPROACHES

from the certificates. The PolicyMaker system consists of a language for
specifying policy and trust relationships and a mechanism for checking that a
request complies with the policy. This section is mostly based on PolicyMaker
publications [11, 12].

4.1.1 General Principles for Trust Management System

Blaze et al. [11] noticed that the trust management problem has not previ-
ously been studied in its own wholeness. They identified the problem and
introduced a solution that is independent of any particular application. The
trust management consists of security policies, security credentials and trust
relationships. For example, in a bank a policy says that at least three bank
officers need to accept a loan of million dollars. A bank officer needs a cre-
dential that show that she can be counted as one of those approved officers.
In the bank someone can issue such credentials, i.e. there is a trust relation-
ship between the bank and that officer [11]. The result of Blaze et al. work,
the PolicyMaker system is based on the following general principles [11]:

e Unified mechanism (common language). Policies, credentials and
trust relationships are expressed with a same language. An application
can handle security in a way that is comprehensive, consistent and
almost transparent.

e Flexibility. An application can use the same system to express both
simple and standard policies, and complex trust relationships in very
large-scale.

e Locality of control. Each party can decide for itself which creden-
tials and third parties are trustworthy. Global hierarchy of certifying
authorities is not needed.

e Separation of mechanism from policy (general compliance-checking
mechanism). All applications can use the same certificate verification
infrastructure because the system does not depend on the semantics of
the applications.

4.1.2 Architecture of PolicyMaker

PolicyMaker acts like a database query engine. An application sends a re-
quest, local policy statements of the application and a collection of credentials

4.1. POLICYMAKER 41

©
request
user e Query+assertions
(policy+credentials)

//—\A

PolicyMaker
APPLICATION Y
' local policy | | Compliance Checker |
Lol _I_ I’ \// Lo e e m e — o
" Answer
request of
credentials
TTP TTP
1 3’
TTP2 4 local policy

trusteel third pa_\rt_i,es/

Figure 4.1: PolicyMaker

to PolicyMaker. All of these are expressed in a simple language provided by
PolicyMaker. Then the compliance checking algorithm of PolicyMaker veri-
fies if the credentials form a proof that the request complies with the policy
of the application. It returns a simple yes or no answer or additional restric-
tions that would make the action acceptable [11, 12]. Figure 4.1 show how
an application sends a query to PolicyMaker.

First, the application collects all needed credentials. All security information
is not usually stored in one local place, and thus, the information must be
gathered up from different trusted third parties. The local policy can define to
which trusted third parties it trusts and it can limit the area of trust of these
third parties. A trusted third party itself can also gather information from
other. Like said above, the local policy may set a limit to how many steps
can be taken. For example, a trusted third party defined in the policy can ask
from other third parties and their credentials are accepted, but credentials of
a query where the another third party further asks from other third parties
are not accepted. In PolicyMaker, trust is monotonic. It means that each

42 CHAPTER 4. DIFFERENT APPROACHES

statement can only increase the capabilities.

When all necessary security information is collected, all credentials are veri-
fied: that they are unrevoked, the signatures are correct, and they are granted
by allowed trusted parties. Because the verification of certificates is the task
of the application or an external agent, PolicyMaker is not dependent on a
specific signature scheme. For example, PGP can be used.

But why a common trust management system, like PolicyMaker, is necessary
even though it left much responsibilities to the applications? Why an own
policy compliance checker for every application is not a good solution? Blaze
et al. give several advantages of a general compliance checker [12]:

e Design and implementation of the compliance checker is sound and
reliable.

e Needs of the application are not underestimated because all kind of
situation is evaluated.

e The answer depends only on the input, not implicit policy decisions or
bugs.

e Complexity of conditional delegation is not underestimated.

e Adding new properties to an application is easy and the compliance
checker does not need any changes.

e Interoperability is easy because requests, credentials and policies are
written in the same standard format.

In the next section, I explain what kind of language is used in the queries
and how the credentials form a chain of trust that gives to the application
assurance that the chain is valid. Then the compliance checking algorithm
is presented.

4.1.3 The PolicyMaker Credentials and Queries

Trust information is contained in assertions in PolicyMaker. There are two
kinds of assertions: certificates (signed assertions) and policies (policy as-
sertions). Policy assertions are not signed because they are local i.e. they
are defined by the application that makes the query. Security policy asser-
tions forms a “trust root” of the application which is used when the signed
assertions are considered. Both types of assertions are same form:

4.1. POLICYMAKER 43
Source ASSERTS AuthorityStruct WHERE Filter

The source of the assertion is the public key of a third party if the assertion
is a certificate, or the local policy in a policy assertion. The assertion binds
a public key or a sequence of public keys, called an authority structure, to a
predicate, called a filter. An authority structure can also be more complex
structure than just a bunch of keys. We can think the above example where
three bank officers need to accept a loan. In an assertion, the authority
structure is then “at least three of the following keys of bank officers”.

A filter is the claim that action strings in the query must satisfy. Otherwise
the assertion does not hold. Filters define credentials and security policies
and bind them together with public keys. PolicyMaker supports three filter
languages: a regular expression system, an internally developed safe version
of AWK (called AWKWARD) and a macro language of safe AWK. Java can
also be easily added [11]. More about these filter languages is later in this
section.

An application sends queries to the PolicyMaker system in order to find out
if a public key (or group of public keys) is permitted to perform an action
according to a policy. The form of a query is

keyy, keys, ..., key, REQUEST ActionString

An action string is an application specific message. The PolicyMaker sys-
tem does not understand the action strings, only the calling application can
generate and interpret them. The action string can admit many kinds of
capabilities, for example signing a contract on behalf of a company.

The assertions and the queries are linked together. The assertion source trust
that the keys in the authority structure are authorized to perform the action
specified in an action string i.e. pass the filter. First, a policy assertion binds
an authority structure to a filter. For example, a bank policy says that there
must be three signers in a contract giving a loan of s million dollars. (The
assertions and request of this example do not obey the PolicyMaker syntax.
Examples with the correct syntax are given later.)

Policy of the bank ASSERTS three keys from the group of bank officers
keys WHERE sign a loan contract of million dollars

When someone asks for this loan of million dollars, a query with keys of bank
officers is passed to PolicyMaker to be evaluated:

44 CHAPTER 4. DIFFERENT APPROACHES

Keyy, Keys, andKeys REQUEST sign a loan contract of one million
dollars

PolicyMaker now compare the requested action string (sign a loan contract
of one million dollars) to the filters in the given credentials. It does not
know the significance of the question but it can find the policy assertion and
see that three keys are needed. Correctly, the request contains three keys
but based on the only given policy credential, the PolicyMaker compliance
checker cannot say if the keys are valid for the action. Another assertion is
needed:

Policy of the bank ASSERTS Key,, Key,, Keys, ... Keyy WHERE
group of bank officers keys

Now the compliance checker can give a positive answer to the query because
the keys given in the request fulfills the filters.

Like in the above example, a query usually consists of several policy as-
sertions and certificates (signed assertions). In the most simple case, the
authority structures and the query contains only single keys. Assertions can
be illustrated as a directed graph. Vertices of the graph are the keys or policy
sources and edges are filters. In figure 4.2 is an example of a simple assertion
and corresponding directed graph. In the example, v is a source of a policy
assertion that gives to an authority structure w rights that fulfill the filter f.

f
v ASSERTSw WHEREf —
Youllwe
(@ (b)

Figure 4.2: (a) An example of an assertion (b) Corresponding directed graph

The query complies with the policy if the directed graph has a chain v, —
vy — ... = vy Where v is a local policy source and v is the key in the query.
A more complex query can also be described as a directed graph but then the
vertices are authority structures and the v; is an authority structure where
the keys of the query are acceptable input.

There are two form of filters. The simplest filter only accepts or rejects
the request. In this case, a directed graph contains a chain where all the

4.1. POLICYMAKER 45

filters accepts the action string of the query. Other type of filter can add
restriction annotations to action string that otherwise is acceptable. These
annotations are restrictions that are not in the query. Assertions with this
type of filter have actually two filters: one normal kind of filter predicate and
one annotation.

If an application uses the two filter mode to check assertions, the query is
evaluated in two phases. First, the validity of the action string is examined in
all annotations from policy to query. All annotations are added to the action
string. Second phase is executed if all annotations are fulfilled. The chain
is gone through again with action string that contains all the additional
annotations. In this phase, the predicate of the filter can only reject or
accept the string. The two phase processing of actions string guarantee that
all annotations previously added to action string are accepted in all nodes of
the chain. If the query is approved, the action string with annotations are
returned to the application.

Filter Languages

Like mentioned earlier in this section, PolicyMaker supports several lan-
guages for filter definitions. The language must be “safe” i.e. it can be
interpreted correctly. The filter language is easier to design than a general
purpose programming language [11]. This subsection introduces shortly two
filter definition languages: regular expressions and AWKWARD.

A regular erpression is a string built up recursively from simpler regular
expressions by certain rules that are [4]:

e There is an empty string in the language, denoted with epsilon e.

e If ¢ is a symbol of the language, then it is a regular expression that
represents a language that consists the string “a”.

e Parenthesis can be used to group strings and to give them different
precedence order.

e Repetition is denoted with Kleene star: a regular expression a* means
that the language contains strings where is zero or more of symbols a.
(Markings a' means that there is one or more a)

e Concatenation of two regular expressions a - b gives a language con-
taining a string “ab”.

46 CHAPTER 4. DIFFERENT APPROACHES

e Alternation of two regular expressions a|b denotes a language where
is two strings: “a” and “b”.

Regular expressions are used, for example, in compilers while recognizing
words of a programming language. They are used similarly in the Policy-
Maker compliance checker to recognize symbols. For example, a public PGP
key that is encoded in hexadecimal in an assertion is for of a regular expres-
sion:

PGP: (0[1|2|3]4]5/6/7/8|9]alblc|d|e|f)*

AWKWARD programming language developed by Blaze et al. is a safe ver-
sion of AWK programming language. AWK |[3] is a simple programming
language where programs are sequences of pattern - action(s) pairs. When
a program is executed, the input is compared to the pattern part of the
program. If it matches, the action(s) is executed. AWK has only two basic
datatypes, numeric and string, and few statements, such as if, while, and for.
Regular expressions are often used as pattern test.

PolicyMaker Syntax

The appendix in [11] gives grammatical rules of PolicyMaker assertions and
queries. As we can see, the syntax is really simple because the PolicyMaker
do not actually understand the content of queries. UPPERCASE letters are
used for terminals that are the basic symbols in the assertion or query string.
Before a colon is a term that is defined after the colon. A pipe (character |)
gives an alternative definition to a term. Like mentioned above, there is two
kinds of assertions, simple and complex assertions:

assertion : source ASSERTS authstruct SEMICOLON
| source ASSERTS authstruct
WHERE filterlist SEMICOLON

The source of an assertion is either a policy or a keyid. The authority struc-
ture is either a filter program or a keyid.

source : POLICY
| keyid
authstruct : filterprog

| keyid

4.1. POLICYMAKER 47

The keyid first gives an identifier of a used key and then the key itself after
a colon.

keyid : system COLON string

Now we can give examples of a keyid and a simple assertion where one key
announces another key for some purpose that the application may know:

example of keyid: PGP:”’Oxabcdefabcdefabcdefabcdefabedef”’

example of assertion: PGP:’’0Oxabcdefabcdefabcdefabcdefabcdef”
ASSERTS
PGP:°’0x012345670123456701234567012345’;

In a complex assertion, a structure for a filter list, a filter name, a filter
program and a language and are needed. The filtername tells what language
is used for the filter. A PREDICATE is simple filter expressed with regexps.
An ANNOTATION filter consists of a simple AWKWARD program.

filterlist : filtername EQUALS filterprog
| filtername EQUALS
filterprog COMMA filterlist

filtername : ANNOTATOR
| PREDICATE
| COMMENTARY
| APPLICATION

filterprog : 1language COLON string

language : AWKWARD
| REGEXP

In addition to the assertions, PolicyMaker needs a query. It uses same kind
of syntax than the assertions:

query : keylist REQUESTS
string condition SEMICOLON

48 CHAPTER 4. DIFFERENT APPROACHES

where
keylist : keyid

| keylist COMMA keyid
condition : <nullstring>

| WHERE filterprot

4.1.4 PolicyMaker Example

BANK
Security - .
SecurityCA
POLICY
policy | ‘
]
Compliance Personnel administration

— ™| Checker

query- creden— T
"$1 000,000" tials — |
S Officer Officer Officer ~Other

Customer Alice Carol Bob officers

Figure 4.3: An example of bank loan

Let us form now a real query for the above bank example where three bank
officers were needed to sign a loan contract of one million dollars [11|. The
chain that is formed from the assertions and query is shown in figure 4.3. A
loan automate first collects and verifies all needed assertions. First assertion
is a policy assertion giving a name to a security certification authority of the
bank:

POLICY ASSERTS SecurityCA WHERE PREDICATE=regexp:
‘“Organizations: Bank of Alice”

4.1. POLICYMAKER 49

An another assertion issued by the security certification authority defines
that three bank officers are needed to for giving a loan of one million dollars.

SecurityCA ASSERTS ‘‘an AWKWARD program requiring at least three
keys directly certified by PersonnelKey’’ WHERE PREDICATE="’an
AWKWARD program that checks that amount is one million dollars

When this example was presented above, it was simplified. Now the example
is more accurate. We can already to see from the above assertion that there
needs to be someone (a PersonnelKey) that has right to authorize the keys
of the bank officers with following assertions:

PersonnelKey ASSERTS Keys WHERE PREDICATE=regexp:’’Signer’s
name is Alice

PersonnelKey ASSERTS Keyp WHERE PREDICATE=regexp:’’Signer’s
name is Bob

PersonnelKey ASSERTS Keyc WHERE PREDICATE=regexp:’’Signer’s
name is Carol

Of course, there are other keys issued to other bank officers as well but in
this example, we need only three of them in the following query:

Keys, Keyp, Keyc REQUESTS ““loan of million dollars
Organization: Bank of Alice
Signer’s name: Alice
Signer’s name: Bob
Signer’s name: Carol

This subsection has shown the first tasks of an application: the forming of
queries and assertions. Then the application checks that the credentials are
not forgeries, i.e. it verifies the signatures in the credentials. The application
decides how the verifications are done, the PolicyMaker system does not
define any way itself. When all is ready, the application sends its policy
assertions, signed assertions (credentials) and the query to PolicyMaker. The
core of the PolicyMaker system is the compliance checking algorithm that
verifies if the given credentials is the needed proof that the query complies
with the policy. The reasons why a trust management system should use one
common compliance checker is discussed in section 4.1.2 above. The next
subsection discusses about the compliance checker of PolicyMaker.

20 CHAPTER 4. DIFFERENT APPROACHES

4.1.5 Compliance Checker of PolicyMaker

The compliance checker and its algorithm are defined in [12]|. First in the
paper, a problem of Proof of Compliance (POC) is discussed. Because POC
is a very complex problem and in the most general form of it is undecidable,
Blaze et al. gives some limitations to make a useful version of compliance
checking algorithm [12]:

e Global runtime bound give a upper bound for the time that is used
for solving a problem. The bound is O(N¢) where N is the length in
bits used to code the input (i.e. the query itself and all the assertions)
and d the given bound.

e Local runtime bound limits the time used to handle each assertion
to be O(N°) similarly than the global runtime bound. ¢ is the given
bound and N is the length in bits of the assertion. This limitation
is necessary because an assertion may create new annotations which
makes the assertion longer than the original query was.

e Bounded number of assertions in a proof gives the maximum
number of assertions that can be used in the query validation.

e Bounded output set limits the size of an acceptance record and the
number of action strings. Both the acceptance record and the action
string are explained later in this section.

e Monotonicity means that an assertion approving something will also
approve a subset of that something.

Notation

The Compliance Checker of PolicyMaker has its own notation. Assertions
are pairs of a function and a source. A policy assertion is marked with
(fo, POLICY) where fy is a function written with a programming language.
Similarly, credentials are marked (f;, s;) where f; is a function and s; is a
string presenting a source ID that can be a name of a person or a company,
a public key etc. Like said earlier, the compliance checker do not actually
understand the content of the queries or assertions, for example, the source
ID is just a string.

Assertions can be divided to acceptance records. Each assertion(f;, s;) can
create several acceptance records (i, s;, R;;) where ¢ is the assertion number,

4.1. POLICYMAKER 51

s; the source ID, and R;; an action string. The action string R;; can be
a conditional version of string R or it can be same as it. The string R
corresponds the query r.

Matt Blaze et al. [12] gives an example of a conditional approval of a loan:
“a loan can be given if both Alice and Bob will accept it”. In this example,
the credentials are (f;, A) and (f;, B). Both functions are “I approve the
loan if and only if the other approves it”, i.e.

(A approves) < (B approves).

When compliance checker starts evaluating the query r, it starts from an
wnitial acceptance set that contains only the acceptance record of the searched
query string, i.e. {(A, A, R)}. Then all the assertions delivered with the
query, the policy (fy, POLICY) and the credentials from (f1, s1) to (f, 1,
Sp_1), are evaluated to be acceptance records. This set of acceptance records
is called acceptance set. If the result of the evaluation produce the acceptance
record (0, POLICY, R), the given assertions have proven that the request r
complies with the policy.

In the example above, the acceptance records get from the credentials are
(1, A, R) which means that “Alice approves the loan”, and (1, A, Rg) which
means that “Alice approves the loan if Bob approves it”, and (2, B, R) and
(2, B, R,) similarly. In another paper clarifying how PolicyMaker works |9,
a blackboard has been use as a metaphor for the evaluation of the assertions.
In this example, the request is accepted, if the assertions are checked in the
following order: first (f1, A), (f2, B), then again (f1, A), (f2, B), and finally
(fo, POLICY). First in checking the first assertion, a acceptance record (1, A,
Rp) is attached to the blackboard. Then the second assertion is checked and
acceptance record (2, B, R,) is added to the blackboard. Still, no proof has
provided for the question. The assertions are checked again, and acceptance
records (1, A, R) and (2, B, R) can be attached to the blackboard because
there is already information, e.g. that “Alice will approve the loan if Bob do
so”. Finally, the acceptance record (0, POLICY, R) can be added because
both Alice and Bob has approved the loan, and the proof that the request
comply with the policy has been shown.

Compliance Checking Algorithm

Now we know the notations for the compliance checker and I can present
a compliance checking algorithm of Policymaker given in [12|. In figure 4.4

52 CHAPTER 4. DIFFERENT APPROACHES

CCAI (7", {(f07 POLICY)7 (fl;sl)a R (fn—l; Sn—l)}: ¢, m, 5) :
{
S+ {(A A R)}
I+ {}
For j < 1 to mn

{

Fori<n—-—1to0

If (fz-,si) §é I, Then S° + (fZ,SZ)(S)
If Formed((f;, s;)), Then I < I U {(f;,s:)},
Else S+ SU S
}

}
If (0, POLICY, R) € S, Then Output(Accept)
Else Output(Reject)

Figure 4.4: Pseudocode for Compliance Checking algorithm [12]

is the algorithm that can solve if a given set of assertions proves that the
request complies with the policy usually in polynomial time.

Let us return to the limitations for the compliance checker given in the be-
ginning of this section. The algorithm in figure 4.4 is locally bounded and
monotonic. The integer c in the input of the algorithm is the time limit for
assertion evaluation, the integer m is the maximal number of action strings,
and the integer s is the maximum size of an acceptance record. The mono-
tonicity means that if an assertion is approved, also the subset of it will be
approved. In addition to local boundaries and monotonicity, the algorithm
is also authentic. This “authenticity” means that an assertion produces only
correctly formed acceptance records and its issuer does not pretend to be
someone else. The algorithm checks that every assertion obeys these limita-
tions in the subroutine called IllFormed. All ill-formed assertions are ignored.

4.2 KeyNote Trust-Management System Ver-
sion 2

Matt Blaze, Joan Feigenbaum and John loannidis from AT&T Labs Re-
search and Angelos Keromytis from University of Pennsylvia are developed

4.2. KEYNOTE TRUST-MANAGEMENT SYSTEM VERSION 2 33

the KeyNote Trust Management System. Second version of this system is
published as RFC 2704 which is the main source of this section [8]. The
design principles of KeyNote are that the system is simple, expressive and
extensible [10].

The basis of KeyNote is similar to PolicyMaker: A principal wants to do an
action in an application. The application has to check if the action fulfills
its policy statements. It sends to KeyNote compliance checker a query that
consists of application’s policies, credentials of the principal and the action
that the principal want to perform. The compliance checker of KeyNote
advises the application what it should do, i.e. to reject or to accept the
queried action.

Application must give its policies clearly and correctly, and it is responsible
of fulfilling the decisions, KeyNote only gives advise based on the information
that the application has given to Keynote. If credentials, policies, and the
requested action are written correctly, the KeyNote will not approve an illegal
action. Collecting needed credentials and policies is left for the application.

4.2.1 Components of KeyNote Trust-Management Sys-
tem

Similarly than in PolicyMaker, Keynote Trust-Management system has five
components |[8]:

e Actions and a language for describing these actions. An action has
security consequences that the system wants to control.

e Principals can be allowed to perform an action. The trust manage-
ment system has to have a mechanism to identify principals.

e Policies and a language for defining them. Policies control actions
that principals are authorized to perform.

e Credentials and language for determining the credentials. A principal
can delegate authorization to an another principal with a credential.

e A compliance checker determines if a principal is allowed to perform
an action according the policy of an application and given credentials.

KeyNote is designed for Internet based applications [8]. Each application
can have its own policy which is easy to change because the policy is passed

54 CHAPTER 4. DIFFERENT APPROACHES

together with query to an external agent, KeyNote. When an application
wants to check if a principal has a right to perform an action, it gives the
requested action, policies, and credentials to a separate compliance checker.
The compliance checker then informs the application if the principal has the
right to perform the action or not. Next in this subsection, parts of the
Keynote are presented.

Assertions

Like in PolicyMaker, KeyNote’s policies and credentials are written with the
same language and they are called assertions. An assertion describes the
authorization given to a principal by another principal, and in what kind of
situation the authorization is valid. The KeyNote assertions are designed to
be human-readable but also computer-friendly.

An application has its own policy, denoted in policy assertions which are
introduced later in this section. The application does not need to keep up
an access control list because it can use credentials granted and signed by
external authorities.

Assertions must be monotonic, i.e. assertions in a query given to be evaluated
can only give more rights to a principal. This way, the principal cannot cheat
the compliance checker by not giving all his assertions to it.

Actions

An application uses KeyNote to decide if someone is allowed to perform an
action. An action is a collection of name-value pairs, an action attribute set.
An application creates the action attribute set when it sends a request to
KeyNote compliance checker. The compliance checker does not understand
the semantics of the actions. Application developers and security adminis-
trators who writes the assertions need to agree on common language for the
actions. The semantic of action defined in KeyNote specification is presented
later in subsection 4.2.2.

Principals

Principals are the main actors in KeyNote. A principal can request actions
and issue assertions. KeyNote’s principal is presented by a string that can
be a public key. Thus, the principal can sign assertions that gives the autho-
rization of this principal to another principal.

4.2. KEYNOTE TRUST-MANAGEMENT SYSTEM VERSION 2 95

KeyNote has a special principal which is identified with reserved word “POL-
ICY”. Like other principals, the POLICY principal can authorize other prin-
cipal by granting policy assertions. The POLICY assertions are not signed,
and they must be delivered through a trusted channel to the KeyNote. The
POLICY is a root for trust, i.e. if another principal signs an assertion, this
assertion is trusted only if it can be connected to an assertion that has POL-
ICY as its authorizer.

Compliance Checker

The compliance checker informs an application how the asked action should
be handled based on the given information. The answer can be “reject” or
“approve” it the simplest case, but the compliance checker can also choose
from given set of values. If the more complex version of the compliance
checker is used, the application needs to arrange the possible answers to
an order from the “weakest” right to the “strongest” right and send this
information with the query to the compliance checker.

4.2.2 KeyNote Syntax
Action Attributes

Each action attribute has a name and a value. The interpretation of actions
is decided by application, not by KeyNote. Policies and credentials have to
have the same interpretation. By default, action attribute names and values
are strings that can begins with any letter followed by letters and/or digits.
The maximum length of an action attribute name is 2048 characters. It
depends on the KeyNote implementation how the length of attribute value
is expressed.

The names beginning with character _ are reserved for inter KeyNote use.
_MIN_TRUST means the lowest compliance value and _MAX_TRUST means the
highest compliance value in a query. An ordered set of compliance values
is given in attribute which name is _VALUES and list of directly authorized
names is in _ACTION_AUTHORIZERS attribute. An application cannot use
these as a part of a query.

96 CHAPTER 4. DIFFERENT APPROACHES

Assertions

In this subsection, I first introduce the structure of an assertion in details
and then give an example.

Assertions have their own structure which have only one mandatory and six
optional fields. In the following structure definition, each nonterminal symbol
is marked inside < > marks and question marks represents optional fields.
Each field begins with identifying label followed by : mark and a value of the
field. Actually, each field begins a new line. An assertion has the following
structure:

Assertion : <VersionField>? <AuthField> <LicenseesField>?
<LocalConstantsField>? <ConditionsField>?
<CommentField>? <SignatureField>? ;

An assertion always begins with the version field if it is present, and ends
with signature if the assertion is signed. Other fields can be in any order.
The VersionField consists of identifier “KeyNote-Version:” and the current
version number that is two as either string or integer.

The AuthField is the only obligatory field in an assertion. It identifies a
principal who has granted this assertion. The identifier of this field is “Au-
thorizer:”, and it is followed by principal identifier or a attribute id. Principals
can be identified by a label which is opaque to KeyNote, i.e. it can be any
ASCII string that does not contain : characters. Identifier can also be an
encoded cryptographic key. A key identifier begins with the name of the used
algorithm (e.g. RSA, DSA, etc.), then after “” character is the encoded (e.g.
BASE64 or HEX) key itself.

The assertion gives authorization to a principal identified in the Licensees-
Field. One assertion can give authorization to several principals with condi-
tions such as both of these principals (e.g. (“RSA:alice key” && “RSA:bob
key”)), some of these principals (e.g. (“RSA:alice key” || “RSA:bob_key”)),
or k of the following set of principals (e.g. 2-of(“RSA:alice key” "RSA:bob
key”, “RSA:carol _key”).

The LocalConstantsField gives shorter names, for example, for keys used
in this assertion, which makes the assertion more readable for humans. Es-
pecially, shorter names make Licensees field more readable. The Local-
Constants field consists of identifier “Local-Constants:” and a list of “at-
tributelD = string” pairs. The attributelD is the used alias, and it is a string
as defined in the previous subsection about action attributes. After the “="
character is the replaced string inside quoting marks. If this string is a public

4.2. KEYNOTE TRUST-MANAGEMENT SYSTEM VERSION 2 57

key, the string contains the name of the used algorithm in addition to the
actual key.

The authorizer can set conditions under which the authorization is given to
the licensees. The conditions are in the ConditionsField which begins with
“Conditions:” following by a list of “test -> value” conditions. Tests can be
comparisons of numbers or strings, and optional values are strings.

The CommentField denotes the purpose of the assertion. It consists of string
“Comment:” followed by ASCII text. Other way to insert comments to asser-
tions is insert them anywhere in the assertion. Then the comment begins with
#-character, and the comment is written in ASCII. Comments are ignored
by KeyNote, but they are included in the assertion signature calculation.
The SignatureField identifies the algorithm used to sign the assertion. This
fields begins with “Signature:”, then follows the algorithm identifier, “:” char-
acter, and finally the signature. The signature is calculated from the whole
assertion including comments but excluding the SignatureField.

For example [8]:

KeyNote-Version: 2

Comment: A simple email certificate for user Alice

Local-Constants: CA_key =‘RSA:abcdef...1234512345"
Alice_key = “DSA:abcdabcd. . .abcdabcd”

Authorizer: CA_key

Licensees: Alice_key

Conditions: ((app_domain == “‘email’’) #valid for email only
&& (address == ‘‘alice@example.com’)) ;

Signature: ‘‘RSA-SHA1: £00£2244”

4.2.3 KeyNote Queries

When an application wants to know if an action is allowed by its policy and
given credentials to a principal, it sends a query to KeyNote. The query has
four parameters [8]:

e The identifier of the principal who wants to do the action
e The action attribute set that describes the action

e The set of possible compliance values ordered by the application from
_MIN_TRUST to _MAX TRUST

58 CHAPTER 4. DIFFERENT APPROACHES

e The policy and credentials that need to be noticed when the query is
evaluated.

Policy assertions are unsigned, and they are trusted because the policy is
part of the trusted application and they are provided through trusted channel
to KeyNote. Other assertions, credentials, are signed by the authorizer (a
principal). Either the application or KeyNote can verify the signatures of the
credentials because principals are usually public keys. If KeyNote knows the
cryptographic algorithm of the public key, it can verify the signature of the
assertion. If the algorithm is unknown, the signature cannot be verified by
KeyNote and the the assertion is treated like a trusted policy assertion, i.e.
the application must take care of the verification. Because credentials are
signed, the application can send them to KeyNote over untrusted channel.

The answer can be a boolean value, like reject or approve, but some appli-
cations use more options in the evaluation of authorization, for example no
access, limited access, and full access. The possible answer values are given
to KeyNote as an ordered set from the lowest value to the highest value. A
principal will get the highest trust value MAX TRUST, if it is the autho-
rizer of the action in the query, or if there is no conditions field at all. If the
conditions field is empty but present, the principal will get the minimal trust
value, MIN_ TRUST. Otherwise, the trust value is calculated based on the
conditions and the licensees as presented next in this subsection.

The ConditionsField gives a list of “test -> (optional) value” elements. The
test either succeeds or fails. The value is a string, one from the compliance
values given in the query. If the value is missing, it is considered to be the
_MAX_TRUST. Each test in the condition field gives its own value. The
condition compliance value will be the highest of these possible values. For
example [§]:

Conditions:
user_id < 1000 -> ‘‘user_access’’;
user_id < 10000 -> ‘‘guest_access’’;
user_name == ‘‘root’’ -> ‘““full_access’’;

In this example, if the query has given value “1073” for the “user id” at-
tribute and the user name is “root”, the possible values are “user access” and
“full access”. The condition compliance value is the highest from these two
values. If the compliance values of the query are {“no__access”, “guest_access”,
“user _access”, “full _access”}, these conditions has given “full _access” in this

example.

4.2. KEYNOTE TRUST-MANAGEMENT SYSTEM VERSION 2 59

Each query has at least one requesting principal. If several principals re-
quests the action, their identifiers are included in the query, and the query
is first evaluated separately for all of the principals. In the end, the result is
combined together according to the rules given in the LicenseesField, and
the result is returned to the requesting application. For example [8|:

Licensees: (‘‘falice” && ‘‘bob’’) || ’’carol”’

First, the conditions are checked separately for each principal, for alice, bob,
and carol. If alice is allowed to perform the action and others are not, the
licensees compliance value will be the lowest value in the compliance value
set, e.g. the principals are not allowed to perform action. For evaluating the
licensees compliance value, following rules are used:

e An expression given in parenthesis, (...), will get the value of the subex-
pression inside parenthesis

e An expression “A && B” will get the lowest trust value of the subex-
pressions

e An expression “A || B” will get the highest trust value of the subex-
pressions

e In evaluating a “K-of-(a list)” expression, the compliance values got
from the evaluation of each list members are ordered to a list from the
minimal trust value to maximal trust value. If several principals get
the same value, the value will be in the list several times. The licensees
compliance value is the Kth value from the result list.

4.2.4 Differences between PolicyMaker and KeyNote

KeyNote is based on PolicyMaker, and their approach to the trust manage-
ment problem is similar. Matt Blaze and Joan Feigenbaum have participated
to the development of both these systems. Even though the basis is same,
there are differences. These differences are presented in table 4.1. The main
differences are in the used languages, the roles of the application and trust
management system, and what kinds of answers the trust management sys-
tem returns.

60 CHAPTER 4. DIFFERENT APPROACHES

PolicyMaker KeyNote

Return value boolean or restrictions | boolean (authorized
that could give the or not) or value
positive answer from a list

Signature verification | application KeyNote itself

Assertion syntax AWKWARD programs, | RFC-822 (email) -style
regular expressions human readable syntax,

c-like regular expressions

Table 4.1: Central differences between PolicyMaker and KeyNote [10]

4.3 Simple Distributed Security Infrastructure
(SDSI)

Simple Distributed Security Infrastructure (SDSI) is a simple public key in-
frastructure which defines authorization certificates. First version of SDSI
was defined in 1996 by Ron Rivest and Butler Lampson at Massachusetts In-
stitute of Technology [77]. Later, SDSI is joined together with Simple Public
Key Infrastructure (SPKI), and the second version of specification introduces
this merged version of SDSI/SPKI [38]. In this thesis, I first present the old
version of SDSI because it introduces new ideas for decentralized authoriza-
tion. Thus, this section is based on the SDSI version 1.0. The next section
describes the current merged version of SDSI/SPKI under name of SPKI
because SPKI is standardized by IETF.

4.3.1 SDSI Terminology

SDSI is a “key-centric” system [77] where everything is based on public key
cryptography. A principal can be a person, enterprise, machine etc. and it is
represented by a public key. Each principal can act as a certification authority
and give digitally signed statements about another principals i.e. there is no
global hierarchy of certification authorities. SDSI uses reconfirmation instead
of certificate revocation lists. This means that validity of a certificate is
checked from the principal who has granted it.

What makes the idea behind SDSI unique, is a concept of local name spaces.
Each principal decides by herself what to call other principals. For example,
Alice can be different person in one principals name space than in another
name space, and it can even be, for example, a program in someone’s name
space. There is no global name space but there are few distinguished root

4.3. SIMPLE DISTRIBUTED SECURITY INFRASTRUCTURE (SDSI)61

principals whose name space is the same to all principals. Usually, global
names are not used. But how we can distinguish all different Alices? In
SDSI, the local name spaces are linked together. We can say than we mean
that Alice who is defined in Bob’s name space instead of Alice that Carol
knows.

SDSI certificates can be identity certificates that binds together a local name
and a public key. When creating identity certificates, the principal must care-
fully and manually check that the identity is correct. In addition to certifying
identities, SDSI certificates can denote authorization or group membership.
As can be remembered, an authorization certificate binds a public key to
an action which is authorized for the owner of the corresponding secret key.
In SDSI, an authorization can be delegated to another principal. The del-
egation can be done with delegation certificates or groups. The delegation
certificates are primarily used for authorizing a group of servers to sign cer-
tificates on behalf of a principal. The server gives this certificate as a proof
of authorization to a querier.

Any principal can define a group that consists of principals or other groups.
The group has a local name in the name space of the principal that has
defined it i.e. the owner of the group. Groups are one way in SDSI to denote
roles. In the paper [77], Ronald Rivest and Butler Lampson give an example
where a hospital administrator creates a group which is named “head nurse”.
The group consists only the name of that principal who is acting as the head
nurse at that working shift. The problem in this kinds of roles is that, for
example, when the head nurse needs to sign a paper, she signs it as herself
and not in the role because groups do not have public keys. Other way to
denote roles in SDSI is to create for each role an own principal which is, as
mentioned above, represented by a public key.

4.3.2 SDSI Data Structures

According to its name, SDSI uses simple data structures. Even complex data
can be represented efficiently with S-Expressions defined by Ron Rivest [75]
in human readable ASCII form. An S-Expression is an octet string or a list
of simpler S-Expressions. A sequence of eight bit long octet is an octet string
that can be represented as [75]

e a token that is a string of printable characters such as abc

e a quoted string which contains blanks, e.g. “Bob Smith”

62 CHAPTER 4. DIFFERENT APPROACHES

e a hexadecimal string which begins with # character and contains
only hexadecimal digits, e.g. #123abc

e a verbatim octet string that has two parts separated with a colon,
the length of the string and special characters that are not available in
other form of octet strings such as *, =, < etc. For example, #03:;7%

e a base-64 encoded octet string or verbatim octet string, for example
|[YMJj| and {MzphYmM=} which both are encoded string abc.

Because SDSI data structures are sometimes read by people, SDSI provides
presentation hints. These can be used by the presentation program to decide
how the data is shown to a user. SDSI documentation defines that simple
MIME Content-Types can be used as presentation hints [77]. A presentation
hint is an octet string surrounded by square brackets, for example |applica-
tion/postscript| is a presentation hint for a MIME Content-Type.

Usually SDSI objects are lists. The first element is the type of the object
and then the list consists of attribute/value pairs. The object type is a
token ending with a colon. Attributes may have one value or list of values.
Attributes can be in any order but the last attribute in the object is usually
signature. Signature is also the only attribute that can be in an object several
times, other attributes either are or not in the object. For example, here is
a SDSI object that is a SDSI principal:

(Principal:
(Public-key:
(Algorithm: RSA-with-SHA-1)
(N: =Gt802Tbz9HKmO67=)
(E: #11))
(Global-Name: (ref: DNS!! fi hut Sanna.lLiimatainen))
(Server-At: ‘http://one.hut.fi/cgi-bin/sdsi-server/”’)
(Principal-At: ‘http://two.hut.fi/cgi-bin/sdsi-server/”))

This example contains an exception for the above mentioned structure: There
is one object, the public key, directly inside another object. This saves little
space because Public-Key string is mentioned only once. The example in-
troduces a principal and it’s public key. Other key types are Private-Key
which is the corresponding to a public key and used for signing and decrypt-
ing, and Shared-Secret-Key which can be used in symmetric cryptography
to encrypt and decrypt messages and as an one time password. In this prin-
cipal, N: is a base-64 encoded RSA public key modulus and E: the used RSA
exponent as a hexadecimal number.

4.3. SIMPLE DISTRIBUTED SECURITY INFRASTRUCTURE (SDSI)63

In addition to a public key, the principal object in above example contains
an optional global name (there can be several global names in a principal)
and optional Internet addresses. Global names are in Global-Name attribute,
and they start with a distinguished root. SDSI has reserved the following
names for the distinguished roots: VeriSign!!, TAPR!! USPS!!, and DNS!!.
As can be seen from the list above, they are separated from other principals
with double exclamation marks. The Server-At attribute gives an Internet
address for a server that can give additional certificates for the principal and
the Principal-At attribute gives an Internet address where one can send
questions to the principal if the principals servers do not answer.

A principal object should consist only of the minimal information and all
external information should be stored to principals “auto-certificate”. There
are two reasons. The principal object is included to every object signed by
the principal which will take more space. Other reasons is that if changing
information is in an auto-certificate, the principal object does not need to
change. The auto-certificate is signed by the principal itself and it gives
additional information about the principal mainly for people, for example
a picture. It is not trustworthy because there is no third party to confirm
the data stored in the auto-certificate. In SDSI, auto-certificates are denoted
with Auto-Cert:.

An object can be encrypted. There are two ways to handle encrypted objects.
An object whose type is Encrypted-Macro: will be decrypted immediately
when it has been received and the clear text version of the object will be
stored. Objects of type Encrypted: are stored in encrypted form and only
decrypted when they are needed.

When speaking of public key infrastructure, signing of objects is one key
function. SDSI objects can contain the signature of the object as the last
attribute/value pair. Another way is to give a separate signed-object which
contains the signed object itself or a hash of it. A signed-object consists of an
object hash specifying the signed object, date (and time) when the signature
is created, and the signature that is the result of a signature algorithm whose
input was the signed-object without the signature attribute. An example is
below [77].

64 CHAPTER 4. DIFFERENT APPROACHES

(Signed:
(Object-Hash: (SHA-1 =7YhdOmNcGFEO71QTzXsap+q/uhb=))

(Date: 1996-02-14T1:46:05.046-0500)

(Signature: #3421197655f0021cdd8abc21866b)

(Expiration-Date: 2003-01-01-00:00:00.000-0500)
(Signer: (Principal: ...))

(Re-confirm: P1M (Principal: ...))

(Credentials: ...)

(Signing-For: (Principal: ...)))

As we can see from the example, the signed-object may also contain other
information such as an Expiration-Date after which the signature is no
longer valid. A signer attribute is necessary if the signer may later be
unclear or signature needs to be reconfirmed periodically. The Re-confirm
attribute give a time period (marked with P) in years (Y), months (M) like in
this example, days (D), hours (H), minutes (M), and seconds (S). The months
and minutes are separated because if the period is given in hours, minutes
and seconds, before them is a letter T. After the time period, there is a
principal to whom the reconfirmation is asked and which usually is a server. A
Signing-For attribute tells that signature is done on behalf some principal.
The Credentials: attribute gives credentials that show that the signer has
authorization to sign on behalf of that other principal.

Each principal can refer to names in its local name space in two ways: either
with a token such as Alice or Alice@example.com or with S-Expression with
form (Local-Name: n). Local names can have some value which is bound
to it with a certificate issued by a principal. For example [77],

(Cert:
(Local-Name: foo)
(Value: (Principal: ...))
(Description:
[text/richtext]
‘“Bob Smith has worked at <bold>Bar Inc</bold> since 1995.”
(Signed: ...))

is a certificate that binds local name foo to a principal that probably presents
Bob Smith because in the Description: mentioned for human reader give
a statement about him. The purpose of the description is to give extra
information in an identity certificate. A Value: field in a certificate have to
be Principal:, Group:, Quote: or ref: that is used to refer name space
defined by someone else, or it can be a Encrypted: object from the previous
list or an Assert-Hash: whose first field is from the list. The Assert-Hash:

4.3. SIMPLE DISTRIBUTED SECURITY INFRASTRUCTURE (SDSI)65

is an object that reliably defines a name defined in a ref: object. It contains
a the name and a hash value of it.

This subsection has introduced the syntax of SDSI objects. The next sub-
section tells how these objects can be used in authorization in different kinds
of situations.

4.3.3 Communication with SDSI Servers

In addition to defining certificates, their structure and use, the SDSI speci-
fication defines communication protocols for getting information from SDSI
servers [77]. Actually, SDSI is a framework and it can be used to define more
message exchanges than presented in its specification. Two main tasks of
SDSI servers are to act as a certificate repository where needed certificates
can be looked up, and because SDSI does not use certificate revocation lists,
the servers are needed to reassure certificates. This subsection introduces
messages and their exchanges in both cases.

SDSI specifies a protocol called Get for searching certificates from a server
database. The query always contains a principal (in a To: field of the query)
whose signature needs to be in all certificates that are sent as an answer
to the query. In addition to the signer, a query may contain a “template”
that specifies object types, attributes and values for the search. Rivest and
Lampson give two examples of queries [77]:

(Get.Query:
(To: (Principal: ...))
(Template: (Cert: (Local-Name: jim)))
(Signed: ...)
(Get.Query:
(To: (Principal: ...))
(Template: (Cert: (Value: (Principal: ...)))
(Signed: ...)

In the first example, a certificate for jim is searched, and in the second
example, the searched certificate contains a certain value. In addition to To:
and Template:, the query can contain mandatory or optional wishes about
the reply: that it should be encrypted or/and signed. Whether the reply is
signed or not, each certificate contains a signature.

The reply for the query contains a hash from the query, discovered certificates
and a signature if asked. The signing of the whole reply message protects
it from tampering, for example, deleting of a certificate from a list of found

66 CHAPTER 4. DIFFERENT APPROACHES

certificates. An error message also contains a hash of the original query and
give some description of what error has occurred. The error message might
also be signed by the server.

SDSI defines other type of query for membership certificates. A principal can
ask if she is a member of a group with a Membership.Query’’. The reply does
not return a list of all the members of the group, it just say if the principal(s)
are the members of a group or not, or if the query failed, a hint for the reason
may be given. The reply is signed by the server, and thus they can be used
as credentials denoting some authorization.

Certificates contain information about how their validation should be done.
Some certificates requires periodic reconfirmations specified by the signer.
The original signer of the certificate can reconfirm the certificate, but also
a reconfirmation principal (a server) who has got the authority from the
original signer can make the reconfirmation. A reconfirmation query contains
a field telling the supposed signer of reconfirmation and a signed object that
needs to be reconfirmed. Similarly to the above, the reply has a field for
a hash of the query. The signed object has been signed again and the new
signature is attached to end of the object. The new signature may have an
expiration date but it does not have reconfirmation property.

4.4 Simple Public Key Infrastructure (SPKI)

The purpose of Simple Public Key Infrastructure (SPKI) Working Group in
IETF was to develop simple and extensible method for trust management.
The main idea of SPKI certificates is to give an authorization to a keyholder.
The keyholder is an entity who has a certain public key and the corresponding
private key. SPKI does not specify where these certificates are stored and
how they are distributed.

The development of SPKI started in the IETF in year 1996. A part of the
work has been published as experimental RFCs [27, 29]. An experimental
RFC means that the work is published as general information and does not
specify any Internet Standard [18|. The rest of SPKI are published as Internet
Drafts but they are already expired [28, 31|. In this section, we familiarize
ourselves with SPKI certificates and their use and management.

4.4. SIMPLE PUBLIC KEY INFRASTRUCTURE (SPKI) 67

4.4.1 SPKI Certificates

There are three kinds of certificates: identity, attribute and authorization
certificates. As mentioned earlier, an identity certificate binds a name to
a key, an attribute certificate is used to map authorization to a name, and
an authorization certificates ties authorization directly to a key. SPKI cer-
tificates are designed to be used as authorization certificates. Thus, SPKI
certificates may be used to give an authorization to an anonymous public
key without knowing who the keyholder is. The authorized user is the key-
holder who knows the corresponding secret key. The keyholder can even be
a program or a server, not a person at all. Certificates of Simple Public Key
Infrastructure are designed to be as simple as possible. Each certificate con-
tains information just as much is needed to give the authority. One purpose
of simplicity is that the certificates do not reveal the identity of the keyholder
even when several certificates are presented together.

The content of a SPKI certificate is described as a 5-tuple. The actual
certificate also contains other fields, for example a version number, and it is
digitally signed by the issuer. RFC 2693 defines the elements of a 5-tuple as
follows [29]. All the elements are described below in more details.

e Issuer is the initiator of an authorization. It is presented by a public
key or a hash of a public key.

e Subject is also a public key or a hash of a public key but it may also
be a name or a hash of an object. It represents the entity to whom the
authorization is given.

e Delegation is a boolean. If delegation is true, the subject can further
delegate the authorization to someone else.

e Authorization is the given right expressed by a S-Expression (de-
scribed in details above in subsection 4.3.2).

e Validity usually tells “not-before” and “not-after” dates and times.
SPKI also provides the possibility to use three kinds of online valida-
tions.

Issuer and Subject

Applications which offer some service or resource usually do not need to know
the identity of a user. It is enough to know if the user is authorized to do

68 CHAPTER 4. DIFFERENT APPROACHES

the requested action. The SPKI certificate usually maps an authorization
directly to a public key, the mapping is not done through a name like in
X.509. The issuer field always contains a key or a hash of a key (or the
reserved word “self”) but the subject field may also be a name. When an
authorization is given to an entity, for example a program which can be
download from a WWW-page, the subject field contains a hash of the entity
object.

In section 2.2, problems of globally unique names are discussed. In SDSI,
Rivest and Lampson introduced how local names can be used globally [77]
(SDSI and local name spaces is discussed in more detail in section 4.3).
SPKI uses the name structure of SDSI and later these two PKIs are merged.
Computer environment usually needs globally unique identifiers even when
local names are used. Public keys of public key cryptosystem can be used
as such because they must be unique and they can be published [29]. A
hash value calculated by collision-free hash function can also be used as an
identifier.

Delegation

In SPKI, boolean control of delegation is used [29]. The owner of a resource
can give to the subject the right to further delegate the authorization. If the
owner of a resource gives the delegation right, she cannot limit the delegation,
i.e. the subject can decide if she want to give the authorization to someone
else. In the long run, the resource decides based on given proofs (certificates)
if the requested action is allowed. With boolean control of delegation, the
absence of delegation right denotes that delegation is not allowed.

When Ellison et al. were developing SPKI, they also considered two other
kind of delegation control: integer control and no control. Integer control
which can be used to restrict the depth of delegation is more complex. The
owner of a resource must somehow predict what depth of delegation is needed
and this is difficult in an environment where a user can create new keys. If
the delegation is not allowed at all (no control case), the subject can feel
temptation to loan her private key to someone. This violates the principle
of public key cryptography where private key must be kept secret.

Authorization

Formation and interpretation of SPKI certificates must not require large com-
puting capabilities because it should be possible to handle these certificates

4.4. SIMPLE PUBLIC KEY INFRASTRUCTURE (SPKI) 69

in a smart card or other similarly small device. Certificates are defined with
S-Expressions which are simpler ways of representing data than, for exam-
ple, ASN.1. Rivest has developed an application independent S-Expression
construction and utilization [75].

Validity

Usually validity is a time period that is defined by not-before and not-after
dates and times. This is not always convenient. For example, what can
be done if the keyholder losses her secret key? SPKI offers three online
validation methods: certificate revocation lists (CRL), revalidation and one-
time certificates.

When a CRL is used, a SPKI certificate has information where the CRL can
be found and who (which key) must have signed it. There can be several
locations for the CRLs. The SPKI specification also gives definitions to the
CRLs: The CRL list must have a validity period and there must be only one
valid CRL at a time, i.e. when a new CRL is published, its validity period
must not to be overlapping with the old validity period. When CRL defines
certificates that are not valid, the revalidation tells if a certificate is still valid.
Because time interval in certificate validity field or in CRLs cannot be zero,
other method is needed to tell if a certificate can be used only once. One-time
validation is based on signed nonce which prevents using a certificate several
times.

4.4.2 Syntax of SPKI Certificates
SPKI Authorization Certificates

Syntax of SPKI authorization and name certificates is defined in an expired
Internet draft in 1999 [28|. The draft is about the merged SPKI/SDSI version
2.0, and objects are defined as S-Expressions familiar from above examples
in SDSI section of this thesis. First, the authorization certificates have the
following form [28]:

cert : (cert <version>? <cert-display>?
<issuer> <issuer-loc>? <subject> <subject-loc>?
<deleg>? <tab> <valid>? <comment>?);

Question mark means that the field is optional. The nonterminal symbols
are given inside < and > and these are replaced with the actual text in the
certificate, usually given in parenthesis. For example, the first optional field

70 CHAPTER 4. DIFFERENT APPROACHES

is a <version>. If the field is not present, the version is assumed to be (
version 0) i.e. the version field contains the word “version” and an integer
in parenthesis.

A cert-display field gives hint to a user interface of an application how
to present the certificate. A comment field is for human readers. Both cert-
display and comment fields are ignored when certificate code is processed.

First obligatory field in the certificate is a issuer field. It contains the word
“issuer” and a public key or a hash of a public key of a principal. A subject
field is similar, but there are more alternatives. In most cases, the subject
is also a public key or a hash of one. The subject can be also a relative or
fully-qualified name of a principal or a group, or a hash of an object that is
not a principal but that is, for example, a program. For certificates that are
for human readers, the subject is marked with keyword keyholder. It means
the actual owner of the public key in flesh and blood/iron and silicon and
usually the certificates refer to the real world giving, for example a physical
location of a server or birthday of the keyholder. Last possibility for the
subject field content is a complex k-of-n construction, for example “three
keys from the following list”.

An optional issuer-loc field contains a keyword “issuer-info” and gives an
URL of a server or other entity which has additional certificates for the is-
suer. This location may be necessary for getting complete certificate chains:
a server may have a database from where one can fetch the certificates that
tell how the issuer has got the right to give the authorization to the subject.
Similarly, an optional subject-loc field gives location of additional infor-
mation. For example, if the issuer or the subject is a hash of a public key,
in the additional field can be a location of a server that has the whole public
key.

The subject of the certificate can delegate the right or part of the right
given in the certificate to someone else, if the deleg field contains a word
propagate, otherwise the delegation right is not given to the subject.

The valid field gives the dates when the certificate is valid. If both are
missing, the presumption is that the certificate is valid forever. If one of
them is missing, the presumption is forever but the other date restricts the
validity. In addition or instead of validity dates, the valid field can give online
validation service that is used. The validation can be based on certificate
revocation list or valid certificate list in a given server or an one-time signed
response to a certain challenge. The valid field can also be a kind of a request
for a new short time certificate from a given server.

4.4. SIMPLE PUBLIC KEY INFRASTRUCTURE (SPKI) 71

The last field of an authorization certificate is an obligatory tag field. It
defines a permission given by the issuer of the certificate to the subject.
The permission is defined with S-Expressions. If the tag is (tag (%)), it
means “all permissions”. The permissions can only be reduced from that,
i.e. if something is added to the permission, it must restrict the permission.
For example, Alice gives to Bob a right to access all files in her WWW
home directory and a right to delegate the certificate. Bob can now write a
certificate that restricts the access right to be only index.html file in Alice’s
WWW directory and gives the certificate to Carol.

SPKI Name Certificates

Other form of specified certificates is SPKI name certificates [28]. In autho-
rization system based on public keys, the names are only helping humans to
handle things. Anyone can issue name certificates that binds a public key
to a name that might have significance only to the issuer of the certificate.
This is possible, because as we can remember, SPKI/SDSI uses local name
spaces. A name certificate has a following form:

cert : (cert <version>? <cert-display>? <issuer-name>
<subject> <valid>? <comment>?);

Version, cert-display, valid, and comment fields are same than in an
authorization certificate. A tag and a deleg fields are not needed because
a name certificate just gives a name for a public key. The issuer-name
field will be evaluated to (issuer (name <principal> <name>)) where
the principal is the issuer of the certificate and the name is the name she
has given to the subject. The name given to the subject can be from a local
name from any name space or it can be a fully-qualified name. A name itself
is a byte string. The subject can be virtually anything that will be given a
name by this certificate. If several name certificates give the same name to
different subjects, the name is given to a group.

Next I tell how SPKI certificates are used and give examples about their use.

4.4.3 Use of SPKI Certificates

The main purpose of SPKI is that an owner of a resource can give authoriza-
tion to use the resource to keyholders by issuing SPKI authorization certifi-
cates. The resource owner can also give a right to the keyholder to further
delegate the authority. SPKI certificates should be as simple as possible and
usable in different kinds of systems, for example in smart cards. Still, the

72 CHAPTER 4. DIFFERENT APPROACHES

SPKI certificates should be suitable for several kinds of applications, such as
transactions with banks and denoting ownership of immaterial property [27].

Example

When a positive access control decision is based on SPKI certificates, the
certificates must form a chain from the owner of the resource to the user
of the resource with correct authorization fiels. Let us consider the above
example of Alice’s WWW homepages in more details. First, Alice has given
to Bob a right to access all files in her WWW pages and a right to further
delegate this right. She has issued a SPKI certificate to Bob:

(cert

(version 0)
(issuer

(hash shal #1a6f6d62 1abd4476 £1640800 fe4c32d0 6ff62e93#))
(subject

(hash shal #1a2b3c4d 1a2b3c4d 1a2b3c4d 1a2b3c4d 1a2b3c4d#))
(subject-info http://www.example.com/bob/bobkey.html)
(propagate)
(tag (http (* prefix http://www.alice.example.com/)))
(not-before “2000-01-01_00:00:00"")
(not-after ¢2002-12-31_23:59:59”°))

In the above certificate, the issuer is denoted by a hash of Alice’s public key
and the subject is a hash of Bob’s public key. This certificate also indicates
where Bob’s public key can be found. The certificate gives a right to access
all the files in Alice’s WWW home directory which address is given in the
tag-field. Alice has given that right and its delegation rights to Bob for three
years. Now, Bob can create another SPKI certificate for Carol:

(cert

(version 0)
(issuer

(hash shal #1a2b3c4d 1a2b3c4d 1a2b3c4d 1a2b3c4d 1a2b3c4d#))
(subject

(hash shal #12345678 abcdefab 12345678 abcdefab 12345678#))
(tag (http (* prefix http://www.alice.example.com/secret/)))
(not-before ¢2002-05-01_00:00:00"")
(not-after €2002-08-31_23:59:59”°))

This certificate give more restricted access rights and for shorter time period
than the original certificate, and Carol cannot further delegate the rights she

4.4. SIMPLE PUBLIC KEY INFRASTRUCTURE (SPKI) 73

has got from Bob.

When Carol wants to access a file in Alice’s WWW pages, she gives two
certificates as a proof of the authorization: the one given to Bob and the one
given by Bob. These two certificates form a chain from Alice, who has given
the original right to Bob, who has restricted the rights he has given to Carol,
who wants to perform an action that she has authorization to perform. But
both certificates have different validation times and different authorization
content.

The certificate chain is reduced in validation to one certificate result certifi-
cate that presents the rights given by a set of certificates. The authorization
and validity of this new certificate are intersections from the corresponding
fields of the original certificates. The intersection of the authorization fields
is done by checking them element for element. Each element restricts the
authorization. If the authorization field of one certificate has a longer list
of elements and the shorter list is part of the longer one, the authorization
field of the certificate result certificate will contain this longer list of au-
thorization elements. If the authorization elements are different in original
certificates, the intersection fails and no authorization has been given based
on the certificate chain.

The validity time is the shortest time the certificates gives, i.e. the validity
time starts from the latest time and ends in the earliest time given in the
original certificates. But the time is not the only validity controller, certifi-
cates may also require online validity tests. The online test may give similar
time period than the certificates themselves, and the validity time calculation
is similar than above. Otherwise, the validation process will ask from all on-
line servers about the validity of each certificate in the end of the validation
process.

In the above example, the certificate result certificate is similar from its
authorization and validity time than the certificate given by Bob because
Bob has restricted the authorization and validity times from the certificate
he has got from Alice.

Certificate Path Discovery

The basic assumption of SPKI is that the requester has all the certificates
she needs in order to prove her authorization. The task of the verifier is to
check if the set of certificates forms a proof that the authorization can be
allowed to the requester. Dwaine Clarke et al. suggest following algorithm
for finding certificate chain [22]:

74 CHAPTER 4. DIFFERENT APPROACHES

1. Remove useless certificates, i.e. invalid certificates and certificates
which do not authorize requested action.

2. Calculate name reduction, i.e. find all certificates that are reduced.

3. Remove all names and name certificates because they just give
an identifier to a key.

4. Remove useless authorization certificates that cannot be part of
the chain.

5. Use depth-first search fo find a path from a graph formed from
certificates: nodes are keys and edges are authorizations.

6. Reconstruct the certificate chain

Key Management

“Key management is simplest when all cryptographic keys are fixed for all
time” denote Menezes et. al [61], section 13.7. In practice, cryptographic keys
must be changed time to time for several reasons. Finding an encryption key
with cryptoanalysis become easier, if large amount of text is encrypted with
the same key |79]. Furthermore, keys can be stolen or passphrase for using
the key can be forgotten. Because public keys are used to represent entities in
authorization certificates, the certificate becomes invalid if the key is invalid.

SPKI has no separate method for key management. It is handled with cer-
tificate validity [29]. If a key has compromised, the certificate giving an
authorization to it can be revoked. Revoked certificates are published in a
certificate revocation list. The validity field of the certificate can require the
use of online validation, and give the location of the used CRL. Other way to
enforce the change of keys is the validity time period of a certificate. When
the certificate become obsolete, a new certificate for a new public key can be
issued.

Some applications may use names in access control lists and name certificates
to bind the names to keys. But names are problematic and there is no unique
names as such. The names are used together with a public key. The lifetime
of a key is usually shorter than the life time of names. Using of a master
key can make lifetime of keys, and names, longer. The master key is used to
delegate all authorizations to other key that have shorter lifetime, and this
other key is used when needed.

4.4. SIMPLE PUBLIC KEY INFRASTRUCTURE (SPKI) 75

4.4.4 Access Control List in SPKI

Often a service keeps a list of legitime users and their rights. SPKI supports
also this traditional access control method. Because the access control list
is internal to the service, an access control list entry can be any kind. It is
used only by the service, and not given to others.

Although the implementation of access control is free for the developer, SPKI
gives a sample implementation for access control entries. The entry can be
same form as a SPKI certificate but the issuer field and the signature are
unnecessary. The access control list is usually stored in the same machine
than the resource which it manages, and the list is issued by a trusted ad-
ministrator.

Authorization certificates and their delegation release the service from keep-
ing up an access control list. The service does not need storage for the ACL,
and it can be simpler. The access control management is distributed outside
from the service. Delegation is simpler because it does not need to be checked
before the request to use the service.

4.4.5 Certificate Revocation

The validity field of the certificate defines if the certificate revocation list is
used for checking valitidy of the certificate. As mentioned above, the field
gives the location of the certificate revocation list and the public key that
must be used to sign it.

Eliminating CRLs

Ronald Rivest argues that certificate revocation lists should be eliminated [76].
He states that if certificate is issued recently and suplies all needed evidence
of the authorization, and the expiration date has not yet been, certificates
can be used as such without certificate revocation lists. New certificates are
best evidence of authorization, and they are easy to provide.

The certificate revocation lists is an approach from the wrong direction. The
acceptor of a certificate should be the entity which makes the decisions if a
certificate is valid, not the issuer of the certificate [76]. Only the acceptor
can decide, for example, how old certificates are suffieciently new.

The receiver, which verifies the certificate, can be simpler if all necessary
information about authorization is stored in a certificate. Otherwise, the

76 CHAPTER 4. DIFFERENT APPROACHES

verifier needs to search for additional information which causes more work
for the verifier. For example, a popular service can get overloaded if it must
search more evidence for intentionally forged certificate chains (denial-of-
service attack).

One reason for the use of CRLs is that the keyholder loses her private key and
some method for announcing about the loss is needed. Rivest suggests that
CRL can be replaced by a “key compromise agent”. These key compromise
agents will form a network. If a key has become unvalid, the information
is told to the nearest agent that then distributes the information to other
agents. The needed information is that the key has not been compromized
rather than that it has been compromized. The key compromise agent issues
“certificate of healt” that denotes that none of the agents has not heard that
the key is compromized. This certificate of healt is given to the verifier
together with the other certificates.

In the last section of this chapter, I describe an architecture that uses Simple
Public Key Infrastructure for trust and policy management, but adds also
other needed components to be able provide authorization and delegation in
distributed agent system.

4.5 Telecommunication Software Security Ar-
chitecture

Telecommunication Software Security Architecture (TeSSA) is developed by
Pekka Nikander and his research team in 1998 at Helsinki University of Tech-
nology [67]. Differently from the trust management systems presented earlier,
TeSSA is an architecture for secure distributed systems and agent systems.

Agent system consists of computing nodes, insecure network, and software
agents [67]. Computing nodes are capable to execute software agents. An
agent is a piece of code and data. The purpose of the TeSSA architecture is
to denote trust that exists in agent systems and make the execution of agents
secure for both the agent and the node.

As presented in the figure 4.5, the TeSSA architecture has four parts: session
security protocol, authentication or authorization protocol, certificate reposi-
tory, and trust and policy management infrastructure. In the TeSSA research
project, the architecture was implemented and the implementation is based
on Internet Protocol Security (IPsec) |52] for providing session security and

4.5. TELECOMMUNICATION SOFTWARE SECURITY ARCHITECTURET7

Internet Security Association and Key Management Protocol (ISAKMP) [60]
for authentication. The Domain Name System (DNS) |62] serves as a cer-
tificate repository for SPKI certificates that are used for trust and policy
management. This section represents the TeSSA architecture and describes
how the architecture can be used to secure distributed systems.

Trust and policy management

Application | |Authentication Certificate

Host . Host
rotocols rotocol(s repositor
0S p p! (9 ep y 0S

Session / connection level security

Communication infrastructure

Figure 4.5: The conceptual building blocks of the TeSSA [67]

4.5.1 Building Blocks of the TeSSA Architecture

The basic building blocks for the TeSSA architecture to work in the TCP/IP
environment were implemented in the TeSSA project [25] and in its predeces-
sor, the IPsec project [26] at Helsinki University of Technology. This section
represents how the architecture was implemented for the Internet environ-
ment starting from the lowest security level in the figure 4.5 and ending up
to the highest level, to the trust and policy management.

Session Security

The implementation of the TeSSA architecture uses the Internet Protocol
Security (IPsec) [52] to ensure session security. The IPsec is presented earlier
in section 3.2.1. It gives two basic ways to provide security: AH for integrity
and ESP for confidentiality. Each node, a host, in a network should have
its own security policy that defines what kind of protection of connections is
required.

78 CHAPTER 4. DIFFERENT APPROACHES

The session level security is tightly connected with the access control of the
operating system [67]. I describe below in this subsection how this connection
is created in the TeSSA architecture.

Authentication Protocols

Communicating parties must first agree on how a connection is protected.
IPsec offers two possibilities for connection establishment negotiations. A
simple protocol called the Internet Key Exchange (IKE) 43| is one protocol
for negotiation of security associations, but the TeSSA architecture does not
use it because it does not offer enough choices [67]. The Tessa Architec-
ture uses the Internet Security Association and Key Management Protocol
(ISAKMP) [60] because it defines extendible framework for negotiation of se-
curity associations for different kinds of purposes. In ISAKMP negotiation,
the initiator of the connection proposes methods to protect the connection
by giving a set of security associations that represent its security policy. The
responder chooses one security association that suites for his security policy.

The standard IPsec security policy is not enough for the TeSSA architec-
ture [67]. It defines only how individual datagrams are protected and en-
sures that the datagrams end up to the correct application. The TeSSA
architecture connects the local access control policy to the communication
policy. TeSSA defines three roles for access control and security policy: how
new connections can be created, how the connections must be protected,
and what kind of request can be send over the connections [67]. The policy
control of the first two is implemented with ISAKMP but the last restric-
tion is not possible to determine with the ISAKMP protocol. The third part
of the policy that binds the session level security to the access control is
implemented SPKI certificates.

Before I introduce how the SPKI certificates are used to implement the higher
level security policy, I describe why a certificate repository is needed and how
the certificate repository is implemented for the TeSSA architecture.

Certificate Repository

SPKI assumes that the user who want to perform an action will provide
for the validator all needed proofs, a set of certificates, that she has rights.
In TeSSA, “the user” can be an inactive object, for example a small Java
program, that cannot collect the needed proof by itself [67]. The certificates
must be stored some easily reachable place where the validator can fetch

4.5. TELECOMMUNICATION SOFTWARE SECURITY ARCHITECTURET9

them. The TeSSA implementation uses Internet Domain Name System for
storing the certificates.

Internet Domain Name System (DNS) is originally meant for connecting
human readable Internet domain names to addresses of Internet Protocol, and
thus making the use of Internet nicer for human users [62]. The DNS system
is distributed database that makes fetching hierarchical names efficient. DNS
also defines syntax for Internet names and how the namespace is distributed.
The DNS system defines different types for objects that can be stored to its
database, and RFC2539 [24] defines how to store certificates into the DNS
database. The structure is same for all kinds of certificates, e.g. X.509,
SPKI, and PGP.

In TeSSA architecture, SPKI certificates are stored to DNS servers based
on the issuer and/or subject of the certificate [69]. Certificates that denotes
absolute and direct trust by the issuer on the subject are the root of the
trust and origin of certificate chains. Because this original issuer of trust is
usually also the verificator of the certificate chain and the issuer knows the
location of its own DNS server, the appropriate storing place is the DNS
server of the issuer. Certificates giving a permission to a subject or certifi-
cates that confirm an identity of a subject are stored to the DNS server of
the subject. It is the logical place for storage because the subject of the
certificate knows its identity and its permissions. Delegation certificates are
problematic because they can be seen as trust certificates or as permission
certificates. Tuomas Aura found out that two way search algorithm is faster
than others for searching delegation certificates |7]. For this reason, the del-
egation certificates should be stored to the DNS server of both issuer and
subject [69].

The main problem of using DNS servers as a SPKI certificate storage is that
DNS needs names for certificates: the anonymity of users may compromise.
In the DNS resolver implemented for the TeSSA architecture [44], certificate
names are based on the issuer or the subject of a certificate and a hash of the
key to which the authorization is given. These are not the problem because
user can create new keys and names for herself. The problem is the domain
part of the name, which reveals where the user comes from. Still, it is needed,
or the DNS server acting as a certificate repository cannot be found.

Trust and Policy Management

The TeSSA architecture uses Simple Public Key Infrastructure (SPKI) [28]
for the more fine grade access control management than what IPsec can

80 CHAPTER 4. DIFFERENT APPROACHES

provide and for binding the access control management to the operating
system. SPKI itself is introduce in more details above, in section 4.4.

One purpose of the TeSSA architecture is access control and right manage-
ment of software agents. The creator of an agent is seen as its authorizator
and, finally, the operating system controls the computer hardware, i.e. which
agents have rights to do what kinds of operations. The first certificate of a
certificate chain must always be trustworthy |67]. This is truth even in tra-
ditional identity certificates though this is not always the reality (e.g. trust
of some global company).

All the trust relationships in TeSSA are represented by SPKI certificates.
In TeSSA, the certification loops are formed to both directions, both the
authorization of an software agent and the authentication of a server or other
node where the agent code is executed.

In the next section, the distributed trust and policy management of the
TeSSA architecture is presented in more general level.

4.5.2 Four Kinds of Trust

The TeSSA Architecture is designed for expressing all kinds of trust relation-
ships in distributed systems [67]. This include also other than access control
like trust relationships. The purpose of TeSSA is to enforce a security policy.
For this purpose, four kinds of trust exists in distributed agent systems [67]:

Execution: Trust that the execution of program code is done loyally.

Naming: Binding local names to cryptographic keys is a traditional
form of trust, and it is done properly.

Authorization: Trust that the access rights are not misused by the
authorized party.

Delegation: Trust that delegation is done properly, i.e. the issuer has
the authorization it gives further.

In addition to access control type of trust, Nikander argues that security
policy should state about all the four kinds of trusts [67]. Next subsection
represents how a security policy works in the TeSSA architecture.

4.5. TELECOMMUNICATION SOFTWARE SECURITY ARCHITECTURES1

4.5.3 Security Policy

A security policy has two “levels™ it can be organizational document that
defines what confidentiality, integrity, and availability means, or it can give
strict technical rule set for denoting trust. In TeSSA, the trust is described
as SPKI certificates and like in PolicyMaker, the security policy decisions
are based on authorizations, not identity, of an entity. Trusted third par-
ties can only give recommendations and the security policy can define how
trustworthy these recommendations are.

A security policy should define how it trust to so-called trusted third par-
ties. In TeSSA architecture, the security policy controls how software agents
can use resources on behalf of users. In such an agent system, the trusted
third parties can be trusted for at least four purposes [67]: Authorization
Authority gives access permissions, Agent Authorization Authority controls
agent creation, Execution Environment Authority certifies trusted nodes, and
Naming Authority gives names in applications in a secure manner. The next
subsection describes these trusted third parties more precisely.

Trusted Third Parties

An Authorization Authority delegates access authorization on behalf of a
resource. It can get the right directly from the resource or from another
authorization authority. Like all trusted third parties, the authorization
authority can only give recommencations. It is up to the security policy of
the validating party if the certificates are accepted.

Agent Authorization Authority is special case of the Authorization Authority.
It defines if an agent can be created and what kinds of rights the new agent
has. For example, how much memory or network bandwidth the created
agent can use.

Because agents may have different requirements about security, an Execution
Environment Authority is needed. A network may have malicious host that
try to benefit from agents, and to prevent this the trustworthy nodes must
somehow be distinguished from other nodes. Other reason for this kind of
TTP is that an agent may be divided to subagents which have different needs
of security.

Human users are experienced to use names as identifiers. A Naming Author-
ity will provide secure naming for utilization of users. Finally, the user is
the entity which makes the decisions and a system is more secure if the user
knows what she is doing. The Naming Authority is used to determine keys

82 CHAPTER 4. DIFFERENT APPROACHES

and locations of a server.

Trusted third parties can only give recommendations for users and agents.
A security policy defines how these recommendations are handled: are they
believed or not.

Recommencations of TTPs

SPKI does not restrict the length of a certificate chain. This means that a
source of authorization can only decide if it gives a right for further delegate
the rights to a recipient of the certificate. The source cannot restrict to
whom the recipient gives the rights and if it allows further delegation. Some
certifier may authorize an entity which is completely untrustworthy from the
viewpoint of the original source. In TeSSA, this is not a problem because
the certificates are considered to be recommendations, not the final truth.

Finally, a source of authorization is usually the entity which checks that
the certifate chain is valid and the requester is authorized to perform the
requested action. A security policy of the source defines how trustworthy
are the issuers of the certificates in the chain, and determine if the chain
comply with the security policy. The security policy can be represented as
SPKI certificates. For example, a security policy may define that reduction
certificates are not trusted. Then the requester must present the original
certificates instead of the reduction certificate.

4.5.4 Decentralized Management

The main purpose of the TeSSA architecture is to allow decentralized man-
agement of software agents. Each agent has its own rights and requirements
for hosts, and each host has its own requirements for agents. Security policies
and rights of the agents are declared as authorization certificates. Autho-
rization certificates allow the management of such a system be decentralized
because proofs of authorization can be taken along. In TeSSA, the creden-
tials can also be stored in a repository which allows the agents to be small
devices without large storage capability.

Decentralization of a system does not mean that it has no need for manage-
ment. The management of the system is also decentralized. This means that
each part of the system can have separate administration and different kind
of security policy. The decentralized system is dynamic, and joining of new
entity is relatively easy. New entities can be nodes or trusted third parties.
Of course, the system may be used by new agents as well.

4.5. TELECOMMUNICATION SOFTWARE SECURITY ARCHITECTURES3

The main purpose of a node is to protect its local resources such as CPU
or user data. For this task, the new node inserted to a decentralized system
needs a key pair which is used to issue certificates. These certificates define to
what trusted third party the node trusts, what kinds of recommendations it
accepts, and what is the access control policy of the node [67]. The simplest
case, two certificates are needed: The first certificate gives to an adminis-
trator all rights and right to delegate these rights. The second certificate
defines the recommendation policy of the node, i.e. how the administrator
can certify others.

The TeSSA architecture allows to easily add new trusted third parties to
a decentralized system. Adding a new TTP does not change the policy of
nodes because the nodes trust their addministrators to define how the new
TTP is trusted. Of course, the trust to the new TTP must be based on
something. Usually, several addministrators need to state that they trust to
the new T'TP before it can be accepted to be a system wide TTP.

In TeSSA, rights can be revoced, for example, if an agent misbehave and try
to harm a node. TeSSA offers two ways to revoce the rights given in SPKI
certificates. The first is normal SPKI certificate revocation implemented by
online validity checking. A SPKI certificate gives in its validity field a location
of a server which then verify if a certificate is still valid. The second way to
revocate a right is restriction of security policy or recommendation policy. For
example, if a trusted third party is no longer trusted, its recommendations
can be defined to be untrustworthy.

This section has introduced five different kinds of authorization approaches.
KeyNote is based on PolicyMaker, and SDSI and SPKI are merged. TeSSA
uses SPKI certificates and build up a complete architecture for using them.
Basically, the solutions can divided to two different ones: PolicyMaker kind
of solution and SPKI kind of solution. PolicyMaker, KeyNote, SDSI/SPKI,
and TeSSA are compared according to the comparison methodology in the
chapter 6. The comparison methodology is introduced in the next chapter.

84

CHAPTER 4. DIFFERENT APPROACHES

Chapter 5

Comparison Methodology

Deborah Hix and Robert Schulman introduced a comparison methodology for
human-computer interface development tools [46|. They also give character-
istics for a good comparison methodology: A good comparison methodology
will use standardized approach to get reliable and quantifiable results. It
should be objective, easy to use and adaptive, i.e. if a new tool is intro-
duced, it can be evaluated equally to old ones with the same comparison
methodology. Comparison of different kinds of solutions should always be
independent from external interference. This means that, for example, soft-
ware and hardware of underlying system should be same for every solution.

Donald Norman argues that proper way to design things is the human cen-
tered way. Computers as an infrastructure should be invisible for people that
are communicating through them. He also states that technology is relatively
easy to change, the human behavior based on culture and social connections
build up during hundreds of years changes slowly [70]. Jacob Nielsen argues
that user interfaces has become more important when a personal computer
is available for wider audience and computers has become common even in
homes [66]. Thus, the main focus of the comparison in this thesis is usability.

This chapter presents the comparison methodology used to evaluate different
decentralized authorization methods and systems. First, I introduce shortly
Common Criteria (CC) which is used to evaluate security properties of a
system. In the second section I describe how heuristic evaluation, the chosen
usability evaluation method, is used to evaluate the properties identified by
Common Criteria. In the last section, I describe different kind of using
situations which will act as test cases in the actual evaluation. The next
chapter gives the results of my evaluation.

85

86 CHAPTER 5. COMPARISON METHODOLOGY

5.1 Common Criteria

Since 1985, several security criteria has been published to help governments
to choose secure products. In 1995, all the criteria were merged to be one
unified standard called Common Criteria (CC) [81]. Common Criteria defines
requirements for security properties of information technology products and
systems, and provides a criteria for comparison [17]. The security properties
evaluated in CC are confidentiality, integrity, and availability of a system.
Security requirements are divided in classes, for example, identification and
authentication is one class. Members of a class are families, which define set
of security requirements. Each such requirements is called a component.

Common Criteria as such does not suites well to compare different decentral-
ized authorization mechanisms. I use it to define the functional parts of the
systems and to identify usability requirements for those parts.

The next subsection presents the CC classes and families which can be found
from the decentralized authorization systems presented in chapter 4.

5.1.1 CC Classes and Families

Common Criteria defines eleven classes of security functional components.
Six of them suites for dividing decentralized authorization mechanisms to
components.

Cryptographic Components

CC Class FCS defines cryptographic components. Decentralized authoriza-
tion systems have both of CC cryptographic components: FCS CKM Cryp-
tographic Key Management and FCS_COP Cryptographic Operations. The
first component family consists of key generation, key distribution, key access
and key destruction. The other family, cryptographic operations, consists
of all typical cryptographic operations such as encryption and decryption,
signing and verification, calculation of cryptographic checksums and secure
hashes, and key agreement. CC defines, that these operations must be per-
formed according to given algorithms and with correct key sizes.

5.1. COMMON CRITERIA 87

User Data Protection

Next suitable CC Class is FDP User data protection. The first family in this
class is FDP _ACC which defines Access control policy. The access control
policy has three traditional parts: subject, objects and operations. Security
attributes used by the access control policy are defined by FDP __ ACF Access
control functions.

Common Criteria defines other family for Information flow control policy and
functions (FDP_IFC and FDP_IFF) similarly to access control policy for
defining data transmissions. FDP_ ITC defines mechanisms for importing
user data from outside of the evaluated target. In a decentralized autho-
rization system this is needed, for example, when a user collects necessary
credentials from trusted third parties. Other family, FDP ITT Internal
transfer, defines protection for data transferred inside a system.

Other family, FDP _SDI Stored data integrity specifies that data in a sys-
tem does not change during storage or internal transmissions. Also confi-
dentiality can be ensured inside a system (FDP_UCT Internal user data
confidentiality transfer protection). For a trusted system, the integrity is
usually more crucial than confidentiality. Similar family protects data from
modifications during transmission between systems (FDP_UIT Inter system
user data integrity transfer protection). For integrity, the FDP class provides
data authentication by signature (FDP_DAU data authentication).

Identification and Authentication

Common Criteria class FIA Identification and authentication defines func-
tions to establish and verify user identity. It does not define authorization,
but still this class can be used as foundation when the functions of autho-
rization are determined.

Users of a system have security attributes. FIA ATD user attribute defini-
tion CC family defines how the attributes of a user are associated with the
user. In decentralized authorization system the security attributes are binded
to a user presented by a public key with certificates, i.e. the attributes are
not bound to the identity of a user like the Common Criteria defines.

FIA UAU User authentication family defines mechanisms for authenticating
users and gives required attributes for the mechanism. Similarly, FIA _UID
User identification defines conditions for identity mechanisms. For example,
both can define that the authentication/identification must be done before
every action.

88 CHAPTER 5. COMPARISON METHODOLOGY

FIA USB User-subject binding associates security attributes of a user with
other entity that acts on behalf of the user. This is

Security Management

Common Criteria defines a class for management of security aspects such as
functions, attributes, and data in a system. Respectively, the families are
FMT MOF Management of functions, FMT MSA Management of security
attributes, and FMT MTD Management of data. First family defines that
authorized users can manage functions etc.

Security management has also other aspect. Authorized entities can also
decide about revocation with FMT REV Revocation family. Security at-
tributes can have validity limitations given by FMT _SAE Security attribute
expiration.

CC family FMT SMR Security management roles determines what capabil-
ities are given to a role and which users have the role.

Privacy

Privacy class gives requirements for functions that protect a user of identity
discovery and misuse. FPR__ ANO Anonymity family gives a user a possibil-
ity to use a service anonymously.

Other way to protect identity disclosure is use pseudonymity (FPR_PSE).
It allows a user be anonymous but still be accountable. This means that the
identity of a user can be revealed by authorized user if, for example, the user
performs an illegal action.

One part of privacy is untracebility of actions of a user, i.e. when a user uses
several services, these cannot be linked together. CC notices this by defining
FPR__UNL Unlinkability family of functions.

Interestingly, CC defines FPR_ UNO Unobservability family: a user can use
a service without being observed. Of course, the actions that are allowed to
be performed without observation must be defined. There may also be users
that are authorized to observe usage of some services.

Communication

Parts of a decentralized system need a secure way to communicate with each
others and with users. CC Trusted path/channels class defines families to

5.1. COMMON CRITERIA 89

provide trusted path between parts of a system.

Common Criteria defines two families of trusted channels: FTP _TRP Trusted
path defines a communication path from a user to a system and FTP_ITC

Trusted channel defines a communication path between trusted systems.

Both families give requirements for establishment and maintenance of a con-

nection.

5.1.2 Elements of Decentralized Authorization Systems

The parts of common decentralized authorization system are identified in this
section with help of Common Criteria. I will not evaluate their functionality
from the technical point of view. I use them as a basement for defining
usability test tasks of different user groups. The common functional parts of
decentralized authorization systems are listed below.

o Key management

e Cryptographic operations
e Access control policy

e Handling of credentials

e Security attribute management
e Authorization

e Delegation

e Management of credentials
e Revocation

e Validity

e Roles

e Privacy

e Logging

e Trusted communication

90 CHAPTER 5. COMPARISON METHODOLOGY

Some of the listed functional parts are out of the scope of this thesis. For ex-
ample, I do not evaluate the usability of cryptographic operations and trusted
communication paths used in decentralized authorization mechanisms. Ele-
ments that are essential and characteristic particularly for decentalized au-
thorization systems are handling of credentials, security attribute manage-
ment, authorization, delegation, management of credentials, revocation, va-
lidity, roles, privacy, and trusted communication.

5.2 Usability Test Method

Comparisons should always be unbiased. All the decentralized authorization
systems presented in chapter 4 approach the problem of decentralized au-
thorization from different point of views. Two are systems based on same
kind of architecture, two are merged to be a authorization certificate system,
and one is an architecture constructed from standard components. Com-
plete implementations of all the systems are not available because the work
is unfinished or because of US exportation laws. For this reason, I evaluate
usability and understandability of the solutions from different user point of
views without actual implementations. This limits the selection of usability
test method.

5.2.1 Choosing Usability Test Method

The section 3.1.3 above presents several usability evaluation methods. Jenny
Preece et al. gives issues that should be considered when selecting evaluation
method [74]:

e Purpose of the evaluation

Stage of the system

Involvement of users

Qualitative or quantitative data

Practical considerations

I have given above one practical consideration for my evaluation: the lack
of implementations. For comparing designs, experiments and benchmarking
methods are best but they require something concrete to test. Some of the

5.2. USABILITY TEST METHOD

91

Method name | Users needed | Main advantage Main disadvantage
Heuristic none Finds individual Does not show
evaluation usability problems. | surprising problems
in users needs.
Thinking 3-5 Point out user Unnatural
aloud misconceptions. and difficult
for users.
Observation | 3 or Reveals real No control.
more tasks of users.

Table 5.1: Usability method comparison [66]

targets are in early state which should be compared with predictive methods
such as heuristic evaluation or observation. Jacob Nielsen has also compared
the different usability methods. He states that if only few users are available
for usability tests, the chosen method should be heuristic evaluation, thinking
aloud, or observation [66]. Table 5.1 summarizes Nielsen’s comparison of
these three methods.

None of the usability evaluation systems are good for evaluation of concepts
or architectures, i.e. solutions without user interfaces. In this thesis, I apply
mainly heuristic analysis but use also cognitive walkthroughs to compare the
decentralized authorization systems presented in previous chapter. The using
of more than one method for evaluation helps to gain more reliable results.

The heuristic analysis and cognitive walkthroughs usability method are in-
troduced in this section. The end of this section I describe how to apply
these methods to evaluation of decentralized authorization systems.

5.2.2 Heuristic Evaluation for Decentralized Authoriza-
tion

Heuristic evaluation is developed by Rolf Molich and Jacob Nielsen [63]. The
purpose of the evaluation is to find usability problems of a developed system
in an iterative process. However, the evaluator is not actually using the
system. This means that the user interface of the system does not need to be
finished and the heuristic evaluation can be used in any phase of the design,
even very early.

In heuristic evaluation, small set of evaluators examine the system and com-
pare it to usability principles. Jacob Nielsen argues that “heuristic evaluation
was originally developed as a usability engineering method for evaluators who

92 CHAPTER 5. COMPARISON METHODOLOGY

had some knowledge of usability principles but were not necessarily usability
experts as such” [65]. Of course, the experience of the evaluators affect to
how many problems they may find from the system. For getting reliable
results, about five evaluators should be used |66].

Usability Principles

For performing a heuristic evaluation, Nielsen and Molich present a ten-
point check-list of generic usability principles, against which the system’s
usability can then be cevaluated and most common usability problems can
be detected [63|. Based on this work Nielsen has developed following list of
usability principles for user interface designers [66]:

e Simple and natural dialogue means that no irrelevant or rarely
used information are presented in the dialog, and the information is
presented in logical order.

e Speak the users’ language and do not use unfamiliar technical slang.

e Minimize the users’ memory load, i.e. do not require the user to
remember information from other dialogs. Also, instructions or other
help should be easily accessible.

e Consistency means that same thing is always called with same name /word.

e Feedback means that user should always be able to follow what is
going on in reasonable time. Response time less than one second does
not need indication what the system is doing.

e Clearly marked exits. A function can be chosen by mistake and thus
the user should have easy escape from every function.

e Shortcuts make the system usable also for experienced user who does
not need guidance. The shortcuts should be invisible for the novice
user because she may be confused by them.

e Good error messages are preventive, constructive and informative.
They do not use error codes but describe with words the problem. An
error message should also suggest what the user should do next.

e Prevent errors beforehand is better approach than the previous prin-
ciple of providing good error message.

5.2. USABILITY TEST METHOD 93

e Help and documentation which allow easily to search problems and
give concrete steps to solve them. It is better if the system is usable
without help and documentation, but sometimes it is necessary.

Evaluation Procedure

In heuristic evaluation, the evaluator inspects each parts of the user interface
from dialog to dialog. Each dialog or screen is compared to the usability
principles (heuristics). The used heuristic will effect to the findings of the
evaluators but the method is systematic.

Nielsen has categorized usability problems that can be found with heuris-
tic evaluation [65]: The first category of usability problems affect only to
a single user interface element such as dialog-box, error message, or menu.
The second category consists problems that require comparison between el-
ements. For example, each dialog is fine but when comparing the dialogs,
each use different word to denote quitting: exit, quit, close etc. Structural
problems of dialogs are the third category. For example, navigation through
large menu structure should be symmetric. The last category user interface
problems are missing elements that should be in a dialog. These categories
can also be helpful when evaluating a system because they help the evaluator
to concentrate to find problems of different layers.

5.2.3 Cognitive Walkthrougs for Decentralized Autho-
rization

Like heuristic evaluation, cognitive walkthroughs is a kind of structured ex-
pert reviewing method. In cognitive walkthroughs, the system is analyzed
and basic tasks of the users are described as scenarios. Each scenario de-
scribes who will try to perform the task and what she knows, what goals
and subgoals the user has and what is her motivation. The scenario also
describes the tools and resources the user has and how the user can use the
system [74].

When the scenarios are identified and described, the actual cognitive walk-
through can be performed. In the analysis, a user carries through the scenario
subtask by subtask. The evaluator observes user and what she do in order
to accomplish the tasks. Usability problems are marked up for later to be
fixed.

94 CHAPTER 5. COMPARISON METHODOLOGY

5.2.4 Applying Heuristic Evaluation and Cognitive Walk-
througs to Decentralized Authorization

Whitten and Tygar have tested usability of the user interface of an identity
public key infrastructure, i.e the usability of PGP 5.0 [82]. Their test was
based on cognitive walkthroughs and usability tests. Because there is no
working user interfaces for all the decentralized authorization systems, I use
first part of cognitive walkthroughs to describe main tasks of the different
user groups and heuristic evaluation to identify the usability problems of the
systems. The main tasks correspond the elements identified by CC above in
section 5.1.2.

Whitten and Tygar end up to define that a security system is usable if its
users are aware of the security tasks, know how to perform the tasks, do not
make fatal errors, and are comfortable with using the system [83]. Similarly,
my heuristics is

e the user can know what she is doing,
e the user can find out how to perform the action, and

e the possibility of perform an error is minimized.

5.3 The Test Problems

The purpose of this thesis is to compare usability of the different decentral-
ized authorization approaches. The comparison does not compare the actual
user interfaces but the concepts and the architecture of the approaches with
methodology presented in the above section.

The section 3.1.2 introduces shortly basic goals and tasks of different user
groups of a decentralized authorization system. Different elements of the
system are identified with help of Common Criteria in section 5.1.2. Based
upon the goals, the tasks and the elements, following test cases are identified.

For test cases, the users are divided to three groups: administrators, devel-
opers, and common users. The administrators and developers need to be
familiar with programming and, at least, traditional public key infrastruc-
tures. The programming skills of administrators can be more modest than
the developers.

In this section, the test cases are introduced according to cognitive walk-
throughs phase one. The actor, the goal, and the motivation are given in

5.3. THE TEST PROBLEMS 95

this section. The description how the goal can be archieved is given in the
next chapter while comparing the systems because it is dependent on the
system.

5.3.1 Test Cases

Case 1: Authorization of Entities

Who: Administrator

What and Why: The actual source of authorization is the resource it-
self but usually it delegates the full authorization to the administrator of
the resource. Thus, the administrator can be seen as the source of the au-
thorization. Administrators tasks is to delegate different authorizations to
other entities. It must be sure that the entity is trustworthy to have the
authorization.

With: A decentralized authorization system

How: Depending on the system

Case 2: Definition of Security Policy for a Node

Who: Administrator

What and Why: A security policy defines what kind of authorization is
needed for using the different resources of the node. The node relies that the
authorized users behave properly and according to the rules defined by the
policy.

With: A decentralized authorization system

How: Depending on the system, but the systems have similarities due to
a common procedure of defining a security policy. Firstly, the upper layer
security policy is defined by directors of an organization. The security policy
of a node in the organization is derived from this upper layer policy. Writing

the policy for the node according to the used authorization system is the task
of the administrator.

Case 3: Definition of Security Policy for a Piece of Code

Who: Developer

96 CHAPTER 5. COMPARISON METHODOLOGY

What and Why: A security policy defines what kind of autorizations the
piece of code requires from a node before it can be executed in the node. It
can also define what resources the piece of code needs in order to be properly
executed in the node. Similarly than defining security policy for a node, the
developer can also define who can use the piece of code.

With: a decentralized authorization system

How: Depending on the system

Case 4: Handling of Certificates

Who: Administrator, Developer, User

What and Why: Authorization information is stored in a certificate. The
certificates are signed, which protects the integrity of the certificate. The
certificates must be stored somewhere. Some certificates are handled by the
end users, others by developers, and most of the certificates are handled by
the administrators. Each of the user groups needs to know, when a certificate
is needed and to whom it must be send, and through what kind of channel.

With: A decentralized authorization system

How: Depending on the system

Case 5: Revocation of Certificates

‘Who: Administrator

What and Why: Sometimes certificates become unvalid during their life-
time. In some systems, the certificates can be revocated. This task belongs
to the administrator of the system.

With: A decentralized authorization system

How: Depending on the system

Case 6: Checking Validity of a Set of Certificates

Who: Administrator, Developer

What and Why: Checking that a set of certificates is valid has two parts.
First, each certificate of the set must be valid. The digital signature of
the certificate must be correct and done by the issuer of the certificate. In
addition, the certificates have often other validity conditions such as time

5.3. THE TEST PROBLEMS 97

limit or that the certificate is not revoked (case 5). The issuer of the certificate
defines how the validity of the certificate must be checked. Usually, the
validity is asked from the issuer itself, but the issuer can also delegate the
validation of certificates to others.

Secondly, the set of certificates must form complete proof, i.e. certificate
chain from the owner of the resource to the requesting entity. Certificate
chain is presented in section 2.3.1.

With: A decentralized authorization system

How: Depending on the system

Case 7: Privacy of Users

Who: User, Administrator

What and Why: Authorization systems support privacy of the user because
the user identity is not essential for the authorization. But still, the identity
of the user can be revealed if information gathered from several credenentials
are combined. In order to protect privacy, only credentails necessary for
gaining authority should be used.

With: A decentralized authorization system

How: Depending on the system

Case 8:Distinguishing Trusted Channels from Untrusted Channels

‘Who: Administrator

What and Why: In addition to signed certificates, systems may use in-
ternal certificate-like structures to denote policies. Usually these unsigned
policies are handled internally, but if they are send to some other fully trusted
entity, the transmission path must be trusted and secure. The task of the
administrator is to define when to use untrusted or trusted channel.

With: A decentralized authorization system

How: Depending on the system

In the next chapter, these test cases are completed for each compared de-
centralized authorization system and used as basis for heuristic evaluation of
the systems.

98

CHAPTER 5. COMPARISON METHODOLOGY

Chapter 6

Comparison and Evaluation

In this chapter, different decentralized authorization approaches presented
in chapter 4, namely PolicyMaker, KeyNote, SDSI/SPKI, and TeSSA, are
compared according to the comparison methodology introduced in chapter 5.
The main objective is to find out which of the systems is the easiest to
understand and use in different kinds of situations without making errors.

6.1 Tests

Section 5.3.1 introduces eight test cases which presents common operations
of different user groups of decentralized authorization systems. This section
search for usability problems in the four systems based on those test cases.
The main purpose is to evaluate if the user can know what she is doing (e.g.
what knowledge is required from the user), can she find out how to proceed
in order to perform actions, and can she accidentally make a fatal error.
Each test case is discussed separately, followed by a summary that gives the
differences of the decentralized authorization systems.

6.1.1 Case 1: Authorization of Entities

The main purpose of decentralized authorization systems is to authorize en-
tities to perform actions. The authorizations can also be further delegated.
This section describes how entities are authorized in different systems and
what usability problems there exist.

99

100 CHAPTER 6. COMPARISON AND EVALUATION

PolicyMaker

How

An administrator of a resource has received full or partial authorization from
the resource or from another administrator, e.g. trusted third party. Before
writing certificates, the administrator has somehow to be affirmed that the
entity is trustworthy to gain the authorization. As described in section 4.1.3,
PolicyMaker denotes authorization with certificates of form

Source ASSERTS AuthorityStruct WHERE Filter.

The administrator writes assertions of PolicyMaker with a text editor. She
fills in her public key as the source of authorization, the authority struc-
ture denoting who is authorized and the optional filter which restricts the
authority. Then she digitally signs the certificate with her private key.

The assertion can authorize a keyholder presented by a public key or more
complex conditional clause as in the example presented in the subsection 4.1.4
where “three keys from a group of keys” has the authorization. The more
complex authority structures are written with either AWKWARD program-
ming language or regexp.

The filter of a certificate has two parts: the filter name and a program
presented with AWKWARD or regexp. The administrator has to choose a
suitable filter name for the condition. Possibilities are annotator, predicate,
commentary, and application. When someone wants to perform an action,
the application sends a query that contains proofs, i.e. certificates, and policy
assertions of the application to the PolicyMaker compliance checker. Each
proof corresponds a filter name of a policy assertion and the proof presented
by the certificate has to be equal with the regexp or the AWKWARD program
of the corresponding policy.

Evaluation

PolicyMaker does not give instructions how the administrator can gain the
knowledge that an entity is trustworthy. Thus, the administrator has herself
to decide when she authorize the entity.

When the administrator is ensured that the entity can have an authoriza-
tion, creating a simple certificate for the entity is easy. Usually, the entity
is presented by her public key. The only problem in writing the simplest
certificate is that the administrator can by accident give authorization to a
wrong entity because the keys are hard to recognize. Keys are long sequences
of letters and digits, and every character is meaningful.

6.1. TESTS 101

The little more complex form of certificates gives authorization to a group of
public keys, e.g. at least three keys certified by a certain entity. This kind of
certificate has the same problem of identifying keys as the simplest assertion,
i.e. the key of that certain entity who has certified the other keys must be
correct. Other problem is the writing of the authority structure with either
an AWKWARD programming language or regexps. If the administrator is
unfamiliar with programming, she can make mistakes and give authorization,
for example, for a too small group of entities.

Writing a filter program for any assertion (certificates or policy assertion) is
harder because the program must be compatible with queries written possibly
by somebody else. Even using the same language for writing the policy
assertions and the certificates does not help because the administrators must
agree with others what the statements means.

PolicyMaker assertions are monotonous. This means that each assertion can
only extends rights given to an entity, and thus leaving a certificate out from
the proof of compliance does not give larger rights than giving all certificates.
The administrator must be careful when defining the rights in the certificate.
Otherwise, she can accidentally give excessively wide rights to the entity.

The delegation rights are not clearly separated in the certificates. When
the administrator creates a certificate, the delegation right must be written
together with the authority to the filter field of the certificate. PolicyMaker
does not define what kind of delegation is allowed, and only the application
knows what the filter means. The administrator may accidentally give right
to further delegation of the right to an entity.

KeyNote

How

Basically, KeyNote works similarly as PolicyMaker. An administrator can
issue assertions that denote authorization. KeyNote assertions have an au-
thorizer, a receiver of the authority called licensee, and conditions for the
authority. Of course, the assertions are signed by the authorizer.

The assertions can have local constants. For example, the administrator can
give aliases for public keys. These aliases can then be used in the assertion.
For example, the authorizer is usually a public key. This public key can have
alias that can be used instead of the public key in the certificate.

The licensee can be one principal or several principals with conditions. Con-
ditions can be “both of the principals A and B”, “some of the principals A

102 CHAPTER 6. COMPARISON AND EVALUATION

and B”, or “k of the following set of principals”. The licensees are expressed
with regexps and aliases can be used instead of the public keys.

Conditions are simple test - value pairs. Tests can compare strings or num-
bers. The value belongs to a set that defines possible responses of the policy.

Evaluation

Like PolicyMaker, KeyNote does not give instructions how the administrator
can be sure that licensees are trustworthy to get the authorization.

The administrator can give aliases for the keys used in an assertion which
makes the writing of the assertion easier because the it is not necessary to
write the keys several times. But if the administrator issue several certifi-
cates, she can accidentally try to use aliases of other assertions in the asser-
tion. Wrong entity may gain access because two keys have same nickname.
On the other hand, the aliases prevent from choosing wrong key.

KeyNote uses also common language for policies and certificates. Similarly
to PolicyMaker, the semantics of the application is not understood by the
compliance checker of KeyNote. Thus, the administrators must agree on
what the semantics used by an application means.

KeyNote certificates are also monotonous, and the administrator must be
careful that she do not issue to wide authorizations.

KeyNote certificates do not give clear separation if the right can be further
delegated or not. The delegation right is written in the condition field.

SDSI/SPKI

How

SPKI certificates are quite similar to the KeyNote assertions. The SPKI
certificate has issuer, subject, given right, and delegation fields. Of course,
the certificates are signed by the issuer.

The issuer of the certificate is the public key of the administrator or a hash
of the public key. The subject, which is the receiver of the authorization, can
also be a public key or a hash of a public key but it can also be a relative or
fully-qualified name, a certain group, or a hash of a piece of code.

SPKI certificates have a separate field for delegation. The administrator can
give delegation rights to the receiver of the certificate. She cannot restrict
the depth of the delegation, but she can restrict the given right.

The permission given by the certificate is defined with s-expression. Full

6.1. TESTS 103

rights are given, if the permission field contains a character “*”. The rights
can only be reduced from that.

Evaluation

SPKI does not define how the administrator can be certain that an autho-
rization can be given to an entity.

SPKI certificates usually uses keys or hash of keys as issuers and as receivers
of the rights. Thus, the administrator who issues the certificate can acciden-
tally give wrong key as the receiver of the right.

Someone has issued a certificate to the administrator and given her right to
further delegate the authority defined by the certificate. The administrator
can only delegate the right she has or she can restrict the right. She cannot
accidentally extend the right or the certificate chain become unvalid.

TeSSA

How
TeSSA uses SPKI certificates for trust management.

The difference between TeSSA and SPKI in trust management is that TeSSA
gives instructions how trust can be created [50, 51]. The trust can be formed
based on rumors from other parties, e.g. friends and colleagues that are
trustworthy. If someone else has already trusting to an entity, the entity is
more trusted than another one that is not trusted by anyone.

Evaluation

Same problems presented earlier with SPKI certificates be materialized also
with the TeSSA architecture with one exemption.

According to TeSSA, the administrator can collect information about trust-
worthiness of T'TPs from other administrators.

Summary of Usability Problems of Case 1

Summary of the usability problems of the test case 1 in the different decen-
tralized authorization systems is given in table 6.1.

104 CHAPTER 6. COMPARISON AND EVALUATION

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Gaining assurance of X X X -
trustworthiness not defined

Choosing the correct keys X - X X
Need programming skills X - - -
Agreement with other X X - -
what statements mean

Too much rights given X X - -
by accident

Confusion with local - X - -
names/aliases

Delegation right can X X - -
be given accidentally

Table 6.1: Summary of Usability Problems of Case 1

6.1.2 Case 2: Definition of Security Policy for a Node

Writing rules for protecting information, resources or services of a node is
probably the oldest form of security policy. Traditionally, the security policy
is implemented as an access control list, but the decentralized authorization
systems can also be used in defining security policies for nodes. The task
belongs to the administrator of the node. Let us assume that the adminis-
trator knows what a security policy is. She knows what she is doing when she
creates a security policy for the node: she is limiting access to the resources
of the node.

This subsection presents how defining the security policy for a node can
be done with different authorization systems, and discusses what kinds of
difficulties the users may have while completing the task.

PolicyMaker

How

PolicyMaker use same language for certificates and policies. This means that
like authorization of entities, the administrator writes policy assertions of
PolicyMaker with a text editor according to the same structure as certificates.
The only difference is that the source of policy assertion is marked with the
word “POLICY”, not a public key of the source. The policy assertions are
not digitally signed because they are used only internally.

6.1. TESTS 105

The policy assertion can also contains filters. When a query is evaluated
that it complies with the policy, the filter name refers to a proof given in
the query. The proof has to be equal with the regexp or the AWKWARD
program of the policy.

Evaluation

The administrator has two variables to use: the authority structure can
contain a public key or a structure presenting limitations for a group of
public keys i.e. the receiver of the authorization, and the policy assertion
can include filters, i.e. the restrictions for the authorization.

The security policy of an organization can be quite general. The administra-
tor must decide what kind of policy assertion describes the security policy of
the organization in the node. She has to identify information, resources and
services of the node that needs to be protected, and define security policy
assertions for the protection.

Same problems that arise in authorization of entities apply also to the writ-
ing of policy assertions because the certificates and the policy assertions of
PolicyMaker uses same syntax for authorizing entities.

Policy assertions are not signed. Afterwards, if integrity and reliability of a
system is compromised, there is no way to distinguish integral policy asser-
tions from falsified assertions.

Humans are often considered as the main security thread, and even trusted
personnel can make mistakes by accident or on purpose. Because all policies
are issued by the POLICY, there is no way to distinguish afterwards who has
issued the policy assertion, i.e. which administrator needs more education or
to be fired.

PolicyMaker does not offer possibility to make sure that a policy assertions
fulfill a part of the security policy. However, testing of individual policy
assertion is possible. The more difficult task is to make sure that a set of
policy assertions fully covers the security policy.

KeyNote

How

Similarly to PolicyMaker, KeyNote uses same language to denote policies and
certificates, and the word “POLICY” as the authorizer of a policy assertion.

In addition to policy assertions, the administrator of the node must define
what kinds of access rights can be given, e.g. no access, limited access, and

106 CHAPTER 6. COMPARISON AND EVALUATION

full access. This set of possible rights must be organized from the lowest to
the highest right.

Evaluation

KeyNote does not give instructions how a security policy of an organization
can be written to policy assertions. But because of the set of possible values,
the creation of policy assertions may be easier. These values can be derived
from the security policy and they may help forming the policy assertions with
KeyNote.

The set of possible compliance values must be ordered from the minimal
trust to the maximal trust value. If the possible compliance values derived
from the security policy varies much from their content, their ordering may
be difficult for the administrator.

Even through the policy assertions and compliance value set will help the
administrator to define the policy, the administrator may fail in defining the
resources that needs to be protected.

KeyNote inherits the liability problems from the PolicyMaker. The reserved
word POLICY does not tell the actual issuer of the policy assertion. Simi-
larly, because policy assertions are not signed in KeyNote, their integrity is
not guaranteed if the storage is compromised.

Because KeyNote uses same syntax for authorizing entities and defining se-
curity policies, the same problems than presented in subsection 6.1.1 arise in
writing of policy assertions.

SDSI/SPKI

How

The security policy of a node is defined as common SPKI certificates, i.e.
there is no difference between certificates presenting a security policy and
other certificates.

The resource, a node in this case, itself usually issues the first certificate of a
certificate chain. The issuer is marked with a reserved word “self”. However,
this certificate is signed by so-called “self key” of the resource. The certificate
usually gives all rights and right to further delegate to the administrator of
the resource.

Evaluation

The administrator issues SPKI certificates that describes the policy of the

6.1. TESTS 107

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Expressing the policy of X (x) X X
organization as certificates

Identifying resources X X X X
that needs protection

Defining possible compliance - X - -
values as ordered set

Integrity of policy X X - -
certificates unprotected

Liability of administrators X X - -
inseparable

Verifying that a set of X X X X
certificates corresponds

to a security policy

Table 6.2: Summary of Usability Problems of Case 2

node. SPKI does not define how the authorizations corresponds the rules of
the security policy and it does not help to identify the resources that have
to be protected.

TeSSA

How

TeSSA uses SPKI certificates to describe security policy for a node.

Evaluation

Usability problems in the TeSSA architecture are similar as when using SPKI
certificates.

Summary of Usability Problems of Case 2

Summary of the usability problems of authorizing nodes in the different de-
centralized authorization systems is given in table 6.2.

108 CHAPTER 6. COMPARISON AND EVALUATION

6.1.3 Case 3: Definition of Security Policy for a Piece
of Code

PolicyMaker

How

Defining a security policy for applications is the the original purpose of Pol-
icyMaker. Of course, the piece of code can be an application.

PolicyMaker works similarly when authorizating a piece of code as in autho-
rizating a node: the developer of the piece of code writes policy assertions
that describ the security policy of the piece of code or the program.

Evaluation

Authorization of a piece of code has also other usability problems than those
introduced in authorizing an entity and a node. The developer (or the ad-
ministrator) needs to know who can gain the right to use the program and
with what conditions, which nodes are trustworthy execution environments,
and finally, what kinds of rights the program needs in order to work correctly.

The developer of the program can define trustworthy third parties to point
out the trustworthy nodes. Creating this kind of policy assertion has similar
problems as presented in the previous cases, i.e. knowing the right keys,
knowing the trustworthy parties etc. Similarly, the usability problems of the
security policy that defines who has the right to execute the program are
given in the previous cases.

What makes the definition of security policy for a piece of code different from
defining other security policies is that the piece of code can “move” from node
to node and be executed in different kinds of environments. The developer of
the program knows what resources her program needs, but she cannot know
which node will offer these resources.

KeyNote

How

In Keynote, creating a security policy for a piece of code does not differ from
the creation of policy for a node.

Evaluation

Usability problems in defining KeyNote policy assertions for a piece of code
are similar to those presented in the cases one and two.

6.1. TESTS 109

KeyNote does not help of finding the resources which the piece of software
may need.

SDSI/SPKI

How

SPKI does not distinguish the creation of security policy from other delega-
tion of authorization. Thus, there is no difference to whom the certificate is
issued or for what purpose the certificate is created.

Evaluation

Because the issuing of certificates that defines the security policy of a piece
of code does not differ from issuing other certificates, the same usability
problems occurs.

Like PolicyMaker and KeyNote, SPKI does not help locating needed re-
sources. The administrator must find out which trusted nodes provides the
resources.

TeSSA

How

The original purpose of the TeSSA architecture is to provide trust man-
agement for a distributed agent system. The agent is a piece of code that
needs to trust the execution environment of a node and authorization to use
resources of the node.

Pasi Eronen et al. has extended the Jini architecture to use decentralized
trust management [33]. The Jini architecture provides decentralized location
service where the nodes can be registered. This helps to find out suitable
secure node for execution of the piece of code.

Evaluation

However, TeSSA itself does not provide solution for locating the nodes who
will provide the needed resources and can guarantee the access to those re-
sources.

110 CHAPTER 6. COMPARISON AND EVALUATION

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Location of needed resources X X X (x)

Table 6.3: Summary of Usability Problems of Case 3

Summary of Usability Problems of Case 3

Summary of the usability problems of authorizing a piece of code is given in
table 6.3. The main usability problem is the finding suitable nodes where
the piece of code can be executed. Probably, this is not even the task of a
decentralized trust management system.

6.1.4 Case 4: Handling of Certificates

Certificates can be stored in different party of a decentralized authorization
system. When someone want to perform an action, the certificates must be
collected and presented as a proof that the entity has authorization to do
what she wants to. In this section, I describe who is responsible of storing
the certificates and who collects them when the certificates are needed.

PolicyMaker

How

In PolicyMaker, the application collects all needed certificates on behalf of the
user from trusted third parties. After all, the application is the entity who has
protected resources in the PolicyMaker architecture. When the PolicyMaker
is used in wider context, the entity that has protected resources, e.g. a node,
will collect the certificates and sends them with the query to the compliance
checker of PolicyMaker.

In the PolicyMaker architecture, two types of credentials are added to a
query: the local security policy of the application and certificates issued to
the requesting entity.

First, the administrator of the application defines trusted third parties that
can provide certificates for end users. She creates certificates that delegates
the right to further delegate the access to the application to trusted third
parties. The administrator can limit the rights given to the TTPs. Creating
certificates are introduced in previous cases. These certificates are send to
the compliance checker with a query.

6.1. TESTS 111

The administrator has to configure the application to request from all trusted
third parties the certificates that may be suitable for a user who requested an
action. The T'TPs will send the certificates to the application that forwards
them with other certificates and policies to the compliance checker. The
compliance checker checks that the requested action and the given proofs, i.e.
certificates, complies with the policy. The compliance checker of PolicyMaker
can also give hints what kinds of certificates are needed in addition to the
given certificates before the request can be approved.

Before the certificates are sent to the compliance checker, the application has
to check that they are valid, i.e. the signatures are correct, validity time has
not exceeded etc. This is discussed later in this section.

Evaluation

The problems of creating certificates and creating policy assertions apply also
in this case.

The administrator of the application must somehow be sure to which third
parties it can trust to further delegate a right. She must create a kind of list
to define these TTPs which are used as repositories of credentials, i.e. she
must form policy assertions that defines TTPs and their authorities. The list
may not be complete because some TTPs can be trusted to collect the needed
certificates from the entities that they trusts. When a user sends a query for
using the application, the certificates are needed and the application must
fetch the certificates from the trusted third parties.

In addition, the administrator of the application must check that all the
certificates and policies are valid before she sends them to the PolicyMaker
compliance checker.

KeyNote

How

Similarly than PolicyMaker, the application or other protected resource will
collect the needed certificates and policies. KeyNote does not define that the
certificates are collected from trusted third parties

The main difference between PolicyMaker and KeyNote is that in KeyNote
the checking that the certificates are valid can be done either by the protected
resource, e.g. an application, or by the KeyNote compliance checker. Poli-
cyMaker requires the application to verify certificates, and the PolicyMaker
compliance checker only verifiest that the certificates proofs that requested

112 CHAPTER 6. COMPARISON AND EVALUATION

action is allowed. If the compliance checker is used to verify the certificates,
a cryptographic algorithm that is known to the KeyNote must be used.

Evaluation

If KeyNote compliance checker is used to verify the certificates, the adminis-
trator must be sure that the certificates use known cryptographic algorithms.
Otherwise, the KeyNote will assume that the certificate is part of the security
policy, i.e. it is an unsigned policy assertion.

SDSI/SPKI

How

In SPKI, the requesting entity will provide all the needed certificates when
she makes a query to use a resource. The owner of the resource then checks if
the certificates form a valid chain that gives authorization to use the system
to the requesting entity.

Evaluation

If an entity that needs authorization to use a system has small memory
capacity, it cannot store many certificates. Thus, when the administrator
creates certificates for such entity, the certificate chain must be as short as
possible. This limits the possibilities to use certificates created by trusted
third parties. It is possible to use reduction certificate that compress a chain
of certificates to one certificates, but these certificate reduction certificates
may not be approved by the policy of the resource.

TeSSA

How

In the implementation of the TeSSA architecture, SPKI certificates are stored
either in a local repository or in the DNS system. The entity who want to
use a resource does not need to provide all the credentials. The owner of
the resource can deduce from the given certificates where to find the other
needed certificates.

Evaluation

The administrator of the protected resource must deduce if the certificate
chain needs to be completed by fetching additional certificates.

6.1. TESTS 113

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
TTPs must be listed X - - -

beforehand
Protected resource collects X X - X
the certificates
Requesting entity - - X -
collects the certificates
Protected resource checks X (x) X X
the validity of certificates

Table 6.4: Summary of Usability Problems of Case 4

Summary of Usability Problems of Case 4

Summary of the usability problems of the collecting certificates in the differ-
ent decentralized authorization systems is given in table 6.4. The entity that
collects the needed certificates may cause problems to the administrators
regardless what this entity is.

6.1.5 Case 5: Revocation of Certificates

A private key of an entity may be revealed to an outsider which makes misuse
of certificates issued to the entity possible. In some systems, the certificates
can be revoked by the issuer of the authorization. This section discusses
what usability problems there are in the revocation of certificates in different
systems.

PolicyMaker

How

PolicyMaker itself does not define revocation services [11] but revocation of
certificates is possible to organize. A certificate can contains a public key of a
certificate revocation service that reports which public keys are non-revoked.

The possibility to revocate a certificate must be written in the certificate
when it is created. Thus, the administrator who issues the certificate must
write more complex certificates: instead of a public key of the receiver of the
certificate, the certificate is issued to an authority structure that contains
also the public key of the used certificate revocation service.

When the certificate is used as proof of an authority, also another certificate

114 CHAPTER 6. COMPARISON AND EVALUATION

issued by the certificate revocation service must be added to the query. The
certificate of the revocation service denotes that the public key which is
authorized in the original certificate is non-revoked.

On the other hand, the administrator of the certificate revocation service
must have some policy for the certificate revocation. For example, who can
report that a key is unvalid and what kind of proof must be presented.

Evaluation

The administrator who issues the certificates must remember to add the
public key of the certificate revocation service if the possibility to revoke
certificates is required in the security policy of the service. That is, the
revocation possibility must be organized beforehand. If this is forgotten in
the creation of certificates, the certificates cannot be revoked.

The PolicyMaker certificates that allow revocation are more complex because
the authority structure of the certificate must contain an explanation about
the use of the certificate revocation service and this can only be done by
writing it with the AWKWARD programming language. This makes the
creation of certificates vulnerable to errors presented in section 6.1.1.

The administrator of the certificate revocation service must somehow be sure
that a certificate needs to be revoked. Otherwise, an attacker can ask for re-
vocation of valid certificates and block the usage of a service from authorized
users.

KeyNote

How

KeyNote does not define how the certificates can be revoked but it can be
used to create individual certificate revocation service.

Evaluation

The administrator must define the validity dates of a certificate very carefully
because KeyNote does not provide any certificate revocation service.

The administrator of a resource must define how the KeyNote certificates are
used when an individual certificate revocation service is created.

SDSI/SPKI

How

6.1. TESTS 115

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Revocation must be taken X X X X
care of beforehand

No revocation specified (x) X - -
Certificates that allow X - - -

revocation require

programming skills
Gaining assurance of X - X X
the need of revocation

Table 6.5: Summary of Usability Problems of Case 5

The validity field of a SPKI certificate can give location and a public key of an
online validation service. This information must be inserted to a certificate
on its creation.

SPKI does not define how the certificate revocation service may be sure that
a certificate really need to be revoked.

Evaluation

The administrator who creates the certificates must take care of certificate
revocation beforehand by defining a location of certificate revocation service
and a public key that must be used to sign the certificate revocation list.

TeSSA

How

TeSSA uses SPKI certificates and their certificate revocation system.

Evaluation

The problems are same as in the use of SPKI certificates.

Summary of Usability Problems of Case 5

Summary of the usability problems of the revocation in the different decen-
tralized authorization systems is given in table 6.5. All systems requires that
the revocation must be taken care when certificates are created because the
certificates themselves gives the location of the certificate revocation service.
The revocation itself is problematic, as is described in section 4.4.5.

116 CHAPTER 6. COMPARISON AND EVALUATION

6.1.6 Case 6: Checking Validity of a Set of Certificates

The checking of validity of the set of certificates that are presented as proof
of compliance has two phases. Depending on the used decentralized autho-
rization system, someone checks that each certificate is valid, and maybe
someone else checks that the certificates form a valid proof of compliance.

PolicyMaker

How

In the PolicyMaker architecture, the application checks the validity of the
certificates. Then the application sends the set of valid certificates to the
compliance checker. The compliance checker reports if the certificate set
gives the proof that the request complies with a given policy.

For checking validity of a single certificate, the application can asks from a
certificate revocation service if the certificate is still valid. The revocation
of PolicyMaker certificates is described above in the section 6.1.5. Other
possibility to check the validity of certificates is to use “fresh” certificates, i.e.
get a new certificate that denotes that the right is still valid.

The compliance checker does not understand the content of the certificates.
The compliance checker will act as a blackboard where the proofs are added
one by one, and maybe several times. Because the compliance checker does
not understand the semantic used by the application, the administrator who
writes the certificates must be carefully.

Evaluation

The administrator may relay that the compliance checker will also check the
validity of each certificate, and leave this task undone. Forged certificates
may then give rights to an entity who does not have proper authorization.
The PolicyMaker compliance checker does not verify signatures and validity
of the certificates, that task belongs to the the administrator of the applica-
tion.

The administrator may relay that the compliance checker understand the
semantics of the certificates. For this reason, she may have been careless
when she issues the certificates. Then these carelessly created certificates
ends up to give, for example, wider rights to a user.

6.1. TESTS 117

KeyNote

How

In KeyNote, either the application or the compliance checker checks the
validity of single certificates. If the compliance checker is used, it limits the
possibility to choose the signature algorithm.

KeyNote compliance checker will check if a set of certificates gives proofs
that the request comply with the policy of the application.

Basic KeyNote does not use certificate revocation, and thus checking that
the certificate validity dates are correct is enough in addition to the checking
of the signature.

The administrator must separately define the set of possibly results for
the query evaluation. For example, the results can be “no_access”, “lim-
ited access”, and “full access”. In addition to the defining these result val-
ues, the administrator must also put them in order from lesser rights to more
rights.

Evaluation

The administrator must decide who checks the validity of the certificates. She
must take care that both the validity of the individual certificate is checked
and the authority that the set of certificates provide is checked.

If the administrator decides to send all certificates to the compliance checker
of KeyNote, she must be sure that KeyNote knows the used cryptographic
algorithms. Those certificates that are signed with unknown cryptographic
algorithms are considered to be policy assertions, i.e. they are always true
and part of the policy.

The administrator gives a set of possible compliance values. This set must be
complete and give all possible values, otherwise the checking may fail: even
when the set of certificates form a proof of compliance the result of the query
is minimal trust. This set will be sent together with query and certificates to
the KeyNote compliance checker. The result of the query is one of the values
from this set.

When certificates are collected up, there might be certificates that does not
proof authorization suitable for this query. These certificates does not need
to be checked, because they do not influence to the query. Nevertheless, the
administrator must be sure which certificates are essential for the query.

118 CHAPTER 6. COMPARISON AND EVALUATION

SDSI/SPKI

How

SPKI certificate chain validation is done by the protected resource. The
protected resource checks that each certificate of the chain is valid, i.e. the
signatures are valid, the validity time is not exceeded, and the certificate is
not revoked. The chain is valid if the issuers and subjects of the certificates
form a complete chain from the owner of the resource to the requester. The
authorization that the chain of certificates issues is the intersection of all
authorization fields of the certificates.

Evaluation

SPKI gives good instructions when a chain of certificates is valid and what
kind of authorization the chain of certificates gives.

The validator must remember to check all certificates of the chain. It is not
enough th check that the first certificate is issued by the source of authoriza-
tion and the last certificate is issued to the requester. All certificates must
be valid.

TeSSA

TeSSA uses SPKI certificates for trust management, and thus the usability
problems are the same as in the case of SPKI.

Summary of Usability Problems of Case 6

Summary of the usability problems of the validity checking in the different
decentralized authorization systems is given in table 6.6. The largest usability
problem is poorly created authorization fields of certificates that may mislead
the administrator to give an access to a resource to an unauthorized user.

6.1.7 Case 7: Privacy of Users

Usually, authorization systems do not use names to identify users of the
systems. They authorize a public key, and the holder of the corresponding
private key can proof that she has the rights. But, when a collection of
certificates is gathered up for proving an authorization, the true identity of
the keyholder may be revealed.

6.1. TESTS 119

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Two place for checking X (x) - -
the validity

Validity checker X X - -

does not understand
the content of certificates

Possible results defined - X - -
in advance
Authorization is X X X X

poorly defined in
the certificates

All certificates needs - - X X
to be checked

Table 6.6: Summary of Usability Problems of Case 6

PolicyMaker

How

PolicyMaker uses public keys to present users when an authorization is
granted to them. But otherwise the use of identifiers is not limited. For
example, the filter and authority structures can bind identifiers to the public
keys. Thus, it is up to the application what kind of privacy protection is
used in PolicyMaker.

When a user requests an action, the application collects certificates from
various trusted third parties. Various unnecessary certificates may also end
up to the application.

Evaluation

An administrator can issue certificate that reveals the identity (e.g. the
name) of an entity for her own comfort because the names are easier to handle
for humans. When an application collects information of the authorizations
granted for the public key, it may also get the certificate binding the key to
the name.

When an application seeks for the proof of compliance, it asks from TTPs
certificates. Some TTP may give a certificate, that does not have anything to
do with the requested action. The unnecessary certificates may reveal some
additional information that may help the administrator to identify the user.
This is not the purpose of an authorization system.

120 CHAPTER 6. COMPARISON AND EVALUATION

KeyNote

How

In Keynote, local constants can be used instead of complicated public keys
to make certificate more readable for human users.

In KeyNote, the validator of individual certificate may be either the admin-
istrator or the compliance checker.

Evaluation

The administrator can use abstract names as nicknames for the public keys.
For example, naming the entities by alphabetics does not reveal their identity
but still help avoiding the use of incorrect keys. But if the administrator use
real names as key nicknames, the true identity may be revealed.

If the compliance checker validates the certificates, it does not understand the
content of the certificates, i.e. unnecessary information is unused. But if the
administrator of an application verifies the certificates, she may understand
also the authorization given in the unnecessary certitifates, and the identity
of the keyholder may be revealed.

SDSI/SPKI

How
One objective of SPKI certificates is to protect the privacy.

Nevertheless, SPKI defines also name certificates. But the names of the
certificates can be local names like “my mother” which do not actually reveal
the identity of the entity.

Evaluation

Similarly to the KeyNote, the administrator must think about naming when
the certificates are created. If she gives real names for a certificates, the
identity may be revealed.

The requester will provide all necessary certificates in order to perform an
action. Thus she herself is responsible if unnecessary certificates will be given
to an administrator that checks the certificates.

TeSSA

How

6.1. TESTS 121

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Privacy protection X X X X
depends on application

Privacy protection X X X X
depends on issued

certificates

Name of an entity may - X (x) (x)
be revealed accidentally

Additional certificates X X - X
may reveal identity

Table 6.7: Summary of Usability Problems of Case 7

TeSSA uses SPKI certificates to express authorization. The certificates are
stored in DNS service of both the issuer and the subject.

Evaluation

TeSSA protect privacy in two ways. It uses SPKI certificates to express
authorization. Of course, the administrator who has issued the certificates
can issue also name SPKI certificates.

The resource who wants to check that the user has access rights fetch the
certificates from the DNS servers. It will got the first certificate from the user.
Because the certificates form a chain that can also be followed from one DNS
server to other, the resource will not get so many additional certificates.
Still, it can get those certificates of the user that are stored in the same DNS
servers than the needed certficates.

Summary of Usability Problems of Case 7

In principle, all the decentralized authorization systems protects the privacy
of the authorized entity. The authorization is issued to a public key instead of
a real life identifier of the entity. In practise, the privacy protection depends
on the use of certificates.

Summary of the usability problems of privacy in the different decentralized
authorization systems is given in table 6.7.

122 CHAPTER 6. COMPARISON AND EVALUATION

6.1.8 Case 8: Distinguishing Trusted Channels from
Untrusted Channels

Decentralized systems consists of nodes connected through an unreliable net-
work. Still, sometimes unsigned policies are used to denote authorizations.
The administrators of the system must configure trusted channels between
entities that use these unsigned policies.

PolicyMaker

How

PolicyMaker uses a compliance checker to check that a query complies with
the security policy of an application. The compliance checker can be a part
of the application but it can also be a separate entity in a different node.
Because policy assertions of PolicyMaker are not signed, they need trusted
channel when they are sent as part of a query from the application to the
compliance checker that is located in the different node.

The administrator of the application must configure the system to send all
unsigned certificates, i.e. policy assertions, through the trusted channel if
the system uses external compliance checker.

Evaluation

The administrator must define what kind of protection is needed for the
trusted channel. The definition can be derived from the upper layer security
policy but the task is not trivial. PolicyMaker do not define how this can be
done.

The setting up a trusted channel according to the requirements may also
cause difficulties. Some external system must be used because PolicyMaker
does not give support for this task.

KeyNote

How

Like PolicyMaker, KeyNote policy assertions are not signed. The entity that
owns a resource, e.g. an application or a node, will deliver her own security
policy to the compliance checker of KeyNote through a trusted channel.

The administrator of the system must create the trusted channel for the
policy assertions. KeyNote does not define how the trusted channel is formed.

6.1. TESTS 123

Usability problem PolicyMaker | KeyNote | SPKI | TeSSA
Requires trusted channel X X - -
because of integrity

Agreement about the X X (x) -
used protection undefined

Need external systems X X X -
for the trusted channel

Table 6.8: Summary of Usability Problems of Case 8

Evaluation

KeyNote must use external system for creating trusted channel between the
compliance checker and the entity that owns the protected resource.

SDSI/SPKI

How

All the SPKI certificates are signed which guarantee the integrity of the cer-
tificates. If the confidentiality of the certificates is desired, a secure channel
between entities must be created. However, the secure channel is different
from the trusted channel required by PolicyMaker and KeyNote, because the
integrity is already secured.

Evaluation

SPKI does not define how the external secure channel can be established.

TeSSA

How

The TeSSA architecture uses SPKI certificates which are always signed. In
addition to the integrity, parties of the TeSSA architecture can use IPsec to
secure the communication confidentiality.

Evaluation

Defining security association for IPsec is not a trivial task.

124 CHAPTER 6. COMPARISON AND EVALUATION

usability problems | PolicyMaker | KeyNote | SPKI | TeSSA
Case 1 6 5 2 1
Case 2 5 5 3 3
Case 3 1 1 1 0
Case 4 3 1 2 2
Case b 3 2 2 2
Case 6 3 3 2 2
Case 7 3 4 2 3
Case 8 3 3 1 0
Summary 27 24 15 13

Table 6.9: Number of found usability problems

Summary of Usability Problems of Case 8

Summary of the usability problems of the use of trusted channels in the
different decentralized authorization systems is given in table 6.8.

6.2 Results of the Comparison

The decentralized trust management systems gives basically two different
approaches to manage trust. PolicyMaker and KeyNote uses external com-
pliance checker for validating given proofs, and SDSI/SPKI and the TeSSA
architecture based on SPKI are authorization public key infrastructures.

Most important security tasks in a decentralized trust management are the
issuing of certificates that denotes trust and checking that these certificates
are valid and gives a requested right. Based on my analysis, the PKI-like
approach is more usable than PolicyMaker approach for the administrators
of the system. Table 6.9 presents how many usability problems was found in
the analysis presented in this thesis.

In SDSI/SPKI, all trust is described similarly by signed certificates. The
structure of the SPKI certificate clearly distinguishes the rights that can
be delegated to others from the non-delegable rights. It is also easier to
understand that the administrator can restrict the (delegable) right given to
her by someone else than the concept where she can only give more rights
than she has got.

Because the SDSI/SPKI certificates are always signed, they can be delivered
from one entity to other entity of the decentralized system through untrusted

6.3. EXPERIENCES 125

network. For example, a software agent does not need secure storage for her
policy certificates because it can use external storage. If the policy certificates
are unsigned, they must be stored in a secure system which itself needs
carefully maintenance.

Even than an external common compliance checker may be multipurpose, it
may cause more work to the administrator of the system. The creation of
certificates that are evaluated without understanding the semantics of the
certificates is hard. If the compliance checker does not check all the validity,
i.e. the validity of single certificates and the validity of a set of certificates,
the administrator can accidentally forgot to do her task, i.e. to validate the
single certificates.

Nevertheless, the administrators and the developers need to understand well
the security technology where the system is based on in order to create trust-
worthy system.

6.3 Experiences

The security functions of a decentralized systems are not the primary goals
of the user of the system but secondary goals. There is no suitable method
for easily to test the secondary usability functions such as usability of secu-
rity [83].

In this thesis, I has used heuristic evaluation as basis of the comparison.
The results are not entirely reliable and many usability problems may have
stayed unrevealed. Heuristic evaluation will give good results if about five
evaluators check the system.

Common Criteria suites well for identifying parts of a security system even
though the CC is not used otherwise. No essential parts of the system can
be forgotten, and thus all parts of little different systems are evaluated from
the same starting point.

126 CHAPTER 6. COMPARISON AND EVALUATION

Chapter 7

Conclusions

Currently used centralized, identification based public key infrastructures
has not conquered the world as has been expected. They does not scale well
and they require unnecessary functions such as identification of users of the
system. These systems can be replaced with decentralized trust management
systems.

In decentralized trust management system, each entity can decide to who it
trust and in what way. The entities can also states their trusts to others. The
trust is not based on the identity of other party. In the end, the identity is
unnecessary information. Only necessary information is that the entity who
wants to perform an action has authorization to do so based on the given
proofs.

The purpose of this thesis was to find out which of the decentralized trust
management system supports best the users of the system by providing usable
concepts.

Based on my analysis, SDSI/SPKI public key infrastructure with authoriza-
tion certificates is the most usable system. It has common basis with the
currently used identity certificate PKIs, and errors are not so likely to be
done accidentally with SPKI.

However, my analysis has shown that the current decentralized authorization
systems have many usability problems that must be solved before the systems
are usable for a common user who does not understand well the underlying
security technology. The concepts behind the system are complex which
makes misunderstandings and errors likely to occur even among experienced
users.

127

128 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model.
In Proceedings of 1997 New Security Praradigms Workshop, pages 48 —
60. ACM Press, 1998.

[2] Anne Adams and Martina Sasse. Users are not the enemy. Communi-
cations of the ACM, 42(12):40-46, December 1999.

[3] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The
AWK Programming Language. Addison-Wesley, Reading, 1988.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers - Princi-
ples, Techniques, and Tools. Addison-Wesely, 1986.

[5] Edward G. Amoroso. Fundamentals fo Computer Security Technology.
Prentice Hall, 1994.

[6] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and
Ann Wollrath. The Jini Specification. Addison-Wesley, June 1999.

[7] Tuomas Aura. Comparison of graph-search algorithms for authorization
verification in delegation networks. In Proc. 2nd Nordic Workshop on
Secure Computer Systems NORDSEC’97, Espoo, Finland, November
1997.

[8] Matt Blaze, Joan Feigenbaum, John loannidis, and A. Keromytis. The
keynote trust-management system version 2. RFC 2704, IETF, Septem-
ber 1999.

[9] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D.
Keromytis. Secure Internet Programming: Security Issues for Mobile
and Distributed Objects, chapter The Role of Trust Management in Dis-
tributed System Security. Springer-Verlag, 1999.

129

130 BIBLIOGRAPHY

[10] Matt Blaze, Joan Feigenbaum, and Angelis D. Keromytis. Keynote:
Trust management for public-key infrastructures. In Cambridge 1998
Security Protocols International Workshop, England 1998, 1998.

[11] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust man-
agement. In IEEE Conference on Security and Privacy, Oakland, CA,
May 1996, May 1996.

[12] Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance check-
ing in the policymaker trust management system. In 2nd Finan-
cial Cryptography Conference, Anguila 1998, pages 251-265. Springer-
Verlag, 1998.

[13] Matt Blaze, John Ioannidis, and Angelos Keromytis. Compliance check-
ing and ipsec policy management. Internet draft, IETF, March 2000.
expired.

[14] Matt Blaze, John Ioannidis, and Angelos Keromytis. Trust management
for ipsec. In Proceedings of 2001 Symposium on Network and Distributed
System Security (NDSS), 2001.

[15] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Trust manage-
ment and network layer security protocols. In 1999 Cambridge Protocols
Workshop, April 1999.

[16] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Offline micro-
payments without trusted hardware. In Financial Cryptography, Febru-
ary 2001.

[17] Common Criteria Evaluation Board. Common criteria for information
technology security evaluation, version 2.1, September 2000.

[18] Scott O. Bradner. The internet standards process — revision 3. RFC
2026, IETF, October 1996.

[19] Marc Branchaud. A survey of public-key infrastructures. Master’s thesis,
McGill University, Montreal, March 1997.

[20] Finnish Population Register Centre. Electronic identification. WWW-
page, http://www.sahkoinenhenkilokortti.fi/, 2002. Referred 04-08-
2002.

[21] Finnish Population Register Centre. Name service (nimipalvelu).
WWW-page: http://192.49.222.187 /nimipalvelu/defaul.asp, 2002. In
Finnish, Referred 04-08-2002.

BIBLIOGRAPHY 131

[22] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexan-
der Morcos, and Ronald L. Rivest. Certificate chain discovery in
spki/sdsi, December 2001. draft!!

[23] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, pages 644-654, November
1976.

[24] Donald Eastlake and Olafur Gudmundsson. Storing certificates in the
domain name system (dns). RFC 2538, IETF, March 1999.

[25] Laura Lehtola (ed.). Tessa - telecommunications software security archi-
tecture. WWW page, URL:http://www.tml.hut.fi/Research/TeSSA/,
2000.

|26] Marcin Dobrucki (ed.). Internet protocol security at the
telecommunications and multimedia laboratory. WWW page,
URL:http://www.tmlhut.fi/Tutkimus/IPSEC/, 1997.

[27] Carl Ellison. Spki requirements. RFC 2692, IETF, September 1999.

|28] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas,
and Tatu Ylonen. Simple public key certificate. Internet-draft, expired,
IETF, July 1999.

[29] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas,
and Tatu Ylonen. Spki certificate theory. RFC 2693, IETF, September
1999.

[30] Carl Ellison and Bruce Schneier. Ten risks of pki: What you're not
being told about public key infrastructure. Computer Security Journal,
XVI(1), 2000.

[31] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. Spki examples. Internet-draft, expired,
IETF, March 1998.

[32] Pasi Eronen. Security in the jini networking technology: a decentral-
ized trust management appriach. Master’s thesis, Helsinki University of
Technology, March 2001.

|33] Pasi Eronen, Johannes Lehtinen, Jukka Zitting, and Pekka Nikander.
Extending jini with decentralized trust management. In OpenArch 2000.
IEEE Communications Society, 2000.

132 BIBLIOGRAPHY

[34] Stephen Farrell and Russell Housley. An internet attribute certificate
profile for authorization. RFC 3182, IETF, April 2002.

[35] Joan Feigenbaum. Overview of the at&t labs trust-management project.
Technical Report 98.10.1, AT&T Labs - Research, 1998.

[36] Joan Feigenbaum. Towards an infrastructure for authorization, posi-
tion paper. In 1998 USENIX Ecommerce Conference - Invited Talks
Supplement, pages 15-19, 1998.

[37] Joan Feigenbaum and Peter Lee. Trust management and proof-carrying
code in secure mobile-code applications, a position paper. In the DARPA
Workshop on Foundations for Secure Mobile Code, pages 48-55, March
1997.

[38] Matthew Fredette. SDSI 2.0, The SDSI 2.0 Library and Tools, 0.1
edition, February 1998.

[39] Thomas C. Greene. Ssl defeated in ie and konqueror. Web magazine:
The Register, 12 August 2002. referred 12.8.2002.

[40] Object Management Group. The common object request broker: Archi-
tecture and specification. Technical report, Object Management Group,
July 1998.

[41] JoAnn T. Hackos and Janice C. Redish. User and Task Analysis for
Interface Design. John Wiley & Sons, 1998.

[42] Niklas Hallgvist and Angelos D. Keromytis. Implementing internet key
exchange (ike). In FREENIX Track 2000 USENIX Annual Technical
Conference, pages 201-214. USENIX, June 2000.

[43] Dan Harkins and Dave Carrel. The internet key exchange (ike). RFC
9409, IETF, November 1998.

[44] Tero Hasu. Storage and retrieval of spki certificates using the dns. Mas-
ter’s thesis, Helsinki University of Technology, April 1999.

[45] Austin Hill and Gus Hosein. The privacy risks of public key infrastruc-
tures. In Data Protection Commissioner’s conference in Hong Kong,
September 13, 1999, September 1999.

|46] Deborah Hix and Robert S. Schulman. Human-computer interface de-

velopment tools: A methodology for their evaluation. Communications
of the ACM, 34(3):74-87, March 1991.

BIBLIOGRAPHY 133

[47] Telecommunication Standardization Sector International Telecommuni-
cation Union. X.509 series x: Data networks and open system com-
munications, directory, information technology - open systems intercon-
nection - the directory: Authentication framework. Technical report,
International Telecommunication Union, Telecommunication Standard-
ization Sector, August 1997.

[48] Hugh Johnson. Suuri Viinikirja. Tammi, 4 edition, 1995. English
original: The World Atlas of Wine.

[49] Audun Jgsang. The right type of trust for distributed systems. In New
Security Paradigms 96 Workshop, 1996.

[50] Kristiina Karvonen. Creating trust. In The Fourth Nordic Workshop on
Secure IT Systems (Nordsec’99), 1999, Kista, Sweden, November 1999.

[51] Kristiina Karvonen. Enhancing trust online. In PhDIT’99: FEthics
i Information Technology Design. Second International Workshop on
Philosophy of Design and Information Technology, 1999, Saint-Ferréol,
Toulouse, France, December 1999.

[52] Stephen Kent and Randall Atkinsin. Security architecture for the inter-
net protocol. RFC 2401, IETF, November 1998.

[63] Stephen Kent and Randall Atkinson. Ip authentication header. RFC
2402, TETF, November 1998.

|54] Stephen Kent and Randall Atkinson. Ip encapsulating security payload
(esp). RFC 2406, IETF, November 1998.

|55] Loren Kohnfelder. Towards a practical public key cryptosystem. Bach-
elor thesis, MIT, 1978.

[56] Tuomo Lampinen. Using spki certificates for authorization in corba
based distributed object-oriented systems. In The Fourth Nordic Work-
shop on Secure IT Systems (Nordsec’99), 1999, Kista, Sweden, Novem-
ber 1999.

[57] Tuomo Lampinen. Using spki certificates for authorization in corba
based distributed object-oriented systems. Master’s thesis, Helsinki Uni-
versity of Technology, March 2000.

|58| Iari Lehti and Pekka Nikander. Certifying trust. In Theory and Practic
in Public Key Cryptography (PKC’98), February 1998.

134

[59]

[60]

[61]

[62]

|63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

71]

BIBLIOGRAPHY

Sanna Liimatainen and Teemupekka Virtanen. Distributed learning and
management system for university courses. In Proceedings of IFIP World
Computer Congress 2002, August 2002. Will be published, short paper.

Douglas Maughan, Mark Schertler, Mark Schneider, and Jeff Turner.
Internet security association and key management protocol (isakmp).
RFC 2408, IETF, November 1998.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CPC Press, 1997.

P. V. Mockapetris. Domain names — concepts and facilities. RFC 1034,
IETF, Nobember 1987.

Rolf Molch and Jakob Nielsen. Improving a human-computer dialogue.
Communications of the ACM, 33(3):338 — 348, March 1990.

Barry Clifford Neuman. Scale in distributed systems. In Readings in
Distributed Computing Systems. IEEE Computer Society Press, 1994.

Jacob Nielsen. Finding usability problems through heuristic evaluation.
In Proceedings of ACM CHI’92 Conference, May 1992.

Jacob Nielsen. Usability Engineering. AP Professional, 1993.

Pekka Nikander. An Architecture for Authorization and Delegation in
Distributed Object-Oriented Agent Systems. PhD thesis, Helsinki Uni-
versity of Technology, 1999.

Pekka Nikander and Jonna Partanen. Distributed policy management
for java 1.2. In Network and Distributed System Security Symposium,
1999, San Diego, USA, February 1999.

Pekka Nikander and Lea Viljanen. Storing and retrieving internet cer-
tificates. In Tgnnes Brekne Svein J. Knapskog, editor, NordSec’98, the
Third Nordic Workshop on Secure IT Systems, 1998, Trondheim, Nor-

way, November 1998.

Donald A. Norman. The Invisible Computer, Why good products can
fail, the personal computer is so complex, and information appliances
are the solution. The MIT Press, 1999.

International Organisation of Standards. Ergonomic requirements for
office work with visual display terminals (vdts) - part 11: Guidance on
usability. ISO Standard 9241-11, ISO, 1997.

BIBLIOGRAPHY 135

[72] Jonna Partanen. Using spki certificates for access control in java 1.2.
Master’s thesis, Helsinki University of Technology, August 1998.

[73] Jonna Partanen and Pekka Nikander. Adding spki certificates to jdk
1.2. In Tgnnes Brekne Svein J. Knapskog, editor, NordSec’98, the Third
Nordic Workshop on Secure IT Systems, 1998, Trondheim, Norway,
November 1998.

[74] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Hol-
land, and Tom Carey. Human-Computer Interaction. Addison-Wessley,
1994.

[75] Ronald Rivest. S-expressions. Internet draft, IETF, May 1997. Expired
November 4, 1997.

[76] Ronald L. Rivest. Can we eliminate revocation lists? In Proceedings of
Financial Cryptography 1998, 1998.

[77] Ronald L. Rivest and Butler Lampson. Sdsi - a simple distributed secu-
rity infrastructure, April 1996.

[78] Bruce Schneier. Applied Cryptography, Second edition. John Wiley &
Sons, Inc, 1996.

[79] Douglas R. Stinson. Cryptography Theory and Practice. CRC Press,
1995.

[80] Stephen Weeks. Understanding trust management systems. IEEE, 2001.

|81] Gregory B. White, Eric A. Fisch, and Udo W. Pooch. Computer System
and Network Security. CRC Press, 1996.

|82] Alma Whitten and J. D. Tygar. Usability of security: A case study.
Technical report, Carnegie Mellon School of Computer Science, Decem-
ber 1998.

|83] Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability
evaluation of pgp 5.0. In 8th USENIX Security Symposium, August
1999.

[84] Phil Zimmermann. The Official PGP Users Guide. MIT Press, 1995.

