
Ma 74 UDC 681.3

ACTA

POLYTECHNICA

SCANDINAVICA

MATHEMATICS AND COMPUTING IN ENGINEERING SERIES No. 74

Efficient Transitive Closure Computation in Large Digraphs

Esko Nuutila

Helsinki University of Technology

Laboratory of Information Processing Science

Otakaari 1, FIN-02150 Espoo, Finland

Dissertation for the degree of Doctor of Technology to be presented with due permission for

public examination and debate in Auditorium E at Helsinki University of Technology (Espoo,

Finland) on the 16th of June, 1995, at 12 o’clock noon.

HELSINKI 1995

2

Nuutila, E., Efficient Transitive Closure Computation in Large Digraphs. Acta Poly-

technica Scandinavica, Mathematics and Computing in Engineering Series No. 74, Helsinki

1995, 124 pages. Published by the Finnish Academy of Technology. ISBN 951-666-451-2. ISSN

1237-2404. UDC 681.3.

Keywords: algorithms, data structures, directed graphs, transitive closure, strong components,

Tarjan’s algorithm, intervals, chain decomposition, random graphs, simulation.

Abstract

This thesis examines new efficient transitive closure algorithms and representations. Two new

transitive closure algorithms that are based on detecting the strong components are presented.

Worst-case analysis and simulation experiments show that the new algorithms are more efficient

than the previous algorithms that are based on strong component detection. The algorithms

use Tarjan’s algorithm for strong component detection. Also, two improved versions of Tarjan’s

algorithm are presented.

Two new compact transitive closure representations are presented. The first representation

is based on intervals of consecutively numbered strong components. The representation gener-

alizes a previous method for compressing the transitive closure of an acyclic graph. The new

representation also handles cyclic graphs, and it can be computed more efficiently than the

previous representation. The second new representation generalizes the chain decomposition

representation for acyclic graphs to handle cyclic graphs.

Simulation experiments show that the interval representation is superior to the commonly

used adjacency list representation. The experiments indicate that the interval representation

requires typically at most a space linear to the number of vertices in the input graph. The

experiments also indicate that with the interval representation and the new algorithms, the

transitive closure can be computed typically in time linear to the size of the input graph.

3

Preface

This thesis is the result of my work in the data structure and algorithm research group of the

Laboratory of Information Processing Science at Helsinki University of Technology during the

years 1992 to 1994. The work was financed by the Academy of Finland, Helsinki Graduate

School in Computer Science and Engineering, Emil Aaltonen’s foundation, Leo and Regina

Wainstein’s foundation, and Jenny and Antti Wihuri’s foundation. The Center for Scientific

Computing provided computational resources for the simulation studies I did.

I thank professor Eljas Soisalon-Soininen, the head of our research group and my thesis

supervisor. Without him, this thesis would not have been possible. Before Eljas joined our

laboratory in 1991, I had more or less lost the hope of finding an interesting subject for a

doctoral thesis. Eljas encouraged me to enter the field of algorithm research. In our discussions

with Eljas, we soon found an interesting subject for my thesis. During my work, Eljas helped

me by giving me new ideas and discussing the ones that I got.

I thank Vesa Hirvisalo for his friendship and support during all my years at Helsinki Uni-

versity of Technology. Vesa’s studies on the disk behavior of my transitive closure algorithms

and our discussions have been useful for my work.

I thank Ilkka Karanta and Pertti Laininen for their advice on statistical methods.

I thank professors Reino Kurki-Suonio and Martti Tienari for their thesis review and their

valuable comments. I also thank Elizabeth Heap-Talvela for checking the English language of

my thesis.

I present special thanks to my colleagues in room U401. The nice atmosphere of U401 has

always cheered me up when the work has been difficult.

Finally, I thank my wife Raisa and my daughters Katariina and Emilia for their love,

support, and patience.

Otaniemi, May 1995

Esko Nuutila

4

Contents

1 Introduction 7

1.1 Nature and scope of the problem . 7

1.2 Goals . 9

1.3 Methodology . 9

1.4 Contributions . 10

1.5 Thesis outline . 11

2 Transitive closure problem 13

2.1 Graph theoretic preliminaries . 13

2.2 Defining the problem . 18

2.2.1 Related problems . 18

2.3 Previous work . 19

2.3.1 Warshall’s algorithm . 19

2.3.2 Algorithms based on detecting the strong components 20

2.3.3 Algorithms based on matrix multiplication 22

2.3.4 Transitive closure computation in databases 23

2.3.5 Representations and dynamic updates 30

3 Transitive closure computation using strong components 35

3.1 Strong component detection – Tarjan’s algorithm 35

3.1.1 Analysis . 37

3.1.2 Improvements . 42

3.2 Adapting Tarjan’s algorithm to transitive closure computation 48

3.3 New algorithm CR TC . 56

3.4 New algorithm STACK TC . 60

3.5 Comparisons with previous algorithms . 65

4 Representing successor sets 71

4.1 Properties of common set representations . 71

4.2 Interval representation . 72

4.3 Chain representation . 76

4.4 Avoiding multiple paths . 80

5 Simulations 83

5.1 Method . 83

5.1.1 Mathematical algorithm analysis . 83

6

5.1.2 Performance evaluation by simulation 84

5.1.3 Inputs . 87

5.1.4 Performance evaluation design . 90

5.2 The size of transitive closure representations 92

5.2.1 Experimental setting . 92

5.2.2 Results . 93

5.2.3 Discussion . 96

5.3 Successor set construction . 97

5.3.1 Experimental setting . 97

5.3.2 Results . 98

5.3.3 Discussion . 103

5.4 Execution time . 105

5.4.1 Experimental setting . 105

5.4.2 Results . 105

5.4.3 Discussion . 106

6 Conclusions 111

6.1 Summary of the main results . 111

6.2 Further research . 112

Bibliography . 114

Chapter 1

Introduction

Efficient computation of the transitive closure of a directed graph is required in many applica-

tions, for instance, in the reachability analysis of transition networks representing distributed

and parallel systems [20, 38] and in the construction of parsing automata in compiler con-

struction [12, 114]. Recently, efficient transitive closure computation has been recognized as a

significant subproblem in evaluating recursive database queries [24].

Several transitive closure algorithms have been presented during the last thirty years. De-

spite the increased efficiency of computers, the need for more efficient transitive closure al-

gorithms and representations remains. This is for two reasons. First, the size of the inputs

seems to grow in proportion to the growth of the memory capacity. Since the CPU speed

has grown at the same rate as the memory capacity, only linear algorithms have retained

their execution times on typical inputs. Traditional transitive closure algorithms, such as

[36, 40, 91, 101, 105, 128, 129], are not linear. Second, typical inputs and outputs in mod-

ern applications, e.g., in the area of databases, do not fit into the main memory. Traditional

transitive closure algorithms are designed for main memory operation.

In the study described here, we developed new efficient algorithms and representations

for transitive closure computation. We have published part of these results previously in

[92, 93, 94, 95, 96].

In the rest of the introduction, we discuss the nature and the scope of the problem, list the

goals of our study, explain some methodological choices we have made, list the main results

of the study, and present the thesis outline. We define the terminology used in the thesis and

review previous literature on transitive closure in Chapter 2.

1.1 Nature and scope of the problem

Several variants of the transitive closure problem exist. In the all-pairs transitive closure

problem, we should find all pairs of vertices in the input graph that are connected via non-

null paths. In the single source transitive closure problem, we should find all vertices that

are reachable from a given vertex via non-null paths. In the multi-source transitive closure

problem, we should compute the vertices that are reachable from a given set of vertices via

non-null paths.

We studied the all-pairs transitive closure problem. We assumed that the input graphs may

be large, i.e., they may require a considerable portion of the main memory of the computer

8

or they may even be too large to fit into the main memory and must reside in the secondary

memory.

The reader may wonder whether the problem is reasonable. Many input graphs of n vertices

and O(n) edges have a transitive closure of O(n2) pairs. If such input graphs do not fit into

the main memory, their transitive closures cannot fit into any reasonable amount of secondary

memory!

This is true if traditional set representations, such as bit matrices, bit vectors, or lists, are

used for representing the transitive closure. These representations do not take advantage of

the properties of directed graphs. To overcome this problem, we studied techniques for storing

the transitive closure more compactly than with traditional representations

An example of an application that requires the all-pairs transitive closure computation

of large graphs is the reachability analysis of transition networks representing distributed and

parallel systems [20, 38]. Another example is the view materialization of transitive relationships

in data and knowledge bases [4, 67]. The transitive closure of a relation can be precomputed

and stored to enable rapid evaluation of transitive queries.

A major difficulty in transitive closure computation is the avoidance of redundant opera-

tions. A directed graph may contain pairs of vertices that are connected via multiple paths.

Several vertices may have the same set of successor vertices. The graph in Figure 1.1 illustrates

these redundancies. Two paths lead from vertex a to vertex f and all its successors. Vertices

d, e, f , g, h, and i have the same successor set.

Most of the redundant operations in many algorithms are caused by the strong components

of the input graph [44], since all vertices in a strong component have the same successor set. For

example in Figure 1.1, vertices f , g, h, and i are in the same strong component. Some transitive

closure algorithms presented in the literature try to avoid these redundancies by detecting the

strong components [36, 40, 62, 64, 91, 101, 105]. Unfortunately, these algorithms do not

efficiently avoid all redundancies caused by strong components. Some algorithms generate a

partial successor set for each vertex of a component. Others scan the whole input graph more

than once. In computing the successor sets, the algorithms do unnecessary set operations. The

algorithm that we seek should avoid these deficiencies. Further, we should find a mechanism

to efficiently eliminate the redundant computations caused by multiple paths between pairs of

vertices.

b d

f

h

j

l

a

c e

g

i k

Figure 1.1: A directed graph with vertices having the same successor sets and with multiple
paths between vertices.

9

1.2 Goals

Our first goal was to find new algorithms and data representations for transitive closure compu-

tation that are more efficient than previous methods presented in the literature. We searched

for transitive closure algorithms that require a time linear to the size of the input graph in the

average case.

Our second goal was to find a representation for transitive closure that makes it possible

to store the transitive closure of a typical input graph in a reasonable amount of memory. To

reach the first goal, we needed a representation that requires at most a space linear to the size

of the input graph in the average case.

Our third goal was that the methods that we develop can be used efficiently both in a

main memory environment, i.e., when the input graph, the intermediate data structures and

the output fit into the main memory simultaneously, and in a secondary memory environment,

i.e., when the input graph does not fully fit into the main memory together with the output

and the intermediate data structures.

1.3 Methodology

In the design and analysis of algorithms and data structures, we mostly used the scientific

method that is discussed in text books like [10, 11, 107]. We discuss here one methodological

choice that we made, since it is somewhat unconventional.

We needed a way to study the average-case performance of algorithms. Unfortunately, the

mathematical average-case analysis is much more difficult than the mathematical worst-case

analysis. No general method for mathematical average-case analysis exists, and the result of

a successful average-case analysis is usually a rough asymptotic estimate. Only a couple of

previous articles on transitive closure computation contain an average-case analysis [18, 79,

106], and the approach used in these articles cannot be generalized to other transitive closure

algorithms.

Our choice, therefore, was to study the average-case performance by computer simulations.

A benefit of this choice was that we could use the same technique for all input graph models and

for all performance metrics. To introduce a new input graph model, we only had to implement

a new input graph generator; to introduce a new performance metric, we only had to insert

code for collecting the metric values. Another benefit was that the results were numerically

more accurate than a mathematical analysis could yield.

We confirmed the accuracy of the results by using sound statistical techniques in running the

simulations and in analyzing the simulation outputs. We used sequential simulation procedures

[83, 84, 99] that automatically yield the desired statistical confidence interval for the estimated

measure.

A weakness in simulations is that they do not give information on the asymptotic perfor-

mance. We only get information on how the algorithm behaves in that area of the space of

possible inputs that our simulations cover. Luckily, it is easy to show analytically the asymp-

totic average-case performance of the algorithms that we developed in parts of the space of

inputs, namely when the inputs are dense graphs.

Another weakness, which we gradually detected, is that simulation studies require much

10

more time than mathematical analysis. Implementing and testing the simulation programs

took much time, but designing and running the simulation experiments took even more time.

1.4 Contributions

The main results of this thesis are the following:

• Two efficient transitive closure algorithms, called cr tc and stack tc, presented in

section 3.3 and section 3.4, respectively. The new algorithms are based on detecting the

strong components of the input graphs using Tarjan’s algorithm [118]. Unlike previous

transitive closure algorithms that are based on strong component detection [36, 40, 64,

101, 105], the new algorithms scan the input graph exactly once without generating a

partial successor set for most vertices of the input graph. All previous algorithms either

scan the whole input graph more than once or generate a non-empty partial successor

set for most vertices of the input graph. The worst-case analysis and the simulations

that we present in Chapter 5 show that algorithm stack tc is more efficient than the

previous algorithms.

• Two improved versions of Tarjan’s algorithm [118] for strong component detection. The

improved versions eliminate unnecessary stack operations in Tarjan’s algorithm. These

algorithms are presented in section 3.1.2.

• A compact transitive closure representation that can be efficiently used with our new

transitive closure algorithms. The representation, presented in section 4.2, is based on

intervals of consecutively numbered strong components, and it generalizes the method

for compressing the transitive closure of an acyclic digraph presented by Agrawal et al.

[4]. Our representation can be used for all kinds of input graphs and it can be computed

during a single depth-first traversal of the graph, whereas the representation by Agrawal

et al. [4] requires several traversals of the graph.

• Another new representation that can be used with our new transitive closure algorithms.

The representation, presented in section 4.3, is based on the chain decomposition method

for acyclic digraphs by Simon [112]. This new representation can also be used for all

kinds of input graphs and it can be computed during a single depth-first traversal of the

graph, whereas the representation by Simon [112] requires several traversals of the graph.

According to our experiments (see section 5.2), this new representation is usually inferior

to the interval representation.

• Experimental results indicating that the interval representation usually requires at most

a space linear to the number of vertices of the input graph (see section 5.2). In a random

graph model G(n, p, l), the average size of the interval representation was always at

most linear to the number of vertices of the input graph. In a random graph model

G(n, p), the average size was at most linear to the number of vertices, except when the

expected outdegree of the graph was slightly greater than one. In this case, the size was

approximately 0.55n log n. Note that these results are not asymptotic, since simulation

11

studies only give information on the performance in the part of the space of inputs that

is covered in the simulation runs.

• Experimental results indicating that algorithm stack tc with the interval representation

usually requires a time linear to the size of the input graph (see sections 5.3 and 5.4).

Model G(n, p) was an exception: when the expected outdegree was slightly greater than

one, the execution time seemed to be quadratic to the number of vertices.

1.5 Thesis outline

In Chapter 2, we define the graph theoretic terminology that we use in the thesis, define the

problem and discuss its variations, and describe previous solutions to the problem.

In Chapter 3, we study transitive closure algorithms that are based on strong component

detection. We first describe Tarjan’s strong component algorithm [118] and present some

improvements to it. Then, starting from a simple adaptation of Tarjan’s algorithm, we develop

and analyze two new transitive closure algorithms stack tc and cr tc. In the end of the

chapter, we compare these algorithms to previous algorithms and show that the new algorithms

are more efficient.

In Chapter 4, we study methods for representing transitive closure efficiently. We describe

two new representations, one that is based on intervals of strong component numbers and

another that is based on the chain decomposition of the input graph. We study how the new

representations eliminate redundant computations caused by multiple paths between pairs of

vertices.

In Chapter 5, we present simulation experiments on the average-case performance of the

algorithms and representations developed in Chapters 3 and 4 and compare them to previous

methods presented in the literature.

In Chapter 6, we present the conclusions of the thesis.

12

Chapter 2

Transitive closure problem

In this chapter, we define the transitive closure problem and the terminology needed in our

study. We also describe briefly other problems that are related to the transitive closure problem.

After that, we review previous solutions to the problem.

2.1 Graph theoretic preliminaries

Since the definitions of graph theoretical concepts differ somewhat in the literature, we define

here the basic concepts. The definitions are adapted from references [10, 11, 89, 107, 114,

118]. A reader who is familiar with graph theory may skip this subsection and refer to these

definitions later if it is needed. We define some other concepts later in the text where their

relevance is more obvious.

Definition. A directed graph G is a pair (V,E) where V is a set of elements called vertices

and E ⊆ V × V is a set of ordered pairs called edges. The cardinality of V is denoted by n

and the cardinality of E by e. The size of graph G is n+ e. Given an edge (v, w), v is the tail

and w the head of the edge. A subgraph of a graph G = (V,E) is a graph S = (V ′, E ′) where

V ′ ⊆ V and E ′ ⊆ E.

In this thesis, we study only directed graphs. From here on, the word “graph” always refers

to a directed graph; we omit the qualifier “directed.” The graphs that we consider are finite.

Some presentations, e.g., [89], prohibit self-loop edges of form (v, v) in a graph. A con-

sequence is that the transitive closure of a cyclic graph is not a graph, since it always has

self-loops. Since the self-loops introduce no difficulties in our presentation, we allow them.

Definition. If (u, v) is an edge of G, we say that u is adjacent to v, and v is adjacent from u.

The number of vertices adjacent to v is the in-degree of v, denoted Indeg(v), and the number

of vertices adjacent from v is the out-degree of v, denoted Outdeg(v).

The in-degrees and out-degrees are connected by the following equation:∑
v∈V

Indeg(v) =
∑
v∈V

Outdeg(v) = e (2.1)

To process graphs, we have to select a representation for them. One common representation

is the adjacency matrix.

14

Definition. An adjacency matrix of a graph G = (V,E) is an n× n Boolean matrix A such

that A[i, j] is true iff (if and only if) G has an edge (vi, vj).

Checking the presence of an edge (vi, vj) takes O(1) time in an adjacency matrix. Enumer-

ating the vertices adjacent to or adjacent from a vertex v takes Θ(n) time regardless of the

in-degree or out-degree of v. The main disadvantage of the adjacency matrix is that it takes

Θ(n2) space even when the graph is sparse, i.e., it has much fewer than n2 edges. For instance,

if the adjacency matrix resides on a disk file, simply to read in the matrix takes Ω(n2) time.

A more suitable representation for sparse graphs is the adjacency list representation.

Definition. An adjacency list AdjFrom(v) of vertex v is a list that contains the vertices

adjacent from v. The adjacency list representation of a graph consists of the adjacency lists of

its vertices.

The adjacency list representation takes O(n+ e) space. Enumerating the vertices adjacent

from a vertex v takes O(Outdeg(v)) time, and enumerating all edges of the graph takes O(n+e)

time. Checking the presence of an edge (v, w) takes O(Outdeg(v)) time. Enumerating the

vertices adjacent to a vertex v may take O(n + e) time, since we must check the presence of

v in each adjacency list. If the vertices adjacent to a vertex v are often needed, we can use

another list AdjTo(v) for storing them. If the graph is dense, i.e., the number of edges is close

to n2, the adjacency matrix representation is more economical, since the constant costs for

storing an edge are higher in an adjacency list than in an adjacency matrix.

Example 2.1. In Figure 2.1, we present an example graph G = (V,E). The vertices are shown

as circles and the edges as arrows going from the tail of the edge to the head of the edge. Below

G we present its adjacency matrix and adjacency list representations.

v
5

v7v2

v4

v
6

v
8

v1

v
3

1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0

2 0 0 1 1 0 0 0 0

3 1 0 0 1 0 0 0 0

4 0 0 0 0 1 1 0 0

5 0 0 0 0 0 0 1 0

6 0 0 0 0 1 0 0 1

7 0 0 0 0 1 0 0 0

8 0 0 0 0 0 1 0 0

AdjFrom(v1) = {v2}
AdjFrom(v2) = {v3, v4}
AdjFrom(v3) = {v1, v4}
AdjFrom(v4) = {v5, v6}
AdjFrom(v5) = {v7}
AdjFrom(v6) = {v5, v8}
AdjFrom(v7) = {v5}
AdjFrom(v8) = {v6}

Figure 2.1: An example graph G = (V,E) and its representations.

15

Definition. A path from vertex v0 to vertex vk in G, denoted v0
∗→vk, is a sequence of edges

of the form (v0, v1), (v1, v2), . . . , (vk−1, vk), where each edge is in E. The length of a path is the

number of edges in it. A path from v to u is non-null, denoted v
+→u, if its length is positive.

A path is simple if all edges and vertices on the path, except possibly the first and the last

vertex, are distinct. A cycle is a non-null simple path that begins and ends at the same vertex.

A graph that contains no cycles is acyclic. If we do not explicitly say that a graph is acyclic,

we assume that it may contain cycles, i.e., it may be cyclic.

Example 2.2. In Figure 2.1, ((v1, v2), (v2, v3), (v3, v4)) is a simple path and path ((v1, v2),

(v2, v3), (v3, v1)) is a cycle. Path ((v4, v6), (v6, v8), (v8, v6), (v6, v5)) is not simple. Graph G of

Figure 2.1 is cyclic.

Definition. The transitive closure of graph G = (V,E) is a graph G+ = (V,E+) such that E+

contains an edge (v, w) iff G contains a non-null path v
+→w. The size of the transitive closure

is denoted by e+. The successor set of a vertex v is the set Succ(v) = {w | (v, w) ∈ E+}, i.e.,

the set of all vertices that can be reached from vertex v via non-null paths. The predecessor

set of a vertex v is the set Pred(v) = {u | (u, v) ∈ E+}, i.e., the set of all vertices that v

is reachable from via non-null paths. The vertices adjacent from vertex v are the immediate

successors of v and the vertices adjacent to v are the immediate predecessors of v.

Example 2.3. The transitive closure of graph G of Figure 2.1 is presented in Figure 2.2. As

we see, the successor set of vertices v1, v2, and v3 is V ; the successor set of vertices v4, v6, and

v8 is {v5, v6, v7, v8}; and the successor set of v5 and v7 is {v5, v7}. Similarly, several vertices

have a common predecessor set.

Definition. The reflexive transitive closure of graph G = (V,E) is a graph G∗ = (V,E∗) such

that E∗ contains an edge (v, w) iff G contains a (possibly null) path v
∗→w. The size of the

reflexive transitive closure is denoted by e∗.

v
3

v
5

v7v2

v4

v
6

v
8

v1

Figure 2.2: The transitive closure of graph G of Figure 2.1.

16

Example 2.4. The transitive closure of graph G, presented in Figure 2.2, can be changed to

the reflexive transitive closure of graph G by inserting the edge (v4, v4), since E∗ = E+ ∪ I
where I = {(v, v) | v ∈ V }, the identity relation.

Definition. Two vertices v and w in G are path equivalent iff G contains a path v
∗→w and a

path w
∗→v. Path equivalence divides V into maximal disjoint sets of path equivalent vertices.

These sets are called the strong components of G. The strong component containing vertex

v is denoted Comp(v). A strong component that contains only one vertex is called a trivial

component. The condensation graph G = (V ,E) induced by the strong components of graph G

is a graph such that V is the set of the strong components of G and E contains an edge (X, Y)

iff E contains an edge (u, v) such that Comp(u) = X and Comp(v) = Y .

Each vertex of a strong component has the same successor set; this can be used in designing

efficient transitive closure algorithms.

Example 2.5. The strong components of graph G are encircled in Figure 2.3(a). The conden-

sation graph G induced by the strong components of G is shown in Figure 2.3(b). Note that

the condensation graph is always acyclic if we remove the self-loop edges.

Definition. A topological order of the vertex set V of a graph G = (V,E) is any total order

≤ of V such that v ≤ w if edge (v, w) is in E. If v ≤ w, we say that v is topologically smaller

than w and w is topologically greater than v. The reverse relation of a topological order ≤ of

a vertex set V is called a reverse topological order of V .

v
5

v7v2

v4

v
6

v
8

v1

v
3

C1 C2

C3

C4

(a)

C2

C4

C1

C3

(b)

Figure 2.3: (a) The strong components of graph G of Figure 2.1 and (b) the condensation
graph induced by the strong components of G.

17

Each acyclic graph has at least one topological order. Since a condensation graph G is an

acyclic graph augmented possibly with self-loop edges, each condensation graph G also has a

topological order. No graph that has cycles of more than one vertex has a topological order.

Definition. The transitive reduction Gr = (V,Er) of a graph G = (V,E) is a graph that has

the same transitive closure as G, but has as few edges as possible. The size of the transitive

reduction is denoted by er. The transitive reduction is not necessarily unique.

Definition. A (directed rooted) tree T is an acyclic graph satisfying the following properties:

1. T has exactly one vertex r (called the root) that is the head of no edge.

2. Each vertex except the root is the head of exactly one edge.

3. From the root r to each vertex v exists a unique path r
∗→v.

If v is a vertex in a tree T , a subtree Tv is the maximal subgraph of T that has {v} ∪ Succ(v)

as its vertex set. A graph consisting of a collection of trees is a forest. A tree T (a forest F)

is a spanning tree (a spanning forest) of a graph G if T (F) is a subgraph of G and T (F)

contains all the vertices of G.

Example 2.6. Figure 2.4 shows one spanning tree of graph G of Figure 2.1.

The set of edges E ⊆ V × V is a binary relation. Conversely, every binary relation R in a

domain V can be seen as a directed graph with vertex set V and edge set R. We can formulate

the transitive closure also in the terms of binary relations.

Definition. The transitive closure of a binary relation E ⊆ V ×V is a relation E+ ⊆ V ×V :

E+ =
⋃
n>0E

n where E0 = I and En+1 = En ◦E = E ◦En. Here I is the identity relation and

◦ is the composition operator.

We use the graph theoretic formulation except when we describe previous algorithms that

are based on the relational formulation. In these relationally oriented algorithms, the graph is

usually represented as a table of pairs, and one or more indices are used to efficiently access

the edges leaving or entering a vertex.

Example 2.7. Consider the example graph G = (V,E) of Figure 2.1. We can compute the

transitive closure of any graph by using only its simple paths. Generally, the longest simple

path in a graph has at most n edges, but in our example graph the longest simple path has

five edges. Thus, E+ = E ∪ E2 ∪ E3 ∪ E4 ∪ E5.

v
3

v
5

v7v2

v4

v
6

v
8

v1

Figure 2.4: A spanning tree of graph G of Figure 2.1.

18

In the analysis of the algorithms, we assume a random access machine (RAM) model [10].

We use the Big Oh (O), the Big Omega (Ω), and the Big Theta (Θ) notations [46] to discuss

the growth rate of a function that describes the execution time or the memory space required

by a program. They are defined as follows:

Definition.

f(n) = O(g(n))⇔ (∃c, n0(c))(∀n)(n ≥ n0 ⇒ f(n) ≤ cg(n))

f(n) = Ω(g(n))⇔ (∃c, n0(c))(∀n)(n ≥ n0 ⇒ f(n) ≥ cg(n))

f(n) = Θ(g(n))⇔ (∃c1, c2, n0(c1, c2))(∀n)(n ≥ n0 ⇒ c1g(n) ≤ f(n) ≤ c2g(n))

2.2 Defining the problem

In the transitive closure problem, we are given a directed graph G = (V,E) and we should

compute its transitive closure G+ = (V,E+). This problem is called the all-pairs transitive

closure problem [130] or the full transitive closure problem.

The input of the transitive closure problem may be in different forms. If not stated other-

wise, we assume that the input graph is represented in the adjacency list form. Note that we

require no data structure that contains the vertices adjacent to a vertex v, only the vertices

adjacent from v, nor do we require any special ordering of the adjacency lists.

Also the output of the computation may be in different forms. If not stated otherwise,

we assume that the output of the transitive closure problem is given as successor lists that

represent the successor sets of the vertices.

2.2.1 Related problems

We list below problems that are closely related to the transitive closure problem. In the rest

of the thesis, we only study the all-pairs transitive closure problem.

In the reflexive transitive closure problem, we are given a directed graph G = (V,E) and

we should compute its reflexive transitive closure. With only slight modifications a transitive

closure algorithm can be applied to the reflexive transitive closure problem and vice versa.

In the single-source transitive closure problem, we are given a graph G = (V,E) and a vertex

x of V , whose successors we should compute. This problem can be solved by a simple graph

search algorithm such as depth-first or breadth-first search. We start the search at vertex x

and collect each vertex that the search reaches into the result set Succ(x). In the multi-source

transitive closure problem, we are given a graph G = (V,E) and a subset X ⊆ V . We should

compute the successors of the vertices in X. This problem can further be divided into strong

and weak multi-source transitive closure problems. In the strong problem, we should compute

its own successor set for each vertex of X. In the weak problem, we should compute the union

of the successor sets of the vertices in X. Like the single-source problem, the weak multi-

source problem can be solved by a graph search algorithm. The strong multi-source problem

could be solved by first computing the transitive closure of the whole input graph and then

selecting the appropriate successor sets, but computing directly the multi-source transitive

19

closure is apparently more efficient. Single-source and multi-source problems are sometimes

called partial transitive closure problems as opposed to the full transitive closure problem.

The transitive closure problem is an example of a closed semiring problem. Closed semir-

ings are algebraic structures that provide a unified approach to several seemingly unrelated

problems of computer science and mathematics. Examples of closed semiring problems are

graph theoretic path problems, such as computing the shortest or the most reliable path in

a graph, data flow analysis problems in compiler technique, and inverting real matrices and

solving systems of linear equations in mathematics [1, 10, 85, 119]. Similar algorithms can

be used to solve all closed semiring problems, but algorithms that are specially designed for

particular types of semirings are often more efficient. Therefore, we do not study transitive

closure as a closed semiring problem.

Other generalizations of the transitive closure problem have been studied in the area of

databases, e.g., [3, 30, 103, 113]. Typically, these generalizations extend the transitive closure

to n-ary relations and allow path computations, selections, and aggregation of information.

2.3 Previous work

In this section, we describe the most important transitive closure algorithms presented in the

literature. The descriptions are compact; for more details the reader should consult the original

presentations. We also describe previous methods for representing the transitive closure.

2.3.1 Warshall’s algorithm

The best-known transitive closure algorithm is Warshall’s algorithm [129], which is presented

in many textbooks, e.g., in [10, 11, 107]. Lehmann [85] points out that this algorithm was first

described by Roy [104].

The idea in Warshall’s algorithm is the following. If the graph contains paths v
∗→w and

w
∗→u whose intermediate vertices come from a specific set S, then the graph also contains a

path v
∗→u such that its intermediate vertices come from the set S ∪{w}. Warshall’s algorithm

iterates from 1 to n and in the kth iteration studies paths whose intermediate vertices come

from the set {v1, . . . , vk−1}.
The algorithm is presented in Figure 2.5. The input to the algorithm is an adjacency matrix

A representing the input graph G. The algorithm transforms A into an adjacency matrix A+

representing the output graph G+.

The worst-case execution time of Warshall’s algorithm is O(n3) and the best-case execution

time is Ω(n2). This implies that Warshall’s algorithm is not economical for a sparse input graph.

(1) for k := 1 to n do

(2) for i := 1 to n do

(3) if i 6= k and A[i, k] then

(4) for j := 1 to n do A[i, j] := A[i, j] or A[k, j];

Figure 2.5: Warshall’s algorithm

20

(1) for i := 2 to n do

(2) for k := 1 to i− 1 do

(3) if A[i, k] then

(4) for j := 1 to n do A[i, j] := A[i, j] or A[k, j];

(5) for i := 1 to n− 1 do

(6) for k := i+ 1 to n do

(7) if A[i, k] then

(8) for j := 1 to n do A[i, j] := A[i, j] or A[k, j];

Figure 2.6: Warren’s algorithm

Warshall’s algorithm examines the matrix position A[i, k] column-by-column, but the ma-

trix positions A[i, j] and A[k, j] row-by-row. Warren [128] noticed that we can change the

algorithm to examine also the position A[i, k] row-by-row if we split the algorithm into two

passes. The first pass tests the positions below the main diagonal of the matrix and the second

tests the positions above the main diagonal. We get the algorithm of Figure 2.6.

The worst-case and the best-case execution times of Warren’s algorithm are O(n3) and

Ω(n2), just like in Warshall’s algorithm. Both algorithms examine and set the same positions

of the input matrix, but in a different order.

In the number of page faults generated, Warren’s algorithm is better. Warren showed that

if the adjacency matrix of a sparse graph does not fit into the main memory and if the LRU

(least recently used) page replacement policy [117] is used, then his algorithm causes fewer

page faults than Warshall’s by a factor that is between one and n/2.

Warshall’s and Warren’s algorithms can easily be modified to solve the reflexive transitive

closure problem or any other closed semiring problem. Lehmann [85] shows that Warshall’s

transitive closure algorithm, Floyd’s algorithm for minimum-cost paths [42], Kleene’s proof

that every regular language can be defined by a regular expression [80], and the Gauss-Jordan

method for inverting real matrices are different interpretations of the same basic program

scheme.

2.3.2 Algorithms based on detecting the strong components

All vertices of a strong component have the same successor set. Purdom [101] presented the

first transitive closure algorithm based on this fact. The algorithm consists of four parts:

1. Detect the strong components of the input graph G and build its condensation graph G.

2. Using the partial order on the strong components induced by the edges of G, sort the

vertices of G, i.e., the strong components of G, into a topological order.

3. Compute the transitive closure of G. Start from the topologically greatest vertex of G and

work back to the smallest vertex. To form the successor set of a vertex C of G, combine

the vertices adjacent from C and their successor sets. The topological order ensures that

the successor sets of vertices adjacent from C are computed before the successor set of

C.

21

4. Convert the transitive closure of G into the transitive closure of G. If vertex x is in

component X and vertex y in component Y , insert y into Succ(x) iff Y is in Succ(X) in

the transitive closure of G.

The details of the algorithm are complicated: the listing is seven pages long. Purdom said

that the first three parts can be combined.

Munro’s algorithm [91] is also based on the detection of the strong components. It differs

mainly from Purdom’s algorithm in that Munro’s algorithm uses matrix multiplication to

construct the transitive closure of the condensation graph. We discuss Munro’s algorithm in

the next subsection below.

Purdom’s and Munro’s algorithms compute the strong components using virtually identical

methods. Both traverse the graph in depth-first order. When a cycle is found, the vertices in

the cycle are marked as being in the same strong component and the process is repeated. Two

small strong components may be collapsed into a bigger one; the relabeling requires O(n log n)

steps [118]. Thus, the worst-case execution time is O(e+n log n). Later, Tarjan [118] presented

a strong component algorithm with O(n + e) worst-case bound (and with smaller constant

coefficient than in Purdom’s and Munro’s algorithms). If we use Tarjan’s algorithm to detect

the strong components, the worst-case execution time of Purdom’s and Munro’s algorithms

is O(n + e+ + l(G)), where l(G) is the time required to compute the transitive closure of

condensation graph G.

In Munro’s algorithm l(G) is O(M(n)), the time required to compute the product of two

Boolean matrices (see section 2.3.3). In Purdom’s algorithm l(G) is O(n2 + ner), where er is

the number of edges in the transitive reduction of the condensation graph. Goralcikova and

Koubek [45] presented an algorithm, which demonstrates that l(G) is O(n+e+ner). The term

ner represents the time needed to compute er unions of two successor sets having at most n

elements. The term n + e represents the time needed to topologically order the acyclic graph

and its adjacency lists. Jaumard and Minoux [72] presented a slightly different version of the

same algorithm and showed that l(G) = O(n+de+) for acyclic graphs with in-degrees bounded

by d.

Simon [111, 112] presented a transitive closure algorithm for acyclic graphs that is based

on the chain decomposition of the topologically ordered graph. The chain decomposition is

a division of the set of vertices V into a collection of sets Ci, each representing a path in

the topologically ordered graph. A successor set is represented as a vector of length k, where

k is the number of sets in the chain decomposition. In a vector representing the successor

set S, the element at position i is the topologically smallest element of S ∩ Ci. The chain

decomposition and the topological order of the graph can be computed in O(n + e) time.

Also Simon’s algorithm needs er unions of two successor sets. The union of two successor

sets that are represented using the chain decomposition can be computed in Θ(k) time where

k is the number of sets in the chain decomposition. Thus, Simon’s algorithm shows that

l(G) = O(n+ e+ ker). We study the chain decomposition more thoroughly in Chapter 4.

Eve and Kurki-Suonio [40], Ebert [36], Schmitz [105], and Ioannidis et al. [62, 64] pre-

sented algorithms that use the strong components to compute the transitive closure without

generating the condensation graph. All these algorithms are based on Tarjan’s strong com-

ponent algorithm. The worst-case execution time of these algorithms is typically O(ne + n2).

We discuss these algorithms more thoroughly in Chapter 3 and compare them with our new

22

transitive closure algorithms.

A weakness in transitive closure algorithms that are based on strong component detection

is that these algorithms cannot solve other closed semiring problems. However, for transi-

tive closure computation these algorithms are in most cases faster and more practical than

algorithms that can solve any closed semiring problem.

2.3.3 Algorithms based on matrix multiplication

Matrix multiplication and transitive closure computation are closely related. Let A be the

n × n adjacency matrix of a graph G = (V,E). Then A2 = A ∧ A is another n × n Boolean

matrix such that A2[i, j] = true iff G contains a path vi
∗→vj of length 2. More generally,

matrix Ak is an n×n Boolean matrix such that Ak[i, j] = true iff G contains a path vi
∗→vj of

length k. Only simple paths are needed in the construction of the transitive closure; thus A+,

the adjacency matrix of the transitive closure of G, can be written

A+ = A ∨ A2 ∨ . . . ∨ An (2.2)

Furman [43] showed that A+ can be computed in O(log n) iteration steps using the simple

iteration formula

Ak+1 = Ak ∨ A2
k (2.3)

A∧B can be formed by representing true as one and false as zero and computing the matrix

product of A and B over the ring of integers modulo n+ 1 and by normalizing non-zero entries

to ones. Assuming that ordinary matrix multiplication takes O(nα) time, Furman’s algorithm

computes the transitive closure in O(nα log n) time. Coppersmith and Winograd [29] showed

that α ≤ 2.376.

An even closer connection between matrix multiplication and transitive closure computation

was detected by Munro [91] and Fischer and Meyer [41], who proved the following result,

which shows that matrix multiplication and transitive closure computation are computationally

equivalent.

Theorem 2.1. Let M(n) be a function satisfying M(2n) ≥ 4M(n) and M(3n) ≤ 27M(n).

Then the transitive closure can be computed in O(M(n)) time iff the product of two arbitrary

n× n matrices can be computed in O(M(n)) time.

Thus, the reflexive transitive closure can be computed in O(nα) time where α ≤ 2.376.

Munro [91] presented the following algorithm that manifests the theorem above.

1. Detect the strong components of the input graph G and build its condensation graph G.

2. Using the partial order on the strong components induced by the edges of G, sort the

strong components into a topological order.

3. Build an adjacency matrix A corresponding to G. Since G is topologically ordered, the

matrix is in the upper triangular form.

23

4. Compute the transitive closure of A recursively using the following identity [41] where A

(and hence A11 and A22) are upper triangular:

A∗ =

(
A11 A12

0 A22

)∗
=

(
A∗11 A∗11A12A

∗
22

0 A∗22

)
(2.4)

In step 4, we assume that A11, A22, and A12 are of order 2i, which implies that A is of order

2i+1. The algorithm can be generalized for an arbitrary matrix by padding it with zeros to

make it of order 2i. A11 and A22 represent two subgraphs S1 and S2 of G, and A12 represents

the connections between these subgraphs. The term A∗11A12A
∗
22 above can be interpreted in

the following way: a path v
∗→u, where v is in subgraph S1 and u is in subgraph S2, can be

constructed by joining a path v
∗→x that is entirely in S1 with a path y

∗→u that is entirely in

S2 by an edge (x, y).

Steps 1–3 take O(n2) time. Munro showed that step 4 requires O(mα) operations, where m

is the number of strong components and an ordinary matrix multiplication takes O(mα) time.

Thus, the total execution time is O(nα) time in the worst case.

Arlazov et al. [14] presented a method (called the “four Russians” algorithm and appar-

ently due to Kronrod [127]) for multiplying two Boolean matrices and computing the reflexive

transitive closure in O(n3/ log n) steps, both in the worst case and on the average [126]. O’Neill

and O’Neill [97] gave another algorithm for this problem that runs in O(n2) expected time.

Adleman et al. [2] presented a way to reduce the number of bit operations required in Boolean

matrix multiplication and transitive closure.

Aho et al. generalized Theorem 2.1 by showing that when the scalars come from any closed

semiring, the product of two matrices is computationally equal to the closure of one matrix

(see Theorem 5.6, page 202, in [10]).

Although the transitive closure algorithms based on matrix multiplication have good asymp-

totic time bounds, they are not practical, since the constant factors are high and since they

use the adjacency matrix representation, which is uneconomical for sparse graphs.

2.3.4 Transitive closure computation in databases

The relational data model [123] is currently the most popular data model in commercial

database systems. Relational databases use relational query languages, which are based on

relational algebra or, equivalently, on first-order relational calculus, both introduced by Codd

[27, 28]. A relational query language consists of a small set of simple declarative operators on

relation tables corresponding to mathematical relations. Complicated queries can be expressed

by combining simple relational operators. An essential element in the success of relational query

languages has been that the relational operators can be implemented efficiently.

Recently, it has become clear that the relational data model lacks the expressiveness that is

needed in many modern applications, for instance in the areas of artificial intelligence, CAD,

and software engineering. The relational model has two main shortcomings. First, the model

is value oriented, whereas in many applications the natural way to represent data is object

oriented. Object oriented data models [23, 123] have therefore become popular in recent years,

and much research has been done in this area (see for instance [16, 23, 132, 133]). Second,

relational query languages cannot express any kind of recursion. Even the simplest kind of

24

recursive query, the transitive closure of a binary relation, cannot be expressed in relational

algebra [13].

Several proposals for introducing recursion to relational languages have been presented.

Zloof [134] suggested augmenting relational algebra with a transitive closure operator. Aho

and Ullman [13] proposed augmenting relational algebra with a least fixed point operator that

enables a wider class of recursive queries than the transitive closure operator. Rosenthal et al.

[103] presented what they call “traversal recursion,” i.e., recursive queries that model traversal

of a directed graph. Agrawal [3] proposed a so called alpha operator that enables generalized

linear recursive queries. Sippu and Soisalon-Soininen [113] presented a generalized transitive

closure operator based on a composition operator that is generalized to n-ary relations. Cruz

and Norvell [30] presented “aggregative closure,” i.e., generalized transitive closure with path

computations, e.g., the computation of the shortest paths between vertices, and aggregation

of information, e.g., computing averages or sums of fields of relations. Eder [37] and Dar and

Agrawal [31, 32] extended the popular SQL query language with similar generalized transitive

closure operators. The ANSI/SQL standards committee also proposed the inclusion of a closure

operator (called “recursive union”) into the query language SQL [39, 109, 110, 115].

The approaches to introducing general recursive queries have mostly been based on logic

programming. The Datalog query language [24, 123] is the best-known example. Although

much research has been done in the area of optimizing general recursive queries (see, e.g.,

[15, 17, 123]), it seems that general recursion cannot be implemented efficiently. On the other

hand, it seems that most recursive queries that occur in practical applications are transitive

[15, 68]. Further, Jagadish et al. [68] showed that all linear recursive queries can be expressed

using transitive closure possibly preceded and followed by operations available in relational

algebra. Therefore, the recent approaches to introduce recursion to relational algebra have

concentrated on transitive closure in its various forms.

Several transitive closure algorithms for database environments have been proposed. These

can be divided into iterative, matrix-based, graph-based, and hybrid algorithms [31].

Iterative algorithms

The iterative algorithms compute the transitive closure of a relation R by evaluating the least

fixed point of the relational equation [13]:

R+ = R+ ◦R ∪R (2.5)

A simple algorithm for computing the least fixed point is presented in Figure 2.7. The

algorithm is called semi-naive in [15].

Here R, R+, and ∆ are variables that contain relations. After the ith iteration, the variable

∆ contains the new tuples that were generated in the ith iteration.

Lu [86] presented a version of the semi-naive algorithm that uses two strategies to speed

up the computation. First, the algorithm reduces the input relation R dynamically after each

iteration. It removes from R each tuple (x, y) with no tuple (z, x) in ∆, since no such tuple

(x, y) would yield any new tuples to R+. Second, Lu’s algorithm hashes the tuples of ∆ on

their second argument and the tuples of R on their first argument. The algorithm takes a pair

of has buckets (one bucket of ∆ and one bucket of R) that it can hold in the main memory

simultaneously and generates all tuples derivable from those buckets.

25

(1) R+ := R;

(2) ∆ := R;

(3) do

(4) ∆ := ∆ ◦R−R+

(5) R+ := R+ ∪∆

(6) while ∆ 6= ∅

Figure 2.7: The semi-naive algorithm.

If R ⊆ V × V and |V | = n, the semi-naive algorithms needs at most n iterations. The

maximum number of iterations is needed, for instance, when the graph G = (V,R) consists of

a simple cycle of n elements. Ioannidis [61] and Valduriez and Boral [124] presented algorithms

that need only a logarithmic number of iterations. The logarithmic algorithms can be derived

from the following equation defining the transitive closure:

R+ =
∞∑
k=1

Rk = R ◦
∞∏
k=1

(I ∪R2k) = R ◦ (I ∪R) ◦ (I ∪R2) ◦ (I ∪R4) . . . (2.6)

If the domain of R contains n elements, the highest k in R2k that we need is log(n+ 1)− 1.

Thus, the logarithmic algorithm presented in Figure 2.8 computes the transitive closure in

log(n+ 1)− 1 iterations.

(1) R+ := R;

(2) ∆ := R;

(3) δ := R

(4) do

(5) δ := δ ◦ δ;
(6) ∆ := R+ ◦ δ;
(7) R+ := R+ ∪∆ ∪ δ
(8) while ∆ 6= ∅

Figure 2.8: The logarithmic algorithm.

After the ith iteration, variable δ contains R2i , i.e, the tuples corresponding to paths of

length 2i in the graph G = (V,R). Variable ∆ contains tuples corresponding to paths of lengths

2i + 1 . . . 2i+1 − 1.

It is interesting to note that the logarithmic algorithm uses similar ideas as Furman’s

algorithm [43] (see section 2.3.3) that is based on matrix multiplication.

Qadah et al. [102] presented iterative algorithms for solving weak multi-source transitive

closure problems. The algorithms resemble the semi-naive algorithm described above.

A benefit of iterative algorithms is their generality. They can evaluate all kinds of recursive

queries, not just transitive closures. They can solve single-source and multi-source transitive

closure problems. They can also solve generalized transitive closure problems involving path

computations and aggregation. On the other hand, the generality of iterative algorithms makes

them slower than the matrix-based, graph-based, and hybrid algorithms that we describe below.

26

Matrix-based algorithms

The matrix-based transitive closure algorithms for database environments are usually devel-

oped from Warshall’s or Warren’s algorithm (see section 2.3.1). The term “matrix-based” refers

to the approach of processing the input, which resembles Warshall’s and Warren’s algorithms,

not to the data representation. Most of these algorithms use adjacency and successor lists or

relation tables.

Lu et al. [87] presented an adaptation of Warren’s algorithm that processes relation tables

instead of adjacency matrices. The algorithm, shown in Figure 2.9, first sorts the tuples of

relation R lexicographically by both their fields. Then the tuples are scanned in two passes

that correspond to the two passes of Warren’s algorithm.

(1) T := R sorted by both its fields;

(2) for (x, y) ∈ T in sorted order do

(3) if x > y then

(4) T := T ∪ {(x, y)} ◦ T ;

(5) for (x, y) ∈ T in sorted order do

(6) if x < y then

(7) T := T ∪ {(x, y)} ◦ T

Figure 2.9: An adaptation of Warren’s algorithm by Lu et al. [87].

Agrawal et al. [5, 6] described what they call Warshall-derived algorithms. These algo-

rithms do the same operations as Warshall’s algorithm, but in a different order. Warren’s

algorithm is an example of a Warshall-derived algorithm. Agrawal et al. presented several

Warshall-derived algorithms that are suitable for a database environment. These algorithms

represent the input and the output by lists and use blocking to reduce I/O costs. Lists are

read into the main memory and processed one block at a time. The way of dividing the lists

into blocks and the order of processing the blocks differs in the algorithms.

Ullman and Yannakakis [122] presented another matrix-based algorithm, called the Grid

algorithm in [8]. If s is the size of the main memory, the algorithm splits the n× n adjacency

matrix A into n2/s submatrices Ai,j of size
√
s×
√
s. Then the transitive closure is computed

using the code in Figure 2.10.

(1) for k := 1 to n/
√
s do begin

(2) Ak,k := A∗k,k;

(3) for i := 1 to n/
√
s do

(4) for j := 1 to n/
√
s do

(5) Ai,j := Ai,j +Ai,k ×Ak,k ×Ak,j ;

Figure 2.10: The Grid algorithm.

Here A∗k,k is the reflexive transitive closure of the sub-matrix Ak,k. Since the algorithm is

designed for dense graphs, it uses the adjacency matrix representation. Ullman and Yannakakis

showed that if s ≤ n2, the algorithm needs O(n3/
√
s) I/O operations in the worst case. The

blocking Warshall-derived algorithms by Agrawal et al. [5, 6] need O(n4/s) I/O operations in

27

the worst case; thus, the Grid algorithm is more efficient. The problem in the Grid algorithm

is that all sub-matrices must be of the same size, which may lead to underutilization of the

memory if the input is sparse.

Matrix-based algorithms are not as general as iterative algorithms. They can only be

used for computing transitive closures, not general recursive queries. Matrix-based algorithms

always compute the full closure and thus cannot be used to solve single-source and multi-source

transitive closure problems efficiently. On the other hand, they can be used to solve generalized

transitive closure problems involving path computations and aggregation.

Graph-based algorithms

The graph-based algorithms consider the input relation as a directed graph and use graph

search to compute the transitive closure. Ioannidis et al. [62, 63, 64] presented two transitive

closure algorithms called btc and gdftc that are based on detecting the strong components of

the input graph and that are designed for a database environment. We discuss these algorithms

in Chapter 3, and compare them with the new transitive closure algorithms that we have

developed.

Jiang [73] presented an algorithm that uses a combination of depth-first and breadth-first

traversal to compute single-source and multi-source transitive closures of database relations.

The algorithm reduces the input graph heuristically during the traversal. If a vertex v is not

in the set of source vertices S, whose successors we are computing, and only one vertex u

adjacent to v exists, the successor set of v is not needed. Instead, vertex v can be reduced to a

sink vertex by inserting an edge from u to each vertex adjacent from v and deleting all edges

leaving v.

Toroslu and Qadah [121] presented a graph-based algorithm for computing strong multi-

source transitive closures. Their algorithm uses a representation that stores the combined

closure, i.e., all vertices reachable from the source vertices. Each element of the combined

closure is tagged with the set of source vertices whose successor the vertex is. The algorithm

uses a depth-first traversal for generating an initial representation of the combined closure. The

depth-first traversal is followed by a backward and a forward propagation phase that compute

the tags associated with the vertices of the combined closure. Toroslu and Qadah presented

performance evaluations indicating that their algorithm is more efficient than the semi-naive

algorithm and Jiang’s algorithm [73] described above.

Graph-based algorithms cannot be used to solve generalized transitive closure problems

involving path computations and aggregation when the input graphs are cyclic, since strong

component detection loses path information. If the input graphs are acyclic, it is possible

to adapt graph-based algorithms for generalized transitive closure problems [64]. Yannakakis

[130] shows how linear recursive queries can be efficiently evaluated by graph traversal.

Hybrid algorithms

The hybrid transitive closure algorithms combine ideas from iterative, matrix-based, and graph-

based algorithms.

Agrawal and Jagadish [8] presented a family of hybrid algorithms that compute the conden-

sation graph of the input graph and sort it topologically in the first pass. In the second pass,

28

the algorithms compute the transitive closure of the topologically sorted graph by a method

resembling Warren’s algorithm. Blocking is used in the second pass as in matrix-based algo-

rithms. The second pass is a breadth-first algorithm, whereas the graph-based algorithms like

btc described above are depth-first algorithms. Blocking can be used more efficiently with

breadth-first algorithms than with depth-first algorithms [74]. Note however, that computing

the condensation graph in the first pass of the algorithm requires depth-first search if Tar-

jan’s algorithm [118] is used or a combination of breadth-first and depth-first search if Jiang’s

algorithm [75] is used.

Jakobson [70, 71] and Dar and Jagadish [33] presented hybrid transitive closure algorithms

that use successor trees for representing the successor sets. In addition to the vertices of

the successor set, a successor tree contains the paths that were used to obtain these vertices.

Using the path information the algorithms detect multiple paths between a pair of vertices

and avoid adding the same successors twice to a successor set. We discuss the successor tree

representation more thoroughly in section 4.4. The algorithm that Jakobson presented in [70]

is an adaptation of the semi-naive algorithm and the algorithm he presented in [71] is an

adaptation of Warshall’s algorithm. The algorithm that Dar and Jagadish presented in [33] is

an adaptation of the hybrid algorithm by Agrawal and Jagadish [8].

These hybrid algorithms can be used to solve single-source and multi-source transitive

closure problems as well as generalized transitive closure problems involving path computations

and aggregation.

Parallel and distributed algorithms

Some articles discuss the computation of the transitive closure of a database relation in parallel

and distributed environments, see [22, 25, 26, 48, 49, 51, 52, 53, 54, 55, 57, 76, 116, 125]. We do

not describe these articles here, since we are only interested in centralized, sequential transitive

closure computation in this thesis.

Comparisons between the algorithms

In the articles described above, the comparisons between the algorithms are mostly based on

empirical performance measurements or simulations. We describe these performance studies

below.

Ioannidis [61] compared the logarithmic algorithm and the semi-naive algorithm in com-

puting the transitive closure of small lists and trees. The performance metrics were disk I/O

in number of pages and CPU-time. The logarithmic algorithm was more efficient than the

semi-naive algorithm in most inputs, both in the disk I/O and in the CPU-time. Valduriez

and Boral [124] reported results indicating also that logarithmic algorithms are more efficient

than the semi-naive algorithm.

In a more recent study, Kabler et al. [77] compared the semi-naive algorithm, the loga-

rithmic algorithm and the Blocked Warren algorithm, which is one of the Warshall-derived

algorithms [6], in computing the transitive closure of randomly generated trees and graphs.

The performance metrics were disk I/O in number of pages and an aggregate CPU-time (a

combination of the measured CPU-time plus a computed CPU-time for the disk operations).

The Blocked Warren algorithm was usually superior to the other two algorithms. Contrary

29

to the results of Ioannidis [61] and Valduriez and Boral [124], the semi-naive algorithm was

usually superior to the logarithmic algorithm.

Lu [86] compared his improved semi-naive algorithm, the original semi-naive algorithm,

and the logarithmic algorithm in computing the transitive closure of small lists and binary

trees. The performance metric was disk I/O in number of tuples. The method of study was

simulation, not direct measurement as in the other comparisons described above. The semi-

naive algorithm augmented with the improvements proposed by Lu was more efficient than the

other two algorithms.

Agrawal and Jagadish [6] compared three Warshall-derived algorithms and a logarithmic

algorithm in computing the transitive closure of randomly generated graphs. The performance

metric was disk I/O in kilobytes. The Blocked Warren algorithm was the most efficient of the

Warshall-derived algorithms and it was also superior to the logarithmic algorithm.

Agrawal et al. [5] compared two Warshall-derived algorithms and the semi-naive algorithm

in computing the transitive closure, the bill of materials, and the shortest paths of randomly

generated graphs. The performance metrics were disk I/O in number of pages and CPU-time.

The Warshall-derived algorithms were roughly equally efficient, but the semi-naive algorithm

was much slower.

Lu et al. [87] compared their adaptation of Warren’s algorithm with two versions of the

logarithmic algorithm in computing the transitive closure. The performance metric was the

execution time. No measurements were done, instead the performance metrics were evaluated

using analytic formulas. Inputs and outputs were characterized using the size of the source

relation and the output relation, selectivity of join operations, and the number of iterations

as parameters. The adapted Warren’s algorithm was more efficient than the other algorithms

when the main memory was not much smaller than the input relation and the path lengths in

the inputs varied greatly. Otherwise, the logarithmic algorithms were more efficient.

Agrawal and Jagadish [8] compared their hybrid algorithm with a Warshall-derived al-

gorithm, a graph-based algorithm presented in [62] and the Grid algorithm by Ullman and

Yannakakis [122] in computing the bill of materials of randomly generated acyclic graphs. The

performance metric was disk I/O in number of tuples. The hybrid algorithm was in all inputs

more efficient than the other algorithms.

Ioannidis et al. [63, 64] compared their graph-based algorithms btc and gdftc with

Schmitz’s graph-based algorithm [105] in computing the transitive closure of randomly gener-

ated graphs. The performance metrics were disk I/O in kilobytes and an aggregated CPU-time.

Algorithm btc was in most inputs more efficient than the other two algorithms.

Dar and Jagadish [33] compared their spanning tree transitive closure algorithm with the

hybrid algorithm by Agrawal and Jagadish [8] in computing the transitive closure of randomly

generated acyclic graphs. The performance metric was disk I/O in number of tuples. The

spanning tree algorithm was more efficient than the hybrid algorithm by Agrawal and Jagadish

in all inputs.

Dar and Ramakrishnan [31, 34] compared several algorithms in computing full and partial

transitive closures of randomly generated acyclic graphs. The algorithms were btc by Ioannidis

et al. [63, 64], the hybrid algorithm by Agrawal and Jagadish [8], Jiang’s algorithm [73], the

spanning tree algorithm by Dar and Jagadish [33], and two algorithms by Jakobson [71]. The

main performance metric was disk I/O in number of pages. The hybrid algorithm and the

30

spanning tree algorithm were less efficient than the other algorithms. The relative efficiency of

the algorithms varied in different inputs and no algorithm was generally superior to the other

algorithms. In addition to measuring disk I/O in number of pages, Dar and Ramakrishnan

measured disk I/O in number of tuples and successor lists, and the total number of generated

tuples. They detected that none of these other metrics reliably predicted disk I/O in pages.

To summarize, the performance studies discussed above do not give a clear picture of the

relative efficiency of the algorithms. In most of the studies, the iterative algorithms were less

efficient than the matrix-based algorithms, and the matrix-based algorithms were less efficient

than graph-based and hybrid algorithms.

Note that all these studies are poor performance evaluation studies. The system that

was evaluated and the goal of the study were not properly explained. All system parameters

affecting the performance were not identified, and the most important system parameters, like

the size of the main memory and the number of buffer pages, were in most studies not varied

to find out their effect on the performance.

The most severe problems in these studies were in the selection of the inputs and in the

analysis of the measurement data. In some studies, only trees and lists were used as inputs;

in all studies, the inputs were small. The random nature of the inputs was not understood in

any study. For each combination of input parameters, only a couple of random inputs were

generated. The variability of the results that is unavoidable when random inputs are used was

not considered in any of these studies. Thus, the studies gave no information on the accuracy

of the results.

Although the input graphs usually had only a few hundred vertices, the number of disk

I/O operations was large, which indicates that each page was moved several times between

the main memory and the disk. The studies did not answer the question of what happens if

real-life databases are used as inputs.

2.3.5 Representations and dynamic updates

Most of the transitive closure algorithms described above use adjacency lists, adjacency ma-

trices, or relation tables to represent the closure. However, some algorithms that we described

use special representations to speed up the computation. Simon’s transitive closure algorithm

[111, 112] for acyclic graphs obtains a small worst-case time by using the chain decomposition,

which speeds up union operations. The hybrid algorithms by Dar and Jagadish [33] and Jakob-

son [70, 71] use the successor tree representation, which aims at avoiding unnecessary successor

set operations. In this subsection, we study other special representations for transitive closure.

Special data representations for transitive closure computation have been designed for both

main memory and a database environment. In main memory representations, the goals have

been to speed up successor set operations and to avoid redundant operations. In database

representations, the goals have been to speed up the traversal of the input graph by special file

structures and to materialize the transitive closure, i.e., to store the computed closure so that

queries about connectivity of vertices can be efficiently evaluated. Dynamic maintenance of

the representation, when edges are inserted to the input graph or deleted from it, is associated

with both main memory and database representations.

We study first how the transitive closure can be dynamically maintained in a main memory

31

environment. Next, we study special file structures that speed up the traversal of the input

graph in a database environment. Finally, we study transitive closure materialization in a

database environment.

Dynamic updates in main memory

Ibaraki and Katoh [58] presented in their seminal article, algorithms for the dynamic mainte-

nance of transitive closure when edges are inserted to the input graph or deleted from it. The

algorithms use no special data structures; the transitive closure is represented by an adjacency

matrix. The algorithm that updates the closure between edge insertions requires O(n2) time

in the worst case to process one edge insertion, but only O(ne+) time in the worst case to

process e edge insertions. This is a typical property of algorithms for dynamic maintenance

of transitive closures: the worst-case time to process one edge insertion or deletion is greater

than the amortized time [120] over a sequence of several insertions or deletions. Ibaraki’s and

Katoh’s algorithm that updates the closure between edge deletions requires O((n+ e)e+) time

in the worst case to process e deletions.

Italiano [65] showed that faster updating between edge insertions is possible if a specialized

data structure is used. The data structure contains the successor sets organized as a tree of

paths and an n×n matrix of pointers pointing to the tree. The data structure makes it possible

to update the closure between e consecutive edge insertions in O(ne) worst-case time. It is

also possible to return a path connecting two vertices in time proportional to the length of the

path. Buchsbaum et al. [21] extended Italiano’s results to edge labeled graphs. In another

paper, Italiano [66] showed that the closure of an acyclic graph can be updated between e edge

deletions in O(ne) worst-case time when a modified version of the data structure is used.

La Poutré and van Leeuwen [81] studied the dynamic maintenance of both the transitive

reduction and the transitive closure of a graph between edge insertions or deletions. They

presented algorithms and data structures that resemble those by Italiano. The algorithm that

processes edge insertions has the same worst-case time O(ne) as Italiano’s insertion algorithm.

The algorithm that processes edge deletions has the same worst-case bound as Italiano’s dele-

tion algorithm when the inputs are acyclic. Unlike Italiano’s algorithm, La Poutré’s and van

Leeuwen’s algorithm can also process deletions in cyclic graphs; the worst-case time of pro-

cessing e deletions is slightly greater than O(ne).

Yellin [131] presented algorithms and data structures similar to those by Italiano, La Poutré

and van Leeuwen. Also Yellin’s algorithms have the O(ne) worst-case time bound. However,

Yellin showed that if the outdegree of the graph is bounded by d, his algorithms have another

worst-case bound O(de+), which is optimal for bounded degree graphs. The other algorithms

[58, 65, 66, 81] do not have this bound.

Special representations for supporting graph traversal in databases

When the input graph resides in the disk, the paging caused by the traversal of the input is a

bottleneck of the computation. The order in which the graph is stored in the disk affects the

performance. A random order causes the read and write heads of the disk to skip randomly.

If the graph does not fit into the main memory, each page may be moved many times from the

disk to the main memory.

32

Larson and Deshpande [82] presented a simple file structure for supporting traversal re-

cursion [103] in acyclic graphs. The vertices and the edges may have labels, permitting path

computations. The representation consists of two files: a main file and an index file. The main

file contains one record per each vertex. The record contains the label of the vertex and the

successors and predecessors of the vertex. The successors and predecessors are represented as

vertex-label pairs. The records are sorted in a topological order and stored in a B-tree. The

topological order of the records enables finding all successors or predecessors of a set of vertices

in a single scan over the main file. The index file maps the vertex names to their topological

order keys, which are used to locate the records in the B-tree. Larson and Deshpande pre-

sented algorithms for updating the file structures when vertices or edges are inserted, deleted,

or modified. Adding an edge is the only operation that may render the topological order invalid

and force a rearrangement of some records in the main file. The other maintenance operations

are simple and fast.

The graph traversal algorithm that Larson and Deshpande presented uses a priority queue

to manage the vertices to be visited. If the outdegrees of the vertices are large, the priority

queue may be too large to fit into the main memory and the queue management may cause

much disk I/O. Hua et al. [56] presented a similar file structure, called connectivity index, that

also enables graph traversal during a single scan over the file. However, the traversal of the

connectivity index is controlled by a simple FIFO (first in, first out) queue that is much more

efficient in disk I/O than the priority queue.

Agrawal and Kiernan [9] presented a file structure, called the traversal index, that resembles

those of Larson and Deshpande and Hua et al. except that it tolerates cyclic input graphs.

The traversal index is kept in a topological order if the input graph is acyclic and in a relaxed

topological order if the input graph is cyclic. Agrawal and Kiernan presented an algorithm for

creating the traversal index and algorithms for maintaining the index when the input graph

is changed and showed how the input graph can be traversed during a single scan over the

traversal index.

Special representations for materializing transitive closure in databases

Jagadish [67] studied the chain decomposition as a way to materialize transitive closures. The

difference from Simon’s representation is that Jagadish represented a successor set S as a list

of pairs (Ci, vi), where Ci is a chain and vi is the topologically smallest element of S ∩ Ci.
Simon represented S as a k element vector [v1, v2, . . . , vk] where vi is the topologically smallest

element of S ∩ Ci. Thus, the time needed to union two successor sets may be smaller than

Ω(k) in Jagadish’s representation, but inserting a vertex into a successor set and testing the

presence of a vertex in a set require Ω(k) time in the worst case.

Jagadish showed that finding an optimal chain decomposition for an acyclic graph is a

minimum flow problem. He then presented several heuristics for computing the decomposition

and compared them empirically. The tests indicated that a decomposition method that is

based on topological ordering yields the smallest number of chains. This is exactly the method

that Simon [111, 112] proposed, but Jagadish did not directly refer to Simon’s work. Jagadish

also presented how to maintain the chain decomposition and the successor sets when the input

graph is modified.

Agrawal et al. [4] presented another compact representation for materializing the transitive

33

closure of an acyclic graph. This representation is based on intervals of integers. A successor

set is a collection of intervals {I1, I2, . . . , Im}, where each interval I = (i, j) represents integers

i, i + 1, . . . , j. A successor set S can typically be represented using only a few intervals.

Thus, unioning two successor sets, inserting vertices to successor sets, or checking the presence

of vertices in successor sets is typically much faster than in a successor list representation.

The worst-case bounds for these operations are, however, the same as in the successor list

representation. The vertices can be numbered in several ways and different numberings require

different numbers of intervals to represent the successor sets. Agrawal et al. presented an

algorithm for computing an optimal numbering under certain conditions. They also showed

how to maintain the representation when the input graph is modified.

We discuss both the interval representation and the chain representation more thoroughly in

Chapter 4, where we present another interval representation and another chain representation,

which can be efficiently used with cyclic input graphs.

The methods for materializing transitive closures by Jagadish [67] and Agrawal et al. [4]

cannot be used for generalized transitive closures, since path information cannot be associated

with the chain decomposition or with intervals. Full materialization of path information is

infeasible, since the number of possible paths grows exponentially to the number of vertices in

the graph.

In some papers, partial materialization of path information is studied. Agrawal and Ja-

gadish [7] presented a representation for partially materializing path information between pairs

of vertices. The representation associates to each vertex v a set of tuples of form (w, x, L),

where w is a vertex that is reachable from v, x is the first vertex in the path leading to w, and

L is the label associated to that path. Agrawal and Jagadish showed how the representation

is created and maintained when the input graph is modified and how path computations can

be efficiently evaluated using the representation.

Guh et al. [47, 48] presented another representation for partially materializing paths be-

tween pairs of vertices in an acyclic graph. This representation is based on tuples of form

(v, w,Gvw, gvw), where v and w are vertices connected by a path v
∗→w, Gvw is the number

of different paths between v and w, and gvw is true iff (v, w) is an edge of the input graph.

Associated with each vertex v are all tuples containing v (either as the source or the target

of the path). Guh et al. presented both sequential and parallel algorithms for creating and

managing this representation.

The drawback of both the representation of Agrawal and Jagadish [7] and the representation

by Guh et al. [47, 48] is their great size. The representation by Agrawal and Jagadish needs

Ω(dn2) tuples in the worst case, where d is the maximum outdegree of a vertex. This kind of

memory requirement seems to be more a rule than an exception in this representation. The

representation by Guh et al. needs Ω(n2) tuples in the worst case, but even this is too much if

n is large. Thus, it seems that even partial materialization of path information is not practical

when the number of vertices is large.

34

Chapter 3

Transitive closure computation using

strong components

Strong components are probably the most important source of redundant computations in

transitive closure algorithms that do not detect them [44]. Some transitive closure algorithms

presented in the literature are based on detecting the strong components of the input graph, see

[36, 40, 62, 64, 91, 101, 105]. Most of these algorithms are based on Tarjan’s strong component

algorithm [118]. The problem with these algorithms is that they either generate one partial

successor set for each vertex of the component or scan the whole input graph more than once.

In this chapter, we present new transitive closure algorithms that solve these problems.

First, we review Tarjan’s strong component algorithm and present two improved versions

of it. Then, starting from a simple adaptation of Tarjan’s algorithm to transitive closure

computation, we develop two new efficient transitive closure algorithms. Finally, we compare

the new algorithms with the previous ones presented in the literature.

3.1 Strong component detection – Tarjan’s algorithm

Tarjan [118] presented an elegant algorithm that finds the strong components in Θ(n + e)

time, where n is the number of vertices and e is the number of edges in the input graph. We

review here the basic ideas of Tarjan’s algorithm. Our aim is not simply to duplicate existing

material, but to give a basis for describing and analyzing the transitive closure algorithms we

have designed and the improvements on Tarjan’s algorithm that we have made. We use a

notation that differs from the original presentation [118], but that simplifies the description of

the algorithm and its analysis.

Tarjan’s algorithm contains two interleaved traversals of the graph. First, a depth-first

search traverses all edges and constructs a depth-first spanning forest. Second, once a so called

root of a strong component is found, all its descendants that are not elements of previously

found components are marked as elements of this component. This second traversal is imple-

mented by using a stack, where each vertex is stored when entered by the depth-first search.

Before the root of a component is exited, all vertices down to the root are removed from the

stack and they form the component in question.

Tarjan’s algorithm is presented in Figure 3.1. It consists of a recursive procedure visit and

a main program that applies visit to each vertex that has not already been visited. visit

36

(1) procedure visit(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) push(v, stack);

(5) for each vertex w such that (v, w) ∈ E do begin

(6) if w is not already visited then visit(w);

(7) if Comp(w) = Nil then Root(v) := min(Root(v),Root(w))

(8) end;

(9) if Root(v) = v then begin

(10) create a new component C;

(11) repeat

(12) w := pop(stack);

(13) Comp(w) := C;

(14) insert w into component C;

(15) until w = v

(16) end

(17) end;

(18) begin /* Main program */

(19) stack := ∅;
(20) for each vertex v ∈ V do

(21) if v is not already visited then visit(v)

(22) end.

Figure 3.1: Tarjan’s algorithm detects the strongly connected components of graph G =
(V,E).

enters the vertices of the graph in depth-first order. For each strong component C, the first

vertex of C that visit enters is called the root of component C. An important task of the

algorithm is to find the component roots. For this purpose, we define a variable Root(v) for

each vertex v. When visit is processing vertex v, Root(v) contains a candidate vertex for the

root of the component containing v.

Initially, at line 3, vertex v itself is the root candidate. When visit processes the edges

leaving vertex v at lines 5–8, new root candidates are obtained from children vertices that

belong to the same component as v. The min operation at line 7 compares the vertices using

the order in which visit has entered them, i.e., min(x, y) = x if visit entered vertex x before

it entered vertex y, otherwise min(x, y) = y. A simple way to implement this is to use an array

and a counter to assign a unique depth-first number to each vertex. When visit has processed

all edges leaving v, Root(v) = v iff v is the root of the component containing v (line 9). Note

however, that if v is not a component root, we do not know whether Root(v) is the right root

of the component containing v.

To distinguish between vertices belonging to the same component as vertex v and vertices

belonging to other components, a variable Comp(w) is defined for each vertex w. Its initial

value is Nil. When a component C is detected, visit sets Comp(w) := C for each vertex

w that belongs to C (line 13). An auxiliary stack is used for this purpose. Each vertex is

stored onto the stack in the beginning of visit. When the component is detected, the vertices

37

(a)

g i

b

d

f h

j

a

c

e

C4 C2

C1 C3

(b)

Vertex Adjacency list

a (b, f, h)

b (c, a)

c (d, b)

d (e)

e (d)

f (g)

g (f, d)

h (i)

i (h, j, e, c)

j ()

Figure 3.2: (a) Graph G with four strong components. (b) The adjacency lists of G.

belonging to it are on top of the stack. visit removes them from the stack, sets their Comp(w)

variables, and inserts them into component C.

Example 3.1. Consider the graph in Figure 3.2(a). It consists of four strong components

C1 = {d, e}, C2 = {f, g}, C3 = {j}, and C4 = {a, b, c, h, i}, which we have encircled. In

Figure 3.3, we present the trace of one possible application of Tarjan’s algorithm to the graph.

We assume that the execution starts at vertex a. Tarjan’s algorithm processes the vertices

adjacent from a vertex v in the order in which they appear in the adjacency list of v. The

adjacency lists are presented in Figure 3.2(b). The trace lists the operations that Tarjan’s algo-

rithm does, i.e., entering and exiting vertices (lines 2 and 17 of Tarjan’s algorithm), modifying

the values of the Root and Comp variables (lines 3, 7, and 13 of Tarjan’s algorithm), creating

new components (line 10 of Tarjan’s algorithm), and storing vertices onto and removing them

from stack (lines 4 and 12 of Tarjan’s algorithm). We also present the current state of stack at

any given moment.

Besides Tarjan’s algorithm, another linear time strong component algorithm is presented

in many textbooks. The algorithm is attributed in [11] to R.Kosaraju and published in [108].

This algorithm is inferior to Tarjan’s algorithm, since it requires one depth-first traversal of the

input graph and another traversal of the graph obtained by reversing the edges of the input

graph.

3.1.1 Analysis

We prove now the correctness of Tarjan’s algorithm. The proof is rather detailed and differs

from the original presentation in [118]. It serves as a basis for the correctness proofs of the

new algorithms that we present later in this chapter. First, we give some definitions that

38

Operation Stack Operation Stack

enter(a) pop(stack) (f, c, b, a)

Root(a) := a Comp(g) := C2 (f, c, b, a)

push(a, stack) (a) pop(stack) (c, b, a)

enter(b) (a) Comp(f) := C2 (c, b, a)

Root(b) := b (a) exit(f) (c, b, a)

push(b, stack) (b, a) enter(h) (c, b, a)

enter(c) (b, a) Root(h) := h (c, b, a)

Root(c) := c (b, a) push(h, stack) (h, c, b, a)

push(c, stack) (c, b, a) enter(i) (h, c, b, a)

enter(d) (c, b, a) Root(i) := i (h, c, b, a)

Root(d) := d (c, b, a) push(i, stack) (i, h, c, b, a)

push(d, stack) (d, c, b, a) Root(i) := h (i, h, c, b, a)

enter(e) (d, c, b, a) enter(j) (i, h, c, b, a)

Root(e) := e (d, c, b, a) Root(j) := j (i, h, c, b, a)

push(e, stack) (e, d, c, b, a) push(j, stack) (j, i, h, c, b, a)

Root(e) := d (e, d, c, b, a) create C3 (j, i, h, c, b, a)

exit(e) (e, d, c, b, a) pop(stack) (i, h, c, b, a)

create C1 (e, d, c, b, a) Comp(j) := C3 (i, h, c, b, a)

pop(stack) (d, c, b, a) exit(j) (i, h, c, b, a)

Comp(e) := C1 (d, c, b, a) Root(i) := b (i, h, c, b, a)

pop(stack) (c, b, a) exit(i) (i, h, c, b, a)

Comp(d) := C1 (c, b, a) Root(h) := b (i, h, c, b, a)

exit(d) (c, b, a) exit(h) (i, h, c, b, a)

Root(c) := b (c, b, a) create C4 (i, h, c, b, a)

exit(c) (c, b, a) pop(stack) (h, c, b, a)

Root(b) := a (c, b, a) Comp(i) := C4 (h, c, b, a)

exit(b) (c, b, a) pop(stack) (c, b, a)

enter(f) (c, b, a) Comp(h) := C4 (c, b, a)

Root(f) := f (c, b, a) pop(stack) (b, a)

push(f, stack) (f, c, b, a) Comp(c) := C4 (b, a)

enter(g) (f, c, b, a) pop(stack) (a)

Root(g) := g (f, c, b, a) Comp(b) := C4 (a)

push(g, stack) (g, f, c, b, a) pop(stack) ()

Root(g) := f (g, f, c, b, a) Comp(a) := C4 ()

exit(g) (g, f, c, b, a) exit(a) ()

create C2 (g, f, c, b, a)

Figure 3.3: The trace of Tarjan’s algorithm applied to the graph of Figure 3.2.

are related to the depth-first search that Tarjan’s algorithm uses to traverse the input graph.

Similar definitions can be given for any algorithm that is based on a depth-first search.

Definition. Let G = (V,E) be a graph. A depth-first spanning forest of G induced by an

execution of Tarjan’s algorithm is a spanning forest F = (V,E ′) of G such that E ′ contains an

edge (v, w) of E iff procedure visit entered w via edge (v, w) at line 6 of Tarjan’s algorithm.

By this definition, the execution of visit(v) contains the execution of visit(w) iff a path

39

v
∗→w exists in the depth-first spanning forest. A graph usually has many possible depth-first

spanning forests, since the order of scanning the vertices at line 20 and the order of scanning

the edges at line 5 of Tarjan’s algorithm is not fixed.

Definition. A depth-first order of graph G = (V,E) induced by an execution of Tarjan’s

algorithm, denoted ≤τ , is a total order on the vertex set V such that v <τ w iff procedure

visit entered v before w in the execution of Tarjan’s algorithm.

Similarly to the depth-first spanning forests, a graph usually has many possible depth-first

orders. Note that if a depth-first spanning forest F contains a path v
∗→w, then v ≤τ w. The

converse is not necessarily true, since vertex v may be both entered and exited before w is

entered.

Definition. Given a graph G = (V,E) together with a depth-first spanning forest F = (V,E ′)

and a depth-first order ≤τ of G induced by an execution of Tarjan’s algorithm, the edge set E

is partitioned into four groups as follows. Let (v, w) be in E and let Tw be the subtree of F

rooted at w.

1. If (v, w) is in E ′, then (v, w) is a tree edge.

2. If v <τ w and (v, w) is not in E ′, then (v, w) is a forward edge.

3. If w ≤τ v and v is in Tw, then (v, w) is a back edge.

4. If w <τ v and v is not in Tw, then (v, w) is a cross edge.

Note that for each forward edge (v, w), the graph contains a path from v to w consisting

solely of tree edges and vertex w is in the subtree Tv of F rooted at v. Note also that a back

edge indicates a cycle in the graph.

Definition. An edge (v, w) such that v and w are in the same component C is called an

intracomponent edge. An edge (v, w) such that v and w are in two different components C1

and C2 is called an intercomponent edge.

We divide intracomponent edges further into intracomponent tree edges, intracomponent

forward edges, intracomponent back edges, and intracomponent cross edges. Similarly, we

divide intercomponent edges into intercomponent tree edges, intercomponent forward edges,

and intercomponent cross edges. Note that no intercomponent back edges exist, since a back

edge is always inside a component.

Definition. Given a depth-first order ≤τ of graph G and a strong component C of G, the

root of C is the smallest vertex of C in ≤τ .

The root of a strong component may be different in different executions of Tarjan’s algo-

rithm. The following lemma explains the name “root.”

Lemma 3.1. Let C be a strong component of a graph G, let F be a depth-first spanning forest

of G induced by an execution of Tarjan’s algorithm, and let r be the root of C in the same

execution. Then each vertex v of component C is in the subtree Tr of F rooted at r.

40

Proof. Suppose that C contains a vertex v that is not in Tr. Obviously v 6= r. Since r is

the root, visit has not entered v when it enters r, and since v is not in Tr, v is not entered

during the execution of visit(r). But neither can any vertex adjacent to v be in Tr, since then

v would be entered during the execution visit(u) for some vertex u adjacent to v. The same

argument can repeatedly be applied to all predecessors of v. Hence no predecessor of v is in

Tr. But this is a contradiction, since r is in Tr and r is a predecessor of v.

Definition. Let G be the condensation graph induced by the strong components of G. A leaf

of G is a strong component with no outgoing edges. The level of a strong component C is the

length of the longest path from C to a leaf in G.

We prove the correctness of Tarjan’s algorithm (and later the correctness of other algo-

rithms) by induction on the level of the strong component.

Lemma 3.2. For every vertex v, Root(v) ≤τ v.

Proof. At line 3 of visit, v is assigned to Root(v). At line 7, the minimum of Root(v) and

Root(w) is assigned to Root(v). Since Root(v) is not modified elsewhere, Root(v) ≤τ v.

Definition. The final candidate root of vertex x, denoted Fcr(x), is the vertex y such that

Root(x) = y at line 9 of Tarjan’s algorithm when procedure visit has processed all edges

leaving vertex x.

Theorem 3.3. Tarjan’s algorithm, presented in Figure 3.1, correctly detects the strong com-

ponents of the input graph.

Proof. A component C with root r is correctly detected iff Comp(x) = C for each vertex x

of C when visit exits the root r, and the contents of the auxiliary stack is the same as it was

before visit entered the root r. The proof consists of four parts (a)–(d). Given a component

C with root r, part (a) shows that for each vertex x in C, Fcr(x) is in C. Part (b) shows that

Fcr(r) = r. Part (c) shows that for each nonroot vertex x of C, Fcr(x) <τ x. Finally, part

(d) shows that parts (b) and (c) imply the correct detection of component C. In each part

of the proof, we use induction on the level of the component C.

(a) For each vertex v of a component C at level zero, Fcr(v) must be in C, since no edge

leaves C. Let the level of C be l > 0. Let v be any vertex in component C. When visit

processes an edge (v, w) and vertex w is in another component C ′, C ′ must be at a level

below l. If visit has not already entered w, it enters w and (by the induction hypothesis)

correctly detects C ′. If w is already visited, then (again by the induction hypothesis)

visit has correctly detected C ′. In both cases, Comp(w) 6= Nil at line 7 in visit(v), and

w is not used to update Root(v). Hence Fcr(v) is in C.

(b) Suppose, on the contrary, that Fcr(r) <τ r; by Lemma 3.2, Fcr(r) cannot be greater than

r. By (a), this implies that C contains a vertex x <τ r. Thus, x was entered before r,

and r cannot be the root of C, a contradiction.

(c) Suppose, on the contrary, that Fcr(x) = x for some vertex x 6= r in C. Let x be the

first vertex of C satisfying the test Root(x) = x at line 9 of visit during the execution

of Tarjan’s algorithm. Since both x and r are in C, one or more non-null paths x
+→r are

41

inside component C. Let Tx be the depth-first spanning tree rooted at x. Since r <τ x,

no path x
+→r completely lies in Tx. Let (v, w) be the first edge considered by visit such

that (v, w) is on a path x
+→r and v is in Tx, but w is not in Tx. Since w is not in Tx,

visit has entered it before x and inserted it onto the stack. Since x is the first vertex

of C satisfying the test Root(x) = x, w is still on the stack, and Comp(w) = Nil. Thus,

visit uses Root(w) in updating Root(v) and (by Lemma 3.2) Root(v) ≤τ w after (v, w)

is processed. Similarly, in each vertex u on the path x
∗→v, visit sets Root(u) ≤τ w.

In particular, visit sets Root(x) ≤τ w. Since w was entered before x, w <τ x. Thus,

Fcr(x) ≤τ Root(x) ≤τ w <τ x, a contradiction.

(d) Let C be a component with root r. By Lemma 3.1, all vertices of C are visited during the

execution of visit(r) and are inserted onto the stack in the order they are entered. If C is

at level l > 0, each component other than C visited during the execution of visit(r) is at

a level below l. By the induction hypothesis, these components are correctly detected. If

C is at level zero, no other component is visited during the execution of visit(r). Thus,

the processing of other components does not remove vertices of C from the stack. Each

vertex of C remains on the stack until the condition Root(v) = v is satisfied for some

vertex v of C at line 9 of visit(v). By (b) and (c), the condition is satisfied only for

the root r. Since all other components processed during visit(r) are correctly detected,

the vertices of C are on top of the stack. Since the vertices are inserted onto the stack

in the order they are entered, root r is the bottom-most vertex of C on the stack. Thus,

at lines 11–15 in visit(r), each vertex w of C is removed from the stack and Comp(w) is

set to C. When visit exits r, the contents of the stack is the same as it was when r was

entered. Thus, C is correctly detected.

Theorem 3.4. Tarjan’s algorithm runs in Θ(n + e) time, where n is the number of vertices

and e the number of edges in the input graph.

Proof. The tests at lines 6 and 21 guarantee that visit enters each vertex at most once.

The for-loop at line 20 in the main program considers each vertex once. Thus, visit enters

each vertex exactly once. The for-loop at lines 5–8 scans each edge leaving the vertex v once.

Since visit is applied once for each vertex v, all e edges are considered exactly once. Each

vertex is stored onto the stack at line 4. The repeat-loop at lines 11–15 removes each vertex of

a component from the stack. Since each vertex belongs to a single component, the repeat-loop

runs altogether n times. These are the major costs of the algorithm; other operations can be

done in constant time. Adding these costs together yields the Θ(n+ e) bound.

Finally, we present a theorem that forms a basis for many algorithms that are based on

Tarjan’s algorithm. For instance, the transitive closure algorithms that we study below are

based on this theorem.

Theorem 3.5. The order in which Tarjan’s algorithm detects the strong components of the

input graph G is a reverse topological order of the condensation graph G induced by the strong

components of G.

Proof. Suppose, on the contrary, that the components are not detected in a reverse topological

order, i.e., the graph contains two distinct components X and Y such that X is detected before

42

Y , and at least one path p goes from X to Y in the condensation graph G. Let Z be the last

component in path p before Y . If Y is not entered before or during the detection of X, then

Z cannot be entered either; otherwise Y would be entered via some edge leading from Z to Y .

By a similar argument, we can show that no component preceding Y in path p can be entered

before or during the detection of X. But at least X itself is entered before X is detected, a

contradiction. Thus Y is entered either before or during the detection of X. But if Tarjan’s

algorithm entered Y before X is detected, Y would be detected first, since no path leads from

Y back to component X, a contradiction.

3.1.2 Improvements

Although Tarjan’s algorithm is asymptotically optimal, it does some unnecessary work. If

the input graph is acyclic, each strong component consists of a single vertex. Thus, the

second traversal that marks the elements of a component is useless and the auxiliary stack is

unnecessary. Also cyclic graphs may contain such trivial components. We study next how the

second traversal can be eliminated when it is not needed.

Tarjan’s algorithm has the following property: a new strong component is detected when

processing its root vertex. During the second traversal that marks the vertices of the compo-

nent, we would have access to the root vertex even if it were not stored onto the stack. Our

first improved version of Tarjan’s algorithm, called newscc1 and presented in Figure 3.4 is

(1) procedure visit1(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) for each vertex w such that (v, w) ∈ E do begin

(5) if w is not already visited then visit1(w);

(6) if Comp(w) = Nil then Root(v) := min(Root(v),Root(w))

(7) end;

(8) if Root(v) = v then begin

(9) create a new component C;

(10) Comp(v) := C;

(11) insert v into component C;

(12) while top(stack) > v do begin

(13) w := pop(stack);

(14) Comp(w) := C;

(15) insert w into component C

(16) end

(17) end else push(v, stack);

(18) end;

(19) begin /* Main program */

(20) Initialize stack to contain a value < any vertex in V ;

(21) for each vertex v ∈ V do

(22) if v is not already visited then visit1(v)

(23) end.

Figure 3.4: Algorithm newscc1 stores only nonroot vertices on the stack.

43

based on this observation. The recursive procedure visit1 in algorithm newscc1 stores a

vertex v onto the stack only after it has processed all edges leaving v and knows that v is not

a component root (at line 17). Since the root vertex is not on the stack when the component

is detected, the stack is processed slightly differently in newscc1 compared to Tarjan’s algo-

rithm. Each nonroot vertex of a component is greater than the root in the depth-first order.

Therefore (at lines 12–16), we remove vertices from the stack as long as the topmost vertex

is greater than the root vertex (in the depth-first order) and assign C to Comp(w) for each

nonroot vertex w of the component. To prevent stack underflow, the stack is initialized to

contain a sentinel value smaller than any vertex of the input graph. The Comp variable of the

root vertex is set at line 9.

Example 3.2. Consider again the graph in Figure 3.2(a). In Figure 3.5, we present the trace

of one possible application of newscc1 to the graph. We assume that the execution starts at

vertex a, and that the vertices adjacent from a vertex v are processed in the order in which

they appear in the adjacency list of v. The adjacency lists are presented in Figure 3.2(b). As

we see, newscc1 stores only six vertices onto stack, whereas Tarjan’s algorithm stores all ten

vertices on stack.

Theorem 3.6. Algorithm newscc1, presented in Figure 3.4, correctly detects the strong

components of the input graph.

Proof. The proof is similar to the correctness proof of Tarjan’s algorithm above. We can

show that given a component C with root r: (a) for each vertex x in C, Fcr(x) is in C, (b)

Fcr(r) = r, and (c) for each nonroot vertex x of C, Fcr(x) <τ x. The only difference is in

showing how (b) and (c) imply (d), the correct detection of component C.

(d) Let C be a component with root r. Similarly to Lemma 3.1 we can show that all vertices

of C are visited during the execution of visit1(r). By (c), the condition Root(v) = v

at line 8 fails for each nonroot vertex v. Thus, each nonroot vertex is inserted onto the

stack at line 17. If C is at level l > 0, each component other than C visited during

the execution of visit1(r) is at a level below l. By the induction hypothesis, these

components are correctly detected. If C is at level zero, no other component is visited

during the execution of visit1(r). Thus, the processing of other components does not

remove vertices of C from the stack. Each vertex of C inserted onto the stack remains

there until the condition Root(v) = v is satisfied for some vertex v of C at line 8 in

visit1(v). By (b) and (c), the condition is satisfied only for the root r. Since all other

components processed during visit(r) are correctly detected, the vertices of C are on top

of the stack. Since r <τ w for each nonroot vertex w, each nonroot vertex w of C is

removed from the stack at lines 12–16 in visit1(r) and Comp(w) is set to C. Comp(r) is

set to C at line 10. When visit1 exits r, the contents of the stack is the same as it was

when r was entered. Thus, C is correctly detected.

Theorem 3.7. Algorithm newscc1 runs in Θ(n+ e) time, where n and e are the number of

vertices and the number of edges in the input graph, respectively.

Proof. Similar to the proof of Theorem 3.4.

44

Operation Stack Operation Stack

enter(a) () Comp(f) := C2 (g, b, c)

Root(a) := a () pop(stack) (b, c)

enter(b) () Comp(g) := C2 (b, c)

Root(b) := b () exit(f) (b, c)

enter(c) () enter(h) (b, c)

Root(c) := c () Root(h) := h (b, c)

enter(d) () enter(i) (b, c)

Root(d) := d () Root(i) := i (b, c)

enter(e) () Root(i) := h (b, c)

Root(e) := e () enter(j) (b, c)

Root(e) := d () Root(j) := j (b, c)

push(e, stack) (e) create C3 (b, c)

exit(e) (e) Comp(j) := C3 (b, c)

create C1 (e) exit(j) (b, c)

Comp(d) := C1 (e) Root(i) := b (b, c)

pop(stack) () push(i, stack) (b, c)

Comp(e) := C1 () exit(i) (i, b, c)

exit(d) () Root(h) := b (i, b, c)

Root(c) := b () push(h, stack) (h, i, b, c)

push(c, stack) (c) exit(h) (h, i, b, c)

exit(c) (c) create C4 (h, i, b, c)

Root(b) := a (c) Comp(a) := C4 (h, i, b, c)

push(b, stack) (b, c) pop(stack) (i, b, c)

exit(b) (b, c) Comp(h) := C4 (i, b, c)

enter(f) (b, c) pop(stack) (b, c)

Root(f) := f (b, c) Comp(i) := C4 (b, c)

enter(g) (b, c) pop(stack) (c)

Root(g) := g (b, c) Comp(b) := C4 (c)

Root(g) := f (b, c) pop(stack) ()

push(g, stack) (g, b, c) Comp(c) := C4 ()

exit(g) (g, b, c) exit(a) ()

create C2 (g, b, c)

Figure 3.5: The trace of newscc1 applied to the graph of Figure 3.2.

We examine now the possibility to further reduce the second traversal in Tarjan’s algorithm.

Obviously, if we have to output the components, we need an access to each vertex of the

component. But if we only want to detect the component roots, for instance, to compute the

number of strong components, we can do better than in newscc1.

Examine line 7 in Figure 3.1. This is the only place where we test whether the child

vertex w belongs to the same component as vertex v. Note that w belongs to the same

component as v iff Root(w) belongs to the same component as v. Tests Comp(w) = Nil and

Comp(Root(w)) = Nil always yield the same result. If we replace the test Comp(w) = Nil by

the test Comp(Root(w)) = Nil, we only have to access and modify the Comp values of the final

candidate roots. When a component C is detected, it suffices to set Comp(w) = C for each

final candidate root w in component C.

45

(1) procedure visit2(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) for each vertex w such that (v, w) ∈ E do begin

(5) if w is not already visited then visit2(w);

(6) if Comp(Root(w)) = Nil then Root(v) := min(Root(v),Root(w))

(7) end;

(8) if Root(v) = v then begin

(9) create a new component C;

(10) if top(stack) ≥ v then

(11) repeat

(12) w := pop(stack);

(13) Comp(w) := C

(14) until top(stack) < v;

(15) else Comp(v) := C;

(16) end else if Root(v) is not on stack then push(Root(v), stack);

(17) end;

(18) begin /* Main program */

(19) Initialize stack to contain a value < any vertex in V ;

(20) for each vertex v ∈ V do

(21) if v is not already visited then visit2(v)

(22) end.

Figure 3.6: Algorithm newscc2 stores only final candidate roots of nontrivial components
on the stack.

Our second improved version of Tarjan’s algorithm, called newscc2 and presented in

Figure 3.6, is based on this idea. Procedure visit2 stores each final candidate root of a

nontrivial component onto the stack at line 16. When a nontrivial component is detected,

its final candidate root vertices (at least one exists) are on top of the stack. visit2 removes

vertices from the stack until the topmost vertex is smaller than the actual root vertex (in the

depth-first order) and assigns C to their Comp variables at lines 10–14. If the component is

trivial, the algorithm only sets Comp(v) = C (at line 15). To prevent stack underflow, the

stack is initialized to contain a sentinel value smaller than any vertex of the input graph.

Example 3.3. Consider again the graph in Figure 3.2(a). In Figure 3.7, we present the trace

of one possible application of newscc2 on the graph. We assume that the execution starts at

vertex a, and that the vertices adjacent from a vertex v are processed in the order in which

they appear in the adjacency list of v. The adjacency lists are presented in Figure 3.2(b). As

we see, newscc2 stores only four vertices onto stack, whereas Tarjan’s algorithm stores all

ten vertices and newscc1 six vertices onto stack. The four vertices stored onto stack are the

roots of the nontrivial vertices and vertex b, which is the final candidate root of vertices c, h,

and i. Note that newscc2 changes the Comp variables of only five vertices. These are vertex

b and the roots of the components.

46

Operation Stack Operation Stack

enter(a) () Root(g) := f (a, b)

Root(a) := a () push(f, stack) (f, a, b)

enter(b) () exit(g) (f, a, b)

Root(b) := b () create C2 (f, a, b)

enter(c) () pop(stack) (a, b)

Root(c) := c () Comp(f) := C2 (a, b)

enter(d) () exit(f) (a, b)

Root(d) := d () enter(h) (a, b)

enter(e) () Root(h) := h (a, b)

Root(e) := e () enter(i) (a, b)

Root(e) := d () Root(i) := i (a, b)

push(d, stack) (d) Root(i) := h (a, b)

exit(e) (d) enter(j) (a, b)

create C1 (d) Root(j) := j (a, b)

pop(stack) () create C3 (a, b)

Comp(d) := C1 () Comp(j) := C3 (a, b)

exit(d) () exit(j) (a, b)

Root(c) := b () Root(i) := b (a, b)

push(b, stack) (b) exit(i) (a, b)

exit(c) (b) Root(h) := b (a, b)

Root(b) := a (b) exit(h) (a, b)

push(a, stack) (a, b) create C4 (a, b)

exit(b) (a, b) pop(stack) (b)

enter(f) (a, b) Comp(a) := C4 (b)

Root(f) := f (a, b) pop(stack) ()

enter(g) (a, b) Comp(b) := C4 ()

Root(g) := g (a, b) exit(a) ()

Figure 3.7: The trace of newscc2 applied to the graph of Figure 3.2.

Theorem 3.8. Algorithm newscc2, presented in Figure 3.6, correctly detects (the roots of)

the strong components of the input graph.

Proof. Here the correct detection of a component C with root r means that when visit2

exits r, the contents of the stack is the same as it was when r was entered, and Comp(w) = C

for each final candidate root of C. The proof resembles the correctness proofs of Tarjan’s

algorithm and newscc1 above. We can show, as in the proof of Theorem 3.3, that given a

component C with root r: (a) for each vertex x in C, Fcr(x) is in C, (b) Fcr(r) = r, and (c)

Fcr(x) <τ x for each nonroot vertex x of C. The only difference is in showing how (b) and

(c) imply (d), the correct detection of component C.

(d) Let C be a component with root r. Similarly to Lemma 3.1 we can show that all vertices

of C are visited during the execution of visit2(r). By (c), the condition Root(v) = v

fails for each nonroot vertex v at line 8 in visit2(v). Hence the final candidate roots of

all nonroot vertices are inserted once onto the stack at line 16. If C is at level l > 0, each

component other than C visited during the execution of visit2(r) is at a level below l. By

the induction hypothesis, these components are correctly detected. If C is at level zero,

47

no other component is visited during the execution of visit2(r). Thus, the detection of

other components during visit2(r) does not remove vertices of C from the stack. The

vertices of C that are inserted onto the stack remain there until the condition Root(v) = v

is satisfied for some vertex v of C at line 8 in visit2(v). By (b) and (c), the condition

is satisfied only for the root r. If C is a trivial component, i.e., C = {r}, r is not on

the stack and all vertices on the stack must be smaller than r. Hence the test at line

10 fails. Assigning C to Comp(r) at line 15 implies the correct detection of C. If C is

nontrivial, at least one vertex of C is on the stack. Since all other components that are

processed during visit2(r) are correctly detected, the vertices of C on the stack are the

topmost vertices. The test at line 10 succeeds, and each vertex w of C on the stack is

removed from the stack at lines 11–14, and Comp(w) is set to C. When visit2 exits r,

the contents of the stack is the same as it was when r was entered. Thus, C is correctly

detected.

Theorem 3.9. Algorithm newscc2 runs in Θ(n+ e) time, where n and e are the number of

vertices and the number of edges in the input graph, respectively.

Proof. The proof is similar to the proof of Theorem 3.4. We can check if a vertex is on the

stack in constant time if we keep this information in a Boolean vector or other appropriate

data structure.

We conjecture that the second traversal cannot be completely removed, at least without

changing the first traversal. If we remove the second traversal, we can access only the com-

ponent root r when we detect a new component. Thus, only the variable Comp(r) can be set

to C. After a nonroot vertex w has been processed, we do not necessarily have a fixed length

access path from w to the root of the component containing w. Thus, testing if w belongs to an

already detected component cannot be done in constant time, which slows the first traversal.

We analyze now how the number of vertices stored onto the stack differs in the three

algorithms. Let PT , P1, and P2 be the number of vertices stored onto the stack by Tarjan’s

algorithm and by algorithms newscc1 and newscc2, respectively, when applied to a graph

G. Tarjan’s algorithm stores all n vertices onto the stack. Thus, PT = n. newscc1 stores a

vertex onto the stack unless it is a component root. Thus, P1 = n− s, where s is the number

of strong components in the input graph. Let p(C) be the number of vertices stored onto the

stack by newscc2 when processing a component C. If C is trivial, no vertices are stored onto

the stack. If C is nontrivial, at least one vertex is not a final candidate root vertex and thus

not stored onto the stack. Thus, 0 ≤ p(C) ≤ |C| − 1, where |C| is the number of vertices

in component C. P2 =
∑
C∈Π p(C), where Π is the set of all strong components in the input

graph. Using the inequality for p(C), we get 0 ≤ P2 ≤ n − s = P1 < PT . Thus, Tarjan’s

algorithm always stores more vertices onto the stack than newscc1, and newscc2 stores at

most as many vertices onto the stack as newscc1.

48

3.2 Adapting Tarjan’s algorithm to transitive closure

computation

Two main strategies exist for employing strong component detection in computing the transi-

tive closure. The first is the strategy used in Purdom’s algorithm [101], which we described in

section 2.3.2. In this strategy, the strong components are detected and the transitive closure

is computed for the condensation graph induced by the components. The transitive closure of

the condensation graph is then converted to the transitive closure of the original graph. The

weakness in this strategy is that it requires several passes over the graph. This makes the

constant costs high.

The second strategy is based on a more direct adaptation of Tarjan’s algorithm to transitive

closure computation. The transitive closure is computed during a single pass over the input

graph by interleaving the detection of the strong components with the computation of the

successor sets. The problem with this strategy is that we do not have all the information

about the structure of the graph when we are traversing it. This may lead to redundant

operations in the successor set computation.

We begin our study using the second strategy. We introduce a simple transitive closure

algorithm, originally presented in [114], analyze its behavior and point out its weaknesses. In

the next subsections, we present new transitive closure algorithms that overcome the problems

in the simple algorithm and in other transitive closure algorithms that are based on strong

component detection.

The simple transitive closure algorithm, called simple tc and presented in Figure 3.8, is a

straightforward modification of Tarjan’s algorithm. Note that we could equally well have used

newscc1 as a basis for the algorithm. For transitive closure computation, we have added lines

5, 9, and 17 to Tarjan’s algorithm.

To compute the transitive closure, we define a variable Succ(v) for each vertex v. It contains

the (partially computed) successor set of vertex v. Initially (at line 5), Succ(v) contains only

the vertices adjacent from v. At line 9, the successors of a child vertex w computed so far

are inserted into Succ(v). When a strong component is detected, the successor set of the root

vertex is correctly computed. Other vertices of the component may have incomplete successor

sets. At line 17, the successor set of the component root is distributed to the other members

of the component.

Example 3.4. In Figure 3.9(a), we present again graph G and in Figure 3.9(b) the successor

sets of the vertices of G. As we see, the vertices of a strong component have the same successor

set. Examine what happens when we apply simple tc on graph G. Assume that the execution

starts at vertex a and that the vertices adjacent from a vertex v are processed in the adjacency

list order, presented in Figure 3.10(a). Each vertex except j gets a non-empty partial successor

set. We present these sets in Figure 3.10(b). The total size of the partial successor sets is 62.

We need 17 union operations for computing the successor sets, one per each edge of the graph.

If the graph is traversed in some other order, the size of the partial successor sets may be

slightly different.

Theorem 3.10. Algorithm simple tc, presented in Figure 3.8, correctly computes the tran-

sitive closure of the input graph G.

49

(1) procedure simple tc(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) push(v, stack);

(5) Succ(v) := {w | (v, w) ∈ E};
(6) for each vertex w such that (v, w) ∈ E do begin

(7) if w is not already visited then simple tc(w);

(8) if Comp(w) = Nil then Root(v) := min(Root(v),Root(w))

(9) Succ(v) := Succ(v) ∪ Succ(w);

(10) end;

(11) if Root(v) = v then begin

(12) create a new component C;

(13) repeat

(14) w := pop(stack);

(15) Comp(w) := C;

(16) insert w into component C;

(17) Succ(w) := Succ(v); /* Pointer assignment, not a copy */

(18) until w = v

(19) end

(20) end;

(21) begin /* Main program */

(22) stack := ∅;
(23) for each vertex v ∈ V do

(24) if v is not already visited then simple tc(v)

(25) end.

Figure 3.8: Algorithm simple tc: Tarjan’s algorithm adapted to transitive closure compu-
tation.

Proof. The strong components are detected as in Tarjan’s algorithm. We only have to show

that the successor sets are correctly computed. Let C be a strong component and r its root.

Since Succ(r) is distributed to the other members of C at line 17, we have to show that when

all edges leaving r are processed, Succ(r) contains a vertex v iff G contains a non-null path

r
+→v. The only-if part is obvious, since simple tc adds new successors to a successor set

Succ(v) only by employing edges leaving v. We show the if part by induction on the level of

component C.

(i) Let C = {r} be a trivial component at level zero. At line 5 in simple tc(r), r is inserted

into Succ(r) if G has an edge (r, r). Thus, Succ(r) is correctly computed. Let C be a

nontrivial component at level zero and v a vertex of C. Since C is nontrivial, it has a vertex

u such that G contains edge (u, v). Thus, each vertex v of C is inserted into the set Succ(u)

of some vertex u in C at line 5 in simple tc(u). We show that the elements of Succ(u) are

added into Succ(r). For each vertex u 6= r in C, the depth-first spanning forest F induced

on the execution of simple tc contains a non-null path p = (v0, v1), . . . , (vk−1, vk), where

v0 = r and vk = u. Thus, the execution of simple tc(vi−1) contains the execution of

simple tc(vi) for 1 ≤ i ≤ k. When visit returns from vertex vi to vertex vi−1, Succ(vi)

50

(a)

g i

b

d

f h

j

a

c

e

C4 C2

C1 C3

(b)

Vertex Successors

a (a, b, c, d, e, f, g, h, i, j)

b (a, b, c, d, e, f, g, h, i, j)

c (a, b, c, d, e, f, g, h, i, j)

d (d, e)

e (d, e)

f (d, e, f, g)

g (d, e, f, g)

h (a, b, c, d, e, f, g, h, i, j)

i (a, b, c, d, e, f, g, h, i, j)

j ()

Figure 3.9: (a) Graph G with four strong components. (b) The successor sets of the vertices
of G.

(a)

Vertex Adjacency list

a (b, f, h)

b (c, a)

c (d, b)

d (e)

e (d)

f (g)

g (f, d)

h (i)

i (h, j, e, c)

j ()

(b)

g i

b

d

f h

j

a

c

e

{d,e,f,g} {a,b,c,d,e,h,i,j}

{}

{a,b,c,d,e,f,g,h,i,j}

{a,b,c,d,e}

{d,e}

{d,e,f,g} {a,b,c,d,e,h,i,j}

{a,b,c,d,e,f,h}

{d,e}

Figure 3.10: (a) The adjacency lists of graph G of Figure 3.9(a). (b) The partial successor
sets of the vertices when simple tc is applied to G.

51

is added to Succ(vi−1) in the union operation at line 9 of simple tc(vi−1). Thus, when

edge (v0, v1) has been processed, Succ(r) contains Succ(u).

(ii) Let C be a component at level l > 0. The correct insertion of each vertex v of C into

Succ(r) can be shown as in the induction basis. We show now that if vertex v is not in

C and a non-null path r
+→v exists, then v is inserted into Succ(r). The path r

+→v can be

divided into three parts: a possibly null path r
∗→x inside C, an edge (x, y), and a possibly

null path y
∗→v outside C. If y

∗→v is null, then y = v. Thus, v is adjacent from x and is

inserted into Succ(x) at line 5 in simple tc(x). If y
∗→v is non-null, then v is a successor

of y. Component C ′ that contains y is at a level below l. By the induction hypothesis, the

successors of component C ′ are correctly detected. Thus, Succ(y) contains all successors

of y before the union at line 9 in simple tc(x), and v is inserted into Succ(x) when the

union at line 9 is executed. Without loss of generality, we can assume that path r
∗→x is

in the depth-first spanning forest F induced by the execution of simple tc. If x 6= r,

the inclusion of Succ(x) into Succ(r) can be shown as in the induction basis. Thus, v is

inserted into Succ(r).

The most time-consuming operations in simple tc are the successor set operations. The

time required by these operations depends on the data structures that are used to implement

the successor sets.

Common set data structures, which can be used to implement the successor sets, are bit

matrices and bit vectors, ordered and unordered lists, and ordered binary search trees, which

may or may not be balanced. Another possible data structure is an unordered list augmented

with a bit vector; the contents of the list are duplicated in the bit vector, i.e., for each vertex

vi in the list, the corresponding position i of the bit vector holds one and other positions hold

zeros.

In computing the worst-case execution times, we use the following worst-case bounds for the

different set operations. In the bit matrix and bit vector representations, the initialization of

an empty set takes O(n) time. The membership test and the insertion operation take constant

time, and the union operation takes O(n) time. In the list representation (both ordered and

unordered), the initialization of an empty set takes constant time. The membership test and

the insertion and union operations take O(n) time. (In the union operation of unordered lists,

we need a bit vector to speed up the duplicate elimination.) In the ordered binary search tree

representation, the initialization of an empty set takes constant time. The membership test

and the insertion operations take O(n) time if the tree is not balanced and O(log n) time if the

tree is balanced. The union operation takes O(n) time. In the list representation augmented

with bit vectors, the initialization of an empty set takes O(n) time. The membership test and

the insertion operation take constant time, and the union operation takes O(n) time.

We give two kinds of worst-case execution time bounds. A worst-case bound of the first kind

describes the execution time independent of the successor set implementation, i.e., using the

number of initialization, membership test, insertion, and union operations needed. A worst-case

bound of the second kind describes the execution time when the successor set implementation

is fixed. To describe the execution time independent of the successor set implementation, we

use the following notation:

Z(n) The maximum time of creating an empty set that can hold n elements.

52

F (n) The maximum time of a membership test in a set of at most n elements.

I(n) The maximum time of inserting an element into a set of at most n elements.

U(n) The maximum time of unioning two sets of at most n elements.

We use n and e to denote the number of vertices and edges in the input graph, respectively. We

omit the term O(n+e) representing the scanning of the input graph and the strong component

detection, although it sometimes, e.g., when e = 0, is the major cost.

Theorem 3.11 gives the implementation independent worst-case bound of simple tc.

Theorem 3.11. Algorithm simple tc runs in O(nZ(n) + eI(n) + eU(n)) time in the worst

case.

Proof. A partial successor set is initialized at line 5 by creating an empty successor set,

scanning the edges leaving v, and inserting the heads of the edges into the successor set.

Since e edges and n successor sets exist, this takes O(nZ(n) + eI(n)) total time. Line 9 is

executed e times, once for each edge. Hence the unions take O(eU(n)) time in the worst case.

The pointer assignments at line 17 take Θ(n) time. Summing these terms yields the limit

O(nZ(n) + eI(n) + eU(n)).

Corollary 3.12. Algorithm simple tc runs in O(ne) time in the worst case when the successor

sets are implemented as ordered lists or ordered binary trees.

This is the best worst-case bound that can be achieved with simple tc when the usual

successor set data structures discussed above are used.

Although simple tc traverses the input graph exactly once, it is often inefficient. As

Example 3.4 showed, the total size of the partial successor sets and the number of union

operations needed to create these sets is often high. The next example reveals a severe problem

in simple tc.

Example 3.5. Figure 3.11 presents a cycle of n vertices. Assuming that simple tc starts

at vertex v1, it enters the vertices recursively in order v1, v2, . . . , vn. For each vertex vi,

simple tc initializes the successor set Succ(vi) to {vi+1} at line 5. Succ(vn) is initialized

to {v1}. simple tc does not traverse (vn, v1), since v1 is already visited. simple tc adds the

contents of Succ(v1) into Succ(vn). After this, Succ(vn) = {v1, v2}. Then simple tc exits the

vertices in order vn, vn−1, . . . , v1. When simple tc exits vertex vi+1, it adds Succ(vi+1) into

Succ(vi). This way, each vertex receives a partial successor set that is larger than the successor

set of its child vertex. The total memory requirement for these sets is Ω(n2), and the execution

takes Ω(n2) time. This is inefficient, since the graph only has n edges and only contains one

strong component.

Example 3.5 is not an exception, but rather the rule. simple tc does not avoid the

redundant operations caused by strong components.

To design a better algorithm, we analyze the deficiencies in simple tc that lead to large

partial successor sets and unnecessary successor set operations. Some of these deficiencies

are avoided in previous transitive closure algorithms that compute the successor sets during

the detection of strong components, namely Eve’s and Kurki-Suonio’s algorithm [40], Ebert’s

algorithm [36], and the algorithm gdftc by Ioannidis et al. [64]. However, considerable

improvements are still possible.

53

vn

v
1

v
3

v
5

v
n-1

v
2

v
4

{v
1
, v

2
, ..., v

n
}

{v
1
, v

2
, v

4
, v

5
, ..., v

n
}

{v
1
, v

2
, v

6
, v

7
, ..., v

n
}

{v
1
, v

2
}{v

1
, v

2
, ..., v

n
}

{v
1
, v

2
, v

5
, v

6
, ..., v

n
}

{v
1
, v

2
, v

n
}

Figure 3.11: A cycle with partially computed successor sets.

A deficiency in simple tc is that the algorithm inserts the members of a component C into

Succ(C) exactly as it inserts the other successors into Succ(C). This produces large partial

successor sets even when most successors of a component are inside that component. To get a

better strategy, we need the conditions for inserting a component member into the successor

set of that component. First, if the component has more than one member, all component

members are successors of each other. Second, if the component has only one member v and

an edge (v, v) exists, then v is its own successor. The better strategy is to record self-loop

edges (v, v) and ignore all other intracomponent edges when initializing the partial successor

sets at line 5 in simple tc. When a component is detected, we insert the component members

into the successor set of the component iff the component has more than one vertex or only a

single vertex v and a self-loop (v, v) exists. This way we can insert the component members

into the successor set of the component in O(n+e) time. The processing of the example graph

in Figure 3.11 would take O(n) time instead of O(n2) time.

Separating the processing of component members from the processing of other successors

makes another optimization possible. Instead of building the successor sets from vertices, we

can build them from strong components and save much space. Thus, we actually compute the

transitive closure of the condensation graph induced by the strong components as in Purdom’s

seminal algorithm [101]. Here we benefit from the property of Tarjan’s algorithm that the

components are detected in a reverse topological order, i.e., if a path from a component C

to a different component C ′ exists, then C ′ is detected first. Unlike in Purdom’s algorithm,

no separate topological sorting of the components is needed. Storing strong components in-

stead of vertices in the successor sets saves much memory space. The members of the strong

components and the successor sets that contain strong components bear the same information

as the successor sets that contain vertices. Answering a query like “is vertex u a successor

of vertex v?” can be implemented by checking if Comp(u) is contained in Succ(Comp(v)).

54

l

a

c

e

g

i k

b d

f h

j

Figure 3.12: An example graph that leads to redundant operations in simple tc.

All successors of a vertex v can be enumerated by listing the members of the components in

Succ(Comp(v)). The computational complexity of answering these queries is here not greater

than if the successor sets contained vertices instead of components. The previous algorithms

[36, 40, 64] do not use either of these optimizations.

Another deficiency in simple tc is that it uses all edges in computing the successor sets.

It adds the successor set of the head of each edge to the successor set of the tail of that edge. In

Example 3.5, this results in n union operations of partial successor sets of size O(n). Another

example is given below.

Example 3.6. Figure 3.12 shows a graph with a strong component C1 = {a, b, c, d, e} that

is connected to an acyclic subgraph. If simple tc traverses the graph starting at vertex

a, it propagates the vertices of the acyclic subgraph from vertex e to root vertex a via all

intracomponent edges, requiring 10 union operations.

A more careful analysis shows that only a subset of all edges is needed to correctly propagate

the successor sets. All forward edges can be ignored, since for each forward edge (v, w), the

input graph contains a path v
∗→w consisting solely of tree edges. The successors of w are added

into the successors of v via this path. All back edges and intracomponent cross edges can be

ignored, since they produce no new successors to the successor set of the root vertex of the

component containing the edge. Ebert’s algorithm [36] and the algorithm gdftc by Ioannidis

et al. [64] avoid forward edges, back edges, and intracomponent cross edges. These algorithms

only use tree edges and intercomponent cross edges to propagate successor sets. Eve’s and

Kurki-Suonio’s algorithm does not use any intracomponent edges to propagate the successor

sets. Instead, when the component is detected, the algorithm unions the partial successor sets.

The number of union operations needed to combine the partial successor sets is the same as in

55

a

c

e

b

d f

Figure 3.13: An example graph that causes simple tc to add Succ(c) twice to Succ(a).

Ebert’s algorithm and algorithm gdftc. The weakness in Eve’s and Kurki-Suonio’s algorithm

is that it propagates successor sets via intercomponent forward edges.

Further, when we are processing an edge (v, w), we should not add Succ(w) again to Succ(v)

if Succ(w) is already a subset of Succ(v). For instance, if simple tc is applied to the graph in

Figure 3.13, the successor set Succ(c) is added twice to Succ(a), once via edge (a, c) and once

via path (a, b), (b, c). In general, this happens always when simple tc is applied to any graph

having pairs of vertices that are connected via multiple paths. Detecting all situations when a

successor set Succ(w) is a subset of the target set Succ(v) requires a general set containment

test and is probably too expensive, but we can detect many such situations if we use the

following observation: a completely computed successor set Succ(w) is a proper subset of

another completely computed successor set Succ(v) iff Succ(v) contains w. Thus, if we insert

a vertex w and its successor set Succ(w) into another successor set Succ(v) always at the same

time, we can avoid inserting Succ(w) into Succ(v) again simply by checking if w is a member

of Succ(v). Obviously, all successor sets should be initialized to empty sets. This strategy

is used in some previous transitive closure algorithms that compute the successor sets after

detecting the components [45, 64, 101], but we can use it also with an algorithm that computes

the successor sets during the detection of the strong components.

Yet another deficiency in simple tc, which is also present in the previous algorithms

[36, 40, 64], is that simple tc uses Succ(v) as the target of the union operation when it is

processing the edges leaving v. A better strategy would be to add the successor set Succ(w)

of the head of an edge (v, w) directly into the successor set of the root of Comp(v), but this is

not possible in an algorithm like simple tc. During the detection of a component C, we have

no single location associated with C, where we could insert all its successors. Fortunately, we

can do better than in simple tc and in the previous algorithms by using only some partial

successor sets as targets of unions. We can use the following heuristic. When we are processing

an edge (v, w), we insert Succ(w) into Succ(Root(v)), the partial successor set of the current

candidate root vertex. This reduces the number and the total size of the partial successor sets

56

that are targets of insertions. This strategy is used in none of the previous algorithms.

3.3 New algorithm CR TC

We describe now a new transitive closure algorithm, called cr tc and presented in Figure 3.14,

that uses the optimizations described above. cr tc scans the input graph only once and builds

the successor sets from strong components instead of vertices. Like simple tc, cr tc uses

Tarjan’s algorithm to detect the strong components. We could have based cr tc on newscc1

equally well, and even on newscc2 if we only wanted to compute the transitive closure of the

condensation graph.

When entering a vertex v, cr tc initializes Succ(v) to an empty set at line 5. During the

(1) procedure cr tc(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) push(v, stack);

(5) Succ(v) := {}; SelfLoop(v) := false;

(6) for each vertex w such that (v, w) ∈ E do begin

(7) if w = v then SelfLoop(v) := true

(8) else begin

(9) if w is not already visited then cr tc(w);

(10) if Comp(w) = Nil then Root(v) := min(Root(v),Root(w))

(11) else if (v, w) is not a forward edge and Comp(w) 6∈ Succ(Root(v)) then

(12) Succ(Root(v)) := Succ(Root(v)) ∪ {Comp(w)} ∪ Succ(Comp(w));

(13) end

(14) end;

(15) if Root(v) = v then begin

(16) create a new component C;

(17) if top(stack) 6= v or SelfLoop(v) then Succ(C) := Succ(v) ∪ {C}
(18) else Succ(C) := Succ(v);

(19) repeat

(20) w := pop(stack);

(21) Comp(w) := C;

(22) insert w into component C;

(23) if w 6= v and Succ(w) 6= ∅ then Succ(C) := Succ(C) ∪ Succ(w);

(24) until w = v

(25) end

(26) end;

(27) begin /* Main program */

(28) stack := ∅;
(29) for each vertex v ∈ V do

(30) if v is not already visited then cr tc(v)

(31) end.

Figure 3.14: Algorithm cr tc, the “candidate root” transitive closure algorithm.

57

detection of a strong component, cr tc records the self-loop edges (v, v) (at line 7), but does

not use other intracomponent edges for successor set generation. Only intercomponent tree

and cross edges are used for this purpose. When processing an edge (v, w), cr tc does not

automatically add Succ(w) into Succ(v) as simple tc does. Instead, cr tc checks at line 11

that (v, w) is not a forward edge, i.e., it is an intercomponent tree or cross edge, and that

Comp(w), the component containing w, is not already in Succ(Root(v)), the partial successor

set of the current candidate root vertex of v. If these tests are satisfied, cr tc adds Comp(w)

and Succ(Comp(w)) into Succ(Root(v)) at line 12. The use of Root(v) instead of v here gives

the algorithm the name “candidate root transitive closure algorithm,” cr tc, for short. Vertex

v can be seen as a mediator between the component Comp(w) and the candidate root vertex

Root(v). Note that since Root(v) is updated during the processing of the edges leaving v, the

successor sets of different vertices adjacent from v may be inserted into the partial successor

sets of different candidate root vertices. When C is detected, cr tc inserts C into Succ(C)

(at line 17) if C contains more than one vertex or if cr tc has detected a self-loop (r, r).

Obviously, C contains more than one vertex iff the topmost vertex on the vertex stack is

different from the root vertex r. To get the full successor set, cr tc unions the nonempty

partial successor sets of the component members at line 23.

The strategy used in cr tc usually decreases the number and the total size of the partial

successor sets compared to simple tc. Decreasing the number of different partial successor

sets increases the probability that component Comp(w) and Succ(Comp(w)) are already in a

partial successor set S where we try to add them, in which case we can omit inserting them

again.

Example 3.7. Consider again the graph G, now presented in Figure 3.15. If we apply cr tc

to G starting at vertex a, and the adjacency lists are the same as in our previous examples

(see Figure 3.10(a)), we get four non-empty partial successor sets and their total size is six.

To create these sets, cr tc needs seven union operations. Five of these unions are needed

to propagate successor sets via the intercomponent edges that are drawn solid in Figure 3.15

and two are needed to combine the partial successor sets of nonroot vertices. Compare this

to Example 3.4 where we applied simple tc to G. There we had nine non-empty partial

successor sets, the total size of the sets was 62, and simple tc needed 17 union operations to

compute them.

The number of non-empty partial successor sets that cr tc creates, the total size of these

sets, and the number of union operations needed depend on the order in which the graph is

traversed. For instance, if we change the order of vertices in the adjacency lists of vertex b

and c to (a, c) and (b, d), respectively, the number of non-empty partial successor sets and the

total size of the sets both decrease by one.

Theorem 3.13. Algorithm cr tc, presented in Figure 3.14, correctly computes the transitive

closure of the input graph G.

Proof. The strong components are detected as in Tarjan’s algorithm. We have to show that

the successor sets are correctly computed. We show that after the execution of cr tc, the

successor set Succ(C) of a component C contains a component X iff G contains a non-null

path v
+→w such that vertex v is in C and vertex w is in X.

58

e

g i

b

d

f h

j

a

c

Succ(h) = {C1, C3}

C4 C2

C1 C3

Succ(c) = {C1}

Succ(f) = {C1}

Succ(a) = {C1, C2}

Figure 3.15: Graph G and the non-empty partial successor sets of the vertices when cr tc
is applied to G.

We can prove the only-if part by showing that the following invariant holds after any number of

union operations in cr tc: a successor set Succ(C) or a partial successor set Succ(u), u ∈ C,

contains component X only if G contains a non-null path v
+→w such that v is in C and w is

in X.

We prove the if part by induction on the level of component.

(i) Let C = {r} be a trivial component at level zero. At line 5 cr tc assigns false to

SelfLoop(v). If G contains an edge (r, r), cr tc assigns true to SelfLoop(v) at line 7.

Since no edge leaves component C, Succ(r) is empty when cr tc has processed all edges

leaving r. When component C is detected, the topmost element of the stack is r, and the

test top(stack) 6= v at line 17 fails. Thus, cr tc correctly assigns {C} to Succ(C) if the

input graph contains a self-loop (r, r) and otherwise assigns ∅ to Succ(C). Let C be a

nontrivial component at level zero. Since no edge leaves component C, the successor sets

of the members of C are empty when cr tc has detected C. Since C is non-empty and

since cr tc entered the root r of C before the other vertices of C, the topmost element

of the stack is not r. Thus, cr tc correctly assigns {C} to Succ(C) at line 17.

(ii) Let C be a component at level l > 0. The correct insertion of C into Succ(C) can be

shown as in the induction basis. We show that cr tc correctly inserts the successor

components other than C into Succ(C). Since Succ(C) is constructed by unioning the

non-empty partial successor sets of the vertices of C, we show that cr tc inserts each

successor component other than C into the partial successor set of some vertex of C.

Each successor component that is not an immediate successor of C is a successor of some

immediate successor of C. Each immediate successor component of C is at a level below l

and, by the induction hypothesis, has its successor set correctly constructed. Hence each

59

successor component of C that is not an immediate successor is in the successor set of

some immediate successor of C. It suffices to show that all immediate successors and their

successor sets are correctly added into the partial successor set of some vertex v in C. Let

X be an immediate successor of C and let (v, w) be an edge leading from C to X. When

cr tc is processing edge (v, w), it is either a tree edge, a cross edge, or a forward edge.

If (v, w) is a tree edge or a cross edge, cr tc adds X and Succ(X) into Succ(Root(v))

at line 12. Root(v) is in C, and we are done. If (v, w) is a forward edge, a path v
+→w

consisting solely of tree edges exists. This path can be split into three parts: a path v
∗→a,

an edge (a, b), and a path b
∗→u, where a is in C and b is in a component Y adjacent

from C. If Y = X, cr tc adds X and Succ(X) into Succ(Root(a)) when processing edge

(a, b). Root(a) is in C, and we are done. If Y 6= X, then X is a successor component of Y

and by the induction hypothesis has correctly been inserted into Succ(Y). When cr tc

processes edge (a, b), it adds Succ(Y) that contains X into Succ(Root(a)). Root(a) is in

C, and we are done.

If we express the worst-case execution times of simple tc and cr tc using n and e as the

only parameters, we get the same worst-case bound, namely O(ne). However, as our examples

have shown, cr tc is more efficient in some situations. To make the difference between the

execution times of simple tc and cr tc explicit, we have to use more fine-grained parameters

than n and e. We introduce parameters that represent the sizes of some subsets of V , the set

of vertices, and E, the set of edges. We express the worst-case execution time of cr tc using

these parameters and show that cr tc has a better worst-case bound than simple tc.

Theorem 3.14. Algorithm cr tc runs in O(nZ(n) + eoctF (n) + (eoct1 + scyc)I(n) + (n1 +

eoct1)U(n)) time in the worst case. Here eoct is the number of intercomponent tree and cross

edges in the input graph, and eoct1 is the number of intercomponent tree and cross edges (v, w)

such that Comp(w) is not in Succ(Root(v)) at line 11 of cr tc(v). scyc is the number of cyclic

components, i.e., nontrivial components and trivial components with a self-loop edge. n1 is

the number of nonroot vertices with a non-empty partial successor set.

Proof. Initializing the partial successor sets at line 5 takes O(nZ(n)) total time. The self-

loop detection at line 7 and the forward edge detection at line 11 take constant time per

each edge, i.e., O(e) total time in the worst case. The set membership lookup at line 11 is

executed once per each intercomponent tree or cross edge. This takes O(eoctF (n)) total time

in the worst case. The insertion and union operations at line 12 are executed once per each

intercomponent tree or cross edge (v, w) such that Comp(w) is not already in Succ(Root(v)).

This takes O(eoct1(I(n) + U(n))) total time in the worst case. The insertion operation at line

17 is executed once per each cyclic component. This takes O(scycI(n)) total time in the worst

case. The union at line 23 is executed once per each nonroot vertex having a nonempty partial

successor set. This takes O(n1U(n)) total time in the worst case. When we sum these terms,

we get O(nZ(n) + eoctF (n) + (eoct1 + scyc)I(n) + (n1 + eoct1)U(n)).

Note that the number of cross edges in the graph depends on the order in which the

algorithm happens to scan the vertices and the adjacency lists. Thus, the values of eoct and

eoct1 are not fixed for a given graph. We know, however, that eoct1 ≤ eoct ≤ eo ≤ e, where eo is

the number of intercomponent edges. Further, we know that scyc ≤ s, and n1 ≤ n− s, where

s is the number of strong components in the input graph.

60

We present next the worst-case bounds that we get with different successor set representa-

tions.

Corollary 3.15. Algorithm cr tc runs inO(n2+neoct1) time in the worst case when bit vectors

or lists augmented with bit vectors are used to implement the successor sets. Algorithm cr tc

runs in O(n(n1 + scyc + eoct)) time in the worst case when lists are used to implement successor

sets. Algorithm cr tc runs in O((scyc + eoct) log n+n(n1 + eoct1)) time in the worst case when

balanced ordered binary trees are used to implement the successor sets.

Assume that lists are used to represent the successor sets in cr tc. Thus, the worst-case

bound is O(n(n1 + scyc + eoct)). For each cyclic component, a graph contains at least one

edge. For each nonroot vertex, the graph contains additionally one edge. Thus, n1 + scyc ≤
(n− s) + scyc ≤ e, and O(n(n1 + scyc + eoct)) = O(n(e + eoct)) = O(ne). Thus, the worst-case

bound of cr tc is at most as great as the worst-case bound of simple tc.

Assume that bit vectors or lists augmented with bit vectors are used to represent the

successor sets in cr tc. Thus, the worst-case bound is O(n2 + neoct1). neoct1 is at most as

great as ne. An infinite set of graphs (and their traversals) exists, for which neoct1 is negligible

compared to ne (for instance, all graphs consisting of a single strong component). When e > n,

ne is greater than n2; when the graph is dense, n2 is negligible compared to ne. Thus, when

e > n, cr tc has a better worst-case bound than simple tc.

3.4 New algorithm STACK TC

Compared to simple tc, cr tc reduces the number and the total size of the partial successor

sets generated for nonroot vertices and the number of set operations. However, some inputs

cause cr tc to compute partial successor sets that are not needed after the computation.

Combining the partial successor sets requires several union operations, which are the most

expensive operations in transitive closure computation. We would like to eliminate all partial

successor sets generated for nonroot vertices and thus avoid the expensive union operations

required to combine them. The algorithm that we seek should generate exactly one successor

set per each strong component. The problem is that no single location is associated with an

incomplete strong component, where we could insert its successors. Thus, if we construct the

successor set of a strong component during the detection of that component, we cannot avoid

building partial successor sets and unioning them. The other strategy that is used in transitive

closure algorithms presented in the literature [64, 91, 101, 105] is to construct the successor set

of a component only after the component is detected or only after all components are detected.

The problem with the previous algorithms is that they scan the input graph at least twice.

In this section, we present a new transitive closure algorithm that generates exactly one

successor set per each strong component without scanning the input graph twice. The new

algorithm delays the construction of the successor set Succ(C) of component C until C is

detected, thus avoiding the creation of partial successor sets for nonroot vertices. The algo-

rithm avoids scanning the input graph twice, since during the detection of component C, the

algorithm collects components adjacent from C that are later needed in constructing Succ(C).

An auxiliary stack, resembling the vertex stack of Tarjan’s algorithm, is used for this purpose.

When a component C is detected, the components that were stored onto the stack during the

61

detection of C are removed from the stack and the successor set of the component is computed

by unioning the set of these components and their successor sets. To minimize the number

of union operations needed, the algorithm sorts the components on the stack in a topological

order before computing the successor set.

The new algorithm, called stack tc1, is presented in Figure 3.16. Like cr tc, stack tc

stores strong components instead of vertices into the successors sets. The insertion of com-

ponent C into its own successor set Succ(C) is handled as in cr tc. stack tc processes an

edge (v, w) leaving a vertex v like cr tc, except when (v, w) is an intercomponent tree or

cross edge. Instead of adding Comp(w) and Succ(Comp(w)) into Succ(Root(v)), stack tc

stores Comp(w) in the auxiliary stack cstack. This is done at line 13 in stack tc. When a

component C is detected, stack tc creates a new successor set Succ(C). If C is nontrivial or

if C = {r} and the input graph contains a self-loop (r, r), stack tc inserts C into Succ(C). At

lines 20–21, stack tc sorts the components that were stored onto cstack during the detection

of C into a topological order and eliminates duplicates. To know the number of components

that are stored onto cstack during the detection of component C, stack tc stores the current

height of cstack into a local variable SavedHeight(v) at line 5. After sorting the components

into a topological order, stack tc removes the components from cstack at lines 22–25. For

each component X removed from cstack, stack tc checks if X is already in Succ(C). If X

is not in Succ(C), stack tc adds X and Succ(X) into Succ(C). If X is already in Succ(C),

every component Y in Succ(X) also is in Succ(C), and stack tc ignores X.

The details of the sorting are not presented in Figure 3.16. It can be done efficiently

in the following way. Let r be the root of component C. Scan the components on cstack

between the top and SavedHeight(r) and use a bit vector to record the components that are

present, removing duplicates. If the number of unique components remaining on cstack above

SavedHeight(r) is small, i.e., a number x such that x log x is smaller than n, sort them into

the topological order using some common sorting algorithm. Otherwise, scan the bit vector to

obtain the components directly in the topological order.

Note that cstack and vstack could be merged into a single stack.

Example 3.8. Consider again graph G presented in Figure 3.15(a). In Figure 3.17, we present

the condensation graph G induced by the strong components of G. If we apply stack tc to

G starting at vertex a and the adjacency lists are the same as in Figure 3.15(b), we need only

three union operations to compute the transitive closure. The edges of the condensation graph

that cause these unions are drawn solid whereas other edges are drawn dashed in Figure 3.17.

In Example 3.7, where we applied cr tc to graph G, we needed seven union operations and

in Example 3.4, where we applied simple tc to graph G, we needed 17 union operations.

Theorem 3.16. Algorithm stack tc correctly computes the transitive closure of the input

graph G.

Proof. The strong components are detected as in Tarjan’s algorithm. We only have to show

that the successor sets are correctly computed. We show that after the execution of stack tc,

the successor set Succ(C) of a component C contains a component X iff G contains a non-null

path v
+→w such that vertex v is in C and vertex w is in X.

1In [92] we called this algorithm comp tc.

62

(1) procedure stack tc(v);

(2) begin

(3) Root(v) := v; Comp(v) := Nil;

(4) push(v, vstack);

(5) SavedHeight(v) := height(cstack);

(6) SelfLoop(v) := false;

(7) for each vertex w such that (v, w) ∈ E do begin

(8) if w = v then SelfLoop(v) := true

(9) else begin

(10) if w is not already visited then stack tc(w);

(11) if Comp(w) = Nil then Root(v) := min(Root(v),Root(w))

(12) else if (v, w) is not a forward edge then

(13) push(Comp(w), cstack);

(14) end

(15) end;

(16) if Root(v) = v then begin

(17) create a new component C;

(18) if top(vstack) 6= v or SelfLoop(v) then Succ(C) := {C}
(19) else Succ(C) := ∅;
(20) sort the components in cstack between SavedHeight(v) and height(cstack)

(21) into a topological order and eliminate duplicates;

(22) while height(cstack) 6= SavedHeight(v) do begin

(23) X := pop(cstack);

(24) if X 6∈ Succ(C) then Succ(C) := Succ(C) ∪ {X} ∪ Succ(X);

(25) end;

(26) repeat

(27) w := pop(vstack);

(28) Comp(w) := C;

(29) insert w into component C;

(30) until w = v

(31) end

(32) end;

(33) begin /* Main program */

(34) vstack := ∅; cstack := ∅;
(35) for each vertex v ∈ V do

(36) if v is not already visited then stack tc(v)

(37) end.

Figure 3.16: Algorithm stack tc.

63

C2 C3

C4

C1
Succ(C1) = {C1} Succ(C3) = {}

Succ(C4) = {C1, C2, C3, C4}

Succ(C2) = {C1, C2}

Figure 3.17: The condensation graph G of graph G presented in Figure 3.15(a) and the
corresponding successor sets.

We prove the if part and the only-if part at the same time using induction on the level of the

strong component C. We also show that all components that are stored on cstack during the

detection of C are removed from cstack when Succ(C) is constructed.

(i) Let C be a component at level zero. Since no edge leaves component C, no components are

stored onto cstack during the detection of C, and no other component than C is inserted

into Succ(C). When all edges leaving the root r are processed, the top-most element of

vstack is r iff C is trivial. The initial value of SelfLoop(r) is false. stack tc assigns true

to SelfLoop(r) at line 8 iff the input graph has an edge (r, r). Thus, stack tc assigns

{C} to Succ(C) at line 18 iff C is either non-trivial or C = {r} and a self-loop edge (r, r)

exists. Otherwise, stack tc assigns ∅ to Succ(C). Hence Succ(C) is correctly computed.

(ii) Let C be a component at level l > 0 with root vertex r. The correct insertion of C

into Succ(C) can be shown as in the induction basis. We only need to show that each

component X different from C is inserted to Succ(C) iff X is a successor of C.

Only if: When stack tc is processing an edge (v, w), where v is in C, it inserts Comp(w)

into cstack iff (v, w) is an intercomponent tree or cross edge. Thus, each component in-

serted into cstack during the processing of edges leaving C is adjacent from C. All com-

ponents that are visited during the detection of C must be at some level below l, and are

hence correctly detected. Thus, when all edges leaving the root r are processed, cstack con-

tains no other components above SavedHeight(r). Sorting cstack between SavedHeight(r)

and height(cstack) into a topological order and eliminating duplicates does not change

the situation. Thus, each component that is removed from cstack at line 23 is adjacent

from C, and each component that is added into Succ(C) at line 24 is a successor of C.

If: Let X 6= C be a successor of C. If a tree or cross edge (v, w) leads from C to

X, stack tc inserts X into cstack above SavedHeight(r) at line 13. When stack tc

has sorted cstack and eliminated duplicates, cstack contains one occurrence of X above

SavedHeight(r). Thus, stack tc removes X at line 23 and inserts it into Succ(C). If

no tree or cross edge (v, w) leads from C to X, another component Y exists such that a

tree of cross edge (u, y) leads from C to Y , and X is a successor of Y . Since Y is at a

level below l, Succ(Y) is correctly computed and therefore contains X. When stack tc

processes edge (u, y), it inserts Y onto cstack. When C is detected, stack tc removes

Y from cstack and adds Succ(Y), which contains X, into Succ(C).

64

Theorem 3.17. Algorithm stack tc runs in O(sZ(n) + eF (n) + er(I(n) + U(n)) + min(ns,

eoct log n)) time in the worst case. Here n, e, and s are the number of vertices, the number

of edges, and the number of strong components in the input graph G, respectively, eoct is

the number of intercomponent tree and cross edges in G, e is the number of edges in the

condensation graph G induced by the components of G (with the self-loop edges removed),

and er is the number of edges in the transitive reduction ofG (with the self-loop edges removed).

Proof. Sorting x components on cstack in the way we described above takes O(min(x +

n, x log x)) time in the worst case. Let Π be the set of strong components in G. Let xC be the

number of components on cstack between the top and SavedHeight(r) when a component C

with root r is detected. This is also the number of intercomponent tree and cross edges leaving

the members of component C. Thus,
∑
C∈Π xC = eoct. The total time needed for sorting is

Tsort = O(
∑
C∈Π

min(xC + n, xC log xC))

= O(min(
∑
C∈Π

(xC + n),
∑
C∈Π

xC log xC))

= O(min(eoct + sn,
∑
C∈Π

xC log xC))

Since xC ≤ e and log e ≤ log n2 = 2 log n, we get

Tsort = O(eoct + sn,
∑
C∈Π

xC log e)

= O(min(eoct + sn, eoct log n))
The sorting removes all duplicates from cstack. The total number of components that remain is

at most e, since each remaining component is adjacent from C. These components are scanned

at lines 22–25 and the presence of the components in Succ(C) is tested. This takes O(eF (n))

total time. Since the components are scanned in a topological order, each component X that

satisfies the test X 6∈ Succ(C) at line 24 is the target of an edge in the transitive reduction of

the condensation graph G. To see this, suppose on the contrary that a component X satisfies

the test and edge (C,X) is not in the transitive reduction of G. By the definition of transitive

reduction, edge (C,X) can be removed from G without changing the transitive closure of G.

Thus, G contains another path p : C
+→X, which consists of at least two edges. Since all paths

in G are topologically ordered, the first edge of p leads to a component Y that is topologically

smaller than X. This implies that Y is removed from cstack, and Y and Succ(Y) are added into

Succ(C) before X is removed from cstack. But since X is in Succ(Y), X is already in Succ(C)

when X is removed from cstack, and the test X 6∈ Succ(C) fails, which is a contradiction.

Thus, the number of components that satisfy the test at line 24, and therefore the number

of insertion and union operations, is at most er. The insertion and union operations take

O(er(I(n) + U(n))) total time.

Corollary 3.18. If the successor sets are implemented as unordered lists augmented with a

bit vector for membership lookups, algorithm stack tc runs in O(ner + min(ns, eoct log n))

time in the worst case.

In the unordered list representation augmented with a bit vector, we need only one bit

vector, since at most one successor set is under construction at any moment.

65

Note that sorting the components on cstack slows the execution only by a term min(eoct +

sn, eoct log n), which is usually negligible compared to the other terms in the worst-case bound.

Note also that min(ns, eoct log n) ≤ n2.

3.5 Comparisons with previous algorithms

We have mentioned some properties of the previous transitive closure algorithms that are based

on strong component detection [36, 40, 62, 64, 91, 101, 105]. Now we describe these algorithms

more thoroughly and compare them analytically with our new algorithms. In Chapter 5, we

compare the previous algorithms with our new algorithms experimentally.

We start by describing those algorithms that compute the successor sets during the strong

component detection [36, 40, 64]. These algorithms generate a partial successor set for each

vertex that is the tail of an edge. A common weakness in these algorithms compared to our new

algorithms is that they build the successor sets from vertices and not from strong components.

Our algorithm cr tc, which also constructs the successor sets during the detection of the

components, usually generates fewer partial successor sets than the previous algorithms, since

cr tc uses Succ(Root(v)) instead of Succ(v) as the target of the insertions.

The oldest of these algorithms is Eve’s and Kurki-Suonio’s algorithm [40], which we here

call eks, for short. In eks, the partial successor set of a vertex v contains the heads of the edges

leaving v and the successors of the heads of the intercomponent edges leaving v. eks does not

propagate the partial successor sets via intracomponent edges towards the root vertex; instead,

when eks has detected a component C, it unions the partial successor sets of the members of

C to get Succ(C). A weakness in eks is that it does not ignore intercomponent forward edges

and does not check if a successor set S1 is already present in the successor set S2, where eks

is adding S1. This leads to unnecessary union operations. Inserting the heads of all edges into

the partial successor sets of their tails yields unnecessary insertions.

Ebert’s algorithm [36], which we here call ebert, resembles simple tc. The improvement

in ebert compared to simple tc and eks is that ebert does not use intercomponent forward

edges to propagate successor sets. Apart from this optimization, ebert suffers from the same

weaknesses as eks. Propagating the partial successor sets via intracomponent tree edges to

the root vertex produces the same result as unioning all partial successor sets of component

members in eks.

The most recent algorithm that computes the successor sets during the strong component

detection is the algorithm gdftc by Ioannidis, Ramakrishnan, and Winger [64]. The algorithm

is based on a complicated stack mechanism that contains two kinds of data: intracomponent

successor lists and intercomponent successor lists. Like ebert, gdftc adds Succ(w) into

Succ(v) if (v, w) is an intercomponent tree or cross edge. If (v, w) is a back edge, gdftc stores

a new stack frame on top of the stack. Successors are later added into the new frame. If (v, w)

is an intracomponent tree edge and v is the target of a previously processed back edge, gdftc

merges the two topmost stack frames. If (v, w) is an intracomponent tree edge and v is not

the target of a previously processed back edge, gdftc adds Succ(v) into the intercomponent

successor list of the topmost stack frame and v into the intracomponent successor list of the

topmost stack frame. Unlike ebert, gdftc does not insert the head of each edge to the

successor set of the tail of the edge. This seems to be the only improvement. Unfortunately,

66

the stack mechanism is expensive. In the experiments by Ioannidis et al. [64], gdftc was

slower than Schmitz’s algorithm [105] and algorithm btc by Ioannidis et al.

The second group of the previous algorithms computes the successor set of a component

only after detecting the component [105] or after detecting all components [64, 91, 101]. Except

for the algorithm btc [64], these algorithms build the successor sets from strong components

instead of vertices.

The oldest of these algorithms is Purdom’s algorithm [101], called purdom here, which

we described already in section 2.3.2. Although the worst-case bound of purdom is good,

O(ner + n2), the algorithm has two weaknesses. First, the constant costs are high. The

algorithm is seven pages of Algol-code and consists of four different phases. The graph is

scanned several times. Second, the best-case execution time is O(n2). This is due to the

underlying Boolean matrix representation.

Munro’s algorithm [91], called munro here, differs from the other algorithms in that it uses

matrix multiplication to compute the transitive closure of the condensation graph. This leads

to the same worst-case execution time O(nα) as that of the multiplication of two matrices.

When the input graph is acyclic and dense, this is the best worst-case bound for transitive

closure computation that is known. Unfortunately, the constant costs are high.

Schmitz’s algorithm [105], called schmitz here, computes the successor set of a strong

component immediately after detecting the component. The successor set contains strong

components represented by their root vertices. When a component C with the root r is

detected, schmitz scans again all edges leaving the vertices of the component. For each edge

(v, w), the algorithm checks if the root vertex r′ associated with w equals r or if r′ is already

in Succ(r). If the test fails, Succ(r′) is added into Succ(r). The algorithm always inserts r′ into

Succ(r). Thus, schmitz needs e insertions whereas stack tc needs only er insertions. The

other deficiency in schmitz is that it requires two passes over the graph.

schmitz usually requires more union operations than stack tc. Schmitz presented a

variant of his algorithm, which minimizes the number of union operations by computing an

edge basis before computing the successor sets. The edge basis corresponds to the transitive

reduction of the condensation graph. The edge basis is computed in the following way: when

a component is detected, the algorithm scans the edges leaving the component members and

constructs a queue containing a subset of the roots of the edge heads. For an edge (v, w)

such that w is in another component, the algorithm tests whether the queue already contains

Root(w) or another vertex x such that Root(w) is in Succ(x). If the test fails, the algorithm

inserts Root(w) into the queue. When the queue has been constructed, the algorithm scans it

again and for each (root) vertex x in the queue checks if x is already in Succ(r), the successor

set that is being constructed. If x is not in Succ(r), the algorithm adds Succ(x) into Succ(r).

This variant needs only er union operations. Unfortunately, computing the edge basis often

costs more than it saves.

Ioannidis et al. [64] presented an algorithm, called btc, that computes the successor sets

after all strong components have been detected. Strangely, btc constructs the successor sets

from vertices instead of strong components. btc first uses a modified Tarjan’s algorithm to

detect the strong components and to assign exit numbers to the vertices. Then btc processes

the vertices in the exit order and computes the successor sets. Since the exit order is a reverse

topological order if we omit the back edges, the successor set of a component can be constructed

67

by unioning the successor sets of the adjacent components, which are already constructed.

Ioannidis et al. [64] described several optimizations that improve the performance of btc in a

paging environment. For instance, the adjacency lists can be topologically ordered during the

first phase. The weaknesses in btc are the high constant costs and the use of vertices instead

of strong components as the building blocks of successor sets.

In Tables 3.1 and 3.2, we present the worst-case execution times of the previous algorithms

and our new algorithms. The first table contains the implementation independent worst-case

times and the second table the corresponding worst-case times when bit vectors, AVL-trees,

or lists augmented with a bit vector are used to implement the successor sets. We use the

following notations in the tables:

n The number of vertices.

e The number of edges; e ≤ n2.

s The number of strong components; s ≤ n.

scyc The number of cyclic strong components; scyc ≤ s.
e The number of edges in the condensation graph without the self-loop edges; e ≤ e.
er The number of edges in the transitive reduction of the condensation graph without the

self-loop edges; er ≤ e.
e+ The number of edges in the transitive closure of the condensation graph; e ≤ e+.

ei The number of intracomponent edges; ei ≤ e.
eo The number of intercomponent edges; eo = e− ei ≤ e.
ei1 The number of intracomponent tree edges (v, w) such that w is not in Succ(Root(v)) when

btc is checking the edge; ei1 ≤ ei.
eit The number of intracomponent tree edges; eit = n− s and eit ≤ ei.
eo1 The number of intercomponent tree edges (v, w) such that w is not in Succ(Root(v)) when

btc is checking the edge; er ≤ eo1 ≤ eo.
eo2 The number of intercomponent edges (v, w) such that Root(w) is not in Succ(Root(v))

when schmitz checks the edge; er ≤ eo2 ≤ eo.
eoct The number of intercomponent tree and cross edges; er ≤ eoct ≤ eo.
eoct1 The number of intercomponent tree and cross edges (v, w) such that Comp(w) is not in

Succ(Root(v)) at line 11 in cr tc; er ≤ eoct1 ≤ eoct.
n1 The number of nonroot vertices with a non-empty partial successor set in cr tc; n1 ≤

n− s = eit.

σ
∑
C∈Π

∑
v∈C Outdeg(v)Outdeg(C), the time needed to compute the edge basis in Schmitz’s

variant algorithm. Here Π is the set of strong components and Outdeg(C) is the outdegree

of component C in the condensation graph (with the self-loop edges removed).

µ min(ns, eoct log n), the time needed to sort the components in stack tc.

τ The time needed to sort the adjacency lists of all vertices in a reverse topological order

in btc. The sorting method is not described in [64].

nα The complexity of matrix multiplication; α ≤ 2.376.

Z(n) The maximum time of creating an empty set that can hold n elements.

F (n) The maximum time of a membership test in a set of at most n elements.

I(n) The maximum time of inserting an element into a set of at most n elements.

U(n) The maximum time of unioning of two sets of at most n elements.

68

Algorithm Worst case bound O()

simple tc nZ(n) + eI(n) + eU(n)

eks nZ(n) + eI(n) + (n− s+ eo)U(n)

ebert nZ(n) + eI(n) + (eit + eoct)U(n)

gdftc nZ(n) + (eit + eoct)(I(n) + U(n))

cr tc nZ(n) + eoctF (n) + (scyc + eoct1)I(n) + (n1 + eoct1)U(n)

schmitz sZ(n) + eoF (n) + eI(n) + eo2U(n)

schmitz with edge basis sZ(n) + (er + ei)I(n) + erU(n) + σF (n)

btc nZ(n) + eF (n) + (ei1 + eo1)I(n) + eo1U(n) + τ

stack tc sZ(n) + eF (n) + er(I(n) + U(n)) + µ

Table 3.1: A summary of the implementation independent worst case times.

As we see, the worst-case times of simple tc, eks, and ebert are similar. The only

difference is in the number of union operations. Obviously, simple tc does at least as many

unions as eks and ebert. In a graph, exactly one intracomponent tree edge leads to each

nonroot vertex. Thus, n− s = eit. Since eoct ≤ eo, ebert does always at most as many unions

as eks. gdftc differs from ebert only by doing fewer insertion operations. Note that the

term e log n is present in the worst-case time of simple tc with AVL-trees, but it is dominated

by the term ne. Similarly, the term (eoct + eit) log n is present in the worst-case time of gdftc

with AVL-trees, but is dominated by the term n(eoct + eit).

The number of unions in cr tc is n1 + eoct1. Since n1 ≤ n − s = eit and eoct1 ≤ eoct,

Algorithm Bit vector O() AVL-tree O() List&bit vector O()

simple tc ne+ n2 ne ne+ n2

eks neo + n2 n(eo + n− s) + e log n neo + n2

ebert n(eoct + eit) + n2 n(eoct + eit) + e log n n(eoct + eit) + n2

gdftc n(eoct + eit) + n2 n(eoct + eit) n(eoct + eit) + n2

cr tc n(eoct1 + n1) + n2 n(eoct1 + n1) n(eoct1 + n1) + n2

purdom ner + n2 – –

munro nα – –

schmitz neo2 + ns neo2 + e log n neo2 + e+

schmitz with ner + ns+ σ ner + (er + ei) log n ner + e+ + σ

edge basis + σ log n

btc neo1 + n2 + τ neo1 + e log n+ τ neo1 + n2 + τ

stack tc ner + ns+ µ ner + e log n+ µ ner + e+ + µ

Table 3.2: A summary of the smallest implementation dependent worst case times.

69

cr tc does at most as many unions as gdftc and ebert, and usually fewer. cr tc needs

eoct membership tests to reduce the number of unions. The number of insertions in cr tc and

in gdftc cannot, in general, be compared, since we do not know which one is greater, scyc or

eit. The best worst-case bound of cr tc is O(n(eoct1 + n1)) and is reached with AVL-trees.

This is better than the best worst-case bound of gdftc, namely O(n(eoct+eit)). Thus, cr tc

has the best worst-case bound of those algorithms that compute the successor sets during

the detection of the strong components. Remember also that cr tc constructs the successor

sets from strong components instead of vertices. Therefore, the successor sets constructed by

cr tc are in practice much smaller and can be constructed much faster than the successor

sets constructed by eks, ebert, and gdftc.

Examine now the worst-case times of the algorithms that construct the successor sets after

the components are detected. Note that no implementation independent worst-case times are

presented for purdom and munro, since the algorithms depend on the underlying bit matrix

data structure. As we pointed out, when the input graph is acyclic and dense, munro has the

best worst-case bound of all transitive closure algorithms, but in a wide class of input graphs

other algorithms have better worst-case bounds.

btc and schmitz need more unions than the other algorithms of this group. Which one

of these two algorithms needs more unions depends on the input.

Schmitz’s variant algorithm that uses the edge basis and our algorithm stack tc both

need er unions. purdom effectively does the same number of unions, although the unions are

open coded into bit matrix operations. Each of these algorithms does nontrivial computations

to avoid the unnecessary unions. purdom explicitly builds the condensation graph and sorts

it topologically, Schmitz’s variant algorithm computes the edge basis, and stack tc sorts the

adjacent components on cstack before constructing a successor set. Building the condensation

graph takes Θ(n2) time in purdom. Sorting the adjacent components in stack tc takes

O(min(ns, eoct log n) time. Min(ns, eoct log n) is never greater than n2 and in an infinite set of

graphs it is negligible compared to n2. Further, in an infinite set of graphs ner is negligible

compared to n2. Thus, stack tc has a better worst-case bound than purdom.

Computing the edge basis in Schmitz’s variant algorithm takes in the worst case

O(
∑
C∈Π

∑
v∈C Outdeg(v)Outdeg(C)) time. This sum cannot be expressed in a closed form, but

the following example shows that the edge basis computation may take Ω(n3) time even when

the unions take only O(n2) time.

Example 3.9. Consider a complete DAG G = (V,E) of n vertices 1,2, . . . , n such that for

each i and j, 1 ≤ i, j ≤ n, G has an edge (i, j) iff i < j. Thus, e = n(n− 1)/2. Since the graph

is acyclic, the set of strong components Π = {{i} | i ∈ V } and Outdeg(i) = Outdeg({i}). When

Schmitz’s variant algorithm is constructing the edge basis for a component {i}, it scans again

all edges leaving vertex i. Assume that the adjacency lists are in a reverse topological order.

Thus, whenever the algorithm is checking an edge (i, j), j is not in the queue and neither

is there any vertex k such that j is in Succ(k). Hence the algorithm has to scan the whole

queue and after that insert vertex j in front of the queue. The head of each edge leaving i is

inserted into the queue this way. The number of queue positions that have to be checked when

constructing the queue for component {i} is

Pi =
n−i−1∑
l=1

l = (n− i)((n− i)− 1)/2 (3.1)

70

The total number of queue positions checked during the computation is

Ptot =
n∑
i=1

(n− i)((n− i)− 1)/2 = n(n− 1)(n− 2)/6 = Ω(n3) (3.2)

Gr, the transitive reduction of the condensation graph of G is a graph of n vertices and n− 1

edges (i, i + 1), 1 ≤ i < n. Computing the transitive closure of Gr requires n − 1 unions,

one per each edge. Assuming that the union of two successor sets takes O(n) time, the total

time for the unions is O(n2). Since the time needed for sorting the adjacent components in

stack tc is O(min(ns, eoct)), which is O(n2) in this example, stack tc needs only O(n2)

time to compute the transitive closure of G, whereas Schmitz’s variant algorithm needs Ω(n3)

time.

Our conclusion is that stack tc has a better worst-case bound than the previous transitive

closure algorithms that are based on strong component detection except munro, which has

a better worst-case bound with dense inputs. With sparse inputs stack tc has a better

worst-case bound. Note also that munro has high constant costs. In Chapter 5, we present

experimental results showing that stack tc is in practice considerably faster than the previous

algorithms.

Chapter 4

Representing successor sets

The transitive closure algorithms discussed in the previous chapter spend most of their execu-

tion time in constructing the successor sets. The successor set construction time is determined

by the numbers of the different successor set operations needed and the execution times of

the different successor set operations, i.e., membership lookups, insertions, and unions. In the

previous chapter, we mainly concentrated on reducing the number of successor set operations.

We reduced the time taken by the different successor set operations only by using strong com-

ponents as the building blocks of the successor sets, which reduces the size of the successor

sets and hence the execution times of set operations.

In this chapter, we study how the time needed to do the different successor set operations

can be reduced by selecting an appropriate representation for the successor sets. We present

two new successor set representations that require less memory space than common set rep-

resentations such as bit vectors, lists, or ordered binary trees, and enable faster successor set

operations. The first representation is based on intervals of reverse topological numbers of

strong components and the second is based on decomposing the set of strong components into

chains. Both representations are based on methods that have originally been developed for

the compact representation of the transitive closure of acyclic graphs [4, 112]. We have modi-

fied these representations so that they can be used with our new transitive closure algorithms

and also when the input graphs are cyclic. We explain how the representations reduce the

redundant computations caused by multiple paths between pairs of vertices.

4.1 Properties of common set representations

Before presenting the representations, we examine some important properties of common set

representations such as such as bit vectors, lists, or ordered binary trees.

When common set representations are used, a successor set S takes Ω(|S|) memory space.

The size of the union of two sets S1 and S2 is Ω(max(|S1|, |S2|)). The transitive closure G+ of a

graph G has at least as many edges as G. The number of edges e+ in G+ may be considerably

larger than the number of edges e in G, e.g., n2 versus n when G is a simple cycle on n vertices

and edges. When common set representations are used, the successor sets take Ω(e+) space,

and the best-case execution time is Ω(e+).

The weakness in common set representations is that they do not take into account the

structure of the transitive closure or the input graph to reduce the memory requirements.

72

4.2 Interval representation

We present now a new compact representation for successor sets that can be used in our

transitive closure algorithms. Contrary to the set data structures discussed above, this repre-

sentation often enables a set A to be stored in memory space smaller than Ω(|A|). Further,

when this representation is used, the union of two sets A and B may be smaller than either of

its arguments. The transitive closure can usually be stored in much smaller than O(e+) space

and the best-case execution time is not bounded by Ω(e+). The representation is based on a

method for compressing the transitive closure of an acyclic graph [4].

The representation consists of two parts: a method for storing sets of integers compactly

and a method for mapping the strong components into integers.

We describe first the method for storing sets of integers compactly. Consider a set S ⊆
{1, 2, . . . , n}. If S consists of one or more sequences of consecutive integers i, i+ 1, . . . , i+m,

where m > 2, a compact way to represent S is to store only the endpoints of each maximal

consecutive sequence. We call such a representation the interval representation. An interval

[i, j] represents the set {i, i + 1, . . . , j}, and a collection of intervals {I1, I2, . . . , Ir} represents

the union of the sets that the intervals represent. When new intervals are added to a set,

overlapping intervals are merged together. Also, if two intervals [i, j] and [j + 1, k] exist, they

are combined to an interval [i, k].

Example 4.1. A set S1 = {0, 1, 2, 4, 5, 6, 8} is stored as three intervals [0, 2], [4, 6], and [8, 8]

and a set S2 = {0, 2, 3, 4, 5, 9, 10} as three intervals [0, 0], [2, 5], and [9, 10]. If we insert number

7 to S1, we get the set S ′1 = {0, 1, 2, 4, 5, 6, 7, 8}, which is stored as two intervals [0, 2] and [4, 8].

If we take the union of S ′1 and S2, we get the set {0, 1, 2, . . . , 10}, which is stored as a single

interval [0, 10].

It is easy to see that the maximum number of intervals that we need to store a set of integers

S ⊆ {1, 2, . . . , n} is dn/2e. This upper bound is reached when S = {1, 3, 5, . . . , 2b(n−1)/2c+1}.
The expected number of intervals needed is harder to define and it depends on the distribution

of the integers in S. We present next the expected number of intervals needed when the

distribution of the integers is even.

Theorem 4.1. Let S ⊆ {1, 2, . . . , n} and |S| = k. Assuming that each integer i ∈ {1, 2, . . . , n}
has the same probability of being a member of S, the expected number of intervals needed to

store S is k − k(k − 1)/n.

Proof. To produce set S, we draw k different elements from {1, 2, . . . , n} with each element

having the same probability of being drawn. Let In,k denote the expected number of intervals

thus created. To get a recursion formula for In,k, we examine the case that element n is in S

and the case that element n is not in S. The probability of the former case is k/n and the

probability of the latter case is (n− k)/n. Assume first that n is in S. The expected number

of intervals needed is In−1,k−1 + x, where In−1,k−1 is the expected number of intervals needed

to store a k − 1 element set S ′ ⊆ {1, 2, . . . , n− 1} and x is the expected number of additional

intervals needed to store element n. If element n−1 is in S ′, no additional intervals are needed,

but if n − 1 is not in S ′, one additional interval is needed. Thus, x is the probability that

element n− 1 is not in S ′, which is (n− 1− (k − 1))/(n− 1) = (n− k)/(n− 1). Assume now

that n is not in S. The expected number of intervals needed is In−1,k, the expected number

73

of intervals needed to store a k element set S ′′ ⊆ {1, 2, . . . , n − 1}. Finally, if n = 0, k = 0,

or k > n, no intervals are needed, and if n > 0 and k = 1, one interval is needed. We get the

following recursion formula:

In,k =

0 n = 0 or k = 0 or k > n;

1 n > 0 and k = 1;

k

n

(
In−1,k−1 +

n− k
n− 1

)
+
n− k
n

In−1,k otherwise.

(4.1)

Examining In,k with small values of n and k yields:

In,1 = 1 1 ≤ n ≤ 10

In,2 = 2− 2/n 2 ≤ n ≤ 10

In,3 = 3− 6/n 3 ≤ n ≤ 10

In,4 = 4− 12/n 4 ≤ n ≤ 10

In,5 = 5− 20/n 5 ≤ n ≤ 10

(4.2)

Thus, it seems that In,k = k − k(k − 1)/n, when n > 0 and 0 < k ≤ n and In,k = 0 otherwise.

This can be checked using the recursion formula. When n > 0 and k = 1, we get:

In,1 = 1 = 1− 1 · 0/n (4.3)

When n > 0 and 0 < k ≤ n, we get

In,k =
k

n

(
In−1,k−1 +

n− k
n− 1

)
+
n− k
n

In−1,k

=
k

n

(
k − 1− (k − 1)(k − 2)

n− 1
+
n− k
n− 1

)
+
n− k
n

(
k − k(k − 1)

n− 1

)

= k − k(k − 1)

n

(4.4)

The maximum value of In,k = k − k(k − 1)/n is

max(In,k) =

In,n+1

2
=

n

4
+

2n+ 1

4n
n is odd;

In,n
2

=
n

4
+

1

2
n is even.

(4.5)

Thus, with some choices of k, we need Ω(n) space to store a k element set S ⊆ {1, 2, . . . , n} if

each element of {1, 2, . . . , n} has the same probability of being a member of S. If the probability

distribution is not even, the expected number of intervals is different. Note that if the integers

in set S are likely to be near some value x, the number of intervals needed is probably small.

The expected number of intervals needed is then much smaller than k − k(k − 1)/n.

74

e f

h

a b

g

c

d

i

rtn: 8,
s: {[0, 6]}

rtn: 5,
s: {[0, 4]}

rtn: 3,
s: {[1, 2]}

rtn: 2,
s: {}

rtn: 7,
s: {[0, 6]}

rtn: 6, s: {[0, 5]}

rtn: 4,
s: {[0, 0], [2, 2]}

rtn: 0,
s: {}

rtn: 1,
s: {}

Figure 4.1: A DAG and the successor sets of its vertices represented as intervals.

We examine next the second component of our new representation, a method to map the

strong components into integers in a way that produces compact interval collections. The

mapping that we use is simple: the integers that the intervals contain are reverse topological

numbers of the strong components. The strong components are numbered increasingly in

the order they are detected. With this numbering, we usually need much fewer intervals to

represent the successor sets than with a random numbering of components. The reasons for

this are twofold. First, all successor components of a component C have numbers smaller than

C. Hence the elements in Succ(C) come from {1, 2, . . . , k}, where k is the reverse topological

number of C, not from {1, 2, . . . , n}. Second, a subtree in the spanning tree induced by the

depth-first search is represented as a single interval. Note that the numbering depends on

the order in which the components are detected, and many orders are possible. Different

numberings yield different numbers of intervals to represent the successor sets.

Example 4.2. In Figure 4.1, we present an acyclic graph and the successor sets of its vertices

as sets of intervals produced by one possible traversal of the graph, namely g, f , i, h, c, d, e, a,

b. For each vertex, the figure presents the reverse topological number (denoted by “rtn:”) and

the successor set as a collection of intervals (denoted by “s:”). In this traversal, the maximum

number of intervals needed to represent a successor set is 2, and the total number of intervals

needed is 7.

The next example shows that with this numbering method also, we may need Ω(n2) space

to represent the successor sets of a graph.

Example 4.3. In Figure 4.2, we present an example graph of n = 2m + 1 vertices. An edge

leads from vertex 0 to edges 1, . . . , m. An edge leads from each vertex m+ 1, . . . , 2m to the

vertices 1, 3, 5, . . . , m (we assume that m is odd). Examine what happens when we compute

the transitive closure of this graph using the interval representation and a transitive closure

algorithm that is based on Tarjan’s algorithm. Assume that the execution starts at vertex 0,

and that the adjacency list of 0 is in order 1, 2, . . . , m. Each vertex i, 1 ≤ i ≤ m, is in its own

strong component, and the reverse topological number of the component is i. The successor

set of 0 consists of a single interval [1,m]. When the algorithm later constructs the successor

set for a vertex j, m+ 1 ≤ j ≤ 2m, the successor set consists of (m+ 1)/2 intervals. Thus, we

need Ω(m2) = Ω(n2) intervals.

75

m

2m-1

1

m+3

3

2m-2

m-3 m-1

m+2 2m-3

0

2m

2 4

m+1

m-2

m+4

Figure 4.2: A graph the successor sets of which may require Ω(n2) space.

The average number of intervals that is needed to represent the successor sets of a graph

is difficult to analyze, since the number of intervals depends on the topology of the graph and

not only on the number of vertices and edges of the graph. Further, different traversals of the

same graph yield different numbers of intervals. Another problem is choosing an appropriate

model of inputs. In section 5.2, we examine empirically the average size of the representation.

A collection of intervals representing a successor set can be stored in several ways. Since

the intervals are distinct, they can be ordered and stored in an ordered binary tree. The binary

tree of intervals can be balanced, but usually this is not necessary, since the trees are small.

Another possibility is to store the intervals in an ordered array. Let S, S1, and S2 be successor

sets that are represented as collection of intervals I, I1, and I2, respectively. The union of S1

and S2 takes O(|I1|+ |I2|) time. Testing the presence of an element x in set S takes O(log(|I|))
time in the worst case if the intervals are stored as a balanced binary tree or as an ordered

array and O(|I|) time if the intervals are stored in an unbalanced binary tree. Inserting an

element x into set S takes O(log(|I|)) in the worst case if the intervals are stored as a balanced

binary tree and O(|I|) time if the intervals are stored as an unbalanced binary tree or an

ordered array. The binary tree representation requires twice as much memory space as the

ordered array representation. The memory allocation is simpler for the array representation.

In some transitive closure algorithms, e.g., in our algorithm stack tc, at most one successor

set is under construction at any moment. In these algorithms, it is a good idea to use the

array representation at least for all completely constructed successor sets. The successor set

that is under construction can be stored as a binary tree to speed up insertion operations. If

the number of intervals needed to represent a successor set is usually low, it is probably wise

to store all successor sets as ordered arrays of intervals.

The idea of the interval representation came from [4], where Agrawal et al. studied how the

transitive closure of an acyclic graph can be stored in a compressed form. The stored transitive

closure can be used to directly answer queries about successors of a vertex without the need for

computing the successors on-the-fly. Another goal they had was to incrementally propagate

changes to the stored closure when the base relation changes. Since their goals were different

from ours, their strategy also was different. Our goal here is the efficient computation of the

full transitive closure, and a compact representation is a means to reach this goal. Agrawal et

76

al. [4], on the other hand, tried to represent the transitive closure as compactly as possible,

and the efficiency of the computation of the transitive closure was not important. Another

difference is that their inputs were restricted to acyclic graphs whereas our inputs may have

cycles. Our method overcomes this problem by detecting the strong components during the

traversal.

In the method by Agrawal et al. [4], an optimal spanning tree is first computed. The input

graph is sorted topologically and then the vertices are considered in the topological order. For

a vertex v, that incoming edge (u, v) whose source vertex u has the largest number of prede-

cessors, is included into the spanning tree. The resulting spanning tree yields a representation

having the smallest number of intervals in their setting.

Next, the spanning tree is traversed in postorder, and an interval cover is computed. A

subtree Tr rooted at vertex r is represented as an interval [pv, pr], where pv is the smallest

postorder number in Tr, and pr is the postorder number of r.

Finally, the vertices of the input graph are processed in the reverse topological order, and

the sets of intervals are propagated via cross edges from the target of the edge to the source

of the edge. When an interval [i1, j1] is added to a set S containing an interval [i2, j2], such

that i1 ≤ i2 and j2 ≤ j1, interval [i2, j2] is removed. Similarly, if i2 ≤ i1 and j1 ≤ j2, interval

[i1, j1] is omitted. On the other hand, adjacent intervals [i, j] and [j + 1, k] are not merged.

Agrawal et al. [4] told that the additional compression obtained by merging usually was less

than 5%. Since no adjacent intervals are merged, no pairs of overlapping intervals [i1, j1] and

[i2, j2], such that i1 < i2 < j1 < j2, exist. Note that in our method the merging of adjacent

and overlapping intervals is essential, since our single traversal strategy does not necessarily

yield an optimal spanning tree.

Example 4.4. Consider the acyclic graph presented in Figure 4.1. In Figure 4.3, we present

this graph and its transitive closure again, but now the successor sets are computed using the

method of Agrawal et al. [4]. For each vertex, the figure presents the interval that covers the

vertex in the spanning tree (denoted by “i:”) and the successor set as a collection of intervals

(denoted by “s:”). The edges that are in the spanning tree generated by the algorithm are

drawn solid and the other edges (cross edges) dashed.

The method by Agrawal et al. [4] needs several passes over the input graph, whereas

our method requires just one traversal. According to our experience, computing the optimal

spanning tree is not necessary. Our method usually yields an equally small representation by

merging the adjacent intervals.

4.3 Chain representation

The chain representation is another compact way to represent the successor sets of a transitive

closure. Originally, this representation was presented for acyclic graphs [67, 90, 111, 112]. An

important property of the chain representation is that it allows a better worst-case bound

for the transitive closure computation of an acyclic graph than the traditional successor set

representations. We show here how this representation can be used together with our transitive

closure algorithms and also when the inputs are cyclic.

77

i

a

d

f

h

bc

e

g

i: [0, 0],
s: {[1, 7]}

i: [6, 1],
s: {[1, 2], [3, 5]}

i: [2, 1],
s: {[1, 1], [3, 3]}

i: [3, 3],
s: {}

i: [8, 1],
s: {[1, 7]}

i: [7, 1], s: {[1, 6]}

i: [5, 3],
s: {[3, 3], [4, 4]}

i: [4, 4],
s: {}

i: [1, 1],
s: {}

Figure 4.3: The interval representation of the graph in Figure 4.1 when the method of [4] is
used.

The chain representation is an example of a representation that is based on partitioning

the vertices of the input graph into a collection of disjoint subsets. Let Π = {Ci | Ci ⊆ V } be

a partition of the vertex set V ,
⋃
Ci∈Π

Ci = V . Let S be a successor set. We can represent S as

a collection of intersections, one per each subset in Π, i.e., S =
⋃
Ci∈ΠCi ∩ S. Goralcikova and

Koubek [45] were the first to use this partitioning approach. In their algorithm, the partitioning

is based on topological levels of the acyclic input graph. If a vertex v has no predecessors, it

is at level zero. If a vertex v has predecessors and if l is the highest level where some of its

immediate predecessors is located, then v is at level l + 1. A successor set is represented as a

collection of intersections S ∩Li, one intersection per each topological level Li. Unfortunately,

no compact way to store the intersections exists. An intersection is represented as a list of

its member vertices. We need a partition that permits a more compact representation of the

intersections.

In the chain representation, each subset of the partition represents a path in the acyclic

input graph. The vertices in a chain are ordered topologically, and an intersection S ∩ Ci is

represented by the topologically smallest vertex v in the chain Ci that is in the intersection.

Each vertex in chain Ci that is topologically greater than v must also be in the intersection.

A successor set S is represented as a set of the smallest elements of each chain that is present

in S. If k is the number of chains in the partitioning, a successor set S requires O(min(k, |S|))
space.

Obviously, an acyclic graph can be partitioned into chains in many different ways. The

number of chains varies in different partitions. Simon [111, 112] used the topological ordering

of the input graph to compute the chains. The vertices and the adjacency lists are first

topologically ordered. A new chain Ci is computed by first choosing the topologically smallest

unprocessed vertex v and adding it to Ci. Then the topologically smallest unprocessed child

of v is entered recursively. This continues until no unprocessed child is found. The topological

ordering and the computation of the chains take Θ(n + e) time. If the partition contains k

chains, a successor set is represented as a vector of k elements. The union of two successor sets

takes Θ(k) time. The union of sets S1 and S2 is computed by scanning their vectors and by

taking for each chain Ci the topological minimum of the vertices representing the intersections

S1 ∩ Ci and S2 ∩ Ci. Checking the presence of a vertex v in a successor set S takes constant

78

time. This is done in the following way: find the chain C containing v and the vertex w that

represents the intersection C ∩ S. Vertex v is in S iff v is w or v is topologically greater than

w. Inserting an element into a successor set is done in a similar way and also takes a constant

time.

Simon [111, 112] presented an algorithm that computes the transitive closure in a way that

resembles the third part of Purdom’s algorithm [101]. The vertices are considered in a reverse

topological order. The children of a vertex v are processed in a topological order and if a child

u is not already in Succ(v), then u and Succ(u) are added to Succ(v). In this way, we need

one union per each edge in the transitive reduction of the input graph. Since one union takes

Θ(k) time, where k is the number of chains, the worst-case execution time of the algorithm is

Θ(ker). Simon [111, 112] also showed that the average number of chains is O(ln(np)/p) in a

randomly generated acyclic graph G(n, p), where n is the number of vertices, and each edge

(i, j), i < j, exists with probability p independently of other edges.

Jagadish [67] presented several ways to construct the chains. He showed that a minimal

partition can be computed by the minimum flow algorithm. Unfortunately, this takes O(n3)

time, i.e., it is usually slower than the transitive closure computation. Jagadish presented a

collection of heuristics that can be used to construct the chains. His experiments indicated

that the topological ordering approach by Simon [111, 112] usually yields a smaller partition

than the other heuristics. In Jagadish’s representation, a successor set S is represented as a

collection of pairs (C, v), where C is a chain and v is the topologically smallest element of C

that is in S. According to our experience, this usually requires much less memory space than

the k element vector representation by Simon [111, 112].

Our approach to constructing the chains is the following. The elements in the chains are

the strong components that are detected in a reverse topological order in our transitive closure

algorithms. When a component C is detected, all components adjacent from it are already

assigned to a chain. The procedure in Figure 4.4 finds a chain for component C.

(1) procedure assign to chain(C);

(2) begin

(3) for each component X adjacent from C in topological order do

(4) if top(chain(X)) = X then begin

(5) push(C,chain(X));

(6) return

(7) end

(8) ch := create a new chain;

(9) push(C, ch)

(10) end

Figure 4.4: Procedure assign to chain finds a chain for component C.

The components adjacent from C are processed in the reverse topological order. The chains

are stored as stacks. If a component X adjacent from C is the topmost element of its chain,

we extend that chain by storing C on top of the chain. If no such component is found, i.e.,

no component adjacent from C is the topmost element of the chain containing it, we create a

79

e f

h

a b

g

c

d

i

Figure 4.5: The chain partition of a graph when Simon’s method [111, 112] is used.

new chain and store C on top of that chain.

Like Jagadish [67], we represent a successor set S as pairs (C, v), where C is a chain

and v is the topologically smallest element of C that is in S. We cannot use the k element

vector representation by Simon [111, 112], since the chains are constructed simultaneously with

the successor sets, and we do not know the total number of chains required. We could use

variable length vectors to represent the sets, but as we have pointed out, it seems that the pair

representation saves much space compared to the vector representation.

Example 4.5. In Figure 4.5, we present the graph of Figure 4.1 and the chain partition of

its vertex set computed by Simon’s topological ordering method [111, 112]. In Figure 4.6, we

present the chain partition computed by our reverse topological ordering method. We assume

that the vertices are traversed in the order g, f , i, h, c, d, e, a, b. In this example, both

methods need three chains, which is the optimal number of chains for this graph.

e f

h

a b

g

c

d

i

Figure 4.6: The chain partition of a graph when our method is used.

80

4.4 Avoiding multiple paths

In section 1.1, we pointed out two sources of redundancy that should be avoided when com-

puting the transitive closure. So far, we have only discussed the redundancy caused by strong

components. We consider now the redundancy caused by multiple paths between two vertices

and show how the interval representation efficiently copes with this kind of redundancy.

Assume that a transitive closure algorithm that is based on Tarjan’s algorithm is applied

to the graph in Figure 4.7. Two paths go from a to f , namely a, b, d, f and a, c, e, f . The

depth-first traversal uses both paths, but vertex f and the subtree rooted at f are entered

only once. Thus, it seems that the algorithm avoids well the redundancy caused by multiple

paths. Unfortunately, the successor set of f is propagated from f to a via both paths and is

twice added to the successor set of a.

b d

f

h

j

l

a

c e

g

i k

Figure 4.7: A directed graph with multiple paths between vertices.

Jakobson [70] presented a transitive closure algorithm that avoids this kind of redundancy.

The idea is to use successor trees instead of successor sets. A successor tree contains the same

vertices as a successor set, but in addition it contains the paths that were used to obtain

these vertices. Multiple paths are detected and the same vertices are not added again to the

successor tree. The cost that has to be paid is the space required by the successor trees and the

time needed to construct them. Another problem is that the method does not detect strong

components. Dar and Jagadish [33] presented a transitive closure algorithm that uses a similar

representation.

When common set data structures such as ordered lists or relation tables are used to

represent the successor sets, taking the union of two sets is the most time consuming operation.

Adding the same successor set twice to another set should be avoided. But when we use

the interval representation, a union operation usually means processing only a few intervals.

Adding a few intervals twice to a successor set is not expensive. Interval merging often further

reduces the costs.

The following example is taken from Jakobson’s paper [70]. The graph in Figure 4.8 has

n = m2 vertices that are ordered as a square of m columns of m vertices. An edge leads from

each vertex in column k to each vertex in column k+ 1. Thus, each vertex in column k has all

vertices in columns k+ 1, k+ 2, . . . ,m as its successors. The size of the successor set is Θ(m2)

for most vertices.

Assume that we apply cr tc to this graph. Since the graph has no cycles, each vertex

has an own component. To compute the successor set of a component x in column k, we must

insert the components in column k + 1 into Succ(x). Further, we must add the successor sets

of the components in column k+ 1 into Succ(x). Although these sets are equal, we must union

81

m

1

3

1 3 m-1

2

m

2 m-2

Figure 4.8: An example from Jakobson’s paper[70].

m sets of Θ(m2) components. This takes Ω(m3) time when common set data structures are

used. Since we have m2 components, the computation takes Ω(m5) = Ω(n2
√
n) time.

Jakobson’s algorithm requires only O(n2) time, since it uses only one path from a vertex x

in column k to a vertex y in column k + 2.

Assume next that cr tc is used together with our interval representation. When we

traverse the graph in any depth-first order, the components in column m get the reverse

topological numbers 1, 2, . . . ,m. Similarly, the components in column k get the numbers

m(m− k) + 1,m(m− k) + 2, . . . ,m(m− k + 1).

The successor set of a component in column k is the single interval [1,m(m − k)]. To

construct the successor set of a component C in column k − 1, we add the reverse topological

numbers and the successor sets of the components in column k into Succ(C). Thus, we insert

m numbers m(m−k) + 1,m(m−k) + 2, . . . ,m(m−k+ 1) into Succ(C) and we insert m times

the interval [1,m(m− k)] into Succ(C).

If the intervals are stored in ordered balanced binary trees, the insertions require O(m logm)

time. Since the graph has m2 vertices, the total time required is O(m3 logm) which is

O(n
√
n log n). Thus, the interval representation is here more efficient than Jakobson’s suc-

cessor tree method.

Assume finally that cr tc is used together with our chain representation. Our algorithm

creates m different chains of m components, each containing one component from each column.

The successor set of a component C in column k − 1 is represented as m topological numbers

of the m components in column k. To construct Succ(C), we must compute m − 1 unions of

successor sets, each of size m, and insert m components into the set. This takes O(m2) time.

Since the graph has m2 components, we need the total of O(m4) = O(n2) time to compute the

transitive closure, which is the same time as with Jakobson’s method.

82

Chapter 5

Simulations

In this chapter, we present computer simulations that we did to study the average-case per-

formance of transitive closure algorithms and representations. First, in section 5.1 we describe

the method that we used in our experiments. The presentation of the actual simulation ex-

periments is divided into three sections: in section 5.2, we study memory requirements of

different transitive closure representations, in section 5.3 the amount of work needed to con-

struct the successor sets in different algorithms and representations, and in section section 5.4

the execution times of different transitive closure algorithms.

5.1 Method

In this section, we describe the method that we used in our performance experiments. We first

explain why we decided to use computer simulations instead of mathematical analysis as the

performance evaluation technique. Then we discuss the issues that have to be considered in

computer simulations and describe the inputs that we used in the simulations. We end the

description of the method by discussing the overall design of performance evaluation studies.

5.1.1 Mathematical algorithm analysis

Mathematical analysis of the worst-case execution time is the most common method for study-

ing the performance of algorithms. It is usually easy, since we only have to determine the set

of possible inputs, decide which inputs cause the algorithm to spend most time, and compute

the corresponding execution time. The problem with the worst-case analysis is that it often

gives overly pessimistic results. The algorithm may run much faster with typical inputs than in

the worst case. Comparing the efficiency of two algorithms only by their worst-case execution

times may yield misleading conclusions. For instance, many transitive closure algorithms have

approximately the same worst-case time, but these algorithms behave differently with typical

inputs.

To get a more realistic picture of the performance of an algorithm with typical inputs, we

can analyze its average-case performance. Unfortunately, mathematical average-case analysis

is much more difficult than worst-case analysis. We have to create a more sophisticated model

of inputs. Determining the set of possible inputs is not enough: we have to assign each input

a probability of occurrence. It is not obvious what these probabilities should be. To make

84

the processing of probabilities easier, we may have to choose an overly simplified model of

inputs that may differ greatly from the inputs in practical applications. Given an algorithm

and an input model, computing the average-case execution time is usually much more difficult

than computing the worst-case execution time. As a general rule, average-case analysis using

realistic models of input is beyond the limits of the current analytical methods [88]. The

average-case analysis is often easier for probabilistic algorithms, i.e., algorithms that use the

distribution of the underlying input model in some way in their behavior. If the inputs of

the algorithms are simple combinatorial structures like binary trees or sequences of integers, a

divide-and-conquer strategy may be possible.

In analyzing the average-case performance of transitive closure algorithms, we face all these

problems. The selection of the input model is not obvious. We discuss this problem in the

next section. The algorithms that we have presented are not probabilistic. The inputs are not

simple combinatorial structures. In addition to the number of vertices and edges, the topology

of the graph and the order in which the vertices and edges are processed affect the performance

of the algorithms.

The average-case execution time of a transitive closure algorithm is analyzed in only a few

previous articles. Bloniarz et al. [18] analyzed the average-case execution time of a simple

transitive closure algorithm that traverses the input graph n times starting from each vertex

in turn. The average-case bound of this algorithm is O(n2 log n). Schnorr [106] presented a

probabilistic algorithm that computes the transitive closure in O(n + e+) average-case time,

where e+ is the number of edges in the transitive closure. The algorithm has high constant

costs, since it traverses the input graph several times to obtain both the vertices adjacent

from and the vertices adjacent to each vertex and to sort these vertices lexically. Karp [79]

presented another probabilistic transitive closure algorithm. When the expected outdegree

of the graph is slightly greater than one, the asymptotic average-case execution time of the

algorithm is O((n log n)4/3ω(n)), where ω(n) is any non-decreasing function. Otherwise, the

average-case execution time is O(n). Also Karp’s algorithm has high constant costs, since it

consists of three separate algorithms that are executed simultaneously step-by-step until one

of them completes. The algorithm needs a constant time access both to the vertices adjacent

from and the vertices adjacent to each vertex. If only the vertices adjacent from each vertex are

available, as we generally have expected in this thesis, Karp’s algorithm needs an additional

Θ(n + e) time to compute the vertices adjacent to each vertex. Both Schnorr’s and Karp’s

algorithms depend heavily on the distribution of the underlying input model. It is not clear

how well the algorithms behave with other kinds of inputs.

5.1.2 Performance evaluation by simulation

Computer simulation is another method for studying the average-case performance of an al-

gorithm [88]. The technique seems to be straight-forward: we implement the algorithm aug-

mented with commands to collect performance measures, then we apply the program on ran-

domly generated inputs, and finally we compute the average of the performance measures. The

benefit of this approach is that it can be used even when mathematical average-case analysis

fails. It also yields more accurate results than mathematical analysis. The deficiency of this

approach is that the results are valid only in that area of the space of inputs from which we

85

have selected the inputs. Simulations give no asymptotic results. After a simulation study,

we cannot say that the run time of the algorithm is O(f(n)) in the average case. Note also

that a simulation study usually takes more time than mathematical analysis (when the latter

is possible).

In selecting the input model for a simulation study, we face partially the same problems as

in mathematical average-case analysis. We must choose the set of possible inputs and assign

a probability of occurrence to each input. A benefit of the simulation approach is that we can

study many input models using the same simulation program. All we need is a new procedure

for generating the new inputs and more simulation runs. In simulation studies, we can usually

apply more complicated input models than in mathematical analysis. However, in simulation

studies, the generation of inputs must be fast whereas in analytical studies we have no such

requirement. We consider the selection of the input model and the generation of inputs for our

simulation studies in the next subsection.

The measurement data of a simulation study must be properly treated to get reliable

results. Since the inputs of the simulation are usually controlled by random variables with

some distribution, also the outputs are usually random variables with some other distribution.

In many studies presented in the literature, much effort is put in the implementation of a

sophisticated simulation program, but the program is applied to only a few arbitrary selected

inputs and the mean of the measured values is presented as the average-case performance

metric. The problem is that this approach gives no information on the accuracy of the results.

As Pawlikowski [99] said, these kinds of studies are merely programming exercises.

The theory of estimation in statistics gives us tools for analyzing the measurement data.

We present here only those parts of estimation theory that we have used in our simulations,

see any textbook of statistics, e.g., [35], for a more thorough presentation. Our presentation is

based on references [35, 83, 84, 99].

In estimation, we expect that a random sample (x1, x2, . . . , xn), for instance a series of

measurement data, is the realization of a sequence of random variables X1, X2, . . . , Xn, which

have the same distribution F (x) and are independent. The goal is to find values of properties

that describe distribution F . In our study, we want to know µx, the expected value of the

distribution. The sample mean

x̄ =
1

n

n∑
i=1

xi (5.1)

can be used as the estimator of µx.

A standard statistical technique to assess the accuracy of an estimate is to construct a

confidence interval for the estimated parameter. A 100(1 − α)% confidence interval for a

parameter θ is an interval [L1, L2] that contains the actual value of θ with probability (1 −
α). The confidence interval is constructed using the sample (x1, x2, . . . , xn). If the random

variables Xi are normally distributed, then the confidence interval of the expected value is

[x̄−∆x, x̄+ ∆x], where ∆x can be computed using Student’s t-distribution and the estimator

σ̂2[x̄] of the variance of X as follows:

∆x = tn−1,1−α/2σ̂[x̄] (5.2)

σ̂2[x̄] =
1

n(n− 1)

n∑
i=1

(xi − x̄)2 (5.3)

86

Given a sample, we can compute different confidence intervals by changing the confidence level

1− α. Obviously, the higher the confidence level is, the wider the confidence interval.

These equations can also be used when random variables Xi are not normally distributed

or when we do not know that they are. The necessary requirement is that the random variables

are independent and have an identical distribution. When n, the size of the sample, increases,

the random variable X = X1 +X2 +. . .+Xn tends to the normal distribution and the estimator

of the confidence interval is again valid. In practice, the estimator gives good approximation

when n > 30.

Equations 5.2 and 5.3 can be used after the simulation to compute a 100(1−α)% confidence

interval of the expected value. The problem is that before the simulation, we do not know

what kind of a confidence interval the simulation will yield. If we fix the number of simulation

inputs, i.e., the size of the sample, beforehand, we may either produce confidence intervals that

are too wide or too uncertain to be useful or waste simulation time for processing unnecessary

inputs. This problem can be solved by using sequential procedures [83, 84, 99]. In a sequential

procedure, the length of the simulation run is increased until the desired confidence interval is

reached. Before the simulation starts, we only have to describe the confidence interval that we

would like to have. The simulation procedure produces new inputs and applies the simulation

program to them until the desired confidence interval is reached.

We can describe the desired confidence interval, and thus the stopping condition of the

simulation, either in absolute or in relative terms. In the former case, we usually state that

|∆x| ≤ δmax, i.e., the error of our estimate must be at most δmax. In the latter case, we have

several possibilities. In the methods presented in [83, 84, 99], the 100(1 − α)% confidence

interval produced by the simulation should be such that the ratio of its half-length to its

mid-point does not exceed a fixed constant, i.e., |∆x/x̄| = ε ≤ εmax. A shortcoming in these

methods is that they do not directly limit the relative error |(x̄−µx)/µx| of the expected value

µx. Pawlikowski [99] showed that if [x̄ − ∆x, x̄ + ∆x] is a 100(1 − α)% confidence interval

produced in this way, then

1− α ≤ P [
|x̄− µx|
|µx|

≤ ε

1− ε
] (5.4)

We can use this inequality to get a direct limit for the relative error of µx. If we replace εmax by

εmax/(1 + εmax) in the stopping condition, then the relative error |(x̄− µx)/µx| is at most εmax.

The length of the simulation increases slightly, but according to our experience this causes no

problems.

Our sequential simulation procedure is presented in Figure 5.1. As inputs, the simulation

procedure needs values for parameters α and εmax that control the confidence interval. In

addition, it needs a procedure A that implements the algorithm which is studied, a procedure

G that generates a random input for procedure A, and p1, p2, . . . , pk, the values of parameters

that control the generation of the inputs, e.g., the number of vertices in the generated random

graph. The random inputs that procedure G yields must be independent. Procedure A applies

the algorithm which is studied to the given input and computes the associated performance

measure.

The output of the sequential simulation procedure is the estimate x̄ = s/n of the expected

value µx of the performance measure. The relative error of x̄ to µx is at most 100εmax% with

87

(1) s := 0;

(2) n := 0;

(3) repeat

(4) I := G(p1, p2, . . . , pk);

(5) x := A(I);

(6) s := s+ x;

(7) n := n+ 1;

(8) until |∆x/x̄| ≤ εmax/(1 + εmax)

Figure 5.1: A sequential simulation procedure.

probability 1 − α. Ganguly et al. [44] used a similar procedure in their study of transitive

closure computation.

Since we did not know that the performance measures are normally distributed, we gener-

ated at least 30 inputs in each simulation. When the expected value of the measure was near

zero in some parts of the input space and large in other parts of the input space, the fulfillment

of the relative stopping condition required long simulation runs. Knowing that the expected

value is near zero in some part of the input space is usually sufficient when the expected value

is large in other parts of the input space. Thus, in these experiments we used a stopping

condition that is a combination of a relative and an absolute condition. The simulation was

stopped when either the relative error or the absolute error became sufficiently small.

5.1.3 Inputs

Since we had no particular application in mind when choosing the input model, we first decided

to use the model of directed random graphs G(n, p) that is mostly used in the literature [19, 79].

The model is defined as follows:

Definition. The model G(n, p) of random graphs is a probability space that contains all

directed graphs having the same vertex set V = {1, 2, . . . , n} and an edge set E ⊆ V × V .

Each possible edge of a graph in G(n, p) exists with probability p independently of the existence

of other edges; thus, the probability of a given graph G with e = |E| edges is pe(1− p)n2−e.

Although all possible directed graphs can be generated in this model, the graphs drawn

from G(n, p) are usually similar in some respects. Karp [79] showed that when n is large and

np (the expected outdegree) is equal to a constant c greater than one, it is likely that the

graph contains one large component, called the giant component, and the other components

are small. When n is constant and np grows, the percentage of vertices in the giant component

increases rapidly. Our experiments showed that also when n is small, e.g., n = 100, the giant

component grows rapidly when np grows. In Figure 5.2, we present the results of a simulation

that measured the expected value of the percentage of vertices in the largest component of the

graph. Parameter n varied between 100 and 50000, and np varied between 0.0 and 8.0. In

these simulations, α = 0.05 and εmax = 0.05. As we see, the proportion of vertices that were

in the giant component was almost independent of n. When np was less than one, no giant

component existed. When np was two, about 60% of the vertices were in the giant component,

88

10000

20000

30000

40000

50000

vertices

0

2

4

6
8

outdegree

0.2

0.4

0.6

0.8

ratio

10000

20000

30000

40000

50000

rtices

0

2

4

6
8

outdegree

0.2

0.4

0.6

0.8

Figure 5.2: The percentage of vertices in the largest component in model G(n, p).

and when np was greater than four, almost all vertices were in the giant component. This

phenomenon has a well-known counterpart in the theory of undirected random graphs [19]:

also undirected random graphs G(n, p) usually contain one large connected component and

the other components contain only a few vertices.

Karp [79] showed also that a component that has more than one vertex, but that is not

the giant component, is unlikely. In Figure 5.3, we present the percentage of vertices that are

outside the giant component and the trivial components. As we see, almost all vertices are

either in the giant component or in trivial components.

If we would have used G(n, p) as our only simulation model, we would have gained no in-

formation on graphs with many nontrivial components. To overcome this problem, we decided

to also use another model of directed random graphs G(n, p, l), defined as follows:

Definition. The model G(n, p, l) of random graphs is a probability space that contains all

directed graphs having the same vertex set V = {1, 2, . . . , n} and an edge set E ⊆ {(i, j) |

10000

20000

30000

40000

50000

vertices

0

2

4

6
8

outdegree

0

0.01

0.02

ratio

10000

20000

30000

40000

50000

rtices

0

2

4

6
8

outdegree

0

0.01

0.0

Figure 5.3: The percentage of vertices outside the largest component and the trivial compo-
nents in model G(n, p).

89

i, j ∈ V ∧ j ∈ [(i− l) mod n, . . . , (i+ l) mod n]}. Each possible edge of a graph in G(n, p, l)

exists with probability p independently of the existence of any other edge in the graph; thus,

the probability of a given graph G = (V,E) with e edges is pe(1− p)n(2l+1)−e.

This means that edges leaving a vertex i can only go to a vertex j that is between (i −
l) mod n and (i+ l) mod n in the modular arithmetic. Parameter l is called the locality.

In Figure 5.4, we present the expected percentage of vertices outside the largest compo-

nent and the trivial components when the graphs were drawn from G(n, p, l = 5). When the

expected outdegree (2l+ 1)p was between two and four, most vertices were in nontrivial com-

ponents other than the giant component. The behavior depended only on the outdegree, not

on the number of vertices. When the expected outdegree approached five, the graphs became

strongly connected. We got similar results with other small values of l, e.g., l = 10. When

l increased, G(n, p, l) started to resemble G(n, p). Thus, we can consider G(n, p) to have the

greatest possible locality. It seems that G(n, p, l) with a small value of l is a good model for

studying sparse graphs with many nontrivial components. Ioannidis et al. [64] used a similar

model in their simulations.

10000

20000

30000

40000

50000

vertices

0

2

4

6
8

outdegree

0

0.2

0.4

0.6

0.8

ratio

10000

20000

30000

40000

50000

rtices

0

2

4

6
8

outdegree

0

0.2

0.4

0.6

0.8

Figure 5.4: The percentage of vertices outside the largest component and the trivial compo-
nents in model G(n, p, l = 5).

Generating inputs

Since the algorithms that we study are efficient, generating the inputs may dominate the

execution time in the simulations. We describe below how random graphs of model G(n, p)

can be efficiently generated. Random graphs of model G(n, p, l) can be generated with only

slight modifications.

By definition, we could generate a random graph G = (V,E) of G(n, p) as follows: for each

possible edge (i, j), draw a uniformly distributed random number u, 0 ≤ u ≤ 1. If u ≤ p, then

insert (i, j) into E. The weakness in this method is that we always need Ω(n2) time, even

when the generated graph has O(n) edges.

A simple probability theoretic observation makes it possible to use only O(n + e) time to

generate G [78]. In generating the edges, we do n2 independent 0–1 trials, where the probability

of 1 is p in each trial. By definition, the distance between two consecutive trials that yield 1 is

90

geometrically distributed with parameter p. Thus, we generated the edges of G by using the

algorithm presented in Figure 5.5.

(1) x := 0;

(2) while true do begin

(3) x := x+ geom(p);

(4) if x > n2 then

(5) return

(6) else

(7) insert (dx/ne, x mod n+ 1) into E

(8) end

Figure 5.5: An algorithm for generating the edges of a random graph of model G(n, p).

The procedure draws e+1 geometrically distributed random numbers and generates one new

edge per each of these random numbers except the last. Since the edge generation procedure

above yields the edges in ascending order, we randomized the order of edges in the adjacency

lists after the generation.

We generated geometrically distributed random numbers efficiently by drawing a uniformly

distributed random number u, 0 ≤ u ≤ 1, and converting it into a geometrically distributed

random number x by an inverse transformation [100]

x = dln(u)/ ln(1− p)e (5.5)

In generating the uniformly distributed random numbers, we used a linear-congruential gener-

ator

ui + 1 = 75ui mod (231 − 1) (5.6)

The same generator is used, for instance, in IBM’s SIMPL/1 [59] simulation package and the

mathematical library IMSL [60]. This generator was highly recommended by Park and Miller

[98] in their study of random number generators.

5.1.4 Performance evaluation design

Above we have discussed three important issues in a performance evaluation study: selecting

the evaluation technique, coping with the variance of performance metrics, and selecting the

inputs. We discuss now some other important issues that must be considered in designing a

performance evaluation study.

Jain presented in his book [69] an overall approach to performance evaluation studies that

consists of ten steps. We list these steps below and explain how the steps apply to our experi-

ments.

1. State the goals of the study and define the system boundaries. If this step is missed, it is

unlikely that any useful results are obtained in the study. Our goals were simple, e.g., to

compare the number of operations in different algorithms. The system boundaries were

mostly obvious.

91

2. List services and possible outcomes. A computer system that is evaluated offers a set of

services. For instance, a computer network allows its users to send packets to specified

destinations. Each service has several possible outcomes, some desirable and some un-

desirable. For instance, the packets may be delivered to the correct destination in the

computer network or may get lost. In our experiments, the evaluated system offered a

single service, computing the transitive closure of the given graph, and the service had

only desirable outcomes.

3. Select performance metrics. The performance metrics are the criteria to compare the

performance. We used several different metrics: the number of specific operations, the

size of a data structure in number of elements, and the execution time in seconds.

4. List system and workload parameters. All parameters that affect the performance of the

evaluated system should be identified. Workload parameters characterize the inputs that

are given to the system. System parameters characterize the software and the hardware.

We have above described the input models that we used in our experiments and listed

the parameters used in generating the inputs. Most system parameters were related to

the software, e.g., the algorithms and data structures that were used.

5. Select factors and their levels. Those parameters that are varied in the experiment are

called factors. The values of the factors are called levels.

6. Select the evaluation technique. The three categories of evaluation techniques are ana-

lytical modeling, simulation, and direct measuring of a real system. We explained above

why we selected simulation as our main evaluation technique. In the execution time

experiments, we used direct measuring.

7. Select workload. The workload consists of a list of service requests to the evaluated

systems. Our workloads were random graphs drawn from G(n, p) and G(n, p, l).

8. Design experiments. We should select a sequence of experiments that offer maximal

information with minimal effort. In our experiments, we first ran a few initial simulation

runs with inaccurate confidence intervals to get an overall picture of the behavior of the

system. Then we selected appropriate levels for the input factors and ran the simulations

again with more accurate confidence intervals. Thus, the selection of the levels of the

input factors and the experimental design were connected to each other.

9. Analyze and interpret data. Since we used the sequential simulation procedure, no addi-

tional statistical analysis of the result was needed. In some studies, we used a regression

model to fit curves to the data.

10. Present results. We present the results of the experiments in graphic form using two or

three dimensional plots.

92

5.2 The size of transitive closure representations

5.2.1 Experimental setting

Our goal was to compare the average size of different transitive closure representations. We

wanted to find out which representations need the smallest and the largest memory space on

the average in different input models. We also wanted to find out how the average memory

requirements vary with different input parameter levels. The representations were

1. Successor lists that contain vertices when components are not detected, i.e., each vertex

has a separate successor list. We call this representation the v × v -representation, since

its size corresponds to the size of the transitive closure relation represented as pairs of

vertices.

2. Successor lists that contain vertices when components are detected, i.e., each component

has a single successor list and the list contains vertices. We call this representation the

c×v -representation, since its size corresponds to the size of the transitive closure relation

represented as component–vertex pairs.

3. Successor lists that contain components when components are detected, i.e., each com-

ponent has a single successor list and the list contains components. We call this repre-

sentation the c× c -representation, since its size corresponds to the size of the transitive

closure relation of the condensation graph represented as pairs of components.

4. Interval representation, presented in section 4.2.

5. Chain representation, presented in section 4.3.

We used the number of required memory words as the performance metric. We assumed

that in a list representation one vertex or component takes one word of memory space. A pair

in the chain representation or an interval in the interval representation takes two words. No

other system parameters were used.

We computed the sizes of the different representations by first computing the transitive

closure using algorithm stack tc and the interval representation and then computing the

sizes of the v× v -representation, c× v -representation, and c× c -representation by using the

interval representation and the strong components. Since the interval representation is time

and space efficient, this approach made it possible to use large input graphs. Unfortunately, the

size of the chain representation cannot be computed directly from the interval representation.

Therefore, we also had to compute the transitive closure using the chain representation.

The workload consisted of randomly generated sparse graphs drawn from G(n, p) and

G(n, p, l). We did not study dense inputs, since the behavior of each representation is ob-

vious when the inputs are dense: if the strong components are not detected, we usually need

quadratic memory space, and if components are detected, we usually need linear or smaller

than linear memory space.

The workload factors were the number of vertices n, the expected outdegree d, and the

locality l. The edge probability p of the input model was computed from d using n and l.

After some initial simulation runs, we selected the following levels for the factors: factor n

93

had seven different levels 100, 300, 1000, 3000, 10000, 25000, and 50000, factor d had levels

ranging from 0.0 to 6.0 by 0.1, and factor l had levels 5, 10, and 20. We could not use vertex

counts n = 25000 and n = 50000 in model G(n, p) with the chain representation, since the

representation required too much memory.

The simulation control parameters were α = 0.1 and εmax = 0.1 or δmax = n/100, i.e., we

computed a 90% confidence interval I such that either the relative error of I is at most 10% or

the absolute error of I is at most n/100. This combined stopping condition was needed, since

the sizes of some representations are small in some parts of the input space and large in other

parts of the input space.

5.2.2 Results

We study how the average size varied in different representations when the input model and

the parameter levels were varied. We present some results using three dimensional plots with

the number of vertices n and the expected outdegree d on the x- and y-axis. The average size

is presented on the z-axis as a representation size ratio, i.e., the average number of memory

words required divided by the number of vertices. Examine carefully the scale of the z-axis;

since the maximum average size varied much in different representations and also in different

input models with the same representation, we cannot use the same scale on the z-axis in all

graphs. We also describe the dependency of the maximum average sizes on the number of

vertices n. We estimated these dependencies from the simulation results using a regression

model.

The average size of the v × v -representation

We study first the v×v -representation. In each input model, the size of the v×v -representation

increased monotonically as the expected outdegree d grew. The growth was fastest at those

levels of d where large components started to emerge. When the size of components increased,

the size of the representation rapidly approached n2 words. In model G(n, p), this happened

between outdegrees one and two (Figure 5.6), in model G(n, p, l = 20) between outdegrees

two and three, in model G(n, p, l = 10) between outdegrees three and four, and in model

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0
10000
20000
30000

40000

ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0
000
000
000

00

Figure 5.6: The representation size ratio of the v × v -representation in model G(n, p).

94

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0
10000
20000
30000

40000

ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0
000
000
000

00

Figure 5.7: The representation size ratio of the v× v -representation in model G(n, p, l = 5).

G(n, p, l = 5) between outdegrees five and six (Figure 5.7). Thus, the rapid growth started

earlier with greater values of locality l.

The average size of the c× v -representation

The size of c × v -representation first increased monotonically as d grew and then decreased

monotonically. The difference between the behavior in different models was that the greater the

locality was, the greater the maximum average size and the earlier the maximum was reached.

In model G(n, p, l = 5), the maximum average size was about 1.2n1.3 words (reached at d ≈ 5),

in model G(n, p, l = 10) about 0.40n1.7 words (reached at d ≈ 4), and in model G(n, p, l = 20)

about 0.15n1.9 words. In model G(n, p), the maximum average size was about 0.15n2 words

(reached at d ≈ 1.7 (Figure 5.8)). Thus, the dependency of the maximum average size on the

number of vertices seemed to become quadratic when the locality grew.

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0

2000

4000

6000

ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0

000

000

00

Figure 5.8: The representation size ratio of the c× v -representation in model G(n, p).

95

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0
2

4

6

8

ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0
2

4

6

8

Figure 5.9: The representation size ratio of the c×c -representation in model G(n, p, l = 10).

The average size of the c× c -representation

The c×c -representation behaved like the c×v -representation in models G(n, p) and G(n, p, l =

20), except that the maximum average sizes were smaller (about 0.063n2 words in G(n, p) and

about 0.11n1.7 words in G(n, p, l = 20)) and were reached at lower levels of d. In model

G(n, p, l = 10), the behavior was more complicated (Figure 5.9). With each number of vertices

n, the average size had two local maxima, at d ≈ 2 and at d ≈ 4. The latter maximum was

the global maximum, about 0.61n1.3 words. In model G(n, p, l = 5), the behavior was simpler:

the average size increased when the outdegree grew from d = 0 to d ≈ 2 and then decreased

(Figure 5.10). The maximum average size was about 2.8n words.

The average size of the chain representation

The chain representation behaved like the c× c -representation in all models, except that the

average sizes were mostly about twice as large as in the c× c -representation.

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0

1

2
ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0

1

2

Figure 5.10: The representation size ratio of the c×c -representation in model G(n, p, l = 5).

96

10000

20000

30000
40000
50000

 vertices

0
2

4
6

outdegree

0

2

4

6

8

ratio

10000

20000

3000
400
500

0
2

4
6

outdegree

0

2

4

6

8

Figure 5.11: The representation size ratio of the interval representation in model G(n, p).

The average size of the interval representation

The interval representation behaved in models G(n, p, l) with all three values of l like the c× c
-representation in model G(n, p, l = 5). The average size first increased when the outdegree

grew and then decreased, and the maximum average size grew linearly to the number of

vertices. The maximum average size was about 2.2n words in G(n, p, l = 5), about 2.6n words

in G(n, p, l = 10), and about 3.3n words in G(n, p, l = 20). In model G(n, p), the behavior was

otherwise similar to the behavior in models G(n, p, l) except that the maximum average size

did not grow linearly to the number of vertices, but was about 0.55n log n words (Figure 5.11).

The maximum average size was also reached with smaller values of d.

Table 5.1 shows the maximum average sizes of the representations at levels n = 10000,

n = 25000, and n = 50000. In addition, it shows the estimated growth of the maximum

average size as a function of n.

5.2.3 Discussion

In all input models, the maximum average size was largest in the v × v -representation and

smallest in the interval representation. The v × v -representation required quadratic memory

space in all input models and in most expected outdegrees. Hence, the v × v -representation

can only be used with small inputs. Strong components must be used if larger inputs are

processed. As expected, the c × v -representation required less memory than the v × v -

representation, but more than the c× c -representation. Contrary to our initial expectations,

the chain representation saved no space compared to the c× c -representation. Thus, the chain

representation seems to be useful only with acyclic graphs. The interval representation was

the clear winner. Its maximum average size was linear to the number of vertices in models

G(n, p, l) and approximately 0.55n log n in model G(n, p). The maximum average sizes of all

other representations were quadratic to the number of vertices at least in one of the input

models. The interval representation was usually smaller than the input graph.

97

Representation Locality n = 10000 n = 25000 n = 50000 Growth

v × v none 1.0× 108 6.3× 108 2.5× 109 n2

l = 20 1.0× 108 6.3× 108 2.5× 109 n2

l = 10 1.0× 108 6.3× 108 2.5× 109 n2

l = 5 1.0× 108 6.3× 108 2.5× 109 n2

c× v none 1.5× 107 9.2× 107 3.7× 108 0.15n2

l = 20 6.5× 106 3.2× 107 1.2× 108 0.15n1.9

l = 10 2.1× 106 8.8× 106 2.9× 107 0.4n1.7

l = 5 250, 000 820, 000 2.1× 106 1.2n1.3

c× c none 6.3× 106 3.9× 107 1.6× 108 0.063n2

l = 20 590, 000 2.5× 106 7.9× 106 0.11n1.7

l = 10 65, 000 200, 000 460, 000 0.61n1.3

l = 5 29, 000 71, 000 140, 000 2.8n

Chains none 6.9× 106 – – 0.069n2

l = 20 930, 000 4.0× 106 1.3× 107 0.13n1.7

l = 10 110, 000 350, 000 820, 000 1.1n1.3

l = 5 28, 000 70, 000 140, 000 2.8n

Intervals none 73, 000 200, 000 430, 000 0.55n log n

l = 20 33, 000 82, 000 160, 000 3.3n

l = 10 27, 000 66, 000 130, 000 2.6n

l = 5 21, 000 54, 000 110, 000 2.2n

Table 5.1: The maximum average sizes of the representations.

5.3 Successor set construction

5.3.1 Experimental setting

Our goal was to detect the average complexity of constructing the successor sets in different

algorithms and representations. The algorithms and representations were:

1. ebert [36] and unordered list representation.

2. ebert and interval representation.

3. schmitz [105] and unordered list representation.

4. schmitz and interval representation.

5. cr tc, presented in section 3.3, and unordered list representation.

6. cr tc and interval representation.

7. stack tc, presented in section 3.4, and unordered list representation.

8. stack tc and interval representation.

98

We chose ebert of those algorithms that compute the successor sets during the strong compo-

nent detection, since it does at most as many unions as eks [40], and it is easier to implement

than gdftc [64], which does the same number of unions as ebert. ebert constructs the

successor sets from vertices instead of components. Hence, we had to modify the interval

representation to use vertex exit numbers instead of component numbers in ebert. Since at

most one successor set is under construction at any moment during the execution of stack tc

and schmitz, we used a bit vector in these algorithms for duplicate elimination. Since many

successor sets are simultaneously under construction in cr tc and ebert, we did not use bit

vectors in cr tc and in ebert. For the same reason, the interval representation stored the

intervals as binary trees in ebert and in cr tc, but as arrays in schmitz and in stack tc.

To find out the savings gained by topological sorting in stack tc, we also used a version of

stack tc, called stack tc n, which does not sort the components in the component stack.

The performance metric was the total number of basic elements accessed in successor set

operations. A basic element was a node of a list in the list representation and an interval in

the interval representation. We call the average of the total number of accessed basic elements

the access count. In addition to the access count, we counted separately the numbers of basic

elements accessed in unions, insertions, membership tests, and set initializations.

The workload consisted of randomly generated sparse graphs drawn from G(n, p) and

G(n, p, l = 10). The workload factors were the number of vertices n and the expected outdegree

d. After some initial simulation runs, we selected the following levels for the factors: factor n

had five different levels 1000, 3000, 10000, 25000, and 50000, and factor d had levels ranging

from 0.0 to 10.0 by 0.1. Since the list representation required too much memory, we could not

use levels of n above n = 10000. With ebert, we could not even use level n = 10000.

The simulation control parameters were α = 0.05 and εmax = 0.05 or δmax = n/100, i.e., we

computed a 95% confidence interval I such that either the relative error of I is at most 5% or

the absolute error of I is at most n/100.

5.3.2 Results

We present the results using three dimensional plots with the number of vertices n and the

expected outdegree d on the x- and y-axis. The access count divided by the number of vertices

is presented on the z-axis. Note that the scale of the x-axis and the scale of the z-axis are

different in different plots. We also describe the dependency of the maximum access count on

the number of vertices n. Note that the maximum access count is the greatest average value

at a fixed level of n, not the greatest value detected in all simulation runs.

Ebert’s algorithm and the list representation

In both models, ebert behaved almost as in the worst case. The access count was quadratic

to the number of vertices and linear to the expected outdegree. In G(n, p), the access count

was about 0.42n2d (Figure 5.12). In G(n, p, l = 10) the access count was about 0.17n2d. Most

of these accesses occurred in insertions. Since the memory requirements were quadratic to the

number of vertices, we could not use vertex counts greater than n = 3000.

99

1000

2000

3000

 vertices

0
2

4
6

8
10

outdegree

0
2500
5000
7500

10000

ratio

1000

2000

300

0
2

4
6

8
10

outdegree

0
500
000
500

00

Figure 5.12: The access count divided by the number of vertices in ebert with the list
representation: model G(n, p).

Ebert’s algorithm and the interval representation

We encountered memory space problems here also and could not use vertex counts above

n = 3000. The memory requirements and the access counts were here too quadratic to the

number of vertices. In model G(n, p), the access count increased between outdegrees d = 0.0

and d ≈ 2.0 and then decreased (Figure 5.13). The maximum access count, reached at d ≈ 2.0,

was about 0.25n2. If we had used greater values of d, the access count would have increased

again, since the access count in insertions seemed to grow linearly to the expected outdegree.

In model G(n, p, l = 10), the access count increased rapidly from d = 0.0 to d ≈ 5.0 and then

increased slowly between d ≈ 5.0 and d = 10.0 (Figure 5.14). At d = 10.0, the access count

was about 0.23n2. In both models, most accesses occurred in unions.

Algorithm CR TC and the list representation

In both models, the access count first increased as the expected outdegree grew and then

decreased. In G(n, p), the maximum access count was about 0.14n2 and it was reached at

d ≈ 1.5 (Figure 5.15). In G(n, p, l = 10), the maximum access count was reached at d ≈ 3.6

1000

2000

3000

 vertices

0
2

4
6

8
10

outdegree

0

200

400

600

ratio

1000

2000

300

0
2

4
6

8
10

outdegree

0

200

400

00

Figure 5.13: The access count divided by the number of vertices in ebert with the interval
representation: model G(n, p).

100

1000

2000

3000

 vertices

0
2

4
6

8
10

outdegree

0

200

400

600

ratio

1000

2000

300

0
2

4
6

8
10

outdegree

0

200

400

00

Figure 5.14: The access count divided by the number of vertices in ebert with the interval
representation: model G(n, p, l = 10).

(Figure 5.16). The maximum access count seemed to be neither linear nor quadratic to the

number of vertices. In both models, the number of accesses in unions and insertions were

roughly equal.

Algorithm CR TC and the interval representation

In modelG(n, p), cr tc behaved with the interval representation as with the list representation

except that the maximum access count was much smaller, about 1.4× 10−3n2. Most accesses

occurred in unions. In model G(n, p, l = 10), the maximum access count was 9.6× 10−5n, i.e.,

linear to the number of vertices (Figure 5.17). The number of accesses in unions and insertions

were roughly equal.

Schmitz’s algorithm and the list representation

In model G(n, p), the access count increased as the expected outdegree grew from d = 0.0 to

d ≈ 1.5 and then decreased (Figure 5.18). Although it cannot be seen in Figure 5.18, after

d ≈ 4.0 the access count started to grow again. This growth was linear to the expected

2000

4000

6000
8000
10000

 vertices

0
2

4
6

8
10

outdegree

0

500

1000
ratio

2000

4000

6000
800
100

0
2

4
6

8
10

outdegree

0

500

00

Figure 5.15: The access count divided by the number of vertices in cr tc with the list
representation: model G(n, p).

101

2000

4000

6000
8000
10000

 vertices

0
2

4
6

8
10

outdegree

0

10

20
ratio

2000

4000

6000
800
100

0
2

4
6

8
10

outdegree

0

10

20

Figure 5.16: The access count divided by the number of vertices in cr tc with the list
representation: model G(n, p, l = 10).

outdegree and was caused by insertions. The local maximum access count at d ≈ 1.5 was

about 0.082n2 and it was caused by unions. In model G(n, p, l = 10), a similar local maximum

appeared between d = 2.0 and d = 3.8; it was neither linear nor quadratic to the number of

vertices (Figure 5.19).

Schmitz’s algorithm and the interval representation

In model G(n, p), schmitz behaved with the interval representation roughly as with the list

representation except that the local maximum access count at d ≈ 2.0 was much smaller,

about 1.6 × 10−3n2. In model G(n, p, l = 10), the access count mostly increased between

outdegrees from d = 0.0 to d ≈ 5.0 and then decreased, but started to increase again at

d ≈ 8.0 (Figure 5.20). The (local) maximum at d ≈ 5.0 was neither linear nor quadratic to

the number of vertices.

10000

20000

30000
40000
50000

 vertices

0
2

4
6

8
10

outdegree

0
1
2
3

4

ratio

10000

20000

3000
400
500

0
2

4
6

8
10

outdegree

0
1
2
3

4

Figure 5.17: The access count divided by the number of vertices in cr tc with the interval
representation: model G(n, p, l = 10).

102

2000

4000

6000
8000
10000

 vertices

0
2

4
6

8
10

outdegree

0

200

400

600

800

ratio

2000

4000

6000
800
100

0
2

4
6

8
10

outdegree

0

200

400

00

00

Figure 5.18: The access count divided by the number of vertices in schmitz with the list
representation: model G(n, p).

Algorithm STACK TC and the list representation

In model G(n, p), stack tc behaved like cr tc with the list representation. However, the

maximum access count, reached at d ≈ 1.5, was smaller, about 0.076n2. In model G(n, p, l =

10), stack tc behaved roughly like cr tc except that the maximum access count, reached

between d ≈ 2.0 and d ≈ 3.8, was smaller and did not grow as fast as in cr tc (Figure 5.21).

In both models, most accesses occurred in unions. stack tc n, the version of stack tc that

does not sort the component stack, required only slightly more accesses than stack tc in

both models.

Algorithm STACK TC and the interval representation

In model G(n, p), stack tc behaved with the interval representation as with the list repre-

sentation except that the maximum access count was much smaller, about 6.8× 10−4n2. The

maximum access count of stack tc n was about 1.4× 10−3n2. In model G(n, p, l = 10), the

maximum access count of both algorithms was about 9.0× 10−5n, i.e., linear to the number of

vertices (Figure 5.22). In both models, the number of accesses in unions and insertions were

roughly equal.

2000

4000

6000
8000
10000

 vertices

0
2

4
6

8
10

outdegree

0

5

10

15

ratio

2000

4000

6000
800
100

0
2

4
6

8
10

outdegree

0

5

10

15

Figure 5.19: The access count divided by the number of vertices in schmitz with the list
representation: model G(n, p, l = 10).

103

10000

20000

30000
40000
50000

 vertices

0
2

4
6

8
10

outdegree

0

5

10

15

ratio

10000

20000

3000
400
500

0
2

4
6

8
10

outdegree

0

5

10

15

Figure 5.20: The access count divided by the number of vertices in schmitz with the interval
representation: model G(n, p, l = 10).

Table 5.2 lists the maximum access counts at levels n = 3000, n = 10000, and n = 25000

when the expected outdegree was between 0.0 and 10.0. In addition, it shows the estimated

growth of the maximum access count as a function of n.

5.3.3 Discussion

stack tc was the clear winner. In both models and with both representations, stack tc had

the smallest maximum access count. stack tc n usually did more accesses than stack tc,

but the difference was significant only in model G(n, p) with the interval representation.

schmitz was not much worse than stack tc and stack tc n. Note, however, that when

the expected outdegree grew, the access counts of stack tc and stack tc n tended to zero,

whereas the access count of schmitz grew linearly. Note also that the maximum access counts

grew linearly to the number of vertices in cr tc, stack tc, and stack tc n, but faster than

linearly in schmitz. Thus, the difference between schmitz and our algorithms should become

greater with greater inputs. ebert was very inefficient compared to the other algorithms in

both models and with both representations.

Other experiments that we have done also indicate that the maximum access counts of our

2000

4000

6000
8000
10000

 vertices

0
2

4
6

8
10

outdegree

0

5

10
ratio

2000

4000

6000
800
100

0
2

4
6

8
10

outdegree

0

5

10

Figure 5.21: The access count divided by the number of vertices in stack tc with the list
representation: model G(n, p, l = 10).

104

10000

20000

30000
40000
50000

 vertices

0
2

4
6

8
10

outdegree

0
1
2

3

4

ratio

10000

20000

3000
400
500

0
2

4
6

8
10

outdegree

0
1
2

3

4

Figure 5.22: The access count divided by the number of vertices in stack tc with the
interval representation: model G(n, p, l = 10).

algorithms are linear to the number of vertices in all models G(n, p, l) when l is small. Since

the other operations in the algorithms take O(n+ e) time, these results indicate that in model

G(n, p, l) with a small value of l, our new algorithms should require a time linear to the size

of the input graph on the average. In model G(n, p), the algorithms should also require a

linear time except when the expected outdegree is slightly greater than one. Then, the average

Algorithm Repr. Loc. n = 3000 n = 10000 n = 25000 Growth

ebert list none 3.8× 107 – – 0.40n2

list l = 10 1.5× 107 – – 1.7n2

interval none 2.3× 106 – – 0.25n2

interval l = 10 2.1× 106 – – 0.23n2

cr tc list none 1.3× 106 1.4× 107 – 0.14n2

list l = 10 64, 000 280, 000 – 3.0n log n

interval none 27, 000 150, 000 800, 000 1.2× 10−3n2

interval l = 10 15, 000 49, 000 120, 000 4.9n

schmitz list none 770, 000 8.3× 106 – 0.083n2

list l = 10 50, 000 170, 000 – 1.9n log n

interval none 42, 000 250, 000 1.2× 106 1.7× 10−3n2

interval l = 10 30, 000 120, 000 350, 000 1.5n log n

stack tc list none 710, 000 7.7× 106 – 0.077n2

list l = 10 41, 000 130, 000 – 1.4n log n

interval none 25, 000 110, 000 490, 000 7.0× 10−4n2

interval l = 10 14, 000 48, 000 120, 000 4.8n

stack tc n list none 760, 000 8.2× 106 – 0.082n2

list l = 10 44, 000 140, 000 – 1.5n log n

interval none 27, 000 190, 000 1.0× 106 1.5× 10−3n2

interval l = 10 15, 000 51, 000 130, 000 5.1n

Table 5.2: The maximum access counts; 0.0 ≤ d ≤ 10.0.

105

execution time should be quadratic to the number of vertices.

5.4 Execution time

5.4.1 Experimental setting

Our goal was to compare the execution times of different transitive closure algorithms. We were

mainly interested in the relative efficiency of the algorithms. The algorithms were schmitz,

cr tc, stack tc, and stack tc n. Since ebert was very inefficient compared to the other

algorithms in the measurements presented in section 5.3, we decided not to use it.

We used only the interval representation, since our goal was to compare algorithms and not

representation. Note that in [92], we presented a similar comparison between schmitz and

stack tc n using unordered lists augmented with a bit vector as the representation.

The performance metric was the execution time measured using the timing facilities pro-

vided by the computer. The simulations were executed in single-user mode to eliminate mea-

surement error caused by other processes. Note that here the method of evaluation was direct

measurement and not simulation.

Although the computer that is used in these simulations is clearly a system parameter that

affects the results, we assumed that the relative efficiency of the algorithms does not depend

much on the computer. Therefore, we used only a single computer, a Sun Sparcstation-10/20

having 96 megabytes of main memory. The operating system was SunOS 4.1.3. We imple-

mented the algorithms and the data structures in C++. An implementation parameter that

affects the efficiency of the algorithms is whether or not recursion is removed. Deep recursion

seemed to be inefficient in the Sparcstation architecture and in some situations dominated

the execution times in our initial simulation runs. Therefore, we removed recursion from the

algorithm implementations.

The workload consisted of randomly generated sparse graphs drawn from G(n, p) and

G(n, p, l). The workload factors were the number of vertices n, the expected outdegree d,

and the locality l. After some initial simulation runs, we selected the following levels for the

factors: factor n had three levels 3000, 10000, 25000, factor d had levels ranging from 0.0 to

10.0 by 0.5, and factor l had levels 5 and 10.

The simulation control parameters were α = 0.05 and εmax = 0.05 or δmax = n/100, i.e., we

computed a 95% confidence interval I such that either the relative error of I is at most 5% or

the absolute error of I is at most n/100.

5.4.2 Results

Since all algorithms behaved rather similarly in models G(n, p, l = 5) and G(n, p, l = 10), we

present only the results in G(n, p, l = 10). For each vertex count n, we present the results using

two dimensional plots having the expected outdegree in the x-axis and the execution time in

the y-axis (Figures 5.23–5.28).

106

5.4.3 Discussion

stack tc n was the overall winner. It was always faster than schmitz and cr tc. In model

G(n, p, l = 10) with d < 6, stack tc n was slightly faster than stack tc. In model G(n, p),

stack tc was slower than stack tc when n was small, but slightly faster than stack tc n

when n grew. This is consistent with the results of section 5.3; the maximum access count grew

significantly faster in stack tc n than in stack tc in model G(n, p). Thus, the topological

sorting in stack tc seems to become useful in model G(n, p) when the graphs are large.

schmitz behaved like stack tc between d = 0.0 and d = 1.5, but was slower with greater

values of d. With greater values of d, schmitz required twice or three times as much time

as stack tc and stack tc n. The extra time in schmitz is caused by two factors. First,

schmitz always scans the input graph twice. Second, as the simulations in section 5.3 showed,

schmitz needs more successor set accesses than stack tc and stack tc n.

cr tc was considerably slower than the other algorithms between d = 0.0 and d = 1.5,

but became faster than schmitz when d was greater than three. It seems that the strategy of

creating the successor sets during the strong component detection is inferior to the strategy of

creating the successor set immediately after the detection of the component.

Interestingly, the execution times grew slightly faster than linearly to the number of vertices

when they should have grown linearly. The explanation is that with smaller values of n, a

greater portion of data fits into the processor cache. We confirmed this hypothesis by applying

Tarjan’s algorithm to the same inputs; the execution time of Tarjan’s algorithm also grew

faster than linearly to n.

107

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Stacktc_TC_n

Stacktc_TC

Schmitz
CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.23: Execution times in model G(3000, p).

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Stacktc_TC_n

Stacktc_TC

Schmitz

CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.24: Execution times in model G(3000, p, l = 10).

108

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Stacktc_TC_n

Stacktc_TC

Schmitz

CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.25: Execution times in model G(10000, p).

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Stacktc_TC_n
Stacktc_TC

Schmitz

CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.26: Execution times in model G(10000, p, l = 10).

109

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Stacktc_TC_n
Stacktc_TC

Schmitz

CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.27: Execution times in model G(25000, p).

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Stacktc_TC_n Stacktc_TC

Schmitz

CR_TC

outdegree

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Figure 5.28: Execution times in model G(25000, p, l = 10).

110

Chapter 6

Conclusions

6.1 Summary of the main results

We presented two new transitive closure algorithms that are based on Tarjan’s strong compo-

nent algorithm. The first new algorithm, called cr tc, constructs the successor sets during the

strong component detection. The second new algorithm, called stack tc, constructs a suc-

cessor set of a strong component immediately after detecting the component. Both algorithms

construct the successor sets from strong components, not from vertices. An improvement to

previous transitive closure algorithms that are based on strong component detection is that the

new algorithms scan the input graph only once without generating a partial successor set for

each vertex. cr tc has a smaller worst-case execution time than the previous algorithms that

construct the successor sets during strong component detection [36, 40, 64]. stack tc has a

smaller worst-case execution time than any previous transitive closure algorithm that is based

on strong component detection except Munro’s algorithm [91], which has a smaller worst-case

execution time when the inputs are dense. However, Munro’s algorithm is impractical, since

it has high constant costs, and its worst-case execution time with sparse inputs is large.

We showed how unnecessary stack operations can be avoided in Tarjan’s strong component

algorithm.

We presented two new transitive closure representations. The first representation is based

on intervals of integers. Each component is represented as its reverse topological number, and

a successor set is represented as a collection of intervals of consecutive component numbers. A

successor set is represented very compactly compared to traditional set representations such as

lists or trees. The representation generalizes the method for compressing the transitive closure

of an acyclic graph presented by Agrawal et al. [4]. The new representation allows cyclic inputs,

and it can be computed during a single depth-first traversal, whereas the representation by

Agrawal et al. requires many traversals of the input graph.

We presented another new representation that is based on the chain decomposition of an

acyclic input graph by Simon [112]. This new representation also allows cyclic inputs and it

can be computed during a single depth-first traversal whereas Simon’s representation requires

several passes over the input graph.

We showed how the new representations help avoiding redundancy caused by multiple paths

between pairs of vertices in a graph.

We described simulation experiments in which we studied the average-case behavior of

112

transitive closure algorithms and representations. In the first experiment, we studied the

average size of representations. The interval representation required a much smaller memory

space than traditional set representations. The average size of the interval representation was

linear to the number of vertices in random graph model G(n, p, l). It was also linear in model

G(n, p) except when the expected outdegree was slightly greater than one. In this case, the

average size was about 0.55n log n. The chain representation did not save any space compared

to a list representation containing strong components.

In the second experiment, we studied the average complexity of constructing the successor

sets with different algorithms and representations. stack tc required the least number of

accesses of basic elements of the representation both in the list representation and in the

interval representation. With the interval representation, the average number of accesses in

cr tc and in stack tc was linear to the number of vertices except in random graph model

G(n, p) when the expected outdegree was slightly greater than one. In this case, the average

number of accesses was quadratic to the number of vertices. Since a basic element access takes

a constant time, and since the other operations in cr tc and in stack tc always take a time

linear to the size of the graph, this indicates that the new algorithms are usually linear to the

size of the input when the interval representation is used.

In the third experiment, we compared the execution times of Schmitz’s algorithm [105],

algorithm cr tc, and two versions of algorithm stack tc. stack tc was the fastest algo-

rithm. It was about two to three times faster than Schmitz’s algorithm when the expected

outdegree was greater than three. cr tc was slower than the other algorithms when the

expected outdegree was below three, but became faster than Schmitz’s algorithm in greater

expected outdegrees.

These results satisfy rather well two of our initial goals that we listed in the introduction.

Algorithm stack tc is more efficient than the previous algorithms. The interval representation

is usually linear to the number of vertices, and the execution times of stack tc and cr tc

with interval representation are usually linear to the size of the input graph.

6.2 Further research

The third of our goals was that the methods that we develop can be used efficiently both in a

main memory environment and in a secondary memory environment. However, in this thesis,

we only studied the behavior in a main memory environment. We shall study further the

behavior of our new transitive closure algorithms and representations in a secondary memory

environment. Hirvisalo [50] adapted algorithm stack tc to a disk environment and compared

it with algorithm btc by Ioannidis et al. [64]. The preliminary results indicate that stack tc

with the interval representation requires less disk I/O than btc. It seems that since the interval

representation is very compact, the main cost in a disk environment is related to the traversal

of the input graph and not to the successor set creation. Thus, we must design methods for

speeding up graph traversal in a disk environment.

We shall study other problems that are related to the full transitive closure problem, e.g.,

partial transitive closure problems and generalized transitive closure problems. Some tech-

niques that we used in the transitive closure problem can also be used in these other problems,

but new approaches are also required. For instance, the interval representation cannot be used

113

to store path information compactly.

We also want to develop better methods for algorithm performance study by simulation.

Hirvisalo [50] developed a set of tools for analyzing the disk behavior of transitive closure and

other related algorithms. These tools will be developed further.

In the simulation experiments, we used two models of random graphs G(n, p) and G(n, p, l)

to generate the inputs. We shall try to find other useful models of random graphs, and

study the behavior of transitive closure algorithms and representations in these models. Some

new models of random graphs could, for instance, mimic the inputs occuring in some specific

application areas of transitive closure computation.

Algorithm performance study by simulation has its pros and cons. A weakness is that it

requires much time; another weakness is that the results are valid only in those parts of the

space of possible inputs that the simulations cover. Thus, we shall also try to do mathematical

average case analysis when it seems to be possible.

114

Bibliography

[1] S.K. Abdali and B.D. Saunders. Transitive closure and related semiring properties via

eliminants. Theoretical Computer Science, 40(2,3):257–274, 1985.

[2] L. Adleman, K.S. Booth, F.P. Preparata, and W.L. Ruzzo. Improved time and space

bounds for Boolean matrix multiplication. Acta Informatica, 11:61–75, 1978.

[3] R. Agrawal. Alpha: An extension of relational algebra to express a class of recursive

queries. In Proceedings of the IEEE 3rd International Conference on Data Engineering,

pages 879–885, Los Angeles, CA, February 1987.

[4] R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient management of transitive rela-

tionships in large data and knowledge bases. In Proceedings of the ACM-SIGMOD 1989

Conference on Management of Data, pages 253–262, Portland, Oregon, May-June 1989.

[5] R. Agrawal, S. Dar, and H.V. Jagadish. Direct transitive closure algorithms: Design

and performance evaluation. ACM Transactions on Database Systems, 15(3):427–458,

September 1990.

[6] R. Agrawal and H.V. Jagadish. Direct algorithms for computing the transitive closure

of database relations. In Proceedings of the 13th International VLDB Conference, 1987.

[7] R. Agrawal and H.V. Jagadish. Materialization and incremental update of path infor-

mation. In Proceedings of the 5th International Conference on Data Engineering, Los

Angeles, CA, February 1989.

[8] R. Agrawal and H.V. Jagadish. Hybrid transitive closure algorithms. In Proceedings of

the 16h International VLDB Conference, pages 326–334, Brisbane, Australia, 1990.

[9] R. Agrawal and J. Kiernan. An access structure for generalized transitive closure queries.

In Proceedings of the IEEE 9th International Conference on Data Engineering, pages

429–438, Vienna, Austria, April 1993.

[10] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1974.

[11] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-

Wesley, Reading, Mass., 1983.

[12] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Techniques, and Tools.

Addison-Wesley, Reading, Mass., 1986.

116

[13] A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In Proceedings of

the 6th Symposium on Principles of Programming Languages, pages 110–120, 1979.

[14] V.L. Arlazov, E.A. Dinic, M.A. Kronrod, and I.A. Faradžev. On economical construction

of the transitive closure of an oriented graph. Soviet Math. Dokl., 11(5):1209–1210, 1970.

[15] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query pro-

cessing strategies. In ACM-SIGMOD 1986 Conference on Management of Data, pages

16–52, 1986.

[16] François Bancilhon, Claude Delobel, and Paris Kanellakis, editors. Building an Object-

Oriented Database System. The Story of O2. Morgan Kaufmann Publishers, Inc., 1992.

[17] C. Beeri and R. Ramakrishnan. On the power of magic. Journal of Logic Programming,

10(3):255–299, April 1991.

[18] P.A. Bloniarz, M.J. Fischer, and A.R. Meyer. A note on the average time to com-

pute transitive closures. In S. Michaelson and R. Milner, editors, Automata, Languages

and Programming, 3rd International Colloquium, Edinburgh, pages 425–434. Edinburgh

Press, July 1976.

[19] B. Bollóbas. Random Graphs. Academic Press, New York, 1985.

[20] Bolognesi and Smolka. Fundamental results for the verification of observational equiva-

lence: A survey. In Proceedings of the IFIP Int. Conf. on Protocol Specification, Testing

and Verification VII. North-Holland, 1988.

[21] A.L. Buchsbaum, P.C. Kannelakis, and J.S. Vitter. A data structure for arc insertion

and regular path finding. In Proceedings of the 1st ACM-SIAM Symposium on Discrete

Algorithms, pages 22–31, 1990.

[22] F. Cacace, S. Ceri, and M.A.W. Houtsma. An overview of parallel strategies for transitive

closure on algebraic machines. In Proceedings of the Workshop on Parallel Database

Systems, volume 503 of Lecture Notes in Computer Science, pages 44–62. Springer-Verlag,

1990.

[23] R.G.G. Cattell. Object Data Management. Addison-Wesley, 1991.

[24] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about Datalog

(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering,

1(1):146–166, March 1989.

[25] J-P. Cheiney and C. de Maindreville. A parallel transitive closure algorithm using hash-

based clustering. In Database Machines, Proceedings of the Sixth International Workshop,

IWDM’89, volume 368 of Lecture Notes in Computer Science, pages 301–316, Deauville,

France, June 1989. Springer-Verlag.

[26] J-P. Cheiney and C. de Maindreville. A parallel strategy for transitive closure using

double hash-based clustering. In Proceedings of the 16h International VLDB Conference,

pages 347–358, Brisbane, Australia, 1990.

117

[27] E.F. Codd. A relational model of data for large shared data banks. Communications of

the ACM, 13(6):377–387, June 1970.

[28] E.F. Codd. Relational completeness of data base sublanguages. In R. Rustin, editor,

Data Base Systems, pages 65–98. Prentice-Hall, Englewood Cliffs, N.J., 1972.

[29] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression. In

Proceedings of the 19th ACM Symposium on Theory of Computing, pages 1–6, 1987.

[30] I.F. Cruz and T.S. Norvell. Aggregative closure: An extension of transitive closure.

In Proceedings of the IEEE 5th International Conference on Data Engineering, pages

84–391, Los Angeles, California, February 1989.

[31] S. Dar. Augmenting Databases with Generalized Transitive Closure. PhD thesis, Uni-

versity of Wisconsin, Madison, Computer Sciences Department, 1993. Technical Report

#1206.

[32] S. Dar and R. Agrawal. Extending SQL with generalized transitive closure. IEEE

Transactions on Knowledge and Data Engineering, 5(5):799–812, 1993.

[33] S. Dar and H.V. Jagadish. A spanning tree transitive closure algorithm. In Proceedings

of the IEEE 8th International Conference on Data Engineering, pages 2–11, Tempe,

Arizona, February 1992.

[34] S. Dar and R. Ramakrishnan. A performance study of transitive closure algorithms. In

Proceedings of the ACM-SIGMOD 1994 Conference on Management of Data, 1994.

[35] E.J. Dudewicz and N.M. Satya. Modern Mathematical Statistics. John Wiley & Sons,

Inc., New York, 1988.

[36] J. Ebert. A sensitive transitive closure algorithm. Information Processing Letters, 12:255–

258, 1981.

[37] J. Eder. Extending SQL with general transitive closure and extreme value selection.

IEEE Transactions on Knowledge and Data Engineering, 2(4):381–390, December 1990.

[38] J. Eloranta. Equivalence concepts and algorithms for transition systems and ccs-like

languages. Lic.Ph. thesis, Helsinki University, Department of Computer Science, 1990.

[39] R.W. Engles. Structured tables. ANSI X3H2-87-331, December 1987.

[40] J. Eve and R. Kurki-Suonio. On computing the transitive closure of a relation. Acta

Informatica, 8:303–314, 1977.

[41] M.J. Fischer and A.R. Meyer. Boolean matrix multiplication and transitive closure. In

Conference Record 1971 12th Annual Symposium on Switching and Automata Theory,

pages 129–131, East Lansing, Michigan, October 1971. IEEE Computer Society.

[42] R.W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

118

[43] M.E. Furman. Application of a method of fast multiplication of matrices in the problem

of finding the transitive closure of a graph. Soviet Math. Dokl., 11(5):1252, 1970.

[44] S. Ganguly, R. Krishnamurthy, and A. Silberschatz. An analysis technique for transitive

closure algorithms: A statistical approach. In Proceedings of the IEEE 7th International

Conference on Data Engineering, pages 728–735, Kobe, Japan, April 1991.

[45] A. Goralcikova and V. Koubek. A reduct and closure algorithm for graphs. In Mathemat-

ical Foundations of Computer Science, volume 74 of Lecture Notes in Computer Science,

pages 301–307. Springer-Verlag, 1979.

[46] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for

Computer Science. Addison-Wesley, 1988.

[47] K-H. Guh, C. Sun, and C. Yu. Real time retrieval and update of materialized transitive

closure. In Proceedings of the IEEE 7th International Conference on Data Engineering,

pages 690–697, Kobe, Japan, April 1991.

[48] K-H. Guh and C. Yu. Efficient management of materialized generalized transitive closure

in centralized and parallel environments. IEEE Transactions on Knowledge and Data

Engineering, 4(4):371–381, August 1992.

[49] K.C. Guh and C.T. Yu. Evaluation of transitive closure in distributed database systems.

IEEE Journal on Selected Areas in Communications, 7(3):399–407, April 1989.

[50] V. Hirvisalo. Transitiivisen sulkeuman laskeminen tietokantaympäristössä (transitive

closure computation in database environment). Master’s thesis, Helsinki University of

Technology, Laboratory of Information Processing Science, 1994. In Finnish.

[51] M.A.W. Houtsma, P. Apers, and S. Ceri. Complex transitive closure queries on a frag-

mented graph. In Proceedings of the 3rd International Conference on Database Theory,

Lecture Notes in Computer Science, pages 470–484, Berlin, 1990. Springer-Verlag.

[52] M.A.W. Houtsma, P. Apers, and S. Ceri. Distributed transitive closure computations:

The disconnection set approach. In Proceedings of the 16th VLDB Conference, pages

335–346, Brisbane, Australia, 1990.

[53] M.A.W. Houtsma, P.M.G. Apers, and G.L.V. Schipper. Data fragmentation for parallel

transitive closure strategies. In Proceedings of the IEEE 9th International Conference on

Data Engineering, pages 447–456, Vienna, Austria, April 1993.

[54] M.A.W. Houtsma, F. Cacace, and S. Ceri. Parallel hierarchical evaluation of transi-

tive closure queries. In Proceedings of the 1st International Conference on Parallel and

Distributed Systems, pages 130–137, Miami Beach, Florida, December 1991.

[55] K. Hua and S. Hannenhalli. Parallel transitive closure computations using topological

sort. In Proceedings of the 1st International Conference on Parallel and Distributed

Systems, pages 122–129, Miami Beach, Florida, December 1991.

119

[56] K.A. Hua, J.X.W. Su, and C.M. Hua. Efficient evaluation of traversal recursive queries.

In Proceedings of the IEEE 9th International Conference on Data Engineering, pages

549–558, Vienna, Austria, April 1993.

[57] Y-N. Huang and J-P. Cheiney. Parallel computation of direct transitive closures. In

Proceedings of the IEEE 7th International Conference on Data Engineering, pages 192–

199, Kobe, Japan, April 1991.

[58] T. Ibaraki and N. Katoh. On-line computation of transitive closures of graphs. Infor-

mation Processing Letters, 16:95–97, 1983.

[59] IBM. SIMPL/1 Program Reference Manual. IBM, New York, 1972.

[60] IMSL. IMSL Stat/library User’s Manual. International Mathematical and Statistical

Libraries, Houston, Texas, 1987.

[61] Y.E. Ioannidis. On the computation of the transitive closure of relational operators. In

Proceedings of the 12th International VLDB Conference, pages 403–411, 1986.

[62] Y.E. Ioannidis and R. Ramakrishnan. Efficient transitive closure algorithms. In Proceed-

ings of the 14th VLDB Conference, pages 335–346, Los Angeles, California, 1988.

[63] Y.E. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure algorithms based

on graph traversal. Technical report, Computer Science Department, University of Wis-

consin, Madison, WI, 1991.

[64] Y.E. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure algorithms based

on graph traversal. ACM Transactions on Database Systems, 18(3):512–576, September

1993.

[65] G. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical Computer

Science, 48:273–281, 1986.

[66] G. Italiano. Finding paths and deleting edges in directed acyclic graphs. Information

Processing Letters, 28(1):5–11, 1988.

[67] H.V. Jagadish. A compression technique to materialize transitive closure. ACM Trans-

actions on Database Systems, 15(4), December 1990.

[68] H.V. Jagadish, R. Agrawal, and L. Ness. A study of transitive closure as a recursion

mechanism. In Proceedings of the ACM-SIGMOD 1987 Conference on Management of

Data, pages 331–344, San Francisco, California, 1987.

[69] R. Jain. The art of computer systems performance analysis: techniques for experimental

design, measurement, simulation and modeling. John Wiley & Sons, Inc., New York,

1991.

[70] H. Jakobson. Mixed-approach algorithms for transitive closure. In Proceedings of the

10th ACM Symposium on Principles of Database Systems, pages 199–205, 1991.

120

[71] H. Jakobson. On tree-based techniques for query evaluation. In Proceedings of the

11th ACM Symposium on Principles of Database Systems, pages 380–392, San Diego,

California, 1992.

[72] B. Jaumard and M. Minoux. An efficient algorithm for the transitive closure and a linear

worst-case complexity result for a class of sparse graphs. Information Processing Letters,

22:163–169, 1986.

[73] B. Jiang. A suitable algorithm for computing partial transitive closures in databases.

In Proceedings of the IEEE 6th International Conference on Data Engineering, pages

264–271, Los Angeles, California, February 1990.

[74] B. Jiang. Traversing graphs in paging environment, BFS or DFS? Information Processing

Letters, 37(3):143–147, 1991.

[75] B. Jiang. I/O- and CPU-optimal recognition of strongly connected components. Infor-

mation Processing Letters, 45(3):111–115, March 1993.

[76] M. Jun and T. Takaoka. An O(n2) parallel algorithm to compute the all pairs shortest

paths and transitive closure. Journal of Information Processing, 12(2):119–124, 1989.

[77] R. Kabler, Y.E. Ioannidis, and M. Carey. Performance evaluation of algorithms for

transitive closure. Information Systems, 17(5):415–441, September 1992.

[78] S. Kapidakis. Average-Case Analysis of Graph-Searching. PhD thesis, Princeton Univer-

sity, Department of Computer Science, October 1990.

[79] R. M. Karp. The transitive closure of a random digraph. Random Structures and Algo-

rithms, 1(1):73–93, 1990.

[80] S.C. Kleene. Representation of events in nerve nets and finite automate. In C.E. Shannon

and J. McCarthy, editors, Automata Studies, pages 3–42. Princeton University Press,

Princeton, N.J., 1956.

[81] J.A. La Poutré and J. van Leeuwen. Maintenance of transitive closures and transitive

reductions of graphs. In H. Gottler and H.J. Schneider, editors, Graph-Theoretic Concepts

in Computer Science, volume 314 of Lecture Notes in Computer Science, pages 106–120,

Berlin, 1988. Springer-Verlag.

[82] P.-A. Larson and V. Deshpande. A file structure supporting traversal recursion. In

Proceedings of the ACM-SIGMOD 1989 Conference on Management of Data, pages 243–

252, 1989.

[83] S.S. Lavenberg and C.H. Sauer. Sequential stopping rules for the regenerative method

of simulation. IBM Journal of Research and Development, 21:545–558, 1977.

[84] A.M. Law and W.D. Kelton. Confidence intervals for steady-state simulations, II: A

survey of sequential procedures. Management Science, 28(5):550–562, May 1982.

121

[85] D.J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science,

4(1):59–76, 1977.

[86] H. Lu. New strategies for computing the transitive closure of a database relation. In

Proceedings of the 13th International VLDB Conference, pages 267–274, 1987.

[87] H. Lu, K. Mikkilineni, and J. Richardson. Design and evaluation of algorithms to compute

the transitive closure of a database relation. In Proceedings of the 3rd International

Conference on Data Engineering, pages 112–119, Los Angeles, California, February 1987.

[88] C. McGeoch. Analyzing algorithms by simulation. Computing Surveys, 24(2):195–212,

June 1992.

[89] J.A. McHugh. Algorithmic Graph Theory. Prentice-Hall, Englewood Cliffs, N.J., 1990.

[90] K. Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-Complete-

ness. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,

1984.

[91] I. Munro. Efficient determination of the transitive closure of a directed graph. Informa-

tion Processing Letters, 1(2):56–58, 1971.

[92] E. Nuutila. An efficient transitive closure algorithm for cyclic digraphs. Information

Processing Letters, 52:207–213, 1994.

[93] E. Nuutila and E. Soisalon-Soininen. Efficient transitive closure computation. Tech-

nical Report TKO-B113, Helsinki University of Technology, Laboratory of Information

Processing Science, 1993.

[94] E. Nuutila and E. Soisalon-Soininen. On finding the strong components in a directed

graph. Technical Report TKO-B94, Helsinki University of Technology, Laboratory of

Information Processing Science, 1993.

[95] E. Nuutila and E. Soisalon-Soininen. A single pass algorithm for transitive closure. Tech-

nical Report TKO-B95, Helsinki University of Technology, Laboratory of Information

Processing Science, 1993.

[96] E. Nuutila and E. Soisalon-Soininen. On finding the strongly connected components in

a directed graph. Information Processing Letters, 49:9–14, 1994.

[97] P. O’Neill and E.J. O’Neill. A fast expected time algorithm for Boolean matrix multi-

plication and transitive closure. Information and Control, 22:132–138, 1973.

[98] S. K. Park and K. W. Miller. Random number generators: Good ones are hard to find.

Communications of the ACM, 31(10):1192–1201, 1988.

[99] K. Pawlikowski. Steady-state simulation of queueing processes: A survey of problems

and solutions. ACM Computing Surveys, 22(2):123–170, June 1990.

[100] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in

C. Cambridge University Press, Cambridge, Mass., 1988.

122

[101] P. Purdom. A transitive closure algorithm. BIT, 10:76–94, 1970.

[102] G.Z. Qadah, L.J. Henschen, and J.J. Kim. Efficient algorithms for the instantiated

transitive closure queries. IEEE Transactions on Software Engineering, 17(3):296–309,

March 1991.

[103] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal recursion: a practical

approach to supporting recursive applications. In Proceedings of the ACM-SIGMOD

1986 International Conference on Management of Data, pages 166–176, Washington

D.C, May 1986.

[104] B. Roy. Transitivité et connexité. C.R. Acad. Sci. Paris, 249:216–218, 1959.

[105] L. Schmitz. An improved transitive closure algorithm. Computing, 30:359–371, 1983.

[106] C.P. Schnorr. An algorithm for transitive closure with linear expected time. SIAM

Journal of Computing, 7:127–133, 1978.

[107] R. Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1988.

[108] M. Sharir. A strong-connectivity algorithm and its application in data flow analysis.

Computers and Mathematics with Applications, 7:67–72, 1981.

[109] P. Shaw. CLOSURE expressions. ANSI X3H2-87-330, December 1987.

[110] P. Shaw. A generalization of recursive expressions for non-linear recursion of fixed degree.

ANSI X3H2-88-93REV, April 1988.

[111] K. Simon. An improved algorithm for transitive closure on acyclic digraphs. In Laurent

Kott, editor, Automata, Languages and Programming, 13th International Colloquium,

volume 26 of Lecture Notes in Computer Science, pages 376–386, Rennes, France, July

1986. Springer-Verlag.

[112] K. Simon. An improved algorithm for transitive closure on acyclic digraphs. Theoretical

Computer Science, 58(1-3):325–346, 1988.

[113] S. Sippu and E. Soisalon-Soininen. A generalized transitive closure for relational queries.

In Proceedings of the 7th ACM Symposium on Principles of Database Systems, pages

325–332, 1988.

[114] S. Sippu and E. Soisalon-Soininen. Parsing Theory, volume I, Languages and Parsing.

Springer-Verlag, Berlin, 1988.

[115] J. Sullivan. Tree structured traversal. ANSI X3H2-87-306, November 1987.

[116] R. Tamassia and J.S. Vitter. Optimal parallel algorithms for transitive closure and point

locations in planar structures. In Proceedings of the 1989 ACM Symposium on Parallel

Algorithms and Architectures, pages 399–408, Santa Fe, New Mexico, June 1989.

[117] A.S. Tanenbaum. Operating Systems: Design and Implementation. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1987.

123

[118] R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing,

1(2):146–160, June 1972.

[119] R.E. Tarjan. A unified approach to path problems. Journal of the ACM, 28(3):577–593,

1981.

[120] R.E. Tarjan. Amortized computational complexity. SIAM Journal of Algebraic Discrete

Methods, 6:306–318, 1985.

[121] I.H. Toroslu and G.Z. Qadah. The efficient computation of strong partial transitive

closures. In Proceedings of the IEEE 9th International Conference on Data Engineering,

pages 530–537, Vienna, Austria, April 1993.

[122] J. Ullman and M. Yannakakis. The input/output complexity of transitive closure. In

Proceedings of the ACM-SIGMOD 1990 International Conference on Management of

Data, pages 44–53, 1990.

[123] J. D. Ullman. Principles of Database and Knowledge-base Systems, Vol II: The New

Technologies. Computer Science Press, Rockville, MD., 1989.

[124] P. Valduriez and H. Boral. Evaluation of recursive queries using join indices. In Proceed-

ings of the 1st International Conference on Expert Database Systems, Charleston, South

Carolina, April 1986.

[125] P. Valduriez and S. Khoshafian. Parallel evaluation of the transitive closure of a database

relation. International Journal of Parallel Programming, 17(1):19–42, 1988.

[126] J. Van Leeuwen. On efficiently computing the product of two binary relations. Interna-

tional Journal of Computer Mathematics, 5:193–201, 1976.

[127] J. Van Leeuwen. Graph Algorithms. Transitive reduction and transitive closure. In

Jan Van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A: Algo-

rithms and Complexity, chapter 10, section 1.4, pages 539–544. Elsevier Science Publish-

ers B.V., Amsterdam, The Netherlands, 1990.

[128] H.S. Warren. A modification of Warshall’s algorithm for the transitive closure of binary

relations. Communications of the ACM, 18(4):218–220, 1975.

[129] S. Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

[130] M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings of the 9th

ACM Symposium on Principles of Database Systems, pages 230–242, 1990.

[131] D.M. Yellin. Speeding up dynamic transitive closure for bounded degree graphs. Acta

Informatica, 30:369–384, 1993.

[132] Stanley B. Zdonik and D. Maier. Fundamentals of object-oriented databases. In Readings

in Object-Oriented Databases, pages 1–32. Morgan Kaufmann, San Mateo, California,

1990.

124

[133] Stanley B. Zdonik and D. Maier, editors. Readings in Object-Oriented Databases. Morgan

Kaufmann, San Mateo, California, 1990.

[134] M.M. Zloof. Query-by-example: Operations on the transitive closure. Technical Report

RC 5526, IBM, Yorktown Heights, NY, 1975.

