Analyzing Inter-Application Communication in Android

Erika Chin Adrienne Porter Felt

Kate Greenwood David Wagner

University of California, Berkeley
Berkeley, CA, USA
{emc, apf, kate_eli, daw}@cs.berkeley.edu

ABSTRACT

Modern smartphone operating systems support the devel-
opment of third-party applications with open system APIs.
In addition to an open API, the Android operating system
also provides a rich inter-application message passing sys-
tem. This encourages inter-application collaboration and
reduces developer burden by facilitating component reuse.
Unfortunately, message passing is also an application at-
tack surface. The content of messages can be sniffed, modi-
fied, stolen, or replaced, which can compromise user privacy.
Also, a malicious application can inject forged or otherwise
malicious messages, which can lead to breaches of user data
and violate application security policies.

We examine Android application interaction and identify
security risks in application components. We provide a tool,
ComDroid, that detects application communication vulner-
abilities. ComDroid can be used by developers to analyze
their own applications before release, by application review-
ers to analyze applications in the Android Market, and by
end users. We analyzed 20 applications with the help of
ComDroid and found 34 exploitable vulnerabilities; 12 of
the 20 applications have at least one vulnerability.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
D.4 [Operating Systems]: Security and Protection

General Terms
Security

Keywords

Android, message passing, Intents, mobile phone security

1. INTRODUCTION

Over the past decade, mobile phones have evolved from
simple devices used for phone calls and SMS messages to so-
phisticated devices that can run third-party software. Phone
owners are no longer limited to the simple address book and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiSys’11, June 28-July 1, 2011, Bethesda, Maryland, USA.

Copyright 2011 ACM 978-1-4503-0643-0/11/06 ...$10.00.

other basic capabilities provided by the operating system
and phone manufacturer. They are free to customize their
phones by installing third-party applications of their choos-
ing. Mobile phone manufacturers support third-party app-
lication developers by providing development platforms and
software stores (e.g., Android Market, Apple App Store [1,
3]) where developers can distribute their applications.

Android’s application communication model further pro-
motes the development of rich applications. Android devel-
opers can leverage existing data and services provided by
other applications while still giving the impression of a sin-
gle, seamless application. For example, a restaurant review
application can ask other applications to display the restau-
rant’s website, provide a map with the restaurant’s location,
and call the restaurant. This communication model reduces
developer burden and promotes functionality reuse. Android
achieves this by dividing applications into components and
providing a message passing system so that components can
communicate within and across application boundaries.

Android’s message passing system can become an attack
surface if used incorrectly. In this paper, we discuss the risks
of Android message passing and identify insecure developer
practices. If a message sender does not correctly specify the
recipient, then an attacker could intercept the message and
compromise its confidentiality or integrity. If a component
does not restrict who may send it messages, then an attacker
could inject malicious messages into it.

We have seen numerous malicious mobile phone applica-
tions in the wild. For example, SMS Message Spy Pro dis-
guises itself as a tip calculator and forwards all sent and
received SMS messages to a third party [25]; similarly, Mo-
biStealth records SMS messages, call history, browser his-
tory, GPS location, and more [26, 4]. This is worrisome
because users rely on their phones to perform private and
sensitive tasks like sending e-mail, taking pictures, and per-
forming banking transactions. It is therefore important to
help developers write secure applications that do not leak or
alter user data in the presence of an adversary.

We examine the Android communication model and the
security risks it creates, including personal data loss and
corruption, phishing, and other unexpected behavior. We
present ComDroid, a tool that analyzes Android applica-
tions to detect potential instances of these vulnerabilities.
We used ComDroid to analyze 20 applications and found
34 vulnerabilities in 12 of the applications. Most of these
vulnerabilities stem from the fact that Intents can be used
for both intra- and inter-application communication, so we
provide recommendations for changing Android to help de-
velopers distinguish between internal and external messages.

2. ANDROID OVERVIEW

Android’s security model differs significantly from the stan-

dard desktop security model. Android applications are treated

as mutually distrusting principals; they are isolated from
each other and do not have access to each others’ private
data. We provide an overview of the Android security model
and inter-application communication facilities next.
Although other smartphone platforms have a similar se-
curity model, we focus on Android because it has the most
sophisticated application communication system. The com-
plexity of Android’s message passing system implies it has
the largest attack surface. In Section 6, we compare and
contrast Android to other mobile operating systems.

2.1 Threat Model

The Android Market contains a wide array of third-party
applications, and a user may install applications with vary-
ing trust levels. Users install applications from unknown
developers alongside trusted applications that handle pri-
vate information such as financial data and personal pho-
tographs. For example, a user might install both a highly
trusted banking application and a free game application.
The game should not be able to obtain access to the user’s
bank account information.

Under the Android security model, all applications are
treated as potentially malicious. Each application runs in
its own process with a low-privilege user ID, and applica-
tions can only access their own files by default. These isola-
tion mechanisms aim to protect applications with sensitive
information from malware.

Despite their default isolation, applications can optionally
communicate via message passing. Communication can be-
come an attack vector. If a developer accidentally exposes
functionality, then the application can be tricked into per-
forming an undesirable action. If a developer sends data to
the wrong recipient, then it might leak sensitive data. In
this paper, we consider how applications can prevent these
kinds of communication-based attacks.

In addition to providing inter-application isolation, the
Android security model protects the system API from mali-
cious applications. By default, applications do not have the
ability to interact with sensitive parts of the system API;
however, the user can grant an application additional per-
missions during installation. We do not consider attacks on
the operating system; instead, we focus on securing applica-
tions from each other.

2.2 Intents

Android provides a sophisticated message passing system,
in which Intents are used to link applications. An Intent is
a message that declares a recipient and optionally includes
data; an Intent can be thought of as a self-contained ob-
ject that specifies a remote procedure to invoke and includes
the associated arguments. Applications use Intents for both
inter-application communication and intra-application com-
munication. Additionally, the operating system sends In-
tents to applications as event notifications. Some of these
event notifications are system-wide events that can only be
sent by the operating system. We call these messages system
broadcast Intents.

Intents can be used for explicit or implicit communica-
tion. An explicit Intent specifies that it should be delivered
to a particular application specified by the Intent, whereas

an implicit Intent requests delivery to any application that
supports a desired operation. In other words, an explicit
Intent identifies the intended recipient by name, whereas an
implicit Intent leaves it up to the Android platform to de-
termine which application(s) should receive the Intent. For
example, consider an application that stores contact infor-
mation. When the user clicks on a contact’s street address,
the contacts application needs to ask another application to
display a map of that location. To achieve this, the con-
tacts application could send an explicit Intent directly to
Google Maps, or it could send an implicit Intent that would
be delivered to any application that says it provides map-
ping functionality (e.g., Yahoo! Maps or Bing Maps). Using
an explicit Intent guarantees that the Intent is delivered to
the intended recipient, whereas implicit Intents allow for late
runtime binding between different applications.

2.3 Components

Intents are delivered to application components, which are
logical application building blocks. Android defines four
types of components:

e Activities provide user interfaces. Activities are started
with Intents, and they can return data to their invok-
ing components upon completion. All visible portions
of applications are Activities.

e Services run in the background and do not interact
with the user. Downloading a file or decompressing
an archive are examples of operations that may take
place in a Service. Other components can bind to a
Service, which lets the binder invoke methods that are
declared in the target Service’s interface. Intents are
used to start and bind to Services.

e Broadcast Receivers receive Intents sent to multiple
applications. Receivers are triggered by the receipt
of an appropriate Intent and then run in the back-
ground to handle the event. Receivers are typically
short-lived; they often relay messages to Activities or
Services. There are three types of broadcast Intents:
normal, sticky, and ordered. Normal broadcasts are
sent to all registered Receivers at once, and then they
disappear. Ordered broadcasts are delivered to one
Receiver at a time; also, any Receiver in the delivery
chain of an ordered broadcast can stop its propaga-
tion. Broadcast Receivers have the ability to set their
priority level for receiving ordered broadcasts. Sticky
broadcasts remain accessible after they have been de-
livered and are re-broadcast to future Receivers.

e Content Providers are databases addressable by their
application-defined URIs. They are used for both per-
sistent internal data storage and as a mechanism for
sharing information between applications.

Intents can be sent between three of the four components:
Activities, Services, and Broadcast Receivers. Intents can
be used to start Activities; start, stop, and bind Services;
and broadcast information to Broadcast Receivers. (Table 1
shows relevant method signatures.) All of these forms of
communication can be used with either explicit or implicit
Intents. By default, a component receives only internal app-
lication Intents (and is therefore not externally invocable).

To Receiver | sendBroadcast(Intent i)

sendStickyBroadcast (Intent i)

sendBroadcast (Intent i, String rcvrPermission)
sendOrderedBroadcast (Intent i, String recvrPermission, BroadcastReceiver receiver, ...)
sendOrderedBroadcast (Intent i, String recvrPermission)

sendStickyOrderedBroadcast(Intent i, BroadcastReceiver receiver, ...)

To Activity | startActivity(Intent i)

startActivityForResult(Intent i, int requestCode)

To Service startService(Intent i)

bindService(Intent i, ServiceConnection conn, int flags)

Table 1: A non-exhaustive list of Intent-sending mechanisms

2.4 Component Declaration

To receive Intents, a component must be declared in the
application manifest. A manifest is a configuration file that
accompanies the application during installation. A devel-
oper uses the manifest to specify what external Intents (if
any) should be delivered to the application’s components.

2.4.1 Exporting a Component

For a Service or Activity to receive Intents, it must be de-
clared in the manifest. (Broadcast Receivers can be declared
in the manifest or at runtime.) A component is considered
exported, or public, if its declaration sets the EXPORTED flag
or includes at least one Intent filter. Exported components
can receive Intents from other applications, and Intent fil-
ters specify what type of Intents should be delivered to an
exported component.

Android determines which Intents should be delivered to
an exported component by matching each Intent’s fields to
the component’s declaration. An Intent can include a com-
ponent name, an action, data, a category, extra data, or
any subset thereof. A developer sends an explicit Intent by
specifying a recipient component name; the Intent is then
delivered to the component with that name. Implicit Intents
lack component names, so Android uses the other fields to
identify an appropriate recipient.

An Intent filter can constrain incoming Intents by action,
data, and category; the operating system will match Intents
against these constraints. An action specifies a general op-
eration to be performed, the data field specifies the type of
data to operate on, and the category gives additional infor-
mation about the action to execute. For example, a com-
ponent that edits images might define an Intent filter that
states it can accept any Intent with an EDIT action and data
whose MIME type is image/*. For a component to be an
eligible recipient of an Intent, it must have specified each
action, category, and data contained in the Intent in its own
Intent filter. A filter can specify more actions, data, and
categories than the Intent, but it cannot have less.

Multiple applications can register components that han-
dle the same type of Intent. This means that the operating
system needs to decide which component should receive the
Intent. Broadcast Receivers can specify a priority level (as
an attribute of its Intent filter) to indicate to the operat-
ing system how well-suited the component is to handle an
Intent. When ordered broadcasts are sent, the Intent filter
with the highest priority level will receive the Intent first.
Ties among Activities are resolved by asking the user to se-
lect the preferred application (if the user has not already

set a default selection). Competition between Services is
decided by randomly choosing a Service.

It is important to note that Intent filters are not a security
mechanism. A sender can assign any action, type, or cate-
gory that it wants to an Intent (with the exception of certain
actions that only the system can send), or it can bypass the
filter system entirely with an explicit Intent. Conversely, a
component can claim to handle any action, type, or cate-
gory, regardless of whether it is actually well-suited for the
desired operation.

2.4.2 Protection

Android restricts access to the system API with permis-
sions, and applications must request the appropriate per-
missions in their manifests to gain access to protected API
calls. Applications can also use permissions to protect them-
selves. An application can specify that a caller must have a
certain permission by adding a permission requirement to a
component’s declaration in the manifest or setting a default
permission requirement for the whole application. Also, the
developer can add permission checks throughout the code.
Conversely, a broadcast Intent sender can limit who can re-
ceive the Intent by requiring the recipient to have a permis-
sion. (This protection is only available to broadcast Intents
and not available to Activity or Service Intents.) Applica-
tions can make use of existing Android permissions or define
new permissions in their manifests.

All permissions have a protection level that determines
how difficult the permission is to acquire. There are four
protection levels:

e Normal permissions are granted automatically.

e Dangerous permissions can be granted by the user dur-
ing installation. If the permission request is denied,
then the application is not installed.

e Signature permissions are only granted if the request-
ing application is signed by the same developer that
defined the permission. Signature permissions are use-
ful for restricting component access to a small set of
applications trusted and controlled by the developer.

e SignatureOrSystem permissions are granted if the app-
lication meets the Signature requirement or if the app-
lication is installed in the system applications folder.
Applications from the Android Market cannot be in-
stalled into the system applications folder. System ap-
plications must be pre-installed by the device manu-
facturer or manually installed by an advanced user.

Applications seeking strong protection can require that callers
hold permissions from the higher categories. For example,
the BRICK permission can be used to disable a device. It is a
Signature-level permission defined by the operating system,
which means that it will only be granted to applications
with the same signature as the operating system (i.e., appli-
cations signed with the phone manufacturer’s signature). If
a developer were to protect her component with the BRICK
permission, then only an application with that permission
(e.g., a Google-made application) could use that component.
In contrast, a component protected with a Normal permis-
sion is essentially unprotected because any application can
easily obtain the permission.

3. INTENT-BASED ATTACK SURFACES

We examine the security challenges of Android commu-
nication from the perspectives of Intent senders and Intent
recipients. In Section 3.1, we discuss how sending an Intent
to the wrong application can leak user information. Data
can be stolen by eavesdroppers and permissions can be acci-
dentally transferred between applications. In Section 3.2, we
consider vulnerabilities related to receiving external Intents,
i.e., Intents coming from other applications. If a component
is accidentally made public, then external applications can
invoke its components in surprising ways or inject malicious
data into it. We summarize guidelines for secure Android
communication in Section 3.3.

Throughout our discussion of component security, we fo-
cus our attention on exported components. Non-exported
components are not accessible to other applications and thus
are not subject to the attacks we present here. We also ex-
clude exported components and broadcast Intents that are
protected with permissions that other applications cannot
acquire. As explained in Section 2.4.2, Normal and Dan-
gerous permissions do not offer components or Intents very
strong protection: Normal permissions are granted automat-
ically, and Dangerous permissions are granted with user ap-
proval. Signature and SignatureOrSystem permissions, how-
ever, are very difficult to obtain. We consider components
and broadcast Intents that are protected with Signature or
SignatureOrSystem permissions as private.

3.1 Unauthorized Intent Receipt

When an application sends an implicit Intent, there is no
guarantee that the Intent will be received by the intended
recipient. A malicious application can intercept an implicit
Intent simply by declaring an Intent filter with all of the
actions, data, and categories listed in the Intent. The ma-
licious application then gains access to all of the data in
any matching Intent, unless the Intent is protected by a
permission that the malicious application lacks. Intercep-
tion can also lead to control-flow attacks like denial of ser-
vice or phishing. We consider how attacks can be mounted
on Intents intended for Broadcast Receivers, Activities, and
Services. We also discuss special types of Intents that are
particularly dangerous if intercepted.

3.1.1 Broadcast Theft

Broadcasts can be vulnerable to passive eavesdropping or
active denial of service attacks (Figure 1). An eavesdropper
can silently read the contents of a broadcast Intent without
interrupting the broadcast. Eavesdropping is a risk when-
ever an application sends a public broadcast. (A public

@

Figure 1: Broadcast Eavesdropping (left): Expected recip-
ients Bob and Carol receive the Intent, but so does Eve.
Broadcast Denial of Service for Ordered Broadcasts (right):
Eve steals the Intent and prevents Bob and Carol from re-
ceiving it.

broadcast is an implicit Intent that is not protected by a
Signature or SignatureOrSystem permission.) A malicious
Broadcast Receiver could eavesdrop on all public broadcasts
from all applications by creating an Intent filter that lists all
possible actions, data, and categories. There is no indica-
tion to the sender or user that the broadcast has been read.
Sticky broadcasts are particularly at risk for eavesdropping
because they persist and are re-broadcast to new Receivers;
consequently, there is a large temporal window for a sticky
broadcast Intent to be read. Additionally, sticky broadcasts
cannot be protected by permissions.

Furthermore, an active attacker could launch denial of
service or data injection attacks on ordered broadcasts. Or-
dered broadcasts are serially delivered to Receivers in order
of priority, and each Receiver can stop it from propagat-
ing further. If a malicious Receiver were to make itself a
preferred Receiver by registering itself as a high priority, it
would receive the Intent first and could cancel the broad-
cast. Non-ordered broadcasts are not vulnerable to denial
of service attacks because they are delivered simultaneously
to all Receivers. Ordered broadcasts can also be subject to
malicious data injection. As each Receiver processes the In-
tent, it can pass on a result to the next Receiver; after all
Receivers process the Intent, the result is returned to the
sending component. A malicious Receiver can change the
result, potentially affecting the sender and all other receiv-
ing components.

When a developer broadcasts an Intent, he or she must
consider whether the information being sent is sensitive. Ex-
plicit broadcast Intents should be used for internal applica-
tion communication, to prevent eavesdropping or denial of
service. There is no need to use implicit broadcasts for in-
ternal functionality. At the very least, the developer should
consider applying appropriate permissions to Intents con-
taining private data.

3.1.2 Activity Hijacking

In an Activity hijacking attack, a malicious Activity is
launched in place of the intended Activity. The malicious
Activity registers to receive another application’s implicit
Intents, and it is then started in place of the expected Ac-
tivity (Figure 2).

In the simplest form of this attack, the malicious Activ-
ity could read the data in the Intent and then immediately
relay it to a legitimate Activity. In a more sophisticated ac-
tive attack, the hijacker could spoof the expected Activity’s
user interface to steal user-supplied data (i.e., phishing). For

O;' @e

Figure 2: Activity/Service Hijacking (left): Alice acciden-
tally starts Eve’s component instead of Bob s. False Re-
sponse (right): Eve returns a malicious result to Alice. Alice
thinks the result comes from Bob.

D€ 1:49am

Q Complete action using

m Live wallpapers

Pictures

E Wallpapers
.Use by default for this action.

Figure 3: The user is prompted when an implicit Intent
resolves to multiple Activities.

example, consider a legitimate application that solicits do-
nations. When a user clicks on a “Donate Here” button, the
application uses an implicit Intent to start another Activity
that prompts the user for payment information. If a ma-
licious Activity hijacks the Intent, then the attacker could
receive information supplied by the user (e.g., passwords and
money). Phishing attacks can be mounted convincingly be-
cause the Android Ul does not identify the currently running
application. Similarly, a spoofed Activity can lie to the user
about an action’s completion (e.g., telling the user that an
application was successfully uninstalled when it was not).

Activity hijacking is not always possible. When multiple
Activities match the same Intent, the user will be prompted
to choose which application the Intent should go to if a de-
fault choice has not already been set. (Figure 3 shows the
dialog.) If the secure choice is obvious, then the attack will
not succeed. However, an attacker can handle this challenge
in two ways. First, an application can provide a confusing
name for a component to fool the user into selecting the
wrong application. Second, the malicious application can
provide a useful service so that the user willingly makes it
the default application to launch. For example, a user might
opt to make a malicious browser the default browser and
never get prompted to choose between components again.
Although the visibility of the Activity chooser represents a
challenge for the attacker, the consequences of a successful
attack can be severe.

If an Activity hijacking attack is successful, the victim
component may be open to a secondary false response at-
tack. Some Activities are expected to return results upon
completion. In these cases, an Activity hijacker can return a
malicious response value to its invoker. If the victim appli-
cation trusts the response, then false information is injected
into the victim application.

3.1.3 Service Hijacking

Service hijacking occurs when a malicious Service inter-
cepts an Intent meant for a legitimate Service. The result
is that the initiating application establishes a connection
with a malicious Service instead of the one it wanted. The
malicious Service can steal data and lie about completing
requested actions. Unlike Activity hijacking, Service hijack-
ing is not apparent to the user because no user interface
is involved. When multiple Services can handle an Intent,
Android selects one at random; the user is not prompted to
select a Service.

As with Activity hijacking, Service hijacking can enable
the attacker to spoof responses (a false response attack).
Once the malicious Service is bound to the calling applica-
tion, then the attacker can return arbitrary malicious data
or simply return a successful result without taking the re-
quested action. If the calling application provides the Ser-
vice with callbacks, then the Service might be able to mount
additional attacks using the callbacks.

3.1.4 Special Intents

Intents can include URIs that reference data stored in an
application’s Content Provider. In case the Intent recipi-
ent does not have the privilege to access the URI, the In-
tent sender can set the FLAG_GRANT_READ_URI_PERMISSION
or FLAG_GRANT_WRITE_URI_PERMISSION flags on the Intent.
If the Provider has allowed URI permissions to be granted
(in the manifest), this will give the Intent recipient the abil-
ity to read or write the data at the URI. If a malicious
component intercepts the Intent (in the ways previously dis-
cussed), it can access the data URI contained in the Intent.
If the data is intended to be private, then an Intent carry-
ing data privileges should be explicitly addressed to prevent
interception.

Similarly, pending Intents delegate privileges. A pending
Intent is made by one application and then passed to another
application to use. The pending Intent retains all of the
permissions and privileges of its creator. The recipient of a
pending Intent can send the Intent to a third application,
and the pending Intent will still carry the authority of its
creator. If a malicious application obtains a pending Intent,
then the authority of the Intent’s creator can be abused.

3.2 Intent Spoofing

A malicious application can launch an Intent spoofing at-
tack by sending an Intent to an exported component that
is not expecting Intents from that application (Figure 4). If
the victim application takes some action upon receipt of such
an Intent, the attack can trigger that action. For example,
this attack may be possible when a component is exported
even though it is not truly meant to be public. Although
developers can limit component exposure by setting permis-
sion requirements in the manifest or dynamically checking
the caller’s identity, they do not always do so.

3.2.1 Malicious Broadcast Injection

If an exported Broadcast Receiver blindly trusts an in-
coming broadcast Intent, it may take inappropriate action
or operate on malicious data from the broadcast Intent. Re-
ceivers often pass on commands and/or data to Services and
Activities; if this is the case, the malicious Intent can prop-
agate throughout the application.

(public component)

Figure 4: Intent Spoofing. A malicious application Mallory
sends an Intent to an exported component Alice. Alice does
not expect to receive a message from Mallory.

Broadcast Receivers that register to receive Intents with
system actions are particularly at risk of malicious broad-
cast injection. As discussed in Section 2.2, some Intents can
only be broadcast by the operating system to inform appli-
cations about system events. These Intents contain action
strings that only the operating system may add to broad-
cast Intents. (See Appendix C for examples of system action
strings). However, if a Broadcast Receiver registers to re-
ceive a system broadcast, the component becomes publicly
accessible. In this case, a malicious application can send an
Intent explicitly addressed to the target Receiver, without
containing the system action string. If the Receiver does not
check the Intent’s action, then the Receiver will be tricked
into performing functionality that only the system should
be able to trigger.

3.2.2 Malicious Activity Launch

Exported Activities can be launched by other applications
with either explicit or implicit Intents. This attack is analo-
gous to cross-site request forgeries (CSRF) on websites [18,
6]. In most cases, a malicious Activity launch would just
be an annoyance to the user because the target Activity’s
user interface would load. However, three types of Activity
launching attacks are possible. First, launching an Activity
can cause it to affect application state or modify data in
the background. If the Activity uses data from the Intent
without verifying the origin of the Intent, the application’s
data store could be corrupted. Second, a user can be tricked.
For example, a user might click on a “Settings” screen in a
malicious application, which directs the user to a screen in
a victim application. The user might then make changes to
the victim application while believing she is still interact-
ing with the malicious application. Third, a victim Activity
could leak sensitive information by returning a result to its
caller upon completion.

3.2.3 Malicious Service Launch

If a Service is exported and not protected with strong
permissions, then any application can start and bind to the
Service. Depending on the duties of a particular Service, it
may leak information or perform unauthorized tasks. Ser-
vices sometimes maintain singleton application state, which
could be corrupted.

A malicious Service launch is similar to a malicious Ac-
tivity launch, but Services typically rely on input data more
heavily than Activities. Consequently, a malicious launch
attack where the Intent contains data is more likely to put
a Service at risk. Additionally, there are more opportuni-
ties for a bound Service to return private data to its caller
because Services often provide extensive interfaces that let
their binders make many method calls.

3.3 Secure Communication Guidelines

Developers should be cautious about sending implicit In-
tents and exporting components. When sending private
data, applications should use explicit Intents if possible. In-
ternal communication can and should always use explicit
Intents. If it is not possible to use explicit Intents, then the
developer should specify strong permissions to protect the
Intent. Results returned by other components in response
to Intents need to be verified to ensure that they are valid
results from an expected source.

To make components more secure, developers should avoid
exporting components unless the component is specifically
designed to handle requests from other applications. De-
velopers should be aware that declaring an Intent filter will
export the component, exposing it to attack. Critical, state-
changing actions should not be placed in exported compo-
nents. If a single component must handle both inter- and
intra-application requests, perhaps that component should
be divided into separate components, one for each type. If a
component must be exported (e.g., to receive system broad-
casts), then the component should dynamically check the
caller’s identity prior to performing any operations. The
return values of exported components can also leak private
data, so developers should check the caller’s identity prior
to returning sensitive values. Intent filters are not security
measures and can be bypassed with explicit Intents. Re-
quiring Signature or SignatureOrSystem permissions is an
effective way of limiting a component’s exposure to a set of
trusted applications. See Appendix B for examples of how
to create secure code.

4. COMDROID

We provide a tool, ComDroid, to detect potential vulner-
abilities in Android applications. Applications for the An-
droid platform include Dalvik executable (DEX) files that
run on Android’s Dalvik Virtual Machine. We first disas-
semble application DEX files using the publicly available
Dedexer tool [24]. ComDroid parses the disassembled out-
put from Dedexer and logs potential component and Intent
vulnerabilities. We list the types of warnings ComDroid pro-
duces, separated by component and Intent type in Table 2.

4.1 Permission Map

Every permission can be associated with one of the four
protection levels described in Section 2.4.2. We consider
both system-defined permissions (found in the system’s An-
droid Manifest [2]) and application-defined permissions (found
in application manifests). We view Normal and Dangerous
permissions as easy to obtain (or “weak”) and consider com-
ponents protected with those permissions as public.

4.2 Intent Analysis

ComDroid examines Intent creation and transmission to
detect the kinds of vulnerabilities outlined in Section 3.1. To
do this, ComDroid statically analyzes disassembled output
from Dedexer. Static analysis has commonly been used for
bug finding [8, 21, 27]. ComDroid specifically performs flow-
sensitive, intraprocedural static analysis, augmented with
limited interprocedural analysis that follows method invoca-
tions to a depth of one method call. ComDroid parses trans-
lated Dalvik files and tracks the state of Intents, IntentFil-
ters, registers, sinks (e.g., sendBroadcast(), startActiv-
ity (), etc.), and components. For each method that uses

Unauthorized Intent Receipt

Intent type

Potential vulnerability

Sent Broadcasts

Broadcast Theft (without data)
Broadcast Theft (with data)

Sent Activity requests

Activity Hijacking (without data)
Activity Hijacking (with data)

Sent Service requests

Service Hijacking (without data)
Service Hijacking (with data)

Intent Spoofing

Component type

Potential vulnerability

Exported Broadcast Receivers | Broadcast Injection (without data)
Broadcast Injection (with data)
System Broadcast without Action Check

Exported Activities

Activity Launch (without data)
Activity Launch (with data)

Exported Services

Service Launch (without data)
Service Launch (with data)

Table 2: The list of different vulnerabilities associated with each type of Intent and component. “Without data” indicates the
Intent involved in the attack does not contain extra data, whereas “with data” indicates the Intent does contain extra data in
it and thus may additionally be vulnerable to data leakage or injection.

Intents (whether it is passed an Intent parameter, instanti-
ates an Intent, or otherwise receives an Intent), ComDroid
tracks the value of each constant, string, class, Intent, and
IntentFilter. When an Intent object is instantiated, passed
as a method parameter, or obtained as a return value, Com-
Droid tracks all changes to it from its source to its sink.
An Intent sink is a call that transmits an Intent to another
component, such as the calls listed in Table 1.}

For each Intent object, we track (1) whether it has been
made explicit, (2) whether it has an action, (3) whether it
has any flags set, and (4) whether it has any extra data. For
each sink, we check whether it is possible for any implicit In-
tent object to flow to that sink. Some Intent-sending mecha-
nisms allow the sender to specify a permission that restricts
who the Intent can be delivered to; our analysis records this
information.

ComDroid issues a warning when it detects an implicit
Intent being sent with weak or no permission requirements.
Intents sent through the sink may be vulnerable to action-
based attacks (e.g., broadcast denial of service or Activ-
ity /Service launching). If any of these Intents contain extra
data, then they may also be vulnerable to eavesdropping.
We issue warnings with “without data” and “with data” tags
to distinguish action-based attacks from eavesdropping. In-
tents containing data in excess of an action, categories, com-
ponent name, or package name are considered as having ex-
tra data and therefore open to both the action- and data-
based attacks.

4.3 Component Analysis

ComDroid’s component analysis decides whether compo-
nents might be susceptible to an Intent spoofing attack.
ComDroid examines the application’s manifest file and trans-
lates Dalvik instructions to get information about each com-
ponent. For each component, ComDroid determines whether

"We do not consider stopService() as a vulnerable sink.
If a Service is maliciously stopped, it can be restarted by a
legitimate component when the Service is needed.

the component is public based on the presence of Intent fil-
ters or the EXPORTED flag.

Activities and Services are always declared in the mani-
fest. Some Receivers are also declared in the manifest. An
Activity can be multiply declared in the manifest using an
Activity alias, which presents an existing Activity as a sep-
arate component with its own permission, Intent filters, etc.
We treat Activities and their aliases as separate components
for the purpose of our analysis because an alias’s fields can
increase the exposure surface of the component. Also, typ-
ically one Activity is marked as a main, launching Activity
that the system opens when an application is started. This
Activity is public but is generally less likely to be attackable,
therefore we do not issue an exposure warning for this case.

Receivers can also be dynamically created and registered
by calling registerReceiver (BroadcastReceiver receiver,
IntentFilter filter). The Intent filter is specified at reg-
istration time and can be changed each time register-
Receiver is called, so we consider each registration of a
Receiver as a unique component.

If a public component is protected with no permission or
a weak permission, ComDroid generates a warning about a
potential Intent spoofing attack (malicious Broadcast injec-
tion, malicious Activity launch, or malicious Service launch,
depending on the component type). Again, we further sepa-
rate the warnings into “without data” and “with data” warn-
ings. Attacks without additional data only invoke the victim
component; attacks with data additionally supply the victim
component with malicious data. Both are attack surfaces,
but attacks with data can potentially give an attacker more
control and more opportunities to influence application state
or pollute application databases. If the component receives
an Intent and only reads the action, categories, component
name, or package name, then it is considered to not use extra
data. Otherwise, it is considered to use extra data.

ComDroid separately issues warnings for Receivers that
are registered to receive system broadcast actions (actions
only sent by the system). For these warnings, the solution is
to add a call to android.content.Intent.getAction() to

verify that the protected action is in the Intent (authenti-
cating the sender of the Intent). This is in contrast to other
Intent spoofing attacks where the more common solution is
to make the component private.

ComDroid also notes when it appears that unique Intent
actions are being used to communicate in place of explicit
Intents. If ComDroid finds a public component that registers
to receive Intents with a non-Android action string and also
finds components that transmit implicit Intents with the
same action string, ComDroid issues a warning. We call
this “action misuse” to alert the developer that he or she
may be using actions insecurely.

4.4 Limitations and Discussion

We currently track Intent control flow across functions,
but we do not distinguish between paths through if and
switch statements. Instead, we follow all branches. This
can lead to false negatives; e.g., an application might make
an Intent explicit in one branch and implicit in another, and
our tool would always identify it as explicit. In retrospect,
it would have been better to track both. Additionally, our
tool does not yet detect privilege delegation through pending
Intents and Intents that carry URI read/write permissions;
we leave this for future work. Despite these limitations, our
experimental results (Section 5) indicate that our analysis
identifies many actual application vulnerabilities.

It is important to note that ComDroid issues warnings
but does not verify the existence of attacks. Some Intents
and components are intentionally made public without re-
striction, for the purpose of inter-application collaboration.
It is not possible to automatically infer the developer’s in-
tention when making a component public. We defer to the
developer to examine his or her own program and verify the
veracity of the warnings. ComDroid supplies the location of
the potential vulnerability (filename, method, and line num-
ber), the type (malicious Activity launch, broadcast theft,
etc.), and whether data leakage/injection could be involved.
It could further be extended to explicitly recommend a fix
for developers (e.g., make the Intent explicit).

Although ComDroid is intended primarily as a tool for
developers, it takes DEX files as input instead of source code.
We made this choice due to the difficulty of obtaining source
code for most applications. Using DEX files, we can examine
the programming practices of the most popular applications
in the Android Market. The use of DEX files also allows
third parties (such as anti-virus vendors) to conduct security
audits. That said, ComDroid requires the user to manually
investigate the warnings, which may be difficult for third
parties to do quickly (especially on a large scale). Ideally,
ComDroid would be used by the developers themselves or
security teams contracted by the developers, since they are
familiar with the code or have access to the source code.

We considered a dynamic analysis approach to ComDroid
as an alternative to our static approach. A dynamic analysis
tool would have the benefit of confirming a vulnerability by
exploiting it at run-time (although it still may not be able
to make the human distinction of whether the bug is severe
or not), but it may be challenging to explore the application
state space to obtain full coverage. Static analysis has the
benefit of discovering vulnerabilities that may not have been
exposed at runtime. It is worth investigating a combined
static and dynamic tool in future research to leverage the
benefits of both approaches.

| Type of Exposure | Percentage |
Broadcast Theft 44 %
Activity Hijacking 97 %
Service Hijacking 19 %
Broadcast Injection 56 %
System Broadcast w/o Action Check 13 %
Activity Launch 57 %
Service Launch 14 %

Table 3: The percentage of applications that had at least
one warning per exposure type

S. EVALUATION

We ran ComDroid on the top 50 popular paid applications
and on 50 of the top 100 popular free applications on the
Android Market [1].> We report ComDroid’s warning rates
and discuss common application weaknesses. We emphasize
that ComDroid issues warnings about potential security is-
sues; manual review is needed to determine the functionality
of the Intent or component and decide whether the exposure
can lead to a severe vulnerability. We manually examined
20 applications to check ComDroid’s warnings, evaluate our
tool, and detect vulnerabilities.

5.1 Automated Analysis

ComDroid detected a total of 1414 exposed surfaces across
100 applications. There were 401 warnings for exposed com-
ponents and 1013 warnings for exposed Intents. In Figure 5
we show what fraction of sent Intents are implicit; on av-
erage, about 40% are implicit. In Figure 6, we show the
frequency of exposed components out of the total number of
components for each application, separated by component
type. 50% of Broadcast Receivers are exposed, and most
applications expose less than 40% of Activities to external
applications. Our tool does not generate a warning for an
application’s primary launcher Activity; consequently, many
applications that show zero exposed Activities warnings may
have one public launcher Activity. There is no clear distri-
bution for the exposure of Services because few applications
have multiple Service components.

We also show the breakdown of warnings by type in Fig-
ure 7. Intuitively, there is more Intent communication be-
tween Activities so there are more exposure warnings for
Activity-related Intents than Broadcast- and Service-related
Intents combined.

Table 3 shows the percentage of applications that have at
least one of a given type of surface exposure. Of sending-
related vulnerabilities, 44% of applications have Broadcast-
related warnings. Of these applications, none of them re-
strict the broadcast in any way or make the Intent explicit.

Although 97% of applications have Activity hijacking warn-
ings, on average only 27.7% of Intents that involve starting
an Activity are open to an Activity hijack. This is promis-
ing as it shows that developers are making a majority of
their Activity communications explicit. 19% of applications
contain Service hijacking warnings.

2Specifically, we considered the applications ranked 51-100
for the free applications. Dedexer was not able to disas-
semble a few applications. In those cases, we took the next
application in the list.

12
2 4
s 10
® 8
8
g 6
Q
g 4
G
5>
0<
O OoOLOULOLOLOLVLOWLOLWUL OWOoOLW O
—Fr A ANOONOFT T O ONNMNOWOWODO O
S

Implicit / Total Intents (%)

Figure 5: Histogram showing the percentage of implicit In-
tents out of total Intents for each application.

45
40 -
35 -
30 -
25 -
20 -
15 -
10 -

of Applications

f .
I[II[IIEII_[III]I I A0 0 [IIJ] [IIEIII:IIEI

LOVLOUVLONHOWLOWLOWLOLOoOLWmOo WO
TrrANONO T IO O ONNOOOWOOO O
—

Exposed Component Warnings / Total Components (%)

B Activities Services OReceivers

Figure 6: Histogram showing the percentage of components
with warnings out of total components for each application.

Broadcast
Theft; 12%

Service Launch;

System 1%
Broadcast Vuln;
1%

M Broadcast Theft

B Activity Hijacking
[Service Hijacking
M Broadcast Injection

. B System Broadcast Vuln
Service

Hijacking;
3%

& Activity Launch
Service Launch

Figure 7: Breakdown of warnings by type.

60

50 -

40 -

of Applications
w
o

O ~ AN OO T~ IO ©O &~ 0 O O W
Al

of Exposed Broadcast Receivers T

Figure 8: Histogram showing the number of Broadcast Re-
ceivers with warnings per application.

45
40 -
35
30 -
25 -
20 -
15 -
10
5_
0_

of Applications

O ~ AN M < IO O~ 00 OO0 ©O W
-

16-20

of Exposed Activities -

Figure 9: Histogram showing the number of Activities with
warnings per application.

Over 56% of applications have a Broadcast Receiver that
may be vulnerable to a Broadcast injection attack. Bro-
ken down by number of exposed Receivers per application
(Figure 8), we see that most applications expose one or two
Receivers, if any.

13% of applications have a public Receiver that accepts a
system Broadcast action but does not check that the Intent
actually contains that action (a definite bug that may also
lead to a serious vulnerability).

57% of applications have at least one Activity that may be
vulnerable to a malicious Activity launch. The other 43%
only expose the main launching Activity. We display the
break down of these malicious Activity launch warnings by
number of malicious launch warnings per application (Fig-
ure 9). On average, applications have one exposed Activity
in addition to the launch Activity. This is good news, as
it seems that most applications are limiting their Activities
from exposure. We can also see a handful of applications ex-
pose 11 to 20 Activities and can benefit from further investi-
gation. Finally, 14% of applications have at least one Service
that may be vulnerable to malicious Service launches.

Our results indicate that Broadcast- and Activity- related
Intents (both sending to and receiving from) play a large role
in application exposure.

5.2 Manual Analysis

We randomly selected 20 applicationis from the 100 men-
tioned earlier, and then we manually inspected ComDroid’s
warning for these applications to evaluate how many warn-
ings correspond to vulnerabilities. In this section, we present
the findings of our manual analysis and discuss three exam-
ple applications with vulnerabilities. See Appendix A for
the list of applications reviewed.

ComDroid generated 181 warnings for the 20 applications.
We manually reviewed all of them and classified each warn-
ing as a vulnerability, not a vulnerability, or undetermined.
We define a vulnerability as a component or Intent that ex-
poses data or functionality that can be detrimental to the
user. For example, an unprotected broadcast is only a vul-
nerability if it includes sensitive user data or if its theft re-
sults in a DoS to a legitimate service. Similarly, Activity
launching is only a vulnerability if the victim Activity tog-
gles state or operates on the Intent data in a way that neg-
atively affects the application. Negative consequences may
be context-dependent; consider an application that sends a
user to another application to view a website. Normally, it
will not matter if the website Activity is hijacked, but the
hijacking could lead to phishing if the user expects to en-
ter payment information at the website. We further divide
vulnerabilities into two types: (1) dangerous vulnerabilities
that do not rely on user interaction and (2) spoofing vul-
nerabilities that might occur if the user is tricked. We also
separately note commonly found unintentional bugs. We
classify warnings as bugs when the developer appears to be
misusing or misunderstanding the Android communication
design. This category includes action misuse and system
broadcasts without action verification.

In order to detect vulnerabilities, we reviewed the disas-
sembled code of the application components with warnings.
We also installed the applications and interacted with them
to dynamically observe their Intents. When necessary, we
built “attack” code to confirm or disprove vulnerabilities.
This review process does not reflect a developer’s experi-
ence with ComDroid because developers would have access
to the source code and knowledge of the application’s in-
tended functionality, which we did not have.

Of the 181 warnings, we discovered 20 definite vulnera-
bilities, 14 spoofing vulnerabilities, and 16 common, unin-
tentional bugs (that are not also vulnerabilities). Of the 20
applications examined, 9 applications contain at least 1 def-
inite vulnerability and 12 applications have either definite
or spoofing vulnerabilities. This demonstrates the preva-
lence of insecure Intent communication. Table 4 shows the
number of vulnerabilities and warnings for each category.

ComDroid has an overall vulnerability and bug detection
rate of 27.6%. Broken down by Unauthorized Intent Re-
ceipt vulnerabilities/bugs and Intent Spoofing vulnerabili-
ties/bugs, it has a rate of 22.6% and 38.6%, respectively.
As shown in the table, Activity hijacking has the highest
number of false positives, with a lower detection rate of
15.2%. Examining only the broadcast-related vulnerabili-
ties (theft, injection, and system broadcasts without action
check), ComDroid has a detection rate of 61.2%.

In 25 cases, we were unable to determine whether warnings
were vulnerabilities. We cannot always determine whether a
surface is intentionally exposed without knowing the devel-
oper’s intentions. We were uncertain of 25 of the 181 warn-
ings. The remaining 106 warnings were false positives, i.e.,

not dangerous or spoofing vulnerabilities or common bugs.
Of these, 6 of the warnings should not have been generated
and can be attributed to shortcomings in our implementa-
tion of ComDroid. (Two Broadcast Receivers were declared
without receiving methods, meaning they could not actually
receive Intents. In four cases, Intents were misidentified as
implicit when they were actually explicit.) The remaining
100 false positives are still exploitable attacks. However, the
impact of these attacks is minor: They would be merely a
nuisance to the user. For example, an Activity that turns
on a “flashlight” when launched or takes some other trivial
action would fall into this category. Because they represent
only a nuisance, we conservatively decided not to classify
them as vulnerabilities. We now discuss a few applications
and the vulnerabilities we discovered in them.

ICE: In Case of Emergency. “ICE: In Case of Emergency”
is an application that can be launched from a locked screen
by a paramedic in case of an emergency [5]. It stores medi-
cal information such as medications, allergies, medical con-
ditions, insurance information, and emergency contact in-
formation. ICE contains multiple exploitable Broadcast Re-
ceivers. One Broadcast Receiver can be used to exit any
running application and lock the screen. Several of ICE’s
Broadcast Receivers will temporarily remove the ICE wid-
get from the locked screen, rendering ICE unusable.

ICE’s vulnerable Broadcast Receivers are accidentally pub-
lic due to developer confusion over Android’s complexities.
Two of ICE’s Receivers are registered to receive protected
system broadcasts, which causes Android to make them pub-
lic. ICE does not check that the received Intent has the
appropriate system action, so an explicit Intent to the Re-
ceiver will trigger the same behavior as if the OS had sent
the Intent. For example, ICE disappears when the operat-
ing system broadcasts an Intent with the BOOT_COMPLETED
action; a malicious application could send an explicit Intent
with this action to ICE and fool it into exiting. Additionally,
some of ICE’s Receivers use broadcasts to pass internal noti-
fications. The internal broadcasts have application-specific
actions, e.g., com.appventive.ice.unlock_finished. This
is a misuse of action strings. These components should be
made private and invoked explicitly.

IMDb Mobile. “IMDb Mobile” is a movie resource applica-
tion [17]. It presents facts about movies, and users can look
up local showtimes. IMDb’s showtime Activity has buttons
for the user to select a location and refresh the showtime
search results. When the user clicks on one of the buttons,
the Activity relays the request to a background Service. The
Service responds with a public broadcast, and a Broadcast
Receiver listens for the broadcast and then updates the state
of the Activity’s user interface. For example, the Service can
send a broadcast with a com.imdb.mobile. showtimes-
NoLocationError action, which will cause the Activity to
display an error stating that no showtimes are available for
the desired location.

IMDb Mobile’s broadcast Intents are intended for internal
use. No other application needs to know about them, and
other applications should not be able to control the user
interface. However, with the current implementation, the
showtime Activity can be manipulated by a malicious app-
lication. The developer should have used explicit Intents
to communicate internally, and the Receiver should not be
exported.

Definite Spoofing Unintentional Total Vuln. and Bug

Type of Exposure Vulnerabilities | Vulnerabilities | Bugs (no vuln.) | Warnings Percentage
Broadcast Theft (without data) 1 0 6 10 70.0%
Broadcast Theft (with data) 2 0 2 4 100.0%
Activity Hijacking (without data) 2 11 0 91 14.3%
Activity Hijacking (with data) 0 3 0 14 21.2%
Service Hijacking (without data) 0 0 1 5 20.0%
Service Hijacking (with data) 0 0 0 0 -
Broadcast Injection (without data) 10 0 2 24 50.0%
Broadcast Injection (with data) 3 0 0 7 42.9%
System Broadcast w/o Action Check 1 0 3 4 100.0%
Activity Launch (without data) 0 0 0 9 0.0%
Activity Launch (with data) 0 0 2 10 20.0%
Service Launch (without data) 0 0 0 2 0.0%
Service Launch (with data) 1 0 0 1 100.0%

Table 4: The number of vulnerabilities and bugs we found from the warnings in ComDroid.

Nationwide Bus. Nationwide Bus is an Android applica-
tion that gives bus location and arrival information for Ko-
rean cities [20]. It uses public broadcasts for internal com-
munication. The broadcasts are used to update map and
bus state. One component fetches bus information from the
server and then broadcasts the data, which is intended for
an internal Receiver. This is a privacy violation if the user
does not want other applications to know his or her location.

Two exported components expect bus data as input. A
Receiver listens for the aforementioned broadcasts, and a
Service in charge of bus arrivals is started with bus data. A
malicious application could send these components Intents
with fake bus information, which will then be displayed in
the map as fake bus stations and arrival times. The devel-
oper should have used explicit Intents for internal communi-
cation, and the Receiver and Service should not be exported.

5.2.1 Financial Applications

We also used ComDroid to guide a review of 10 popular
financial and commercial applications. None of these appli-
cations were part of our larger set of 100 applications. The
financial and commercial applications are generally well-
secured; we did not find any vulnerabilities that could put
the user’s financial information at risk. It is clear that the
applications were built to be secure, with few exposed sur-

faces. For example, applications make use of exported=false,

use explicit Intents, and do not declare Intent filters for most
of their components. It appears that the financial and com-
mercial applications were written or reviewed by security-
conscious developers, who might benefit from a tool like
ComDroid during the development process.

Despite their focus on security, we found vulnerabilities in
4 of the 10 applications. One application sends an Intent to
ask the browser to open up a bank website to a login page.
The Intent is implicit, which puts the user at risk of an Ac-
tivity hijacking phishing attack. Three applications misuse
actions: they use a class name as an action string to bind to
a Service. An attacker could hijack the Service and mount a
denial of service attack on the parts of the application that
rely on the Service. One of the vulnerable applications also
contains a number of bugs that are not exploitable; it regis-
ters for a system broadcast and does not check the sender,
and it uses broadcasts for internal communication. We be-
lieve that these errors, made by security-conscious develop-
ers, are indicative of the fact that Android’s Intent system
is confusing and tricky to use securely.

5.3 Discussion

Our analysis shows that Android applications are often
vulnerable to attack by other applications. ComDroid’s
warnings can indicate a misunderstanding of the Intent pass-
ing system, as we illustrated with the ICE, IMDb, and Na-
tionwide Bus applications and can alert the developer (or a
reviewer) to faulty software engineering practices that leak
data and expose application internals.

Our analysis reveals that developers commonly use the
action field of an Intent like an address instead of explicitly
addressing the Intent. (For example, a developer might use
actions prefixed with the application package name.) They
add Intent filters to the components that listen for Intents
with their action name, which has the undesirable side effect
of making the component public. It is reasonable to assume
that they are either forgetting or are not aware that they
should be making their Receiver private. ComDroid can
help developers be aware of surfaces that are accidentally
exposed in this manner.

5.4 Recommendations

Along with more vigilant developer coding, we also rec-
ommend changes that can be made to the Android platform
to prevent unintentional exposure. One of the fundamental
problems is that Intents are used for both intra- and inter-
application communication and using them within an app-
lication can expose the application to external attack if the
developer is not careful. Ideally, intra- and inter- applica-
tion communication should be carried out through different
means. Similarly, component accessibility should be divided
into three categories: internal, exported to the system only,
and exported to other applications.

We acknowledge that this would only prevent bugs in fu-
ture applications. To fix current bugs in legacy applica-
tions, we suggest another approach. To address uninten-
tional Intent-sending vulnerabilities, we suggest that the
system try to deliver any implicit Intents first to internal
components. If the Intent can be delivered to an internal
component (of the same application as the sender), it should
not be delivered to any other applications. This would han-
dle the case where developers use implicit Intents to com-
municate with other internal components. Of the 100 appli-
cations analyzed in Section 5, this change would eliminate
106 warnings. Of the 20 applications we manually reviewed,
the change would eliminate 9 bugs and 2 vulnerabilities.

To address Intent-receiving vulnerabilities, we suggest that
the system should not implicitly make a component pub-
lic merely because it has declared an Intent filter. Instead,
we propose that Android should make a component public
only if it: (1) sets the exported flag, (2) has an Intent filter
with a data field specified, (3) has an Intent filter that reg-
isters to receive protected system actions, (4) has a main,
launcher specification, or (5) has an Intent filter that reg-
isters to receive Intents with one of the standard Android
actions. This definition represents a compromise between se-
curity and backward compatibility. Of the 100 applications
analyzed, this change would eliminate 50 warnings. Of the
20 applications we manually reviewed, it would eliminate 5
vulnerabilities and 1 bug. These are conservative changes;
we verified that neither of these changes break any of the 20
applications we manually tested.

6. OTHER MOBILE PLATFORMS

Windows Phone 7 (WP7) and iOS also provide third-party
application platforms. However, their inter-application com-
munication systems are less complex than Android’s. WP7
applications can only send messages to a small number of
trusted system applications (e.g., the browser); third-party
applications cannot receive messages. Consequently, we are
not aware of any security risks associated with WP7 appli-
cation communication.

iOS applications can choose to accept inter-application
messages by registering custom URI schemes with the OS.
When an application receives a message, the application is
opened and moved to the foreground. (For example, sending
a message to skype://15554446666 opens the Skype appli-
cation.) This is the equivalent of sending an Intent to start
an Activity, and a malicious iOS application could mount
an Activity hijacking attack by registering for another app-
lication’s scheme. However, the remaining Android com-
munication attacks are not applicable to i0S. iOS develop-
ers are unlikely to accidentally expose functionality because
schemes are only used for public interfaces; different types
of messages are used for internal communication. Our rec-
ommendations for Android (Section 5.4) aim to create the
same distinction between internal and external messages in
Android.

7. RELATED WORK

Attack Surfaces. The concept of examining systems to iden-
tify and quantify their attack surfaces is not new. Metrics
have been proposed for evaluating the exposed attack sur-
face of a generic system [16], and attack surface reduction
has widely been recognized as an approach to improving
system security [22].

Non-mobile Systems. The Android inter-application com-
munication system is analogous to a (local) network system.
As such, it must deal with standard threats that apply to
all messaging systems, for example, eavesdropping, spoofing,
denial of service, etc. [9]. As we have shown in this paper,
these threats are present in Android’s Intent system.
Problems in Android’s communication model are simi-
lar to problems with decentralized information flow control
(DIFC) in other systems. DIFC lets applications explicitly
express their information flow policies (i.e., which applica-
tions communicate and how they communicate) to the OS

or a language runtime, which then enforces the policies [19,
23, 28, 10]. The problems that arise in Android relate to de-
velopers’ difficulty with setting appropriate communication
policies; the same problems exist in DIFC models, which
also require the developer to write policies.

Android. We are not the first to realize that Android devel-
opers make mistakes that can compromise security. Burns [7]
discusses common developer errors, such as using Intent fil-
ters instead of permissions. He recommends using permis-
sions to protect components and validate caller identity. Our
work builds on these concepts and provides a tool for detect-
ing these errors. Similarly, Enck et al. [14] examine Android
security policies and discuss some developer pitfalls. They
present a decompiler to recover application source code from
DEX files and apply COTS Java static analysis tools to the
source code to examine various properties in applications.
They investigate how broadcast Intents can leak informa-
tion and how information can be injected into Receivers [12].
Their investigation of broadcast Intents and Receivers is lim-
ited to data-based attacks, and they do not discuss attacks
involving Activities or Services. We present non-data at-
tacks on Receivers (e.g., denial of service attacks and state
change) and extensively consider Activities and Services.

SCanDroid [15] is a static analysis tool that takes a data-
centric approach to reasoning about the consistency of se-
curity specifications. It analyzes data policies in application
manifests and data flows across Content Providers. Based
on its analysis, it makes a recommendation on whether an
application can be installed with the permissions it has with-
out violating the permissions of other applications. Used to-
gether, ComDroid and SCanDroid could combine surface ex-
posure with database permission violations. However, SCan-
Droid currently requires users to have access to application
source code, which may not be feasible.

TaintDroid [11] provides system-wide dynamic taint track-
ing for Android. It discovered 68 potential information mis-
use examples in 20 applications. Unlike ComDroid, Taint-
Droid focuses solely on data flow and does not consider
action-based vulnerabilities. We found many control-flow
vulnerabilities using ComDroid. Also, TaintDroid is meant
to be a post-production tool for real-time analysis, while
ComDroid can be used as either a pre- or post-production
tool. TaintDroid and ComDroid are complementary tools.

Kirin [13] approaches third-party application security from
the opposite perspective of our tool. While we look for vul-
nerabilities in benign applications, Kirin looks for malicious
applications. They limit their analysis to security config-
urations in the manifest and take a blacklist approach to
detecting undesirable permission combinations.

8. CONCLUSION

While the Android message passing system promotes the
creation of rich, collaborative applications, it also introduces
the potential for attack if developers do not take precau-
tions. We examine inter-application communication in An-
droid and present several classes of potential attacks on ap-
plications. Outgoing communication can put an application
at risk of Broadcast theft (including eavesdropping and de-
nial of service), data theft, result modification, and Activity
and Service hijacking. Incoming communication can put an
application at risk of malicious Activity and Service launches
and Broadcast injection.

We provide a tool, ComDroid, that developers can use to
find these kinds of vulnerabilities. Our tool relies on DEX
code, so third parties or reviewers for the Android Market
can use it to evaluate applications whose source code is un-
available. We analyzed 100 applications and verified our
findings manually with 20 of those applications. Of the 20
applications, we identified 12 applications with at least one
vulnerability. This shows that applications can be vulner-
able to attack and that developers should take precautions
to protect themselves from these attacks.

Acknowledgments

This work is partially supported by National Science Foun-
dation grant CCF-0424422 and a gift from Google. This
material is also based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

9. REFERENCES

[1] Android Market. http://www.android.com/market/.

[2] Android permissions. http://android.git.kernel.
org/?p=platform/frameworks/base.git;a=blob;f=
core/res/AndroidManifest.xml.

[3] iPhone App Store.
http://www.apple.com/iphone/apps-for-iphone/.

[4] MobiStealth. http://www.mobistealth.com/.

[5] Appventive. ICE: In case of emergency.
http://www.appventive.com/ice.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proc. of the
15th ACM Conference on Computer and
Communications Security (CCS 2008), 2008.

[7] J. Burns. Mobile application security on Android.
Blackhat, 2009.

[8] B. Chess and G. McGraw. Static analysis for security.
Security €& Privacy, IEEE, 2(6):76-79, 2004.

[9] W. Cheswick, S. Bellovin, and A. Rubin. Firewalls
and Internet security: repelling the wily hacker.
Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2003.

[10] P. Efstathopoulos, M. Krohn, S. VanDeBogart,

C. Frey, D. Ziegler, E. Kohler, D. Mazieres,

F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system. In Proc.
of the 20th ACM Symposium on Operating Systems
Principles, pages 17-30. ACM, 2005.

[11] W. Enck, P. Gilbert, B.-g. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proc. of the USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, October 2010.

[12] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In Proc. of
the 20th USENIX Security Symposium, August 2011.

[13] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proc. of the 16th ACM Conference on Computer and
Communications Security (CCS), November 2009.

[14] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android security. IEEE Security and
Privacy, 7(1):50-57, 2009.

[15] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
SCanDroid: Automated security certification of
Android applications. Technical report, University of
Maryland, 2009.

[16] M. Howard, J. Pincus, and J. Wing. Measuring
relative attack surfaces. Computer Security in the 21st
Century, pages 109-137, 2005.

[17] IMDb. IMDb Movies & TV.
http://www.androlib.com/android.application.
com-imdb-mobile-jzEzw.aspx.

[18] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing
cross site request forgery attacks. In Securecomm and
Workshops, 2006, pages 1-10. IEEE, 2006.

[19] M. Krohn, A. Yip, M. Brodsky, N. Cliffer,

M. Kaashoek, E. Kohler, and R. Morris. Information
flow control for standard OS abstractions. In Proc. of
21st ACM SIGOPS Symposium on Operating Systems
Principles, pages 321-334. ACM, 2007.

[20] H. Lee. Nationwide bus.
http://www.androlib.com/android.application.
net-hyeongkyu-android-incheonbus-Eqwq.aspx.

[21] V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in Java applications with static
analysis. In Proc. of the 14th Conference on USENIX
Security Symposium, pages 18—18. USENIX
Association, 2005.

[22] P. Manadhata, J. Wing, M. Flynn, and M. McQueen.
Measuring the attack surfaces of two FTP daemons.
In Proc. of the 2nd ACM Workshop on Quality of
Protection, pages 3—10. ACM, 2006.

[23] A. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on
Software Engineering and Methodology (TOSEM),
9(4):410-442, 2000.

[24] G. Paller. Dedexer.
http://dedexer.sourceforge.net/.

[25] M. A. Troy Vennon. Android malware: Spyware in the
Android Market. Technical report, SMobile Systems,
March 2010.

[26] T. Vennon. Android malware: A study of known and
potential malware threats. Technical report, SMobile
Systems, February 2010.

[27] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Network and Distributed System
Security Symposium, pages 3—17, 2000.

[28] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazieres. Making information flow explicit in
HiStar. In Proc. of the 7th Symposium on Operating
Systems Design and Implementation, pages 263—278.
USENIX Association, 2006.

APPENDIX
A. MANUAL REVIEW

We manually reviewed all ComDroid warnings for the fol-
lowing applications: Adobe Photoshop Express, App Pro-
tector Pro, Bubble, Halloween Live Wallpaper, ICE - In Case
of Emergency, IMDb Movies & TV, Instant Heart Rate, Kin-
dle for Android, Korean Nationwide Bus, Pageonce Pro -
Money and Bills, PicSay Pro - Photo Editor, Retro Camera,
Smart Keyboard PRO, Starlight Live Wallpaper, Steamy
Window, SwiftKey Keyboard, Tango Video Calls, Tweet-
Caster Pro for Twitter, Uninstaller, and WolframAlpha.

B. EXAMPLE CODE

Declaring Components. When declaring a component in
the manifest, a developer can use the “exported” attribute
to make the component explicitly internal (i.e., private):

<activity android:name=".TestActivity"
android:exported="false">
</activity>

If a developer needs to make a component selectively acces-
sible to external applications, he or she can use permissions
to restrict access to applications with the given permissions:

<activity android:name=".TestActivity2"
android:exported="true">
android:permission="my.permission">
<intent-filter>
<action android:name="my.action.TEST"/>
</intent-filter>
</activity>

If a component is protected with a new permission, the new
permission can be declared as such:

<permission
android:description="My test permission"
android:name="my.permission"
android:protectionLevel="signature"/>

Alternately, the component implementation can dynamically
call checkCallingPermission(String permission) to ver-
ify that the caller has the specified permission.

Declaring Intents. When sending an Intent, the developer
can make the recipient explicit by setting a destination class:

Intent i = new Intent();
i.setClassName("some.package.name",
"some .package.name.TestActivity");

Or, equivalently, the class name can be set with one of the
following three methods:

setClass(Context ctxt, Class<?> cls)
setClassName (Context ctxt, String className)
setComponent (ComponentName component)

Or it can be limited to be sent to components of a specific
package:

setPackage (String packageName)

If a Receiver is intended to only accept system broadcast
actions, then the developer should check the received action:

public void onReceive(Context ctxt, Intent i){
if (i.getAction().equals("expected.action"))
return;

}

C. SYSTEM BROADCAST ACTIONS

Several examples of system broadcast actions:

android

android.
android.
android.
android.
android.
android.
android.
android.
android.

.intent.
intent.
intent.
intent.
intent.
intent.
intent.
intent.
intent.
intent.

action.
action.
action.
action.
action.
action.
action.
action.
action.
action.

ACTION_POWER_CONNECTED
ACTION_POWER_DISCONNECTED
ACTION_SHUTDOWN
BATTERY_CHANGED
BATTERY_LOW

BATTERY_OKAY
BOOT_COMPLETED
CONFIGURATION_CHANGED
DEVICE_STORAGE_LOW
DEVICE_STORAGE_OK

