
Mobile Middleware

Support Technologies

Contents

  Cloud computing and offloading services

  Session Initiation Protocol (SIP)

  IP Multimedia Subsystem (IMS)

  Publish/Subscribe, tuple spaces, Web
services

Environment

!"#$%&'

(#)*"+'!"#$%'
#,#-%*./'

&0
1+
%$
"*.
/'

&1
-2
*.
/'

2+3"*0-4#.'

0-01*./'

Access network

Web services

  The services of Cloud computing can be divided into
three categories:

  1. Software-as-a-Service (SaaS), in which a vendor
supplies the hardware infrastructure, the software
product and interacts with the user using a portal
(software on demand, pay-as-you-go).

  2. Platform-as-a-Service (PaaS), in which a set of
software and development tools are hosted by a
provider on the provider's infrastructure, for example,
Google's AppEngine.

  3. Infrastructure-as-a-Service (IaaS), which involves
virtual server instances with unique IP addresses and
blocks of on-demand storage, for example, Amazon's
Web services infrastructure.

Cloud Computing

Cloud Computing

Browser as a Platform Datacenters and clusters

Virtualization Web Application
Frameworks

Elasticity Location Independent
Resource Pooling

Information demand and
 supply (Open APIs)

Ubiquitous Network
Access

On-demand service

Software as
a Service (SaaS)

Platform as a
Service (PaaS)

Infrastructure as
a Service (IaaS)

Private, community, public, hybrid clouds

Offloading

  The offloading of a mobile computing task is a
trade-off between the energy used for local
processing and the energy required for offloading
the task, uploading its data, and downloading the
result, if necessary.

  One can express the offloading energy trade-off
as follows:
  Etrade = Elocal − Edelegate > 0, where Elocal is the

energy used for complete local execution, and
Edelegate is the energy used if the task is offloaded
from the perspective of the mobile device.

  If Etrade is greater than zero, then there is an
energy benefit for delegating the task to the
cloud.

What can be offloaded?

  Content processing and transformations
  Example: Javascript processing in OperaMini

  Completion notification and mobile push
  Application execution

  Google docs, Windows Office

  Connection management
  BitTorrent!
  Large downloads

  Speech recognition
  Siri

  Positioning (A-GPS)

Example of Offloading: Indexing

  Implemented with Dessy: mobile desktop search
  To offload indexing

  Transmit entire file to the cloud service
  Wait for response
  Receive file summary

  High energy savings can be obtained when
offloading CPU-intensive tasks

  With N900 and WLAN 700kB/s: 96.5% savings!
  200 000 words, 1 MB file
  With WLAN 100kB/s this is reduced to 83.7%

Virtualization

  Virtualization system is a framework that
combines or divides computing
resources to present a transparent view
of one or more environments
  Hardware/software partitioning (or

aggregation)
  Partial or complete machine simulation
  Emulation (can be partial or complete)
  Time-sharing

Mobile virtualization

  Server Based Virtualization of Desktop Infrastructure

  Moving the desktop to a virtualized image in the data
center allows the complex components to be protected
and componentized
  Workload isolation and migration
  Application virtualization

  Virtualization is a possible solution to the
fragmentation problem

  http://www.vmware.com/technology/mobile/

  Virtualization for offloading
  Running applications in a base station, nearby server, in the

cloud
  Research proposals

Session Initiation Protocol (SIP)

  An Application-layer control (signaling)
protocol for creating, modifying and
terminating sessions with one or more
participants.

  Sessions include Internet multimedia
conferences, Internet telephone calls and
multimedia distribution.

  Members in a session can communicate via
multicast or via a mesh of unicast relations, or
a combination of these.

  Text based, model similar to HTTP.

  Current system: Signalling System 7 (SS7).
  Circuit-switched, SIGTRAN with SCTP for IP

SIP History

  Mid-1990s, emerged from the research
of Dr. Henning Schulzrinne, Columbia
University, on Multi-party Multimedia
Session Control (MMUSIC)

  1996, submitted to the Internet
Engineering Task Force (IETF) and
developed by the SIP Working Group

  1999, first published as IETF RFC 2543
  2000, selected by 3GPP
  2002, RFC 3261 (with further

supplements in other RFCs)

SIP features

  User location: determination of the end system to
be used for communication

  User capabilities: determination of the media and
media parameters to be used

  User availability: determination of the willingness
of the called party to engage in communications

  Call setup: "ringing", establishment of call
parameters at both called and calling party

  Call handling: including transfer and termination
of calls

State in SIP

  SIP places state in the end devices
  End-to-end
  If end device fails, then the session fails

  Network elements may or may not have state

  Proxies are used for discovery, forwarding,
relaying

  SIP uses transactions in message delivery
  Internal state, timers
  Can use UDP, TCP, SCTP, etc.

SIP messages

  Start Line (Request Line or Status Line)
  message type (method type & URI in

requests, and response code in responses)
  protocol version

  Headers
  fields to convey message attributes

  To,From, sequence number, timestamp, etc.
  can span multiple lines, appear multiple

times, take multiple comma-separated values
  Body (Content)

  to describe the session to be initiated
  to contain opaque textual or binary data

SIP

1.  SIP Addressing (SIP URI) and
registering SIP addresses

2.  Locating a SIP Server
3.  Sending SIP Requests: SIP

Transactions
4.  SIP Methods
5.  SIP Responses
6.  Subsequent Requests and Responses

Proxy Server Proxy Server

User Agent Alice User Agent Bob

5. INVITE
To:sip:bob@test.com

6. 100 Trying
11. 180 Ringing

14. 200 OK

16. 180 ACK

 Media (RTP)

1.

IN
VI

TE

To
:s

ip
:b

ob
@

te
st

.c
om

2.

10
0

Tr
yi

ng

12
.

18
0

R
in

gi
ng

15
.

O
K

13. 200 O
K

10. 100 R
inging

9. IN
VITE

sip:bob@
test.com

DNS
Server

Location
Service

SIP and Mobility

  Designed to support various forms of mobility
  IP address changes when DHCP assigns a new one,

vertical handoff, roaming between operators
  IP address change requires a re-INVITE with the new

IP address, results in 200 OK and ACK. RTP stream
will then be established for the correct IP address.

  Can be handled also with:
  Host Identity Protocol (indirection in the protocol stack),

requires changes to kernel
  SCTP with multihoming

  Details in SIP RFC
  http://tools.ietf.org/html/rfc3665

IMS

  The IP Multimedia Subsystem Provides
Multimedia Services Across Networks (fixed &
mobile), such as:
  Instant Messaging, Video Sharing, Push-To-Talk,

Gaming, Video Conferencing

  Designed initially for GPRS and circuit switched.
Upgraded later for 3G and LTE.

  IMS Uses SIP protocol To Setup Multimedia
Sessions Over IP Network

  SIP is a signalling protocol to:
  Locate user given SIP Universal Resource

Identifier (URL) (e.g., sip:jane@isp.com)
  Set up session and negotiate its parameters

IMS Proxies I

  CSCF = Call State Control Function

  A Proxy-CSCF (P-CSCF) is a SIP proxy that is the first point
of contact for the IMS terminal
  it is assigned to an IMS terminal during registration, and

does not change for the duration of the registration
  it sits on the path of all signalling messages, and can

inspect every message
  it authenticates the user and establishes an IPsec

security association with the IMS terminal.
  it can also compress and decompress SIP messages

using SigComp, which reduces the round-trip over slow
radio links

  it may include a Policy Decision Function (PDF), which
authorizes media plane resources e.g. quality of service
(QoS) over the media plane. It's used for policy control,
bandwidth management, etc. The PDF can also be a
separate function.

  it also generates charging records

IMS Proxies II

  A Serving-CSCF (S-CSCF) is the central node of the
signalling plane
  it is always located in the home network. It uses Diameter

Cx and Dx interfaces to the HSS to download and upload
user profiles — it has no local storage of the user data.
All necessary information is loaded from the HSS

  it handles SIP registrations, which allows it to bind the
user location (e.g. the IP address of the terminal) and the
SIP address

  it sits on the path of all signaling messages, and can
inspect every message

  it decides to which application server(s) the SIP message
will be forwarded, in order to provide their services

  it enforces the policy of the network operator

  An Interrogating-CSCF (I-CSCF) is another SIP function
located at the edge of an administrative domain

IMS

IMS Core

P-CSCF I-CSCF

S-CSCF

IMS Service Framework

HSS
(AAA)

IP Core Network

Access Networks

Media
servers

App.
Servers

Media
server/

gateway
PDF

Service Delivery Platform

Components Compositions Adapters

IMS
  Example of call routing

User A

HSS
Interrogating
CSCF

Serving
CSCF

Invite
From: sip:userA@isp.com
To: sip:userB@isp.com
Call-ID

Location Query

User B

Ok

Multimedia session

Serving
CSCF

CSCF = Call State Control Function
HSS = Home Subscriber Service

LTE and IMS

  LTE is all-IP, but 3G and prior systems have used
circuits for voice

  How to handle voice with LTE without radical
modifications to the access network

  Solutions:
  CSFB (Circuit Switched Fallback): In this approach, LTE just

provides data services.
  SVLTE (Simultaneous Voice and LTE): In this approach, the

handset works simultaneously in the LTE and CS mode
  VoLTE (Voice Over LTE): IMS-based, all-IP, SIP

  Operators have to choose a solution
  http://news.verizonwireless.com/OneVoiceProfile.pdf

Session-Based Non-Session-Based

Chats

Instant Messaging

Web, HTML

Messaging
SMS and MMS

E-Commerce

R
ea

l-T
im

e
In

te
ra

ct
io

n
N

on
-R

ea
l-T

im
e

SIP (IMS) only
Applications

SIP or Non-SIP
Applications

Non-SIP Only
Applications

Voice

Online
 Games

Push-to-
Video

Push-to-talk

Peer-to-Peer

Enterprise
VPN

IP/TV
Streaming

Video

Video on Demand

Push email

Web Service Architecture

  The three major roles in web services
  Service provider

  Provider of the WS
  Service Requestor

  Any consumer / client
  Service Registry

  logically centralized directory of services

  A protocol stack is needed to support
these roles

Web Services Protocol Stack
  Message Transport

  Responsible for transporting messages
  HTTP, BEEP

  XML Messaging
  Responsible for encoding messages in

common XML format
  XML-RPC, SOAP

  Service Description
  Responsible for describing an interface to a

specific web service
  WSDL

  Service discovery
  Responsible for service discovery and search
  UDDI

What is SOAP?

  Fundamentally stateless one-way message exchange paradigm
  More complex interactions may be implemented

  Exchange of structured and typed information
  Between peers in decentralized fashion
  Using different mediums: HTTP, Email, ..

  Request-reply and one-way communication are supported
  Note that XML infoset is an abstract specification

  On-the-wire representation does not have to be XML 1.0!
  SOAP 1.2 ”HTTP Subset”. SOAP as HTTP extension
  Specifications

  SOAP Version 1.2 Part 0: Primer
  SOAP Version 1.2 Part 1: Messaging Framework
  SOAP Version 1.2 Part 2: Adjuncts
  SOAP Version 1.2 Specification Assertions and Test Collection

REST

  REST (Representational State Transfer) (Roy Fielding,
PhD thesis)
  Architectural style of networked systems
  Applications transfer state with each resource representation

  Representations of the data are transmitted
  State is a property of a resource

  Resources
  Any addressable entity
  Web site, HTML page, XML document, ..

  URLs Identify Resources
  Every resource uniquely identifiable by a URI

REST II

  Uses standards
  Addressing and naming: URI
  Generic resource interface: HTTP GET,

POST, PUT, DELETE
  Resource representations: HTML, XML,

GIF,..
  Media types: MIME

  Loose coupling
  Stateless transactions
  Self-descriptive messages
  Hypermedia is the engine of

application state
  Just resources and URIs

Event-based Systems and Publish/
subscribe

  Event delivery from publishers to subscribers
  Event is a message with content
  One-to-many, many-to-many
  Builds on messaging systems and store-and-forward

  A frequently used communication paradigm
  Decoupling in space and time
  Solutions from local operation to wide-area networking
  Proposed for mobile/pervasive computing

  The event service is a logically centralized service
  Basic primitives: subscribe, unsubscribe, publish

  Various routing topologies and semantics

Event Systems

  Traditional MoM systems are message queue based
(one-to-one)

  Event systems and publish/subscribe are one-to-many
or many-to-many
  One object monitors another object
  Reacts to changes in the object
  Multiple objects can be notified about changes

  Events address problems with synchronous operation
and polling

  In distributed environments a logically centralized
service mediates events
  anonymous communication
  expressive semantics using filtering

Notification
Consumer

Notification
Engine

Subscription
Manager

Subscriber

Notify

Publisher

Situation

Receives
notifications

 Subscriptions

Notifications
message
instances

Matches and sends
notification to the

appropriate
consumers

 Subscription
management on
 behalf of the
 Publisher

Subscriptions

Pub/Sub Service

Event Systems

  Push versus Pull
  May be implemented using RPC, unicast, multicast,

broadcast,..
  Three main patterns

  Observer design pattern
  Used in Java / Jini

  Notifier architectural pattern
  Used by many research systems

  Event channel
  Used in CORBA Event/Notification Service

  Filtering improves scalability / accuracy
  Research topic: content-based routing

Tuple Spaces

  Tuple-based model of coordination
  The shared tuple space is global and persistent
  Communication is

  decoupled in space and time
  implicit and content-based

  Primitives
  In, atomically read and removes a tuple
  Rd, non-destructive read
  Out, produce a tuple
  Eval, creates a process to evaluate tuples

  Examples: Linda, Lime, JavaSpaces, TSpaces

Java Message Service (JMS)

  Asynchronous messaging support for Java
  Point-to-point messaging

  One-to-one

  Topic-based publish/subscribe
  SQL for filtering messages at the topic event queue
  One-to-many

  Message types:
  Map, Object, Stream, Text, and Bytes	

  Durable subscribers
  Event stored at server if not deliverable

  Transactions with rollback

Client 1 Client 2 Queue
Consumes

Acknowledges Sends

Client 1
Publishes

Topic

Client 2

Client 3

Subscribes

Delivers

MSG
MSG

MSG
MSG

MSG
Subscribes

Delivers

OMG Distributed Data Service

  The Data Distribution Service for Real-Time
Systems (DDS)

  The specification defines an API for data-
centric publish/subscribe communication for
distributed real-time systems.

  DDS is a middleware service that provides a
global data space that is accessible to all
interested applications.

  DDS uses the combination of a Topic object
and a key to uniquely identify instances of
data-objects.

  Content filtering and QoS negotiation are
supported

  DDS is suitable for signal, data, and event
propagation.

DDS

Publisher

DataWriter

Subscriber

DataReader

Subscriber

DataReader

 Data-Object
Identified by means
of the Topic Identified by means

of the Topic

Dissemination

Data values

Data values

Data values

Data synchronization

Synchronization models

  WHEN to sync?
  manually
  Automatically

  Synchronization and replication
  store data in a number of locations
  fault tolerance, but...
  most copies unavailable most of the time

Synchronization models

  HOW to sync?
  permit only one modifiable copy of data

  lock on data
  hub-and-spoke model

  multiple copies can be independently
modified
  more flexible
  more complex to implement the sync process

Synchronization models
Sync process

  Update detection
  recognition that a data has been

modified

  Update propagation
  transmission of changes among all the

data replica

  Reconciliation
  combination of all the updated data

to build a synchronized version

Synchronization models
Sync process

  Update detection
  recognition that a data has

been modified
  triggers the start of sync

process
  clean / dirty status

(modification flag)

  modification timestamp

  hash of the content

Synchronization models
Sync process

  Update detection
  modification timestamp

  store only the timestamp of last
modification?

(e.g. in file system)
•  comparison of all the timestamps

–  time / resource consuming!
•  monitoring file system for changes
•  use dir timestamp if equal to last

modified contained file

  semantics of modification time
  when a file timestamp is actually

modified?
•  content modifying, file renaming,

file relocation?

Synchronization models
Sync process

  Reconciliation
  combination of all the updated data to

build a synchronized version

  opaque data (e.g. binary, pictures)
•  ask the user which version to use

  structured data (e.g. XML)
•  edit logs
•  state comparison
•  both (can) use the latest common

ancestor as comparison aid

Synchronization models
Sync process

  Reconciliation
  type of modifications (inside a single

file):
  insertion
  deletion
  moving
  changing

  moving often as deletion + insertion
  use of unique ID per piece of

structured content

  rsync

  Remote Differential Compression
(RDC)
  Microsoft Windows Server 2003 R2 / 2008
  allows data to be synchronized between

two or more computers, using compression
techniques to minimize the amount of data
sent across the network.

Synchronization models
data sync algorithms & tools

  Remote Differential Compression (RDC)
  files (to be synced) divided into chunks of data

  chunk bounded using an incremental fingerprint
function

  MD4 hash calculated for each chunk
  comparison of MD4 lists (signature, one per file)
  transfer only of missing / different chunks
  can be applied recursively!

  original file size 9GB
  signature 81MB
  signature of signature 6MB

Synchronization models
 data sync algorithms & tools

  Publish / subscribe

  for update propagation - data channel
  each edit gets immediately published as a event
  continuous reconciliation
  multiple users

  for update detection
  an update is advertised to all subscribers

Sync in middleware

  Synchronization Markup Language

  Open Mobile Alliance (OMA) Data
Synchronization and Device Management

  Interoperable protocol to sync data

Case studies: SyncML

  Interoperable protocol to sync data
  update propagation

  transfer of updates among devices

  client-server architecture

  based on “edit log” model
  addition, delete, replace of objects
  unique ID

  data type & data store independent

  Notification of conflicts

Case studies: SyncML

Pervasive computing middleware
Projects Key Issues

UIC Heterogeneity of devices and networks: It helps users to specialize to the particular
properties of different devices and network environments

X-Middle Disconnected operations in mobile applications: It allows mobile users to share data
when they are connected, or replicate the data and perform operations on them off-line
when they are disconnected; data reconciliation takes place when user gets reconnected

Gaia Dynamic adaptation to the context of mobile applications: It supports the
development and execution of portable applications in active spaces

Lime Programming constructs which are sensitive to the mobility constraints: It explores
the idea by providing programmers with a global virtual data structure and a tuple space
(Tspace), whose content is determined by the connectivity among mobile hosts

Tspaces Asynchronous messaging-based communication facilities without any explicit
support for context-awareness: It explores the idea of combination of tuple space
(Tspace) and a database that is implemented in Java. Tspace targets nomadic
environment where server contains tuple databases, reachable by mobile devices
roaming around

L2imbo QoS monitoring and control by adapting applications in mobile computing
environment: It provides the facilities of multiple spaces, tuple hierarchy, and QoS
attributes

Aura Distraction-free pervasive computing: It develops the system architecture, algorithms,
interfaces and evaluation techniques to meet the goal of pervasive computing

