
Mobile Middleware

Support Technologies

Contents

  Cloud computing and offloading services

  Session Initiation Protocol (SIP)

  IP Multimedia Subsystem (IMS)

  Publish/Subscribe, tuple spaces, Web
services

Environment

!"#$%&'

(#)*"+'!"#$%'
#,#-%*./'

&0
1+
%$
"*.
/'

&1
-2
*.
/'

2+3"*0-4#.'

0-01*./'

Access network

Web services

  The services of Cloud computing can be divided into
three categories:

  1. Software-as-a-Service (SaaS), in which a vendor
supplies the hardware infrastructure, the software
product and interacts with the user using a portal
(software on demand, pay-as-you-go).

  2. Platform-as-a-Service (PaaS), in which a set of
software and development tools are hosted by a
provider on the provider's infrastructure, for example,
Google's AppEngine.

  3. Infrastructure-as-a-Service (IaaS), which involves
virtual server instances with unique IP addresses and
blocks of on-demand storage, for example, Amazon's
Web services infrastructure.

Cloud Computing

Cloud Computing

Browser as a Platform Datacenters and clusters

Virtualization Web Application
Frameworks

Elasticity Location Independent
Resource Pooling

Information demand and
 supply (Open APIs)

Ubiquitous Network
Access

On-demand service

Software as
a Service (SaaS)

Platform as a
Service (PaaS)

Infrastructure as
a Service (IaaS)

Private, community, public, hybrid clouds

Offloading

  The offloading of a mobile computing task is a
trade-off between the energy used for local
processing and the energy required for offloading
the task, uploading its data, and downloading the
result, if necessary.

  One can express the offloading energy trade-off
as follows:
  Etrade = Elocal − Edelegate > 0, where Elocal is the

energy used for complete local execution, and
Edelegate is the energy used if the task is offloaded
from the perspective of the mobile device.

  If Etrade is greater than zero, then there is an
energy benefit for delegating the task to the
cloud.

What can be offloaded?

  Content processing and transformations
  Example: Javascript processing in OperaMini

  Completion notification and mobile push
  Application execution

  Google docs, Windows Office

  Connection management
  BitTorrent!
  Large downloads

  Speech recognition
  Siri

  Positioning (A-GPS)

Example of Offloading: Indexing

  Implemented with Dessy: mobile desktop search
  To offload indexing

  Transmit entire file to the cloud service
  Wait for response
  Receive file summary

  High energy savings can be obtained when
offloading CPU-intensive tasks

  With N900 and WLAN 700kB/s: 96.5% savings!
  200 000 words, 1 MB file
  With WLAN 100kB/s this is reduced to 83.7%

Virtualization

  Virtualization system is a framework that
combines or divides computing
resources to present a transparent view
of one or more environments
  Hardware/software partitioning (or

aggregation)
  Partial or complete machine simulation
  Emulation (can be partial or complete)
  Time-sharing

Mobile virtualization

  Server Based Virtualization of Desktop Infrastructure

  Moving the desktop to a virtualized image in the data
center allows the complex components to be protected
and componentized
  Workload isolation and migration
  Application virtualization

  Virtualization is a possible solution to the
fragmentation problem

  http://www.vmware.com/technology/mobile/

  Virtualization for offloading
  Running applications in a base station, nearby server, in the

cloud
  Research proposals

Session Initiation Protocol (SIP)

  An Application-layer control (signaling)
protocol for creating, modifying and
terminating sessions with one or more
participants.

  Sessions include Internet multimedia
conferences, Internet telephone calls and
multimedia distribution.

  Members in a session can communicate via
multicast or via a mesh of unicast relations, or
a combination of these.

  Text based, model similar to HTTP.

  Current system: Signalling System 7 (SS7).
  Circuit-switched, SIGTRAN with SCTP for IP

SIP History

  Mid-1990s, emerged from the research
of Dr. Henning Schulzrinne, Columbia
University, on Multi-party Multimedia
Session Control (MMUSIC)

  1996, submitted to the Internet
Engineering Task Force (IETF) and
developed by the SIP Working Group

  1999, first published as IETF RFC 2543
  2000, selected by 3GPP
  2002, RFC 3261 (with further

supplements in other RFCs)

SIP features

  User location: determination of the end system to
be used for communication

  User capabilities: determination of the media and
media parameters to be used

  User availability: determination of the willingness
of the called party to engage in communications

  Call setup: "ringing", establishment of call
parameters at both called and calling party

  Call handling: including transfer and termination
of calls

State in SIP

  SIP places state in the end devices
  End-to-end
  If end device fails, then the session fails

  Network elements may or may not have state

  Proxies are used for discovery, forwarding,
relaying

  SIP uses transactions in message delivery
  Internal state, timers
  Can use UDP, TCP, SCTP, etc.

SIP messages

  Start Line (Request Line or Status Line)
  message type (method type & URI in

requests, and response code in responses)
  protocol version

  Headers
  fields to convey message attributes

  To,From, sequence number, timestamp, etc.
  can span multiple lines, appear multiple

times, take multiple comma-separated values
  Body (Content)

  to describe the session to be initiated
  to contain opaque textual or binary data

SIP

1.  SIP Addressing (SIP URI) and
registering SIP addresses

2.  Locating a SIP Server
3.  Sending SIP Requests: SIP

Transactions
4.  SIP Methods
5.  SIP Responses
6.  Subsequent Requests and Responses

Proxy Server Proxy Server

User Agent Alice User Agent Bob

5. INVITE
To:sip:bob@test.com

6. 100 Trying
11. 180 Ringing

14. 200 OK

16. 180 ACK

 Media (RTP)

1.

IN
VI

TE

To
:s

ip
:b

ob
@

te
st

.c
om

2.

10
0

Tr
yi

ng

12
.

18
0

R
in

gi
ng

15
.

O
K

13. 200 O
K

10. 100 R
inging

9. IN
VITE

sip:bob@
test.com

DNS
Server

Location
Service

SIP and Mobility

  Designed to support various forms of mobility
  IP address changes when DHCP assigns a new one,

vertical handoff, roaming between operators
  IP address change requires a re-INVITE with the new

IP address, results in 200 OK and ACK. RTP stream
will then be established for the correct IP address.

  Can be handled also with:
  Host Identity Protocol (indirection in the protocol stack),

requires changes to kernel
  SCTP with multihoming

  Details in SIP RFC
  http://tools.ietf.org/html/rfc3665

IMS

  The IP Multimedia Subsystem Provides
Multimedia Services Across Networks (fixed &
mobile), such as:
  Instant Messaging, Video Sharing, Push-To-Talk,

Gaming, Video Conferencing

  Designed initially for GPRS and circuit switched.
Upgraded later for 3G and LTE.

  IMS Uses SIP protocol To Setup Multimedia
Sessions Over IP Network

  SIP is a signalling protocol to:
  Locate user given SIP Universal Resource

Identifier (URL) (e.g., sip:jane@isp.com)
  Set up session and negotiate its parameters

IMS Proxies I

  CSCF = Call State Control Function

  A Proxy-CSCF (P-CSCF) is a SIP proxy that is the first point
of contact for the IMS terminal
  it is assigned to an IMS terminal during registration, and

does not change for the duration of the registration
  it sits on the path of all signalling messages, and can

inspect every message
  it authenticates the user and establishes an IPsec

security association with the IMS terminal.
  it can also compress and decompress SIP messages

using SigComp, which reduces the round-trip over slow
radio links

  it may include a Policy Decision Function (PDF), which
authorizes media plane resources e.g. quality of service
(QoS) over the media plane. It's used for policy control,
bandwidth management, etc. The PDF can also be a
separate function.

  it also generates charging records

IMS Proxies II

  A Serving-CSCF (S-CSCF) is the central node of the
signalling plane
  it is always located in the home network. It uses Diameter

Cx and Dx interfaces to the HSS to download and upload
user profiles — it has no local storage of the user data.
All necessary information is loaded from the HSS

  it handles SIP registrations, which allows it to bind the
user location (e.g. the IP address of the terminal) and the
SIP address

  it sits on the path of all signaling messages, and can
inspect every message

  it decides to which application server(s) the SIP message
will be forwarded, in order to provide their services

  it enforces the policy of the network operator

  An Interrogating-CSCF (I-CSCF) is another SIP function
located at the edge of an administrative domain

IMS

IMS Core

P-CSCF I-CSCF

S-CSCF

IMS Service Framework

HSS
(AAA)

IP Core Network

Access Networks

Media
servers

App.
Servers

Media
server/

gateway
PDF

Service Delivery Platform

Components Compositions Adapters

IMS
  Example of call routing

User A

HSS
Interrogating
CSCF

Serving
CSCF

Invite
From: sip:userA@isp.com
To: sip:userB@isp.com
Call-ID

Location Query

User B

Ok

Multimedia session

Serving
CSCF

CSCF = Call State Control Function
HSS = Home Subscriber Service

LTE and IMS

  LTE is all-IP, but 3G and prior systems have used
circuits for voice

  How to handle voice with LTE without radical
modifications to the access network

  Solutions:
  CSFB (Circuit Switched Fallback): In this approach, LTE just

provides data services.
  SVLTE (Simultaneous Voice and LTE): In this approach, the

handset works simultaneously in the LTE and CS mode
  VoLTE (Voice Over LTE): IMS-based, all-IP, SIP

  Operators have to choose a solution
  http://news.verizonwireless.com/OneVoiceProfile.pdf

Session-Based Non-Session-Based

Chats

Instant Messaging

Web, HTML

Messaging
SMS and MMS

E-Commerce

R
ea

l-T
im

e
In

te
ra

ct
io

n
N

on
-R

ea
l-T

im
e

SIP (IMS) only
Applications

SIP or Non-SIP
Applications

Non-SIP Only
Applications

Voice

Online
 Games

Push-to-
Video

Push-to-talk

Peer-to-Peer

Enterprise
VPN

IP/TV
Streaming

Video

Video on Demand

Push email

Web Service Architecture

  The three major roles in web services
  Service provider

  Provider of the WS
  Service Requestor

  Any consumer / client
  Service Registry

  logically centralized directory of services

  A protocol stack is needed to support
these roles

Web Services Protocol Stack
  Message Transport

  Responsible for transporting messages
  HTTP, BEEP

  XML Messaging
  Responsible for encoding messages in

common XML format
  XML-RPC, SOAP

  Service Description
  Responsible for describing an interface to a

specific web service
  WSDL

  Service discovery
  Responsible for service discovery and search
  UDDI

What is SOAP?

  Fundamentally stateless one-way message exchange paradigm
  More complex interactions may be implemented

  Exchange of structured and typed information
  Between peers in decentralized fashion
  Using different mediums: HTTP, Email, ..

  Request-reply and one-way communication are supported
  Note that XML infoset is an abstract specification

  On-the-wire representation does not have to be XML 1.0!
  SOAP 1.2 ”HTTP Subset”. SOAP as HTTP extension
  Specifications

  SOAP Version 1.2 Part 0: Primer
  SOAP Version 1.2 Part 1: Messaging Framework
  SOAP Version 1.2 Part 2: Adjuncts
  SOAP Version 1.2 Specification Assertions and Test Collection

REST

  REST (Representational State Transfer) (Roy Fielding,
PhD thesis)
  Architectural style of networked systems
  Applications transfer state with each resource representation

  Representations of the data are transmitted
  State is a property of a resource

  Resources
  Any addressable entity
  Web site, HTML page, XML document, ..

  URLs Identify Resources
  Every resource uniquely identifiable by a URI

REST II

  Uses standards
  Addressing and naming: URI
  Generic resource interface: HTTP GET,

POST, PUT, DELETE
  Resource representations: HTML, XML,

GIF,..
  Media types: MIME

  Loose coupling
  Stateless transactions
  Self-descriptive messages
  Hypermedia is the engine of

application state
  Just resources and URIs

Event-based Systems and Publish/
subscribe

  Event delivery from publishers to subscribers
  Event is a message with content
  One-to-many, many-to-many
  Builds on messaging systems and store-and-forward

  A frequently used communication paradigm
  Decoupling in space and time
  Solutions from local operation to wide-area networking
  Proposed for mobile/pervasive computing

  The event service is a logically centralized service
  Basic primitives: subscribe, unsubscribe, publish

  Various routing topologies and semantics

Event Systems

  Traditional MoM systems are message queue based
(one-to-one)

  Event systems and publish/subscribe are one-to-many
or many-to-many
  One object monitors another object
  Reacts to changes in the object
  Multiple objects can be notified about changes

  Events address problems with synchronous operation
and polling

  In distributed environments a logically centralized
service mediates events
  anonymous communication
  expressive semantics using filtering

Notification
Consumer

Notification
Engine

Subscription
Manager

Subscriber

Notify

Publisher

Situation

Receives
notifications

 Subscriptions

Notifications
message
instances

Matches and sends
notification to the

appropriate
consumers

 Subscription
management on
 behalf of the
 Publisher

Subscriptions

Pub/Sub Service

Event Systems

  Push versus Pull
  May be implemented using RPC, unicast, multicast,

broadcast,..
  Three main patterns

  Observer design pattern
  Used in Java / Jini

  Notifier architectural pattern
  Used by many research systems

  Event channel
  Used in CORBA Event/Notification Service

  Filtering improves scalability / accuracy
  Research topic: content-based routing

Tuple Spaces

  Tuple-based model of coordination
  The shared tuple space is global and persistent
  Communication is

  decoupled in space and time
  implicit and content-based

  Primitives
  In, atomically read and removes a tuple
  Rd, non-destructive read
  Out, produce a tuple
  Eval, creates a process to evaluate tuples

  Examples: Linda, Lime, JavaSpaces, TSpaces

Java Message Service (JMS)

  Asynchronous messaging support for Java
  Point-to-point messaging

  One-to-one

  Topic-based publish/subscribe
  SQL for filtering messages at the topic event queue
  One-to-many

  Message types:
  Map, Object, Stream, Text, and Bytes	

  Durable subscribers
  Event stored at server if not deliverable

  Transactions with rollback

Client 1 Client 2 Queue
Consumes

Acknowledges Sends

Client 1
Publishes

Topic

Client 2

Client 3

Subscribes

Delivers

MSG
MSG

MSG
MSG

MSG
Subscribes

Delivers

OMG Distributed Data Service

  The Data Distribution Service for Real-Time
Systems (DDS)

  The specification defines an API for data-
centric publish/subscribe communication for
distributed real-time systems.

  DDS is a middleware service that provides a
global data space that is accessible to all
interested applications.

  DDS uses the combination of a Topic object
and a key to uniquely identify instances of
data-objects.

  Content filtering and QoS negotiation are
supported

  DDS is suitable for signal, data, and event
propagation.

DDS

Publisher

DataWriter

Subscriber

DataReader

Subscriber

DataReader

 Data-Object
Identified by means
of the Topic Identified by means

of the Topic

Dissemination

Data values

Data values

Data values

Data synchronization

Synchronization models

  WHEN to sync?
  manually
  Automatically

  Synchronization and replication
  store data in a number of locations
  fault tolerance, but...
  most copies unavailable most of the time

Synchronization models

  HOW to sync?
  permit only one modifiable copy of data

  lock on data
  hub-and-spoke model

  multiple copies can be independently
modified
  more flexible
  more complex to implement the sync process

Synchronization models
Sync process

  Update detection
  recognition that a data has been

modified

  Update propagation
  transmission of changes among all the

data replica

  Reconciliation
  combination of all the updated data

to build a synchronized version

Synchronization models
Sync process

  Update detection
  recognition that a data has

been modified
  triggers the start of sync

process
  clean / dirty status

(modification flag)

  modification timestamp

  hash of the content

Synchronization models
Sync process

  Update detection
  modification timestamp

  store only the timestamp of last
modification?

(e.g. in file system)
•  comparison of all the timestamps

–  time / resource consuming!
•  monitoring file system for changes
•  use dir timestamp if equal to last

modified contained file

  semantics of modification time
  when a file timestamp is actually

modified?
•  content modifying, file renaming,

file relocation?

Synchronization models
Sync process

  Reconciliation
  combination of all the updated data to

build a synchronized version

  opaque data (e.g. binary, pictures)
•  ask the user which version to use

  structured data (e.g. XML)
•  edit logs
•  state comparison
•  both (can) use the latest common

ancestor as comparison aid

Synchronization models
Sync process

  Reconciliation
  type of modifications (inside a single

file):
  insertion
  deletion
  moving
  changing

  moving often as deletion + insertion
  use of unique ID per piece of

structured content

  rsync

  Remote Differential Compression
(RDC)
  Microsoft Windows Server 2003 R2 / 2008
  allows data to be synchronized between

two or more computers, using compression
techniques to minimize the amount of data
sent across the network.

Synchronization models
data sync algorithms & tools

  Remote Differential Compression (RDC)
  files (to be synced) divided into chunks of data

  chunk bounded using an incremental fingerprint
function

  MD4 hash calculated for each chunk
  comparison of MD4 lists (signature, one per file)
  transfer only of missing / different chunks
  can be applied recursively!

  original file size 9GB
  signature 81MB
  signature of signature 6MB

Synchronization models
 data sync algorithms & tools

  Publish / subscribe

  for update propagation - data channel
  each edit gets immediately published as a event
  continuous reconciliation
  multiple users

  for update detection
  an update is advertised to all subscribers

Sync in middleware

  Synchronization Markup Language

  Open Mobile Alliance (OMA) Data
Synchronization and Device Management

  Interoperable protocol to sync data

Case studies: SyncML

  Interoperable protocol to sync data
  update propagation

  transfer of updates among devices

  client-server architecture

  based on “edit log” model
  addition, delete, replace of objects
  unique ID

  data type & data store independent

  Notification of conflicts

Case studies: SyncML

Pervasive computing middleware
Projects Key Issues

UIC Heterogeneity of devices and networks: It helps users to specialize to the particular
properties of different devices and network environments

X-Middle Disconnected operations in mobile applications: It allows mobile users to share data
when they are connected, or replicate the data and perform operations on them off-line
when they are disconnected; data reconciliation takes place when user gets reconnected

Gaia Dynamic adaptation to the context of mobile applications: It supports the
development and execution of portable applications in active spaces

Lime Programming constructs which are sensitive to the mobility constraints: It explores
the idea by providing programmers with a global virtual data structure and a tuple space
(Tspace), whose content is determined by the connectivity among mobile hosts

Tspaces Asynchronous messaging-based communication facilities without any explicit
support for context-awareness: It explores the idea of combination of tuple space
(Tspace) and a database that is implemented in Java. Tspace targets nomadic
environment where server contains tuple databases, reachable by mobile devices
roaming around

L2imbo QoS monitoring and control by adapting applications in mobile computing
environment: It provides the facilities of multiple spaces, tuple hierarchy, and QoS
attributes

Aura Distraction-free pervasive computing: It develops the system architecture, algorithms,
interfaces and evaluation techniques to meet the goal of pervasive computing

