Contents

- Middleware
- Mobile middleware
- Challenges
- Platforms
- Comparison
- Outlook
Middleware

- Widely used and popular term
- Fuzzy term
- One definition
 - “A set of service elements above the operating system and the communications stack”
- Second definition
 - “Software that provides a programming model above the basic building blocks of processes and message passing” (Colouris, Dollimore, Kindberg, 2001)
Why Middleware?

- Application development is complex and time-consuming
 - Should every developer code their own protocols for directories, transactions,..?
 - How to cope with heterogeneous environments?
 - Networks, operating systems, hardware, programming languages

- Middleware is needed
 - To cut down development time
 - Rapid application development
 - Simplify the development of applications
 - Support heterogeneous environments and mask differences in OS/languages/hardware
Middleware cont.

- Middleware services include:
 - directory, trading, brokering
 - remote invocation (RPC) facilities
 - transactions
 - persistent repositories
 - location and failure transparency
 - messaging and events
 - Security
 - synchronization

- Network stack (transport and below) is not part of middleware
Middleware provides various transparencies (HW, OS, location, fault, ..) for apps.

APIs for: RPC, messaging, transactions, session management, storage, directories, trading, etc.
The Hourglass

diverse applications

divergence

transport layer (TCP/IP)

convergence

diverse physical layers
Mobile Platforms

- Collections of central services and libraries with both reactive and proactive functions
- APIs typically logically centralized
- Distributed between elements of the environment
 - Multi-tier client-server
 - Peer-to-peer
 - Hybrids
- The platform running on the mobile terminal and the characteristics of the device determine how service is rendered for the end user
Wireless and Cloud

- Wireless hop is the limiting factor
 - Bandwidth, connectivity, reachability, tail energy, costs

- Server side scalability can be achieved by using traditional solutions:
 - clusters, caching, geographical distribution, load balancing, data centers

- Cloud computing
 - Integration, offloading
 - Web apps vs. native apps
Mobile Service Development

- The mobile landscape is fragmented
 - Heterogeneous device base
 - Many different wireless technologies
- The situation is challenging for the developer
 - Many APIs
 - Open vs. private APIs
 - Many middleware platforms
 - APIs evolve over time
- Current challenge of the industry pertains to improving the development processes
Introduction to Platforms

- Mobile middleware aims to support the development, deployment, and execution of distributed applications in the heterogeneous and dynamic mobile environment.
- The goals for mobile middleware include adaptability support, fault-tolerance, heterogeneity, scalability, and context-awareness.
- The industry solution to these challenges has been to create middleware *platforms*.
- A platform collects frequently used services and APIs under a coherent unified framework.
Platforms

- **2009**
 - Java Micro Edition (Java ME)
 - iOS
 - Symbian and Series 60
 - Windows Mobile
 - Linux Maemo (MeeGo)
 - Android
 - BREW
 - WAP

- **2012**
 - iOS
 - Android
 - Windows Phone 7
 - HTML5 web apps
Application Trends

- WP7
 - Native apps, cloud integration
- iOS
 - Native apps, cloud integration
 - Potential for Web apps
- Android
 - Native apps, cloud integration
- WebOS
 - Web apps with HTML5
 - Obsolete (open source)
- Blackberry
 - Native and Web apps
Challenges

- **Fragmentation is a major problem**
 - device-level fragmentation
 - standard fragmentation
 - implementation fragmentation

- **Energy consumption**
 - Modelling: where is the energy going
 - Optimization: how to improve things

- **Security is also a problem**
 - Sandboxed environments and privileged operations require certification
 - Certification is difficult for developers
 - Current trend is towards application stores and more lightweight certification processes
 - No malware for iOS, plenty for Android
Update problems

- WP7 and Android updates not available for all devices
- Microsoft update development process
 - OEMs work with Microsoft to customize the update with their handset firmwares
 - The carriers (who also have code on the OEM phones) check these updates
 - Same as with Android, Google tightening control.
- Recent problems: phones bricked (out of battery when updating)
- Older problems: excessive background data transfer, update problems
Examples

n Classical examples
 ◆ WAP
 ◆ Java ME
 ◆ Symbian
 ◆ MAEMO / MeeGo

n Current Platforms
 ◆ Windows Phone 7
 ◆ iPhone
 ◆ Android
 ◆ Web apps
WAE

- **Wireless Application Environment (WAE)**
 - A suite of protocols and specifications for optimizing data transfer for wireless communication

- **WAP stack**
 - Focus on binary transmission
 - **WSP (Wireless Session Protocol)**
 - HTTP replacement, “compressed”
 - **WTP (Wireless Transaction Protocol)**
 - Request/response, more efficient than TCP
 - **WTLS (Wireless Transport Layer Security)**
 - Based on TLS, may not be end-to-end with a gateway
 - **WDP (Wireless Datagram Protocol)**
 - UDP replacement
Web Access with Gateway

Client
Web Browser

encoded request
wireless
encoded response

Gateway
Encoders
Decoders
Protocol Gateways

request
response

Server
HTTP Server
CGI,..
Web Access

- Data transformation
 - WAP gateway performs data transformation between WML (or XHTML) and HTML

- Data compression
 - Technique are used for dealing with images and other graphics

- Adaptability
 - User profile and device characteristics are stored in the WAP gateway

- Security
 - Secure Enterprise Proxy (SEP) using 128-bit encryption in WAP 1.2

- Service discovery and mobility support
 - WAP’s “walled garden” – WAP gateways are provided by ISP such as AOL
WAE: current status

- WAP Forum now in OMA (Open Mobile Alliance)
- WAP 2.0, is a re-engineering of WAP using a cut-down version of XHTML with end-to-end HTTP
- Gateway and custom protocol suite is optional.
- WAP used by many handsets
 - 1.2 version introduced WAP Push (typically using an SMS message)
- Typically versatile networking stacks with also IPv6 support
Java Micro Edition (Java ME)

- Java for consumer electronics and embedded devices
- A virtual machine and a set of APIs
- Configurations and profiles
 - Configurations
 - two-low level APIs and optimized VMs
 - CDC, CLDC
 - Profiles
 - API specification on top of a configuration for complete runtime
 - CLDC: MIDP
 - CDC: Foundation, Personal Basis, Personal
 - Profiles defined using Java Community Process (JCP)
Java Editions

- Java Card, which allows small Java-based applications to be executed on smart cards
- Java ME (Micro Edition, formerly J2ME), which specifies several different profiles, collections of libraries
 - for devices that are sufficiently limited that it is not feasible to support the full Java platform on them.
- Java SE (Standard Edition), which is the platform for general purpose desktop PCs.
- Java EE (Enterprise Edition), which includes the Java SE and a number of additional
 - APIs for multi-tier client-server enterprise applications.
Servers & enterprise computers

Optional Packages

Java 2 Platform, Enterprise Edition (J2EE)

JVM™

Servers & personal computers

Optional Packages

Java 2 Platform, Standard Edition (J2SE)

JVM

High-end PDAs

TV set-top boxes

Embedded devices

Optional Packages

Personal Profile

Personal Basis Profile

Foundation Profile

CDC

JVM

Mobile phones & entry-level PDAs

Optional Packages

MIDP

CLDC

KVM

Smart cards

Optional Packages

Java Card

Card VM

Java Platform, Micro edition (Java ME)
Important JSRs

- 75 File Connection and PIM
- 82 Bluetooth
- 120 Wireless Messaging API (WMA)
- 135 Mobile Media API (MMAPI) Audio, video, multimedia
- 172 Web Services
- 177 Security and Trust Services
- 179 Location API
- 180 SIP API
- 184 Mobile 3D Graphics
- 185 Java Technology for the Wireless Industry (JTWI) General
- 205 Wireless Messaging 2.0 (WMA)
- 211 Content Handler API
- 226 SVG 1.0
- 229 Payment API
- 234 Advanced Multimedia Supplements (AMMS) MMAPI extensions
- 238 Mobile Internationalization API
- 239 Java Bindings for the OpenGL ES API
- **248 Mobile Service Architecture General**
 - Collects useful specifications
- 256 Mobile Sensor API
- 287 SVG 2.0
MIDP 3.0

- MIDP 3 specified in JSR 271 will specify the 3rd generation mobile APIs.
 - AMS (Application Management System)
 - Multitasking
 - Provisioning and OTA
 - Shared libraries
 - Security and access control
 - Service framework
 - Inter-MIDlet communication
 - User Interface improvements

- A key design goal of MIDP3 is backward compatibility with MIDP2 content

- Approved in Dec, 2009. Not supported by current phones.
CDC Technology

- Connected Device Configuration (CDC); JSR 36, JSR 218
- Foundation Profile, (FP); JSR 46, JSR 218
- Personal Basis Profile, (PBP); JSR 129, JSR 217
- Personal Profile, (PP); JSR 62, JSR 216
- J2ME RMI Optional Package, (RMI OP); JSR 66
- JDBC Optional Package for CDC/Foundation Profile API; JSR 169
- Java TV API; JSR 927
- Java Secure Socket Extension for Connected Device Configuration (JSSE)
APIs

- Mobile Sensor API, Contactless Communication API, and Location API
- The Mobile Broadcast Service API supports the delivery of streaming multimedia to mobile phones
- Converged communications support is provided by the XML API and IP Multimedia Subsystem (IMS) Services API
- The Mobile User Interface Customization API and Scalable 2D Vector Graphics API
Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Java ME MIDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>Java ME</td>
</tr>
<tr>
<td>Network scanning</td>
<td>No</td>
</tr>
<tr>
<td>Network interface control</td>
<td>No</td>
</tr>
<tr>
<td>Background processing</td>
<td>Yes (multi-tasking support in MIDP 3.0)</td>
</tr>
<tr>
<td>Energy and power monitoring and control</td>
<td>No</td>
</tr>
<tr>
<td>Memory management</td>
<td>Limited</td>
</tr>
<tr>
<td>Persistent storage</td>
<td>Limited, extension</td>
</tr>
<tr>
<td>Location information</td>
<td>Extension</td>
</tr>
<tr>
<td>HTML 5</td>
<td>N/A</td>
</tr>
<tr>
<td>SIP API support</td>
<td>Extension</td>
</tr>
<tr>
<td>Open Source</td>
<td>No</td>
</tr>
<tr>
<td>3rd party application installation</td>
<td>Certificate</td>
</tr>
<tr>
<td>Level of fragmentation</td>
<td>Fragmented</td>
</tr>
</tbody>
</table>
Symbian

- OS for handheld devices with limited resources
- User interface framework
- APIs (C++)
- Tools
- Operating System
 - Pre-emptive, multitasking, multithreading, memory protection
 - Event-based, active objects
 - Memory conservation, reliability, CPU optimizations
Software Components

- **Kernel**
 - Manages and controls access to hw
 - Hw-supported privileges, kernel mode

- **Application**
 - Program with a user interface
 - Runs in user mode in its own process

- **Server**
 - Program without a user interface
 - Manages resources, provides interface to clients
 - File server, window server, comms, ..

- **Engine**
 - Application part that manipulates data, typically separate DLL
Key layers

- The Symbian OS System Model contains the following layers:
 - UI Framework Layer.
 - Application Services Layer.
 - Java ME.
 - OS Services Layer: generic OS services, communications services, multimedia and graphics services, connectivity services.
 - Base Services Layer.
 - Kernel Services and Hardware Interface Layer.
Symbian OS 9.x

- Symbian OS 9.x, most applications must be signed using a centralized process provided by Symbian Ltd. in order to be installable and executable on a mobile phone.
- An unsigned application has very limited features and at least in theory cannot perform harmful actions.
- One motivation for application signature process, called Symbian Signed, is to improve mobile phone security by preventing the installation and execution of unknown and possibly hazardous programs.
- Several viruses and trojan horse programs have been developed for the OS, for example Cabir, which have caused some concerns for the trustworthiness of mobile software and prompted a number of anti-virus products for mobile phones.
WebKit for S60

- The Nokia Web Browser is based on the S60WebKit
- WebKit contains the WebCore and JavaScriptCore components that Apple uses in its Safari browser.
- Based on KHTML and KJS from KDE’s Konqueror open source project, this software offers improvements in Web site usability on smartphones through the re-use of an existing desktop rendering engine that has been developed and optimized by a large open source community over many years.
- The Nokia Web Browser supports Dynamic HTML, AJAX applications, and W3C’s XHTML 1.0, DOM, CSS and SVG-Tiny.
- Other supported Web standards include SSL and ECMAScript; and Netscape style plug-ins such as Flash Lite and audio.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Symbian Series 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>C++, Qt, Python, various</td>
</tr>
<tr>
<td>Network scanning</td>
<td>Limited</td>
</tr>
<tr>
<td>Network interface control</td>
<td>Yes</td>
</tr>
<tr>
<td>Background processing</td>
<td>Yes</td>
</tr>
<tr>
<td>Energy and power monitoring and control</td>
<td>Yes</td>
</tr>
<tr>
<td>Memory management</td>
<td>Yes</td>
</tr>
<tr>
<td>Persistent storage</td>
<td>Yes</td>
</tr>
<tr>
<td>Location information</td>
<td>Yes</td>
</tr>
<tr>
<td>HTML 5</td>
<td>No (Widgets and Javascript API)</td>
</tr>
<tr>
<td>SIP API support</td>
<td>Yes</td>
</tr>
<tr>
<td>Open Source</td>
<td>Yes</td>
</tr>
<tr>
<td>3rd party application installation</td>
<td>Certificate</td>
</tr>
<tr>
<td>Level of fragmentation</td>
<td>Some fragmentation</td>
</tr>
</tbody>
</table>