
Windows for 
Reverse Engineers 
(+ Rootkit Basics)

T-110.6220 Reverse Engineering Malware

Course Spring 2015



Windows 
Architecture

2



3



System Mechanisms

4



Kernelmode and Usermode

5

User-space
(Ring 3)

System-space
(Ring 0)

User-space
(Ring 3)

User-space
(Ring 3)

0x00000000

0xFFFFFFFF

Int 0x2e /
Sysenter



Service Dispatching

6

ReadFile(…)

Call NtReadFile
Return to caller

Sysenter
Return to caller

Call NtReadFile
Dismiss interrupt

Read the file
Return to caller

Interrupt

Application

Kernel32.dll!
ReadFile

Ntdll.dll!
NtReadFile

Nt!
KiSystemService

Nt!
NtReadFile



Service Dispatching

7



Service Dispatching

8



(Old) Rootkit Techniques

9



Variation of Syscall Hooking

10

System Service 
Dispatcher

Int 0x2e / Sysenter

_KTHREAD

Service Descriptor 
Table

Service Table

NtOpenKey()
…

Service Descriptor 
Table

Service Table

NtOpenKeyHook()
…



Memory 
Management

11



Memory Manager
 Each process sees a large and contiguous private address space

 The memory manager has two important tasks

1. Mapping access to virtual memory into physical memory

2. Paging contents of memory to disk as physical memory runs out; 
and paging the data back into memory when needed 

12



Virtual Memory

13

 Every process has its own virtual address 
space

 Virtual memory provides a logical view 
of the memory that might not 
correspond to its physical layout 

 Paging is the process of transferring 
memory contents to and from the disk

 Virtual memory can 
exceed available
physical memory



Virtual Memory (x86)

14

• Flat 32-bit address space, total of 4GB 

virtual memory

• By default, only the lower half can be used 

by a process for its private storage 

because the OS takes the upper half for 

its own protected OS memory utilization.

• The memory mappings of the lower half is 

changed to match the virtual address 

space of the currently running process



Processes and 
Threads

15



Process
 Process is an abstraction of a running program

 Process consists of following essential components:

 A private virtual address space

 An executable program (“the base image”)

 A list of open handles to resources allocated by the operating system 

 An access token, which uniquely identifies the owner, security groups, and privileges associated 
with the process

 A process ID

 One or more threads

 Important structures: EPROCESS (KM) and PEB (UM)

16



Thread
 Thread is an entity scheduled for execution on the CPU

 Thread consists of following essential components:

 The CPU state

 Two stacks, one for kernel-mode and one for user-mode

 Thread-Local Storage (TLS), a private storage area that can be used by subsystems, run-time 
libraries, and DLLs

 A thread ID

 An access token, which uniquely identifies the owner, security groups, and privileges associated 
with the thread

 Important structures: ETHREAD (KM) and TEB (UM)

17



Processes and Threads

18



Rootkit Techniques: DKOM

19



Applications on 
Windows

20



Executable Format
 Object files and executables follow the PE (Portable 

Executable) file format

 Full specification available online

 http://www.microsoft.com/whdc/system/platform/firm
ware/PECOFF.mspx

 Best viewed with your hex editor (HT) or specialized PE viewer 
(PEBrowsePro ->)

 File extensions commonly used by executables:

 EXE, DLL, SYS and CPL

21

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx


Windows API
 Windows API is the interface to the operating system for applications

 Exposed by a set of system libraries: kernel32.dll, user32.dll, …
 Windows 7 refactored the system libraries so you will see e.g. kernelbase.dll

 Several subcategories
 Administration and management (WMI, …)
 Diagnostics (event logging, …)
 Networking
 Security
 System services (processes, threads, registry…)

 MSDN is the reverse engineers best friend for Windows binaries
 http://msdn2.microsoft.com/en-us/library/default.aspx

22



Native API
 Undocumented interface to OS functionality

 One level below Windows API
 Some low-level functionality only available through Native API

 Examples of interesting functions
 NtSetSystemInformation
 NtQuerySystemInformation
 NtQueryDirectoryFile

 See “Windows NT/2000 Native API Reference” 
by Nebbett or
 ReactOS project - http://www.reactos.org/

23



API Hooking
 Hooking is a technique to instrument functions and extend or replace their

functionality

 For example, you want to know each time a program calls CreateFile() and strip 
write access from the caller

 Many implementations

 Hooking a function table (IAT, SSDT, IDT, …)

 Inline hooking (patching the first code bytes of a function)

 Hooking is used by rootkits to hide or protect objects

24



Inline Hooking

25



WOW64

26

Ntoskrnl.exe Win32k.sys

64-bit Ntdll.dll

Wow64.dll Wow64win.dll

Wow64cpu.dll

32-bit Ntdll.dllGdi32.dll User32.dll

32-bit exe/dll
 Win32 emulation on 64-bit 

Windows

 Implemented as a set of user-
mode DLLs, with some
support from kernel



WOW64 

27

Source: http://blog.rewolf.pl/blog/?p=102



WOW64: Filesystem
 Folder \Windows\System32 stores native 64-bit images

 Calls from 32-bit code redirected to \Windows\SysWOW64

 A few subdirectories are excluded from redirections for compatibility reasons
 %windir%\system32\drivers\etc and %windir%\system32\spool
 %windir%\system32\catroot and %windir%\system32\catroot2
 %windir%\system32\logfiles and %windir%\system32\driverstore

 Other common folders are handled via system environment variables
 64-bit: %ProgramFiles% -> ”C:\Program Files” 
 32-bit: %ProgramFiles% -> ”C:\Program Files (x86)”

 Automatic redirections can be enabled/disabled per thread with Wow64 APIs:
 Wow64DisableWow64FsRedirection and Wow64RevertWow64FsRedirection

28



Management 
Mechanisms

29



Registry
 A tree that contains all settings and 

configuration data for the OS and other
software

 Basic concepts: hive, key, value

 Also contains in-memory volatile data
 Current HW configuration, ...

 Hives are just files, most under
SystemRoot%\System32\Config\

30



Registry Hive

31



Registry Roots
HKEY_LOCAL_MACHINE

 System-related information

HKEY_USERS
 User-specific information for all accounts

HKEY_CURRENT_USER
 User-specific info for current user, links to HKEY_USERS

HKEY_CLASSES_ROOT
 File associations and COM registration, links to HKLM\Software\Classes

HKEY_CURRENT_CONFIG
 Current hardware profile, links to HKLM\System\CurrentControlSet\Hardware Profiles\Current

32



Registry and Malware
 Malware typically wants to survive a reboot
 The registry is the most common place to do this
 Hundreds of launchpoints

 HKLM\Software\Microsoft\Windows\CurrentVersion\Run:MyApp
 HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution 

Options\explorer.exe:Debugger

 Malware also wants to change (security) settings for other components
 Windows Firewall, IE extensions and settings, Windows File Protection, …

 The registry is also a great source for forensic data, for example:
 HKEY_CURRENT_USER\Software\Microsoft\Windows\ShellNoRoam\MUICache
 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist

33



Services
 Services are background processes that usually perform a specific task

and require no user-interaction

 For example, Automatic Updates

 Controlled by the Service Control Manager (SCM), services.exe

 Configuration data under HKLM\System\CurrentControlSet\Services

 Different types of services

 Kernel drivers

 Separate process

 Shared process (hosted by svchost.exe)

34



Services and Malware
 You should be able to identify three kinds of components

 Programs that control services (SCP’s, service control programs)
 Services
 Drivers

 Imports are a giveaway:
 SCP’s: OpenSCManager, CreateService, StartService, ...
 Services: StartServiceCtrlDispatcher, RegisterServiceCtrlHandler

 Drivers:
 Optional header subsystem: Native (1)
 Imports

35



File Systems

36



Filesystems
 Windows supports the following file system formats

 CDFS

 Read-only filesystem for CD’s

 UDF

 For DVD’s, read+write support (since Vista)
 FAT12, FAT16, FAT32

 Older format

 exFAT

 Optimized for flash drives, supports large disk sizes (since XP SP2)

 NTFS

 Native file system format

37



NTFS
 Designed to improve perfomance and reliability over FAT

 Some interesting NTFS Features
 Disk quotas

 Encrypting File System (EFS)

 Multiple data streams

 Hard links and junction points

 Unicode-based naming

38



I/O Subsystem

39



I/O Subsystem
 A set of components in the kernel that manage and provide access to hardware devices

 I/O Manager

 Plug and Play Manager

 Power Manager

 Key concepts

 Driver

 Device

 I/O requests

40



I/O Manager
 The core of the I/O system

 Provides a framework for other components to have device independent I/O services

 Responsible for dispatching the service requests to the appropriate device drivers for further 
processing

 Packet-driven (IRP’s, I/O request packets)

 Handles creation and destruction of IRP’s

 Offers uniform interface for drivers that handle IRP’s

41



Device Drivers
 Drivers are loadable kernel-mode components

 Code in drivers gets executed in different contexts:
1. In the user thread that initiated I/O

2. A system thread

3. As a result of an interrupt (any thread)

 Different types: file system drivers, protocol drivers, hardware drivers

 Layered driver model

42



Layered Driver Model

43



Reversing Drivers: 
Starting Points

1. The initialization routine (DriverEntry)
 The entry point of the driver

2. Add-device routine
 For PnP drivers, called by the PnP manager when a new device for the driver appears

3. IRP dispatch routines
 Main functionality (”read”, ”write”, ”close”)

 In many cases the most interesting part

44



Windbg Demo

45



Securing Windows: 
Driver Signing

 Introduced with 64-bit versions of Windows Vista

 Enforces that following types of drivers are digitally signed:
 All kernel-mode software
 User-mode drivers, such as printer drivers
 Drivers that stream protected content (DRM) are signed with ”special” keys

 Windows 8 UEFI Secure Boot-enabled platforms have additional signing requirements

 Main motivation was to increase the safety and stability of Windows platform
 Kernel-mode rootkits were becoming too powerful
 3rd-party kernel hooks were causing instability and disoptimal performance

 http://msdn.microsoft.com/en-us/library/windows/hardware/ff548231(v=vs.85).aspx

46

http://msdn.microsoft.com/en-us/library/windows/hardware/ff548231(v=vs.85).aspx


Securing Windows: 
Kernel Patch Protection

 Introduced in Win2003 SP1 x64 and Windows XP x64 edition
 Prohibits kernel-mode drivers that extend or replace kernel services through

undocumented means
 Monitors for any modifications to following critical places:

 System Service Tables
 Interrupt Descriptor Table (IDT)
 Global Descriptor Table (GDT)
 Model Specific Registers (MSRs)
 Kernel functions and debug routines

 Triggers Bug Check 0x109: CRITICAL_STRUCTURE_CORRUPTION
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff557228(v=vs.85).aspx

47

http://msdn.microsoft.com/en-us/library/windows/hardware/ff557228(v=vs.85).aspx


Rootkit Examples: Mebroot

48

3
2

-b
it

1
6

-b
it

BIOS

Mebroot MBR

ldr16

MBR

Boot sector

INT13

Ntldr

Ntldr

ldr32

Ntoskrnl.exe

ldrdrv

Mebroot Driver

Infected MBR loads and runs “ldr16” which hooks 
INT13. Original MBR is then called.

INT13 hook patches the real mode Ntldr to 
disable its code integrity checks and to hook its
protected mode part.

”ldr32” patches nt!Phase1Initialization function
from ntoskrnl.exe to hook nt!IoInitSystem call.

”ldrdrv” loads Mebroot driver from raw sectors
and executes it.3

2
-b

it
1

6
-b

it

BIOS

MBR

Boot sector

Ntldr

Ntldr

Ntoskrnl.exe



BlackEnergy

49



Turla

50



Securing Windows: Secure 
Boot

 The firmware enforces policy, only 
executes signed OS loaders

 OS loader enforces signature 
verification of Windows components

 Secure Boot is required for Windows 
8 certification

 This effectively prevents bootkits
from changing the boot or kernel 
components

51

Native UEFI

Verified OS loader only

OS starts



Securing Windows: ELAM
 A Microsoft supported mechanism for AM software to start before all

other 3rd party components

 Can prevent malicious boot drivers from executing depending on policy
settings

 ELAM drivers must be signed by a special Microsoft certificate

52

Native
UEFI

OS 
loader

ELAM 
driver

3rd party 
boot

drivers

AM 
software

3rd party 
software



Securing Windows: 
Protected Processes

 Introduced in Windows 8.1

 Generalization of protected process technology and applied to critical
system processes
 csrss.exe, services.exe, smss.exe, …

 Protected Service is a service running as a system protected process
 Only for code signed by a special certificate provided at runtime to Windows 

53


