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Kernelmode and Usermode
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Service Dispatching
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Service Dispatching
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Service Dispatching
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(Old) Rootkit Techniques
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Variation of Syscall Hooking
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Memory Manager
 Each process sees a large and contiguous private address space

 The memory manager has two important tasks

1. Mapping access to virtual memory into physical memory

2. Paging contents of memory to disk as physical memory runs out; 
and paging the data back into memory when needed 
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Virtual Memory
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 Every process has its own virtual address 
space

 Virtual memory provides a logical view 
of the memory that might not 
correspond to its physical layout 

 Paging is the process of transferring 
memory contents to and from the disk

 Virtual memory can 
exceed available
physical memory



Virtual Memory (x86)
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• Flat 32-bit address space, total of 4GB 

virtual memory

• By default, only the lower half can be used 

by a process for its private storage 

because the OS takes the upper half for 

its own protected OS memory utilization.

• The memory mappings of the lower half is 

changed to match the virtual address 

space of the currently running process
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Process
 Process is an abstraction of a running program

 Process consists of following essential components:

 A private virtual address space

 An executable program (“the base image”)

 A list of open handles to resources allocated by the operating system 

 An access token, which uniquely identifies the owner, security groups, and privileges associated 
with the process

 A process ID

 One or more threads

 Important structures: EPROCESS (KM) and PEB (UM)
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Thread
 Thread is an entity scheduled for execution on the CPU

 Thread consists of following essential components:

 The CPU state

 Two stacks, one for kernel-mode and one for user-mode

 Thread-Local Storage (TLS), a private storage area that can be used by subsystems, run-time 
libraries, and DLLs

 A thread ID

 An access token, which uniquely identifies the owner, security groups, and privileges associated 
with the thread

 Important structures: ETHREAD (KM) and TEB (UM)
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Processes and Threads
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Rootkit Techniques: DKOM
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Windows
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Executable Format
 Object files and executables follow the PE (Portable 

Executable) file format

 Full specification available online

 http://www.microsoft.com/whdc/system/platform/firm
ware/PECOFF.mspx

 Best viewed with your hex editor (HT) or specialized PE viewer 
(PEBrowsePro ->)

 File extensions commonly used by executables:

 EXE, DLL, SYS and CPL
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Windows API
 Windows API is the interface to the operating system for applications

 Exposed by a set of system libraries: kernel32.dll, user32.dll, …
 Windows 7 refactored the system libraries so you will see e.g. kernelbase.dll

 Several subcategories
 Administration and management (WMI, …)
 Diagnostics (event logging, …)
 Networking
 Security
 System services (processes, threads, registry…)

 MSDN is the reverse engineers best friend for Windows binaries
 http://msdn2.microsoft.com/en-us/library/default.aspx

22



Native API
 Undocumented interface to OS functionality

 One level below Windows API
 Some low-level functionality only available through Native API

 Examples of interesting functions
 NtSetSystemInformation
 NtQuerySystemInformation
 NtQueryDirectoryFile

 See “Windows NT/2000 Native API Reference” 
by Nebbett or
 ReactOS project - http://www.reactos.org/
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API Hooking
 Hooking is a technique to instrument functions and extend or replace their

functionality

 For example, you want to know each time a program calls CreateFile() and strip 
write access from the caller

 Many implementations

 Hooking a function table (IAT, SSDT, IDT, …)

 Inline hooking (patching the first code bytes of a function)

 Hooking is used by rootkits to hide or protect objects
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Inline Hooking
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WOW64
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Ntoskrnl.exe Win32k.sys

64-bit Ntdll.dll

Wow64.dll Wow64win.dll

Wow64cpu.dll

32-bit Ntdll.dllGdi32.dll User32.dll

32-bit exe/dll
 Win32 emulation on 64-bit 

Windows

 Implemented as a set of user-
mode DLLs, with some
support from kernel



WOW64 
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Source: http://blog.rewolf.pl/blog/?p=102



WOW64: Filesystem
 Folder \Windows\System32 stores native 64-bit images

 Calls from 32-bit code redirected to \Windows\SysWOW64

 A few subdirectories are excluded from redirections for compatibility reasons
 %windir%\system32\drivers\etc and %windir%\system32\spool
 %windir%\system32\catroot and %windir%\system32\catroot2
 %windir%\system32\logfiles and %windir%\system32\driverstore

 Other common folders are handled via system environment variables
 64-bit: %ProgramFiles% -> ”C:\Program Files” 
 32-bit: %ProgramFiles% -> ”C:\Program Files (x86)”

 Automatic redirections can be enabled/disabled per thread with Wow64 APIs:
 Wow64DisableWow64FsRedirection and Wow64RevertWow64FsRedirection
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Registry
 A tree that contains all settings and 

configuration data for the OS and other
software

 Basic concepts: hive, key, value

 Also contains in-memory volatile data
 Current HW configuration, ...

 Hives are just files, most under
SystemRoot%\System32\Config\
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Registry Hive

31



Registry Roots
HKEY_LOCAL_MACHINE

 System-related information

HKEY_USERS
 User-specific information for all accounts

HKEY_CURRENT_USER
 User-specific info for current user, links to HKEY_USERS

HKEY_CLASSES_ROOT
 File associations and COM registration, links to HKLM\Software\Classes

HKEY_CURRENT_CONFIG
 Current hardware profile, links to HKLM\System\CurrentControlSet\Hardware Profiles\Current
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Registry and Malware
 Malware typically wants to survive a reboot
 The registry is the most common place to do this
 Hundreds of launchpoints

 HKLM\Software\Microsoft\Windows\CurrentVersion\Run:MyApp
 HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution 

Options\explorer.exe:Debugger

 Malware also wants to change (security) settings for other components
 Windows Firewall, IE extensions and settings, Windows File Protection, …

 The registry is also a great source for forensic data, for example:
 HKEY_CURRENT_USER\Software\Microsoft\Windows\ShellNoRoam\MUICache
 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\UserAssist
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Services
 Services are background processes that usually perform a specific task

and require no user-interaction

 For example, Automatic Updates

 Controlled by the Service Control Manager (SCM), services.exe

 Configuration data under HKLM\System\CurrentControlSet\Services

 Different types of services

 Kernel drivers

 Separate process

 Shared process (hosted by svchost.exe)
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Services and Malware
 You should be able to identify three kinds of components

 Programs that control services (SCP’s, service control programs)
 Services
 Drivers

 Imports are a giveaway:
 SCP’s: OpenSCManager, CreateService, StartService, ...
 Services: StartServiceCtrlDispatcher, RegisterServiceCtrlHandler

 Drivers:
 Optional header subsystem: Native (1)
 Imports
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Filesystems
 Windows supports the following file system formats

 CDFS

 Read-only filesystem for CD’s

 UDF

 For DVD’s, read+write support (since Vista)
 FAT12, FAT16, FAT32

 Older format

 exFAT

 Optimized for flash drives, supports large disk sizes (since XP SP2)

 NTFS

 Native file system format
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NTFS
 Designed to improve perfomance and reliability over FAT

 Some interesting NTFS Features
 Disk quotas

 Encrypting File System (EFS)

 Multiple data streams

 Hard links and junction points

 Unicode-based naming
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I/O Subsystem
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I/O Subsystem
 A set of components in the kernel that manage and provide access to hardware devices

 I/O Manager

 Plug and Play Manager

 Power Manager

 Key concepts

 Driver

 Device

 I/O requests
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I/O Manager
 The core of the I/O system

 Provides a framework for other components to have device independent I/O services

 Responsible for dispatching the service requests to the appropriate device drivers for further 
processing

 Packet-driven (IRP’s, I/O request packets)

 Handles creation and destruction of IRP’s

 Offers uniform interface for drivers that handle IRP’s
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Device Drivers
 Drivers are loadable kernel-mode components

 Code in drivers gets executed in different contexts:
1. In the user thread that initiated I/O

2. A system thread

3. As a result of an interrupt (any thread)

 Different types: file system drivers, protocol drivers, hardware drivers

 Layered driver model
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Layered Driver Model
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Reversing Drivers: 
Starting Points

1. The initialization routine (DriverEntry)
 The entry point of the driver

2. Add-device routine
 For PnP drivers, called by the PnP manager when a new device for the driver appears

3. IRP dispatch routines
 Main functionality (”read”, ”write”, ”close”)

 In many cases the most interesting part
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Windbg Demo
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Securing Windows: 
Driver Signing

 Introduced with 64-bit versions of Windows Vista

 Enforces that following types of drivers are digitally signed:
 All kernel-mode software
 User-mode drivers, such as printer drivers
 Drivers that stream protected content (DRM) are signed with ”special” keys

 Windows 8 UEFI Secure Boot-enabled platforms have additional signing requirements

 Main motivation was to increase the safety and stability of Windows platform
 Kernel-mode rootkits were becoming too powerful
 3rd-party kernel hooks were causing instability and disoptimal performance

 http://msdn.microsoft.com/en-us/library/windows/hardware/ff548231(v=vs.85).aspx
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Securing Windows: 
Kernel Patch Protection

 Introduced in Win2003 SP1 x64 and Windows XP x64 edition
 Prohibits kernel-mode drivers that extend or replace kernel services through

undocumented means
 Monitors for any modifications to following critical places:

 System Service Tables
 Interrupt Descriptor Table (IDT)
 Global Descriptor Table (GDT)
 Model Specific Registers (MSRs)
 Kernel functions and debug routines

 Triggers Bug Check 0x109: CRITICAL_STRUCTURE_CORRUPTION
 http://msdn.microsoft.com/en-us/library/windows/hardware/ff557228(v=vs.85).aspx
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Rootkit Examples: Mebroot
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BlackEnergy
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Turla
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Securing Windows: Secure 
Boot

 The firmware enforces policy, only 
executes signed OS loaders

 OS loader enforces signature 
verification of Windows components

 Secure Boot is required for Windows 
8 certification

 This effectively prevents bootkits
from changing the boot or kernel 
components
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Securing Windows: ELAM
 A Microsoft supported mechanism for AM software to start before all

other 3rd party components

 Can prevent malicious boot drivers from executing depending on policy
settings

 ELAM drivers must be signed by a special Microsoft certificate
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Securing Windows: 
Protected Processes

 Introduced in Windows 8.1

 Generalization of protected process technology and applied to critical
system processes
 csrss.exe, services.exe, smss.exe, …

 Protected Service is a service running as a system protected process
 Only for code signed by a special certificate provided at runtime to Windows 
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