
Paolo Palumbo

F-Secure Corporation

Initial considerations

 During this lecture we will focus on compiled
languages, specifically C/C++

 The compiler used for the examples will be Visual C/C++
compiler as included in Visual Studio Express 2010

 The same techniques can be applied to different
languages and compilers

Creating a program

A great idea is born!

The idea is expressed using a programming
language suitable to a human

Program is compiled and linked

An object suitable to machine understanding
is created. In the end, this is all about ones
and zeros 

Simplified compilation and
linking process for C/C++

Preprocessing

Compilation

Linking

C/C++

source

file(s)

Additional

object

file(s)

Executable

file

Involves operations like

processing include files

and macro expansion

The resulting source code

is converted into object

code. Most optimization

happen during this phase.

Combines multiple object

files to create a single

executable. Some

optimizations can happen

at this stage as well.

No more macros or
preprocessor definitions

Comments are discarded, non-
needed symbol names as well.
Structured data types cease to exist.
Code is mangled and transformed
according to optimizations and
translation process

Additional modules are
statically linked to the object
file corresponding to the
program

Reverse Code Engineering

 Deals with the opposite of the process that we saw
before

 For interpreted languages, we still need to undo what the
bytecode compiler has done

 The ultimate goal is not the rebuilding of the original
source code

 The original source code cannot be recovered, but equivalent
source can

 It is a very lengthy and complicated process

 Usually, knowledge of the program’s inner workings is
what is needed

 For example, when performing malware analysis, the researcher
wants to get an understanding of what the malware does

Tools to aid the binary Reverse Code
Engineering process

Disassemblers: translate the machine code into the equivalent human readable
assembler representation. Some frequently used disassemblers:
• IDA Pro
• HIEW
• HT-Editor
• PE Browse Professional
• …

Debuggers: step through the code as the processor executes it. Examples are:
• Ollydbg/Immunity Debugger
• IDA Pro
• Windbg
• …

Decompilers: translate the machine code into high-level language source
code. The process of decompilation is extremely complex, and most of the
available tools are not able handle real-world programs automatically.
Examples are:
• Hex-Rays decompiler
• Boomerang
• REC Studio
• …

The great program™

Perfect example of a great idea turned into code!

Inside the great program™

What is this code? We did not
have anything like this in our
simple program!

It is the C Runtime startup
code and it has been inserted
by the linker. It provides the
basic support for C/C++
runtime. A few of the features
of this code:
• initialize the heap
• parse the command line
• more

We are looking at code disassembled by
a powerful tool (IDA), and we have
symbols. Usually, things are not so nice.

Inside the great program™ - continued

The invocation of our code happens much later, inside the __tmainCRTStartup routine.

The main function receives three arguments that were prepared by the CRT startup
code:
• argc – argument count
• argv – array of pointers to incoming arguments
• envp – array of pointers to environmental variables

Inside the great program™ - continued

• All of our high level constructs are gone! Thank you compiler!
• The code for the foobar subroutine is also different

• lea edx, [ecx][eax][3] ?

• lea: load effective address
• also used by the compiler to perform effective additions and multiplications
• could read also as:

• lea edx, [ecx + eax + 3]
• edx = ecx + eax + 3  performs the addition as in our source program

Main

Foobar

Simple control flow statements
We will use Visual Studio’s C/C++
compiler to see what happens to our
code when it is compiled

The program has been compiled and
linked with all optimizations disabled

Pre-test loops: for and while loops

A while loop works in a similar way, as it is another type of pre-test loop.

These kinds of loops perform a check on the loop condition before executing the body
of the loop; this means that the body of this kind of loop can be executed zero or more
times.

Post-test loops: do-while loops

The check on the loop condition is done after executing the loop body; this
means that the body of a do-while loop will be executed at least one time

The goto statement

As in our original source code, control is transferred unconditionally to another point in the
program. Please note that the dead code would be removed from final compiled program
if even minimal optimizations would have been turned on

Standard C arrays
Arrays are implemented as a sequence of memory
locations of same size and type. Therefore, there is no
difference between them and sequences of unrelated
items of the same size and type. Only the code that
access them can reveal the semantic association

Code that accesses memory areas in an indexed manner
could be a good hint that you are dealing with an array

Structures
Similarly to arrays, structures are implemented as a set of
contiguos memory locations that contain items of possibly
different size and type. The logical association between these
elements can only be made by analyzing the code that accesses
them

In this example, the type and size of field_3 are unknown, but at
least we know that something should be there. Instead, we have no
way to know that field_5 is there at all.

Remember about structure alignment when rebuilding structure
types!

Unions

For unions, the same memory location is used to store elements of
different type. To make this possible, the compiler allocates
enough memory to store the biggest item in the union

This makes reversing code that uses unions a bit more
challenging, as it may seem initially contradicting.

Basics of C++ Classes
This is avery simple case. No advanced OOP
features were used

We have a single class definitions, that provides
a simple constructor, a couple of attributes and a
two methods. The program then creates two
instances of the MySquare class as local
variables of the _tmain function.

Access specifiers:
• public
• protected
• private
are only constructs designed to help the
programmer. After enforcing correctness of
the source program, the compiler will remove
them and the resulting binary won’t have any
access specifier

In this case, after the compilation process, the
local variables will contain only instance-specific
class members, the attributes.

When using additional features of C++, the
underlying implementation becomes more
complex

Basics of C++ Classes - continued

Constant folding & copy propagation
Constant folding is responsible for the simplification of constant
expressions at compile time:

 x = (12 * 27) + 33  x = 357

Copy propagation is responsible for replacing the presence of the
target of a direct assignment with its value:

 y = x * 2  y = 357 * 2

• Dead code elimination has also been applied here
• These transformations are only possible after dataflow analysis
has been performed
• By looking at the final binary, there is no way to know how the
source program looked in the first place

Dead code elimination
Dead code elimination is responsible to remove from the final
optimized program all of the those parts of the program that the
compiler could safely mark as ”dead”. This includes, for example,
unreachable statements . Please note that this optimization will
be performed repeatedly during the compilation process

The result of dead code elimination for this sample program is
shown below. The line:

 printf("I shouldn't be in the code!\n");

has been removed from the final binary, as there is no execution
path that can reach it, and thus it is ”dead”. As a result of this
elimination, the first goto is being eliminated as well, as there is
no need for it anymore

Inline expansion
Inline expansion consists of replacing the call site of a function
with the body of the called function itself. This is done to remove
the overhead that comes with the control transfer between caller
and callee, plus everything related to the callee’s prologue and
epilogue code. Inline expansion also opens the door to further
optimizations

The most obvious downside is the increase of the code size

There are many more!

• There are many additional optimizations
• optimizing compilers have been around for decades

• can turn awful code into something that performs really well
• a good exercise is to explore additional compiler behavior

• Writing programs in assembly produces faster code?
• everybody has heard this from someone at some point in their
computing career
• this is rarely the case

• optimizing compilers can take care of so many things that
would be obscure for a human
• part of the output of the code generator is human-
generated anyway

• sometimes there is the need of handcrafting a special piece of
code in assembly to perform a specific task

Simple encryption routine reverse
engineering

LIVE

Further suggested reading

OpenRCE: http://www.openrce.org

If you cannot find some particular information, googling helps 
http://www.google.com

http://www.openrce.org/
http://www.google.com/

