STATICANALYSIS |

e RAVARIaAT AV AT I

Paolo Palumbo

Initial considerations

= During this lecture we will focus on compiled
languages, specifically C/C++
= The compiler used for the examples will be Visual C/C++
compiler asincluded in Visual Studio Express 2010
» The same techniques can be applied to different
languages and compilers

TOTHERE AND BACK!

I Creatingaprogram

A great idea is born!

The idea is expressed using a programming
language suitable to a human

Program is compiled and linked

An object suitable to machine understanding
is created. In the end, this is all about ones
and zeros ©

Simplified compilation and
linking process for C/C++

CIC++
source
file(s)

l

molves operations like NO Mmore macros or
i include fil e
D ot o pansion. preprocessor definitions

Preprocessing

l

AR

— Comments are discarded, non-

The resulting source code

Compilation

Combines multiple object
files to create a single
executable. Some
optimizations can happen
at this stage as well.

Linking

Executable
file

is converted into object needed symbol names as well.
code. Most optimization .
| happen during this phase. Structured data types cease to exist.

N Code is mangled and transformed

/ Additional
object
file(s)
Additional modules are
statically linked to the object
file corresponding to the

according to optimizations and
translation process

program

I Reverse Code Engineering

= Deals with the opposite of the process that we saw
before
= Forinterpreted languages, we still need to undo what the
bytecode compiler has done
* The ultimate goal is not the rebuilding of the original
source code

o The original source code cannot be recovered, but equivalent
source can
* Itis averylengthy and complicated process

= Usually, knowledge of the program’s inner workings is

what is needed

= For example, when performing malware analysis, the researcher
wants to get an understanding of what the malware does

Tools to aid the binary Reverse Code

Engineering process

Disassemblers: translate the machine code into the equivalent human readable\
assembler representation. Some frequently used disassemblers:

*|DA Pro

* HIEW

* HT-Editor

* PE Browse Professional

°... j

Debuggers: step through the code as the processor executes it. Examples are:
* Ollydbg/Immunity Debugger

*IDA Pro

*Windbg

Decompilers: translate the machine code into high-level language source

available tools are not able handle real-world programs automatically.
Examples are:

* Hex-Rays decompiler

* Boomerang

* REC Studio

code. The process of decompilation is extremely complex, and most of the

THE USUAL SUSPECT

The great program™

(Global Scope)

—1// Programl.cpp : Defines the entry point for the conscle
!

#include "stdaftx.h"

#define SUPER_CONSTANT 3
typedef int MY SUPERTIOR DATA TYPE;

—Jint focbar{int x, int y)

{
MY SUPERIOR DATA TYPE z = x + y + SUPER_CONSTANT;
return z;

¥

—lint _tmain{int argc, _TCHAR* argv[])

1
MY SUPERIOR_DATA TYPE z = foobar(1, 2);
printf{"Result is Ei! :)\n", z);
return 8;

¥

Perfect example of a great idea turned into code!

Inside the great program™

text:oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:-oo4010A4
.text:-004010A6
.text:004010AE
.text:004010B0
.text:004010B82
.text:004010B8
.text:004010BA
.text:004010BE
.text:004010BC
.text:004010BE
.text:004010BF
-text:004810C5
-text:004810C5
-text:004810C5
-text:0o4B10CE
-text:0048108CE
-text:004818D1
-text:oouB18DL
-text:Bp48108D9
-text:Bp48108D9
-text:Bp48108D9
-text:Bp48108DA
.text:B048108DE
-text:Bp48108DC

PR R T TR YN S

Pl SUBROUTIHNE (it

; Attributes: library function

public wmainCRTStartup
umainCRTStartup proc near

call
. jmp
umainCRTStartup endp

__security_init_cookie
__tmainCRTStartup

ISUBROUTIHNE (it

; httributes: bp-based frame

__tmainCRTStartup proc near

var_1C
Mms_exc

loc_4818C5:

loc_4818D9:
push
push
push
call

; CODE XREF: wmainCRTStartup+5}j

dword ptr -1Ch
CPPEH_RECORD ptr -18h

18h

offset unk_4B21F8

__ SEH_prologh

ebx, ebx
_HoHeapEnableTerminationOnCorruption, ebx
short loc_4818CS

ebx

ebx

1

ebx

ds:__imp__HeapSetInformation@16 ; HeapSetInformation(x

; CODE XREF: __ tmainCRTStartup+1utj
[ebp+ms_exc.disabled], ebx
eax, large fs:iBh
esi, [eax+4]
[ebp+var_1C], ebx
edi, offset _ native_startup_lock

; CODE XREF: __ tmainCRTStartup+59]j

ebx ; Comperand
esi ; Exchange
edi ; Destination

ds:__imp__InterlockedCompareExchange@12 ; InterlockedC

[_n..

What is this code? We did not
have anything like this in our
simple program!

It is the C Runtime startup
code and it has been inserted
by the linker. It provides the
basic support for C/C++
runtime. A few of the features
of this code:

e initialize the heap

* parse the command line

* more

We are looking at code disassembled by
a powerful tool (IDA), and we have
symbols. Usually, things are not so nice.

I Inside the great program™ - continued

text:06046811A2 loc_4@811A2: ; CODE XREF: _ tmainCRTStartup+E3Tj
text:aaupi1n2 ; _ tmainCRTStartup+F21j

* .text:pa4uf11n2 mou eax, enup

" .text:aauf11na7 mov ecx, ds: imp winitenv

* _text:@8040811AD eax |

* _text:B04811AF enup

* _text:B84811B5 push argu

* _text:084811BB push argc

* .text:BBaBm1I1CA call wmain

* .text:@84B811CH i TS, dCh

* _text:884811C9 mou mainret, eax

* .text:Ba4B11CE cmp managedapp, ehbhx

* .text:fe4811D4 jnz short loc_hB8128D

* .text:@884811D6 push eax ; int

* _text:B84811D7 call ds: imp exit

The invocation of our code happens much later, inside the __tmaincrTstartup routine.

The main function receives three arguments that were prepared by the CRT startup
code:

* argc —argument count

* argv — array of pointers to incoming arguments

* envp —array of pointers to environmental variables

Il Inside the great program™ - continued

5 o

* All of our high level constructs are gone! Thank you compiler!
* The code for the foobar subroutine is also different
® lea edx, [ecx][eax][3] ?

Tea: Toad effective address
also used by the compiler to perform effective additions and multiplications
could read also as:
e Tea edx, [ecx + eax + 3]
« edx = ecx + eax + 3 2> performs the addition as in our source program

TWENTY THOUSANDS LEAGUES
UNDERTHE SOURCE CODE

Simple control flow statements

nooete: B

(Global Scope)

#include “"stdafx.h”

—lint _tmain(int argc, _TCHAR*™ argv[])

1

int counterl;

// A simple for loop
for (counterl = 8; counterl < 18; counterldd)

1
1

printf("[FOR LOOP] Iteration #¥i\n", counterl);

// A simple while loop
int counter? = @;
while(counter2 < 1@)

printf("[WHILE LOOP] Iteration #¥i\n", counter2);
counter2 ++;

1

// A simple do-while loop

int counter3 = @;

do
printf("[DO-WHILE LOOP] Iteration #%¥i\n", counter3);
counter3 ++;

Jwhile{counter3 < 1@);

goto labell;

printf("[DEAD CODE] I should be skipped!n™);

labell:

printf{"[GOTO] Reached target destination!in"};

return 8;

We will use Visual Studio’s C/C++
compiler to see what happens to our
code when it is compiled

The program has been compiled and
linked with all optimizations disabled

I Pre-testloops: forand while loops

int counterl;

S/ A simple for loop
for (counterl = @; counterl < 18; counterl++)

1
printf("[FOR LOOP] Iteration #%i\n", counterl};
}
.TEXT I HU4UT 0D
text:004810086 EEfor loop: H
* .text:804818086 mov [ebp+counter1], 8 ; counter1 = @
* .text:a8481880 jmp short 2@ for loop header
et BBaBIBBF [
.text:a0408100F
.text:@048180F @dfor loop increment: ; CODE RREF: SimpleProgram+38}j
* _text:008408180F mou eax, [ebp+counteri]
* Ltext:o0481812 add eax, 1
* _text:@8481815 mou [ebp+counter1], eax ; counter = counter + 1
.text:g0481018
text: 00481818 22 for_loop_header: ; CODE XREF: SimpleProgram+DTj
* _text:@04081818 cmp [ebp+counteri], 10
* _text:@848181C jge short @Eyhile loop ; if counteri >= 18 goto EEwhile loop

.text:0048181E
text:0040101E EEffor_loop_body:

* .text:@848181E mov ecx, [ebp+counteri]

* .text:a0481821 push ecx

* .text:804081822 push offset aForLooplterati ; “[FOR LOOP] Iteration #%iyn™

* Ltext:00481027 call ds:printf 5 Printf{"[FOR LOOP] Iteration #%i\n™, counteri};
* Ltext:0048182D add esp, 8

* .text:004081030 jmp short EEfor_loop_increment

JFepxbzARBMAIAR? @

These kinds of loops perform a check on the loop condition before executing the body
of the loop; this means that the body of this kind of loop can be executed zero or more
times.

A while loop works in a similar way, as it is another type of pre-test loop.

I Post-testloops: do-while loops

Ff A simple do-while loop

int counter3 = @;

do

1
printf({"[D0-WHILE LOOP] Iteration #¥i\n", counter3};
counter3 ++;

twhile(counter3 < 18);

-text:0848105C

-text:9B4B1085C @2do while loop: CODE XREF: SimpleProgram+3DTj

* .text:8848185C mov [ebp+counter3], B8 ; counterd = @
-text:-884810863
text: 8840108623 @Edo while loop body: ; CODE XREF: SimpleProgram+82]j
* .text:884810863 mov ecy, [ebp+counterd]
* _text:00481066 push ecx
* .text:@BauE1867 push offset aDoWhileLooplIte ; “[DO-WHILE LOOP] Iteration #H%iwn™
* .text:-08481060C call ds:printf ; printf{("'[DO-WHILE LOOP] Iteration #%iun", counter3d);
* .text:884810872 add esp, &
* _text:BB4810875 mou edz, [ebp+counter3d]
* .text:A840810878 add edx, 1

]
I -text:0840107E mov [ebp+counter3], edx ; counterd = counterd + 1
I -text:08408167E
-text:804B8187E @ddo_while loop_header:
* .text:88481087E cmp [ebp+counter3], 18
* .text:884810882 jl short @3do while loop body ; if counter3 < 18 goto BEdo_while loop_body

Foavk=RRLAA RO L

The check on the loop condition is done after executing the loop body; this
means that the body of a do-while loop will be executed at least one time

I The goto statement

goto labell;
printf (" [DEAD CODE] I should be skipped!‘\n™);

labell:
printf("[G0TO] Reached target destination!\n");

text-004A108L EEqoto statement: ; Qqoto EElabelA
* _text:B884L01884 jmp short EE1abeld
.text:@84Y188%6 ; -------------""""""""\—"—"\—"—"\¥—"¥—
* _text:884010886 jmp short EElabeld
.text:@8491888 ; ------——+—————"—"""—""""""""
* .text:B8e4010888 push offset aDeadCodelIShoul ; “[DEAD CODE] I should be skipped?in’
* .text:0648168D call ds:zprintf ; This code is never reached
* .text:B88481893 add esp, 4
-text:A04010895
text:-004B810896 EE1abeld: ; CODE XREF: SimpleProgram:@2goto_statementTj
-text:00401096 : SimpleProgram+86Tj
* _text:B8481896 push offset aGotoReachedTar ; “[GOTO] Reached target destinationtin®
* _text:08461089B call ds:zprintf ; printf("[GOTO] Reached target destinationtin''};
* .text:ao4818Aa1 add esp, 4

As in our original source code, control is transferred unconditionally to another point in the
program. Please note that the dead code would be removed from final compiled program
if even minimal optimizations would have been turned on

Standard C arrays

| (Global Scope)
=// program3.cpp :

i

Defines the entry point for

#include “stdafx.h”

Arrays are implemented as a sequence of memory
locations of same size and type. Therefore, there is no

#define ARRAY_SIZE @xFF
int my_global array[ARRAY_SIZE];

—lint _tmain(int argc, _TCHAR* argv[])

{

int initializer = 3;

for (int 1 = 8; i < ARRAY_SIZE; i++)

1
¥

my_glabal array[i]

return @;

* _text:
* _text:
* _text:
text:
text:
text:
* _text:
* _text:
* _text:
text:
text:
* _text:
* _text:
text:
.text:
* .text:
* .text:
* _text:
text:
text:
text:
text:
text:
text:
text:
text:
* text:

aa4 810886
aay8188p
aau@1814
aau@1616
aau@1616
aau@1616
aaue1016
aeye1019
aay@1e1c
aeye101F
aese181F
aese181F
a8481826
a84 81028
a84816828
a8481028
00481028
a848182E
a848182E
a848182E
a848182E
88481082E
804081 02E
804081 02E
804081 02E
884081 02E
88481835

= initializer;

mou
mou

jmp

difference between them and sequences of unrelated
items of the same size and type. Only the code that
access them can reveal the semantic association

Code that accesses memory areas in an indexed manner
could be a good hint that you are dealing with an array

[ebp+initializer], 2
[ebp+counter], 8
short E2for_loop_headeyr

@afor_loop_increment:

nou
add
nou

@afor_loop_header:

EEfor_loop_body:

cnp
jge

mouv
mouv
mouv

inp

; CODE XREF: sub_481000+35)j
eax, [ebp+counter]
eax, 1
[ebp+counter], eax ; counter = counter + 1

; CODE XREF: sub_4010080+14Tj
[ebp+counter], BFFh
short @Efunction_exit ; if counter >= BxFF goto EEfunction_exit

ecx, [ebp+counter]
edx, [ebp+initializer] ; edx =
my_global_array[ecx=4], edx ;

initializer

[Bx4828208 + ecx = 4] = initializer

Ax402820[ecx * 4] = initializer

my_global_array[ecx = 4] = initializer
my_global_array[ecx = sizeof{int}] = initializer
my_global_array[counter * sizeof{int}] = initializer

==» Standard C arrays are implemented as contiguous memory areas
short BEfor_loop_increment

Structures

Frosremtep Similarly to arrays, structures are implemented as a set of

@J_un named_struct_0006_1

—// Program4.cpp : Defines the entry
i

#include "stdafx.h”

Sltypedef struct
i

int field_1;
int field_2;
int field_3;
int field_4;
int field_s;

= tmy_struct;

my_struct my_glebal struct;

—lint _tmain(int argc, _TCHAR* argv[])

{

my_global struct.field 1 = 1;
my_global struct.field 2 = 2;
my_global struct.field 4 = 4;
return 83
}

L5 LS

L 5]

L 5]

L5 L5

L5 5]

L5 LS

L 5]

L 5]

L 5]

L 15]

jag 55

g1 8B EC

i3 C7 A5 20 30 40 60 61 66 66 68
iBd CY¥ @5 24 30 40 6O B2 66 66 68
17 C7 85 2C 30 40 00 04 60 00 6O
21 33 €A

23 5D

24 C3

24

24

25

25 64 A1 18 6O 68 B8

2B C3

2c

2c

2¢

ann

=t contiguos memory locations that contain items of possibly
different size and type. The logical association between these
elements can only be made by analyzing the code that accesses
them

In this example, the type and size of field_3 are unknown, but at
least we know that something should be there. Instead, we have no
way to know that field_s is there at all.

Remember about structure alignment when rebuilding structure
types!

B e T e -
_text segment para public 'CODE' use32 [Z] IDA View-8 =ancyX]
assume cs:_text < -
;org 481086h my_global_struct dd B _; field_1)
assume es:nothing, ss:nothing, ds:_d : D:;giﬁfgga
PN SUBROUT I NE B 2 4 dup(®) ; Fleld 2
dd o ; Field u |

; Attributes: bp-based frame

] | 1 |

—tmain B::E "ea;hp ; CODE XREFz 00001420 00403020: .data:my_global_struct
nov ebp, esp ﬂ
nov my_global_struct.field_1, 1 B Structures =R
nov my_global_struct.field_2, 2
nov my_global struct.field 4, 4 || Edit Jump Search
xor eax, eax |
pop ebp
retn 880880880 my_structure struc ; {(sizeof=08x18) -
_tmaj_n endp iLsfs]sTs] s ss] Field_1 dd 7 3
H0008006L field 2 dd ? =
R e e e e e Pt aeoBoaos db ? ; undefined 1
nov eax, large fs:18h LiLssRsTsfsTsie] db ? ; undefined B
retn aoeBoeoA dh ? ; undefined
LSS shsfsgssl] db ? ; undefined
PPN S UBROUT I NE [iii{ii11}]] 00000000 Field 4 dd 2
aaeeee1e my_structure ends -

I Unions

[(Global Scope)
74/ Programs-cpp @ Defines the entry poin For unions, the same memory location is used to store elements of

Iy
different type. To make this possible, the compiler allocates
enough memory to store the biggest item in the union

#include “stdafx.h™

—Itypedef unicn

1
int my_int;
char my_char;
- ymy_union;
1 1 b 1 3 3
my_umien my_glehalunien This makes reversing code that uses unions a bit more
T tmeintint arec, _TauR® arevil) challenging, as it may seem initially contradicting.
my_global union.my_char ='a’;
my_global_union.my_int = 123456;
return @;
}
.text:00401000 _tmain proc near ; CODE XREF: start-16Dyp
* .text:B88481008 push ebp
* Ltext:@88u81861 mov ebp, esp
* .text:060481883 mov my_global_union.my_char, 'a’
* .text:0048100A mou my_global_union.my_int, 123456
* .text:oB481814 2oy eax, eax
' .text:88481816 pop ebp

-text:00481017 retn
-text:AB4A1817 _tmain endp
-text:00481817

m
ot AR AR o e e .
* | A Structures =B8] % IDA View-8 EESREERT

Edit Jump Search * B4B8281C dword_ 48381C dd 44BF19B1h »

] a408301C
| [s0easoan i . _ _
| ([6pA6BOA6 my_union union ; (sizeof=8x4) || 6463020 my_global_union my_upion <0>

J (BBABBEAA0 my_char db 7 a403020 &
88808808680 my_int dd 7 * 8403624 dword_LB3824 dd @ -
b

J (08000068 my union ends 4 [11 |
< m T = 00001420 00402020: .data:my_global_union

L) . m

Basics of C++ Classes

| "‘EﬁMySquare

=// Program6.cpp : Defines the entry point for the conscle application.

/
#include "stdafx.h"

—-lclass MySquare

1
int side;
unsigned int id;
public:
MySquare(int, unsigned int); // Constructor
int get_area();
unsigned int get_id();
I
—|MySquare: :MySquare(int input_side, unsigned int input_id)
1
side = input_side;
id = input_id;
h
—lint MySquare::get_area()
1
return (side * side);
b
—lunsigned int MySquare::get_id()
1
return id;
}
—lint _tmain(int argc, _TCHAR* argv[])
1
MySquare my_class(l@, 1);
printf("The area of the first square is ¥il\n", my_class.get _area()});
printf("The id of the first square is @x¥x\n", my_class.get_id());
MySquare my_class2(12, 2);
printf("The area of the second square is ¥i!\n", my_class2.get_area());
printf("The id of the second square is @x#x\n", my_class2.get_id())};
return @;
}

This is avery simple case. No advanced OOP
features were used

We have a single class definitions, that provides

a simple constructor, a couple of attributes and a

two methods. The program then creates two
instances of the MySquare class as local
variables of the _tmain function.

In this case, after the compilation process, the
local variables will contain only instance-specific
class members, the attributes.

When using additional features of C++, the
underlying implementation becomes more
complex

Access specifiers:

* public

* protected

* private

are only constructs designed to help the
programmer. After enforcing correctness of
the source program, the compiler will remove
them and the resulting binary won’t have any
access specifier

asics of C++ Classes - continued

umain proc near ; CODE XREF: _ tmainCRTStartup+11Dlp
my_class2 = HySquare ptr —186h
my_class = MySquare ptr -8
push ebp
mov ebp, esp
sub esp, 16h ; On the stack we have space reserved for
; the attributes of the two class instances
; The methods are not duplicated?
push 1
push 18
lea ecx, [ebp+my_class] ;
; Pass the pointer to the first class instance in the ECX register;
; other arguments are passed throught the stack.
; This is the _ thiscall convention in action
call MySquare_ MySquare ; invoke Constructor for the first class instance

HMySquare::MySquare(&my_class /= through ECX =/, 18, 1);

lea
call

eax = WySquare::get_area(&my_class);

push
push
call

printf{"The area of the
add

lea
call

eax = MySquare::get_id(&my_class);

push
push
call

printf("The id of the first square is Ox%x\n", eax);

add
push
push
lea
call

lea
call
push
push
call
add
lea
call

ecx, [ebp+my_class]

MySquare__get_area ; Invoke the MySquare::get_area method for the first instance

ﬁ Stack frame = | E &

eax } Edit
offset aTheArealfTheFi ; "The 3
ds:__imp_ printf

Jump Search
—dagaae e -

—dae6aee16 my_class2? HySquare %
— 2
first square is %if\n", eax): 000BeB6eE my_class HySquare 7 1
4 I 3
esp, B
ecx, [ebp+my class] SP+-+00000000
MySquare__ get_id
& Structures =& &
Edit Jump Search
eax 08000060 MySquare struc ; (sizeof=8|
offset aTheld0fTheFirs ; “The i |[A00AAA06 side dd ?
ds:__imp_ printf geeeee8y id dd ?
B000BB6E HySquare ends
4 I 2
esp, 8 2, MySquare:0008
2
12

ecx, [ebp+my_class2]

HySquare__ MySquare ;
; Same happens for the second instance. HMethods code is
; reused.

ecx, [ebp+my_class2]

HySquare__get_area

edx

offset aTheAreaOfTheSe ; “The area of the second square is %ifun”

ds:__imp_ printf

esp, &

ecx, [ebp+my_class2]

MySquare__ get_id

HySquare__ MySquare proc

1pClass = dword
side = dword
id = dword

push
nov
push
nov

mov
mov
mov
mov
mov
pop
retn
HySquare_ MySquare endp

MySquare__get_area proc

1pClass = dword

push
mou
push
mou
mou
mou
mou
imul
mou
pop
retn
HySquare_ get_area endp

HMySquare__get_id proc ne

1pClass = duord

push
nov
push
nov
nov
nov
noy
pop
retn
HySquare__get_id endp

near ; CODE XR
; wmain+y

ptr -4

ptr 8

ptr BCh

ebp

ebp, esp

ecx

[ebp+1pClass], ecx

eax, [ebp+lpClass]

ecx, [ebp+side]
[eax+HySquare.side], ecx
edx, [ebp+lpClass]

eax, [ebp+id]
[edx+HMySquare.id], eax
eax, [ebp+lpClass]

esp, ebp

ebp

8

near ; CODE XI
; wmain+!

ptr -4

ebp

ebp, esp

ecx

[ebp+1lpClass], ecx

eax, [ebp+lpClass]

ecx, [ebp+lpClass]

eax, [eax+HySquare.side]
eax, [ecx+MySquare.side]
esp, ebp

ebp

ar ; CODE :
; wmain+

ptr -4

ebp

ebp, esp

ecx

[ebp+lpClass], ecx
eax, [ebp+lpClass]
eax, [eax+HySquare.id]
esp, ebp

ebp

OPTIMIZATION

I Constantfolding & copy propagation
——] Constant folding is responsible for the simplification of constant

(Global Scopd) expressions at compile time:

—1// Program3.cpp : Defines the entry poin
/ x = (12 * 27) + 33 > x = 357

#include "stdafx.h" Copy propagation is responsible for replacing the presence of the
target of a direct assignment with its value:

—-lint _tmain(int argc, _TCHAR* argv[])

{ y=x%*2>y=235 %2
int x = (12 * 27) + 33; L) .
inty = x * 2; * Dead code elimination has also been applied here
int z = x *y; * These transformations are only possible after dataflow analysis
printf(“Helle z: ¥i\n™, z);

etuin - has been performed
} * By looking at the final binary, there is no way to know how the
source program looked in the first place

" _textz00461000 ; [!liiiiiiiIlE S UBROUT INE I E
i .text:084010088
l .text:@84816808
text:88481088 wmain proc near ; CODE XREF: tmainCRTStartup+11D}p
* _text:0040610008 push 254808
* .text:084081085 push offset aHelloZI ; “"Hello z: %iwn™
* _text:88481080 call ds: imp_ printf
* .text:0046810818 add esp, 8
* . text:80401813 ®or eax, eax
* _text:88481615 retn
-text:@80481615 wmain endp
~text:agup1815

I Dead code elimination

progam?.cop < [

| (Global Scope)

-I// Program7.cpp :
i

#include "stdatx.h"

—lint _tmain(int argc, _TCHAR*® argv[])

Defines the entry point for

Dead code elimination is responsible to remove from the final
optimized program all of the those parts of the program that the
compiler could safely mark as “dead”. This includes, for example,
unreachable statements . Please note that this optimization will
be performed repeatedly during the compilation process

The result of dead code elimination for this sample program is

{ shown below. The line:
goto labell;
printf ("I shouldn't be in the code!in™); . .
printf("I shouldn't be in the code!\n");
labell:
intf("I should be in the code!\n"); : . . .
prin®f("1 should be in the codeiin®) has been removed from the final binary, as there is no execution
return 8; ath that can reach it, and thus it is “dead”. As a result of this
1
} elimination, the first goto is being eliminated as well, as there is
no need for it anymore
- LEAL o FMRISERE | RIS
~Lextz@0M01000 5 {[iiiiiiiiil S UB RO U T INE S

.text:804010080
text:-8048100808
text:08481088 wmain

fext-ARLATAIA

proc near
offset aIBhuuldBEInThE : "I should be in the codet*yn"
ds: imp_ printf

-text:08040610080 push
-text:o04810065 call
text:0040810088 add esp,
text:00481088E Xor eax,
text:go481818 retn
text: 8481818 wmain endp

; CODE XREF: wvmainCRTStartup-126Lp

n
eax

Frogramll.cpp

Inline expansion

(Global S5cope)

-1// Programll.cpp :

#include "stdafx.h”
—-Jvoid print_hello(void)

1
printf("Helld!\n"};

for (int i = @; i < leeeeened); i++)

Defines the entry point for

h
—lint _tmain(int argc, _TCHAR* argv[])
1
print_hello();
return @;
h

|-text:884018088

-text:-004O1888 ; [ii{ i iiiiii0d

text:a0481000
ftext:AadLa1aa0
.text:00401080 wmain
text:a0481000
fextoadhaiag
text:aah@18a7
.text:a0481008
Jtext:Aadha1aaD
text:-ao4@1018
text:80401818 EEloop:
fext:-Aaa4a1A1 0
text:aoa@1015
Jtextoaghaioiy
fext:-Aaaha1a1a
text:aoy@101B
ftextoagaaiaiD
ftext:-AaaLa181E
text:-a04810820
text:aghaiaz1
.text:00401821 wmain
text:-aaag1821

Lee.a .maNknannn

SUBRODUTIMNE

optimizations

The most obvious downside is the increase of the code size

proc near ; CODE XREF:
push esi

mov esi, ds:__imp__ printf

push edi

mov edi, 100006000

lea ecx, [ecx+0]

s CODE XREF:
push offset aHello ; "HellDtyn*
call esi ; imp_ printf
add esp, 4
dec edi
jnz short EEloop
pop edi
Xor eax, eax
pop esi
retn
endp

Inline expansion consists of replacing the call site of a function
with the body of the called function itself. This is done to remove
the overhead that comes with the control transfer between caller
and callee, plus everything related to the callee’s prologue and
epilogue code. Inline expansion also opens the door to further

__tmainCRTStartup+11DLp

wmain+1Blj

There are many more!

* There are many additional optimizations
* optimizing compilers have been around for decades
* can turn awful code into something that performs really well
* a good exercise is to explore additional compiler behavior

* Writing programs in assembly produces faster code?
* everybody has heard this from someone at some point in their
computing career
* this is rarely the case
* optimizing compilers can take care of so many things that
would be obscure for a human
» part of the output of the code generator is human-
generated anyway
* sometimes there is the need of handcrafting a special piece of
code in assembly to perform a specific task

REAL LIFE EXAMPLE

I Simple encryption routine reverse
engineering

LIVE

ADDITIONAL READING MATERIAL

I Furthersuggested reading

Related Searches: arificial intelligence, compiler.

Showing 1-12 of 2315 Results

Format

Paperback Hardcover Kindle Edition HTML

Compilers: Principles, Techniques, and Tools (2nd Edition) by Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman (Sep 10, 2006)

aaaaa

Compilers

'Y 11 customer reviews)

OpenRCE: http://www.openrce.org

http://www.google.com

m
I If you cannot find some particular information, googling helps ©

http://www.openrce.org/
http://www.google.com/

