
Protecting the irreplaceable | f-secure.com

T-110.6220: Antivirus Engine Basics

Antti Tikkanen, F-Secure Corporation

Detecting Malware

• Blacklisting

• Detecting badness

• Typically fairly reactive but heuristic and behavior blocking approaches
are also widely used

• Not perfect but good enough

• Whitelisting• Whitelisting

• Allow only known good and block rest

• Solid theory but practical implementation is challenging

• Usually current technology combines both approaches

• This presentation focuses on blacklisting technologies

© F-Secure Confidential09 April, 20102

File Infectors vs. Standalone Malware

• See “Introduction to Malware” lecture by Gergely Erdelyi

• Virus: Self-replicating (most often refers to parasitic infectors)

• A lot of the literature on the subject focuses on detecting viruses (i.e. file
infectors)

• Nowadays most malware is Trojans, Backdoors, and other malware that does
not replicate

• New file infector viruses do still appear frequently, though

• While detection methods are pretty much the same, this lecture tries to cover
malware detection in general, not just detecting file infectors

© F-Secure Confidential09 April, 20103

Detection Outcomes

Object is malicious?

Yes No

Malware detected? Yes ����

No ���� F
ro

m
 [A

yc
oc

k0
6]

False Negative

False Positive

© F-Secure Confidential09 April, 20104

• “Ghost Positive”: A misdisinfected file that is actually
no longer infected with the virus

Detection Strategies

• Static

• Analysis of file structure and contents

• Dynamic

• Target of analysis is executing

• Behavior monitoring on real system

• Emulation

© F-Secure Confidential09 April, 20105

Scanning Methods

• Scan types

• On-demand (ODS)

• On-access (OAS)

• ODS enumerates files and scans
them one by one

• OAS scans files as they are being• OAS scans files as they are being
accessed

• Typically implemented using
Windows filter drivers

© F-Secure Confidential09 April, 20106

An Antivirus Engine

© F-Secure Confidential09 April, 20107

Design Principles

• Scanning of clean files needs to be as fast as possible

• “Front end fast” [Kuo99] since most things are not viruses

• Scanning or disinfecting malware can take a while longer

• Memory vs. scanning speed tradeoff

• Not always possible

• Platform issues• Platform issues

• Engines for many uses: Servers, gateways, desktop, mobile phones, …

• Supported languages (e.g. C++ is not always that portable)

• Available memory and CPU

• Endianness

© F-Secure Confidential09 April, 20108

Design Principles Continued

• Preprocess as much as you can when building the database

• Long engine initialization will result in slow boot up time

• Read as little as you can

• With larger files, file IO becomes very costly if your approach always
reads the full file

© F-Secure Confidential09 April, 20109

Subcomponents of an Antivirus Engine

I/O abstraction layer

Fingerprint scanning (string scan, hashing, …)

File type (doc, exe, html, vbs, …) recognizer and pa rsers

Archive uncompressor (zip, arj, mime, …)

© F-Secure Confidential09 April, 201010

Unpacker for runtime packers (UPX, ASPack, …)

Emulator

File disinfection and system clean-up

Database

Database update logic

Example Flow

© F-Secure Confidential09 April, 201011

Basic Scanning Techniques

• String scanning

• Byte strings, not necessarily text strings

• Hash scanning

• Using checksums as signatures

• Virus-specific detection algorithms

• Custom detection code• Custom detection code

• Heuristics

• Several types

• Emulation

• Used in conjunction with the other techniques

© F-Secure Confidential09 April, 201012

String Scanning

• Search for pattern P (length n) in in text T (length m)

• Naïve string search

• Poor performance, not usable in practice

• Boyer-Moore

• Not optimal for AV engines, where multiple patterns are searched in each file

• Aho-Corasick

• Finds a set of patterns in a given text

• Regular expressions

• Typically requires a state machine, performance issues

• Wildcarding

• “04 A3 56 ?? ?? ?? ?? 67 AA F0”

• See example of implementation of Aho-Corasick with wildcards in [Kumar92]

© F-Secure Confidential09 April, 201013

Issues in String Scanning

• Search Range

• Full file search (slow)

• Limited search (start, length): How to select starting point?

• Number of Signatures

• One signature can lead to false positives

• It can be a good idea to use a second signature to verify infection • It can be a good idea to use a second signature to verify infection
[Fernandez01]

• False positives

• There have been instances where antivirus application detects the
database of another antivirus app [Fernandez01]

© F-Secure Confidential09 April, 201014

Hash Scanning

• Instead of looking for a byte string, look for a hash of a byte string

• Matching short strings can be prone to false positives

• Hash Scanning: “Nearly Exact identification” [Ször05]

• Reduced memory consumption

• A proper search string can be much longer than 20 bytes

• A CRC16 checksum is 2 bytes and a MD5 hash is 16 bytes• A CRC16 checksum is 2 bytes and a MD5 hash is 16 bytes

• Selection of hash algorithm is important

• Short hash: More prone to false positives

• Long hash: Consumes more memory

• Collision resistance: A hash function (that produces a fixed size
output) will always have collisions

• Speed: All algorithms are very fast compared to disk IO

© F-Secure Confidential09 April, 201015

Hash Scanning: Starting Position

• In the most basic case we can calculate a hash of the full file

• Does not work for file infectors, of course

• Slow

• Even a single byte of junk appended to the file will break detection

• A better solution is to use (start, length) pair for calculating hash

• Length needs to be chosen carefully:• Length needs to be chosen carefully:

• Short: Risk of false positives

• Long: A lot of disk access – slow, non-generic detection

© F-Secure Confidential09 April, 201016

Hash Scanning: Start Position

• Start can be arbitrary or a fixed
point, such as:

• Beginning of the file

• PE Entry Point

• Beginning of the code
section

• Beginning of an exported • Beginning of an exported
function

• Auto* (AutoNew(),
AutoOpen(), …) macros in
Word documents
[Szappanos01]

• …

• The more unique (start, length)
pairs, the slower the scan

© F-Secure Confidential09 April, 201017

Other Speed Optimizations

• Top and Tail scanning

• File infectors typically add themselves to the beginning or end of
executable

• Scan only certain file types

• Cache scanning results

• File size and modification date (easy to fool)• File size and modification date (easy to fool)

• Store file checksum (in mem, on disk, or tagged onto files) – is calculating
this checksum much faster than scanning?

• What to do when antivirus database is updated?

• Code optimizations and algorithms

• “Do not optimize, choose a better algorithm”

© F-Secure Confidential09 April, 201018

Virus-specific Detections

• “Algorithmic Methods” [Ször05]

• Writing custom code for a single malware family or variant

• Cons:

• Detecting a single family or variant can take thousands of lines of code

• Writing such code takes time, quality assurance takes longer

• Can be slow (requires proper filtering)• Can be slow (requires proper filtering)

• Pros:

• Virtually no limitation of what can be done

© F-Secure Confidential09 April, 201019

Virus-specific Detections: An Example

pe = parse_pe(input_file)

section_names = pe->parse_section_names()

for name in section_names do

if name == “ATTACH”

return “W32/Mebroot.A”

return “CLEAN”

© F-Secure Confidential09 April, 201020

Disadvantages of Fingerprint Scanning

• Can only detect malware that matches a known signature

• Basically only variants (or families) that have been analyzed before

• Growth in number of malware is exponential

• Database size grows too rapidly

• A need for more generic and proactive methods

© F-Secure Confidential09 April, 201021

Heuristic Scanning

• Malware can (at least theoretically) be detected based on its properties

• Very often malware files look different from normal files

• E.g. strange values in fields of PE header

• Some harmless files have weird characteristics as well

• Malware always has one or more of the following properties [Shipp01]:

1. It replicates1. It replicates

2. It has a payload that does something bad

3. It tries to hide from anti-malware programs (e.g. obfuscation, rootkit
cloaking, …)

© F-Secure Confidential09 April, 201022

Heuristic Methods

• Methods that are based on

• Static analysis of the file properties

• Dynamic analysis of the behaviour when executed

• Simple techniques

• Rule-based heuristics

• Weight-based heuristics

• Advanced methods include neural networks, expert systems, and data mining
techniques

© F-Secure Confidential09 April, 201023

Weight vs. rule-based heuristics

• Weights (threshold 70 pts)

• “Connects to a web server”

• “Uses undocumented API calls”

• “Kills antivirus processes”

• “Contains decryption loop”

• “Contains string ‘virus’”

20 pts

10 pts

60 pts

20 pts

10 pts

B
oo

st
er

s
S

to
pp

er

© F-Secure Confidential09 April, 201024

• “Contains string ‘virus’”

• “Shows a pop-up dialog to user”

• Rules:

• “Connects to a web server” && “Contains decryption loop”

• “Kills antivirus processes” && “Contains string ‘virus’”

10 pts

-10 pts

S
to

pp
er

Example: Rules for Detecting EPO Viruses

Rule 1 Rule 2 Rule 3 Rule 4

SizeOfImage is
incorrect

Entry point is in a
writable code
section

SizeOfCode is
incorrect

SizeOfImage is
incorrect

Entrypoint
contains a jump

SizeOfCode is
incorrect

Entry point is in a
writable code
section

Entrypoint is in
the last section

© F-Secure Confidential09 April, 201025

section

Uses suspicious
API calls
(FindFirstFile,
SetFilePointer,
…)

TimeDateStamp
looks like it has
an infection
marker or Header
Checksum is
incorrect

TimeDateStamp
or DOS header
looks like it has
an infection
marker

DOS header
looks like it has
an infection
marker

SizeOfCode is
incorrect

Detecting Encryption & Packers

• Fingerprint-based detection

• See PEiD for an example

• Shannon’s entropy

• Packed code has higher entropy (info content) than normal code

• Analysis of a disassembly or code (script malware). The following
sequence [Schmall03] could belong to an encryption loop:

1. Pointer initialized with a valid memory address

2. A counter is initialized

3. A memory read from the pointer

4. Operation on the result of 3.

5. Memory write of the result of 4.

6. Manipulation of the counter

7. Branch instruction depending on the counter

© F-Secure Confidential09 April, 201026

Emulation

• Different classes of emulation

• CPU emulation to fight polymorphism

• OS emulation to do behavioral analysis (“sandboxing”)

• Design problems:

• When to stop emulating?

• How perfectly do we want to emulate the environment (OS)• How perfectly do we want to emulate the environment (OS)

• Speed vs. safety: A truly isolated emulator is slow

• Dynamic code translation

• Hypervisors

• Emulation was covered in Jarkko Turkulainen’s lecture

© F-Secure Confidential09 April, 201027

When to Stop Emulation?

• A program scanned can be

• Clean

• Infected with a virus

• A malicious program

• Emulated memory can be scanned for signatures periodically

• Sometimes it might take even millions of clock cycles until the malicious • Sometimes it might take even millions of clock cycles until the malicious
nature of the program is revealed

• This could take dozens of seconds depending on the emulator design
and implementation

© F-Secure Confidential09 April, 201028

Sandboxing

• Heuristics detects programs that look like
malware

• Sandboxing (emulation) detects programs
that act like malware

• “My sandbox is a virtual world where
everything is simulated. It is powered by
an emulator, and together they let

Im
ag

e
co

py
rig

ht
 F

-S
ec

ur
e

co
rp

or
at

io
n

an emulator, and together they let
possible virus-infected binary executables
‘run’ as they would on a real system.
When execution stops, the sandbox is
analysed for changes.” [Natvik01]

© F-Secure Confidential09 April, 201029

Im
ag

e
co

py
rig

ht
 F

Further Reading & References
• [Aycock06] Aycock, John: “Computer Viruses and Malware (Advances in Information Security)”, ISBN 978-0387302362,

Springer, 2006

• [Fernandez01] Fernandez, Francisco: “Heuristic Engines”, In proceedings of VirusBulletin Conference 2001.

• [Kumar92] Kumar, Sandeep & Spafford, Eugene: “A Generic Virus Scanner in C++”
http://ftp.cerias.purdue.edu/pub/papers/sandeep-kumar/kumar-spaf-scanner.pdf

• [Kuo99] Kuo, Jimmy: “Deep Inside an AntiVirus Engine”, 16 Mar 1999. http://crypto.stanford.edu/seclab/sem-98-
99/kuo.html

• [Natvik01] Natvik, Kurt: “Sandbox Technology Inside AV Scanners”. In proceedings of VirusBulletin Conference 2001.

• [Schmall02] Schmall, Markus: “Building an Anti-Virus Engine“, March 4, 2002. http://www.securityfocus.com/infocus/1552• [Schmall02] Schmall, Markus: “Building an Anti-Virus Engine“, March 4, 2002. http://www.securityfocus.com/infocus/1552

• [Schmall03] Schmall, Markus: “Classification and identification of malicious code based on heuristic techniques utilizing
Meta languages”, 2003.

• [Shipp01] Shipp, Alex: “Heuristic Detection of Viruses Within Email”, In proceedings of VirusBulletin Conference 2001.

• [Suominen07] Suominen, Mikko: “Win32-tiedostovirukset ja niiden havaitseminen“, University of Turku, 2007.

• [Szappanos01] Szappanos, Gabor: “VBA Emulator Engine Design”, In proceedings of VirusBulletin Conference 2001.

• [Ször05] Ször, Peter: “The Art of Computer Virus Research and Defense”, ISBN 978-0321304544, Addison-Wesley
Professional, 2005

© F-Secure Confidential09 April, 201030

