
Methodology for Computer Science
Research
Lecture 5: Academic Programming
Andrey Lukyanenko
Department of Computer Science and Engineering
Aalto University, School of Science and Technology
andrey.lukyanenko@aalto.fi

October 18, 2012



Lecture 5: Academic Programming
October 18, 2012

2/32

I What is academic programming?
I What tools and languages to use?
I Development models
I Design patterns and pitfalls
I Task



Lecture 5: Academic Programming
October 18, 2012

3/32

On the paper.
Do you remember paper outline?

Section Content
- Title
- Abstract
1 Introduction
2 History (Related work)
3 Idea, Algorithm
4 Model
5 Simulation, Measurements
6 Evaluation, Data Analysis
7 Implementation (Demo)
8 Discussion (Results), Future work
9 Conclusion
- Reference



Lecture 5: Academic Programming
October 18, 2012

4/32

Life-cycle of MS thesis?

Normal process for MS thesis development consists of:

1. Selection of a topic.

2. Talking to the topic “owner”.

3. Adjusting the topic, if the student has a background in the topic.

4. Reading and studying (one month).

5. Developing a code (one month).

6. Testing, analyzing, improving, result collecting (one month).

7. Writing the thesis (at fastest average is one page per day, total
>50).

In total: 6 month with fast pace.



Lecture 5: Academic Programming
October 18, 2012

5/32

Some differences in PhD studies
I Normally, PhD students have one year for initial study. During

that time they also select a topic.
I Big difference in working plan in different countries, for example:

1. In Finland:
I PhD consists of many iterations like that in MS thesis

preparation process.
I One or pair of iterations result in an article.
I At the end, a PhD student should have many small

conference papers (possible incremental work for a journal
article).

2. In USA:
I PhD is to write one big article: a lot of time for studying the

field and a lot of time (as well as iterations) to write the
actual code.

I In the end, student will have a well written code, as well as
one big well written article.

I This big article produces some spin-offs and smaller papers,
but one big article is enough to receive a PhD degree.



Lecture 5: Academic Programming
October 18, 2012

6/32

What is Academic programming?
To do thesis you need to do “Academic programming”. The main
differences compared to commercial programming as well as
features:

I Develop your application very fast.

I One person team (develop alone).

I Make the program without specification and clients.

I No unit tests.

I Expect “turbulence” in the programming (sudden change of what
you need to do).

I You focus on back-end (business logic), instead of frond-end
(user interface).

I Very small iterations between introducing new feature and
testing it.

I Showing intermediate result to instructor.



Lecture 5: Academic Programming
October 18, 2012

7/32

Academic programming: steps

To defend yourselves from unexpected changes, you need
I Smartly choose the tool;
I Study what you need to do before programming;
I Study how others do it;
I Use best practices;
I Make a plan, with short deadlines;
I Talk to your instructor each week on progress you have

done and progress you will do;
I Document the progress and all the milestones (for

example, in thesis draft document).



Lecture 5: Academic Programming
October 18, 2012

8/32

I What is academic programming?

I What tools and languages to use?
I Development models
I Design patterns and pitfalls
I Task



Lecture 5: Academic Programming
October 18, 2012

9/32

Choosing the tool for programming

When you select a tool for development you should consider
the following:

I [Always] Advisor says that you need to implement a
specific feature.

I [Often] Advisor mentions a system for which it is needed.
I [Seldom] Advisor mentions a tool which to use.
I [Often] You need to find the tool yourself.
I [Rarely] You have no option in selecting the tool.
I [Very rarely] Advisor explicitly tells what and how to

program.



Lecture 5: Academic Programming
October 18, 2012

10/32

Tools and languages
Often used:

Java, Python, C++, C#, MatLab, R and etc.
Name IDE Use for

Java Eclipse Windows/Linux/Android/Blackberry

Python Eclipse AppEngine/Web/NS-3

C Eclipse CDT/Visual Studio Linux Kernel

C++ Eclipse CDT/Visual Studio Windows/Linux/NS-3/OMNeT++

C# Visual Studio/MonoDevelop Windows/Windows Phone/Mono

MatLab MatLab Mathematical programming

R Any editor Graphics/Statistics

PHP Eclipse PDT/Aptana
Web development together with
MySQL

JavaScript Aptana Dynamic HTML development

Excel MS Word/LibreOffice Calc Statistics

Object C Mac XCode iPhone



Lecture 5: Academic Programming
October 18, 2012

11/32

Smart choice of a tool

Sometimes few languages and many tools exist for your
project. Conventionally people choose a tool which is

I free (students do not expect to pay for the SW).
I popular (as a proof-of-usability).
I well-documented.
I aware of the language you know (or willing to learn).

Some software can be obtained through the university ac-
cess. At Aalto students have an access to download.aalto.
fi (MatLab?) and MS DreamSpark program (free Visual
Studio).

download.aalto.fi
download.aalto.fi


Lecture 5: Academic Programming
October 18, 2012

12/32

An example: Tools for simulators

Assume you need to simulate some mechanism or protocol
(quite a common use case).

I Simulate or emulate? (Defines a precision with which a
simulator should work)

I How important is speed? (Complexity of the individual
task).

I Generic or narrow purpose?
I How important is the language? C++ a common choice,

Java the next.
The above decisions produce one of the following results. Use
OMNeT++, NS2/NS3, Own Simulator, Real-life code which can
be added to simulator or real implementation (e.g., OpenFlow,
Click modular router, PlanetLab).



Lecture 5: Academic Programming
October 18, 2012

13/32

I What is academic programming?
I What tools and languages to use?

I Development models
I Design patterns and pitfalls
I Task



Lecture 5: Academic Programming
October 18, 2012

14/32

Development models

For commercial software there are different development
methods/models:

I Waterfall model.
I Spiral model.
I Iterative and incremental development
I Agile development

All of them are too “slow” for Academic programming. The
closest is Agile SW development, which in turn consists of

I Extreme Programming (XP).
I Scrum.
I etc.



Lecture 5: Academic Programming
October 18, 2012

15/32

Extreme Programming

XP main features:

I Feedback (Small releases, Scale of minutes or days, Unit
tests).

I Communication (with instructor, colleagues).
I Simplicity (What is the simplest thing that could possibly

work?).
I Courage (Changing the system, Throwing code away, Pair

programming).



Lecture 5: Academic Programming
October 18, 2012

16/32

Extreme Programming: briefly1

1http://www.extremeprogramming.org/rules/spike.html

http://www.extremeprogramming.org/rules/spike.html


Lecture 5: Academic Programming
October 18, 2012

17/32

Scrum: briefly2

2http://www.codeproject.com/Articles/4798/What-is-SCRUM



Lecture 5: Academic Programming
October 18, 2012

18/32

I What is academic programming?
I What tools and languages to use?
I Development models

I Design patterns and pitfalls
I Task



Lecture 5: Academic Programming
October 18, 2012

19/32

Design Patterns

For any SW developer it is highly recommended to know the
design patterns. Gang of Four (GoF)3 book is the most valued
in this sense.
Patterns introduced:

1. Creational

I Abstract Factory Pattern
I Builder Pattern
I Factory Method Pattern
I Prototype Pattern
I Singleton Pattern

3Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design
Patterns: Elements of Reusable Object-Oriented Software", 1994.



Lecture 5: Academic Programming
October 18, 2012

20/32

Design Patterns
Patterns introduced:

2. Structural

I Adapter Pattern
I Bridge Pattern
I Composite

Pattern
I Decorator

Pattern
I Facade Pattern
I Flyweight

Pattern
I Proxy Pattern

3. Behavioral

I Chain Of Responsibility
Pattern

I Command Pattern
I Interpreter Pattern
I Iterator Pattern
I Mediator Pattern
I Memento Pattern
I Observer Pattern
I State Pattern
I Strategy Pattern
I Template Method

Pattern
I Visitor Pattern



Lecture 5: Academic Programming
October 18, 2012

21/32

Misuse of patterns

Do not use patterns whenever you can use them
I Patterns adds complexity whenever they are not needed.
I Remember simplicity in XP.

Here is example how patterns may be misused:

Consider two workers (Alice and Bob) produce a code which
Manager asks to do. Alice use a lot of patterns, Bob does
not know anything about patterns. Mangers asks and changes
the technical task in iteration, one by one (It is normal for
Agile SW development).



Lecture 5: Academic Programming
October 18, 2012

22/32

Misuse of patterns
Task:

We need to produce bread.



Lecture 5: Academic Programming
October 18, 2012

23/32

Misuse of patterns
Task:

We need not just produce bread but bake it.



Lecture 5: Academic Programming
October 18, 2012

24/32

Misuse of patterns
Task:

We need ovens of different types.



Lecture 5: Academic Programming
October 18, 2012

25/32

Misuse of patterns
Task:

We need gas oven not to be able to bake without gas.



Lecture 5: Academic Programming
October 18, 2012

26/32

Misuse of patterns
Task:

We need ovens to be able to bake cakes and pastries (with
meat or with Cabbage).



Lecture 5: Academic Programming
October 18, 2012

27/32

Misuse of patterns
Task:

We need add different recipes for bread, cake and pastry
cooking.



Lecture 5: Academic Programming
October 18, 2012

28/32

Misuse of patterns
Task:

We need the oven to be able to fire bricks.



Lecture 5: Academic Programming
October 18, 2012

29/32

Conclusion

Best practices for Academic programming.
I Schedule your coding/thesis writing time.
I Briefly comment and document all steps you do with the

code.
I Report to instructor on a weekly basis.
I Use same coding style, if you need to reread the code you

will know what it is about.
I Simplicity. Do not produce to complex code, you will forget

what it does in a month.
I Use design patterns and do not use them too much.



Lecture 5: Academic Programming
October 18, 2012

30/32

I What is academic programming?
I What tools and languages to use?
I Development models
I Design patterns and pitfalls

I Task



Lecture 5: Academic Programming
October 18, 2012

31/32

Diary on Academic programming task.

Normally you do not see a lot of information on the
programming process in articles. Thus, for the next diary we
would like to do the following task, instead of literature report.

I Choose a tool, IDE and so on.
I With the tool evaluate your topic in any possible direction.
I Make a small program (really anything) and run the test.
I Report what you have done in the Diary.
I Report what tool/tools you have used.



Lecture 5: Academic Programming
October 18, 2012

32/32

Questions and Comments?

Thank you.


