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What is Mathematical model?

A researcher wants to study a real physical system, but (s)he
cannot due to a set of limitations (be it money, knowledge, or
complexity).
In that case mathematical modeling (or shortly, modeling) is
used.

Modeling as a process is a transformation of knowledge from
reality to a model space. That transformation is always
happens with accuracy losses (they are called assumptions),
otherwise there is no need for model.

Mathematical model is a mathematical definition of a system,
which is formed as a formal idealization or modeling (under a
set of assumptions) of the original system.
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Aims of modeling
With formal mathematical model constructed, it is possible to:

I Study properties of the system, which is hard to get in
reality.

I Idealize and omit unknown properties.
I Predict future/asymptotic behavior of the system.
I Optimize a real system, based on optimization criteria of

the model.
I Verify (with some probability) relations between

parameters (black-box model).
I Substitute expensive (or complex) study of the real system

for a cheap evaluation of model system (i.e., if somebody
constructed and verified a model, then it can “easily” be
reused).
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Modeling

The process of construction a mathematical model based on
real physical system is modeling.

Math. Model

Modeling

Physical System

The mathematical model is not unique for a
given system but it is uniquely defined by
transformation process (modeling).

Producing a model one should remember
what is the set of assumptions was used
(these idealizations are the most important
parts of the modeling process). Potentially
they are the sources of errors/inaccuracies.
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Assumptions and model preference diagram

As it was said, the modeling process is always accompanied
with accuracy losses. It is always possible to construct
inaccurate model.

Model 1 (simple)
Inaccurate

Model 2 (simple)
Accurate

Model 3 (hard)
Accurate

Model 4 (hard)

Inaccurate

Physical System

Modeling

best

acceptable

undesirable

preference preference

preference preference

trade−offs

Model simple and
more accurate

Model simple and

less accurate

Model hard and
more accurate

more inaccurate
Model hard and

Model preference:

Almost all models form a series of trade-offs between
assumptions (inaccuracy) and evaluation complexity.
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Relations to the reality
Mathematical model can be used, only when it is “sufficiently”
accurate!!!

Math. Model Modified Model

Evaluation

Modified
Improvments

Physical System
Physical System

(optimization)

Modeling (assumptions)

Optimized if accruate

Optimized system

Adoption (reconstruction)

Otherwise the results of computations on models cannot be
adopted, i.e., there is not connections between modeling
results and practical results.
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Domains of model usage
Models are created under set of assumptions, which define the
domain of usage. They are evaluated inside such domain, and
thus with some percentage accurate only inside of the domain.
Accuracy outside cannot be expected.

Usage domain A
Usage domain B

Model A Model C Model B

Usage domain A and B

Domain A
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Domain B
(line)
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Examples:
I Domain A — Saturated model (all stations have something

to send); domain B — unsaturated model; domain A
⋂

B is
empty.

I Domain A — queue size ≥ 1; domain B — queue size
≤ 100; domain A

⋂
B is queue size (1,100).
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Building blocks for Models

Mathematical models consist of
I Variables
I Relations

Modeling processes do
I define “independent”, “dependent” and “partially

dependent” events occurrence as variables;
I connect dependence between events as relations;
I omits explicit introduction of variables for rare or

insignificant events (if not needed);
I simplifies relations between variables, whenever possible.
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Variables (1/2)
Variables:

1. Decision variables u (or control, independent variables).

Controllable by the decision makers.

2. Input variables.

Input to the system λ, which the decision makers cannot
control.

3. Exogenous variables α (parameters, constants).

Parameters that comes from outside the model and are a
priori given to the model.
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Variables (2/2)
Variables:

4. Random variables ζ.

Some unknown (stochastic) influence to the system
outside, or through complex internal structure.

5. Output variables µ.

Output from the system, based on the state of the model
(state variables).

6. State variables x = x(u, λ, ζ, α).

State of the system, which is produced by influence of
decision, input, random, exogenous variables.
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Examples of variables
1. Decision variables — request download u bytes; forward

message to a node A or B.
2. Input variables — input rate to the system λ1, λ2, . . . ; a

new packet comes every second.
3. Exogenous variables — download/upload speed; SNR

(signal-to-noise ratio); speed of the light.
4. Random variables — radio noise (some distribution);

inter-arrival time (e.g., Poisson process).
5. Output variables — sent messages without response;

atmosphere heating.
6. State variable — current energy of device (can be

calculated by initial energy, and spent energy); coordinate
of a moving object (initial coordinate and velocities); size of
the queue (calculated based on initial size, input process,
time elapsed, etc...).
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Variables’ relations

Functions that connects different variables together:
1. Constraints

gi(x) ≤ 0, i = 1,2, . . . , I,

where I is number of constraints, x = x(u, λ, ζ, α).
Note, no need for gi(x) = 0, it is result of gi(x) ≤ 0 and
hi(x) = −gi(x) ≤ 0.

2. Objectives

minimize
u∈U

{f1(x), f2(x), . . . , fj(x)},

where x = x(u, λ, ζ, α).
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Model types

1. linear vs. non-linear

2. deterministic vs. probabilistic

3. static vs. dynamic

4. discrete vs. continuous

5. lumped vs. distributed

6. structured vs. functional
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Model types: linear vs. non-linear
If operators (constraints and/or objectives) are linear then the
model is linear, otherwise it is non-linear.

An example of linear operator f (x) = a · x + b.

Linear regression is sometimes studied for two random
variables, i.e. if X ,Y random variable, then is it possible to find
a,b such that Y = a · X + b with high probability. Existence of
linear regression means that there is dependence between the
variables.
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An example of non-linear operator
f (x) = x2 − x .
Optimization objective functions if they are
not trivial are always non-linear functions (in
case of linear objectives solution is always
one of the bounds).
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Model types: deterministic vs. probabilistic
In deterministic models, the state variables are uniquely
defined by initial parameters of the model.

An example, a connection between speed, distance and time:

Speed =
Distance

Time
.

In probabilistic models, the state variables are not uniquely
defined by initial parameters, they are defined by probability
distributions.
An example, random walk on whole axis:

position(t + 1) =

{
position(t) + 1, with probability 1

2

position(t)− 1, with probability 1
2
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Model types: deterministic vs. probabilistic

An example of random walk on 2D lattice1

1From http://mathworld.wolfram.com/RandomWalk2-Dimensional.html
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Model types: static vs. dynamic
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Time (t)

Static models do not consider time
influence, while dynamic does.

Static state, does not change with
time, i.e. x = c.

Static models mainly study properties of parameters, i.e. how
some parameters depend on the initial values of other
parameters.

Dynamic state does change with time, i.e. x = x(t).

Dynamic often study system as differential equations, i.e. future
value depends on the value before and a set of other variables
(including control in case of control theory or game theory).
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Model types: discrete vs. continuous
Discrete models:

xn+1 = f (xn), if n ≥ 1
x0 = c.

Continuous models:

ẋ(t) = f (x(t)), if t > 0
x(0) = c.

Examples from http://mathworld.wolfram.com/RandomWalk2-
Dimensional.html.
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Model types: structured vs. functional

Also known as, white-box vs. black-box.

I Structured (or white-box), given the whole structure of the
model, it is required to study the variable properties.

I Functional (or black-box), given a set of inputs and set of
outputs, the internals of the system are not known, it is
require to find some dependencies between variables (with
limited knowledge).
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Mathematical model usage: direct and opposite

I Direct — we know the structure and all connections inside
model, we need to retrieve additional useful information
about the model.
An example: we know the sending rate, delay, congestion,
and so on; we need to get throughput rate.

I Opposite — we know a set of possible models, we need to
select one concrete model based on additional data.
An example: we know what behavior we want from the
system, we would like to construct set of parameters which
achieve it (in Game Theory it is called Mechanism Design).
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Conceptual model
First construction — conceptual model.

Whenever researcher is starting modeling process, there is no
information about what model should be constructed, what
should be omitted or simplified and what should be explicitly
described in the model.

This first task is the task of concept construction, the starting
point of modeling, or even extension of the model to a new
levels.

It is also called, mental model, or premodel.

The creation of the conceptual model may be simplified if the
field already has these models available, and researcher do not
have to start from the scratch.
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Construction of conceptual models

I Hypothesis (“that could be”). Trial to define an event.
I Phenomenological model (“consider as if it is true”).
I Approximation (“consider something too big or too small”).
I Assumptions (“omitting something for

simplicity/clearance”).
I Heuristic model (“there is no prove of it, but it let us study

deeper”).
I Analogy (“consider only some specific features”).
I Thought experiment (“proof by contradiction”).
I Demonstration of possibility (“show that it does not

contradict to possibility”).
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Formal model

Formal model is produced later during study.

Formal model, is concept opposite to the conceptual model or
premodel. It is final model, or mathematical model, which was
studied and verified using different methods.

Formal model, may be extended further using new conceptual
model, however, formal by itself is considered to be
self-sufficient well-studied model with sufficient accuracy.
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Conceptual model to formal model

To move model “status” from the conceptual to the formal or
discarding model. It should be

I Verified, or
I Falsified (for discarding).

The verification of the model depends on the model and the
complexity of analysis.

Whenever we falsify a model, we cannot use it anymore as
accurate, however the verification does not guarantee that the
model is really accurate. It gives that with certain probability it is
a valid model (was tested and validated in some environment).



Lecture 4: Mathematical Modeling
October 11, 2012

29/42

Model accuracy verification
I Empirical data. In order to verify model with a given

empirical data, divide the data onto two sets:
1. Train data – to train the model.
2. Verification data – to verify.

Verification is done by “measuring” distance between
predicted parameters and verification data.
Statistical models also may be used here.

I Applicability. Based on the training data, and physical
system the model cannot predict something that was not
yet seen in physical model (and documented) in real
system. This is a limitation of the model, or applicability.

Types:
I interpolation – does the model describes well the properties

of the system between data points,
I extrapolation – does the model describes well the

properties of the system outside data points.
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Simple parametric model

Simple connections between essential variables, such as

x = λrt ,

where t is time, r is rate, and λ some parameter. Furthermore,
we may find

r =
γ

β
,

and then conclude

x = λ
γ

β
t .
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Markov chains
Markov chains model is one of the most popular Probability
models. It has intuitive visual form.
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Given random variable X , every state is possible value for the
random variable. Transitions happen during one unit of time.
Pi(t) is the probability to do in state i at time t , Pi,j = P(j |i) - is
conditional probability to be in state j , after state i , also
transition probabilities.

It has very important Markov property - future is independent
from the past given current.
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Markov chains
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If Markov chain is ergodic, i.e., every state can be reached from
every state and aperiodic, then there exists steady state π.
If transition matrix is

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 . (1)

then π = π · P.
One step on the Markov chain is equivalent to multiplication by
the matrix P. If network is ergodic then any initial distribution π0
every step converges to steady state π.



Lecture 4: Mathematical Modeling
October 11, 2012

34/42

Bayesian networks
When we have a set of random variables, and do not know the
connection between them. Bayesian belief propagation model
helps:

Rain Sprinkler

Grass wet

P

P

SR

GSGRP

Opposed to Markov chain the states are not value of one
random variable, but different random variables itself. The
connections are directed acyclic graphs (DAGs).

P(R)

P(S) = P(S|R)P(R)

P(G) = P(G|S,R)P(S|R)P(R)
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Optimization models
In optimization models, we are to optimize an objective, under
set of constraints

J =

∫ T

0
g(x ,u, s, t)dt →

u
max,

ẋ(t) = f (x ,u, s, t),
l(x ,u, t) ≤ 0,
u ∈ U,

J =
N∑

i=0

gi(x ,u, s)→u max,

xi+1(t) = xi + fi(x ,u, s), ∀i ,
l(x ,u) ≤ 0,
u ∈ U.

An example:

J = xy → max,

x2 + y2 ≤ 10,
x , y ∈ Z.

Objective can be money, efforts, distance, time, and so on,
whatever we want to maximize (minimize).
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Optimization models

Optimization problems sometimes are non-trivial.
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Derivative does not necessary shows needed optimums (it
shows only local optimums) additional study often is needed.
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Game theory

Formulated similiar way as the optimization models:∫ T

0
g(x ,u, s, t)dt →

u1
max,

∫ T

0
g(x ,u, s, t)dt →

u2
max,

ẋ(t) = f (x ,u, s, t),
l(x ,u, t) ≤ 0,

u ∈ U.

However, we have multi-optimization problem. Every “player”
has own objective function, which it wants to optimize.
“Conflict” happens in the trajectory equations ẋ(t) = f (x ,u, s, t).
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An Example: Queueing discipline
Classical example:

λ
Queue

Server

µ

I Server has the average service time µ.
I Input rate (average) is λ.
I Depending on how fast server processes message the

queue size grows or reduces.
I Stability (long-term) is achieved if λ < µ.

Little’s law: Let L is average number of customers, λ is arrival
time and W average waiting time for a customer, then

L = λ ·W .
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An Example: Transport protocol

A well-known TCP equation:

B(p) ≈ min

Wmax

RTT
,

1

RTT
√

2bp
3 + T0 min

(
1,3
√

3bp
8

)
p(1 + 32p2)

 ,

where B(p) is the throughput of the TCP connection, p is the loss
probability, RTT is the average round trip time, Wmax is maximal
congestion control window, and b is the number of packets that are
acknowledged by received ACK packet (often b = 2).

Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. 1998. Modeling TCP
throughput: a simple model and its empirical validation. SIGCOMM Comput.
Commun. Rev. 28, 4 (Oct. 1998), 303-314.
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An Example: Backoff protocol

i = 0 i = 1 i = 2 i = 3
cp

1 - pc

cp cp cp

1 - pc 1 - pc1 - pc 1 - pc

Average service time:

ES =
1

(1− pc)
(

1− (1− pc)
1

N−1

) ,
where pc is collision probability in the network. Optimal point
(minimal service time):

p∗c = 1−
(

1− 1
N

)N−1

.
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Computer systems that help

I Maple,
I Mathematica,
I Mathcad,
I MATLAB,
I VisSim.


