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Preface

Energy modeling and optimization are very important parts of mobile and wireless
application development. Recent studies suggest that the battery life of a smartphone
has become a critical factor in user satisfaction. Typical mobile applications today con-
sume much more energy than is strictly necessary because of the sub-optimal use of the
smartphone’s hardware by the software.

This book provides guidelines for smartphone users, methodologies for researchers,
and in-depth knowledge of smartphone power management to the public at large.
The techniques presented in the book are necessary for developing energy-aware and
energy-efficient systems and applications. The book provides the necessary theoretical
background and results from the field, and also practical guidance on assessing and
optimizing energy efficiency.

In this book we study the following two questions: What is the power consumption
of smartphones and applications, and what are the potential solutions for optimizing
smartphone power consumption?

Mobile device power management is facing new challenges posed by the revolu-
tionary development of mobile networks, devices, and applications. Smartphones are
complex systems, and it is hard to anticipate user behavior and the way the operating
system (OS) and applications use the underlying hardware resources. Thus, advanced
techniques are needed first to understand the power-consumption behavior, and then to
optimize the hardware/software design to improve energy efficiency.

The book has been written with three key aims in mind:

e Holistic: This book is not strictly about smartphone hardware or software; both are
taken into account when considering energy optimization.

e Forward-looking: Some of the advanced techniques detailed in the book have been
recently proposed in the scientific community.

® Hands-on: This book provides many practical examples.

Organization of the book

The book has three parts:

e Part I: Understanding energy consumption. This part presents the overview and the
basic concepts relating to energy measurement. We concentrate on the basics of the
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energy consumption of smartphones, that is where does the energy go and why. We
describe alternative ways to measure the energy consumption.

Part II: Energy management and conservation. This part gives more detail by focusing
on the main energy profiling, modeling, and conservation techniques. We consider
power management in existing platforms for smartphones. We cover the three main
platforms, that is, iOS, Android, and Windows Phone, and also provide examples
based on others. We study different techniques to conserve energy by optimizing the
design and implementation of mobile software.

Part III: Advanced energy optimization. This part considers more advanced optimiza-
tion techniques, such as traffic scheduling, use of multiple network interfaces, and
mobile cloud offloading. We conclude the part and the book with a discussion of
future trends.

Reading the book

The figure presents the key target audiences for the book: the end users of smartphones,
mobile developers and platform architects, and students and researchers. The figure
outlines the key questions that the book addresses as well as the pertinent chapters.

End users are typically interested in maximizing the remaining operating time of their

device, and also knowing what use cases are energy consuming. This book explains

Where is the energy going?
what can be done to improve
energy consumption from the

user point of view?

Part |: Chapters 1-3,5
Part Il: Chapters 6,10
Part Ill: Chapters 15-16

}

How to create an energy-

efficient application? Part |: Chapters 1-5

Part II: Chapters 6—10

o >
Is my app buggy.' . Part lll: Chapters 11,
How to add energy monitoring 14-16
to my app?

Is our moblie platform energy

efficient? Part I: Chapters 1,4

What techniques can be used ——>| Part Il: Chapters 6-10

to improve energy efficiency?
What are the good patterns?

Part Ill: Chapters 11-16

What is the state-of-the-art in
energy modeling and
optimization?

Part I: Chapters 3-5

Part II: Chapters 7-10
Part Ill: Chapters 12—-16

The key target audiences for the book
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how energy is consumed in smartphones, which can help the end users to adjust their
use of their smartphones to extend the battery life. Chapter 5 focuses on human-battery
interaction and getting the most out of the remaining battery life.

Mobile developers are interested in creating energy-efficient applications and iden-
tifying potential energy-related bottlenecks and bugs in the applications. This requires
the use of energy-efficient solutions, as well as energy-profiling and analysis techniques.
We cover well-known solutions for application energy profiling and diagnostics starting
with basic-energy measurement solutions. Most of these solutions and techniques are
covered in Part II of the book.

Platform architects are interested in OS- and middleware-level solutions for power
management. These solutions are examined in Parts II and III. Part III focuses on
advanced platform-level solutions and such as computational offloading and traffic
scheduling and offloading.

Researchers are interested in the state-of-the-art techniques and either applying them
to solve a specific problem or extending them beyond the state of the art. The book
provides a summary of the state of the art for them. These techniques are covered in
Parts II and III.

Contributors

We would like to thank people who made valuable contributions to this book. PhD
student Aaron Yi Ding of University of Helsinki and Professor Jon Crowcroft of Cam-
bridge University contributed materials that form Section 13.6. PhD student Samuli
Hemminki of University of Helsinki contributed the sections on energy-efficient sensing
in Sections 7.4 and 15.2.

Dr. Mohammad Ashraful Hoque (Sections 7.3, 12.2, and 15.1), Maria von Kiigelgen
(Section 5.2), Cenyu Shen (Section 5.3), Cagatay Ulusoy (Section 7.3), Swaminathan
Vasanth Rajaraman (Section 7.5), and Ville Koivunen (Section 12.4) contributed by
providing measurement data and graphical visualizations of it.
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1.1

Introduction

The last ten years has been the era of personal and social communications, with the
rapid proliferation of smartphones that provide always-on connectivity with people and
information. The mobile computing environment has changed over the years in many
ways. Today’s devices are powerful computers and sensing systems that have versatile
communications capabilities, and they are capable of running native and web browser-
based applications that can tap into system resources such as various on-board sensors.
The devices also come in many forms and shapes, such as small and large form-factor
phones, tablets, and wristwatches.

Understanding smartphone and mobile device energy consumption is a vital and chal-
lenging problem. It is vital, because the remaining operating time of a device should be
understood and maximized when necessary. It is challenging, because a device con-
sists of various hardware and software systems that work together. Various modeling,
prediction, and optimization techniques are needed to engineer energy-efficient mobile
systems.

Overview and the environment

Energy efficiency in mobile computing, especially in the wireless data transmission
involved in mobile applications, is one of the challenges that has attracted much atten-
tion from mobile device manufacturers, application providers, and network operators.
Compared with traditional telephone services, such as voice calls and short message
service, executing modern mobile applications consumes much more computing and
networking resources and therefore demands much more energy. However, battery tech-
nology has not developed as fast as mobile computing technology and has not been
able to satisfy the increasing energy demand. This has directly resulted in a dramatic
decrease in battery life, that is the time until the next charge.

For example, the battery life of a mobile device may drop to between three and six
hours, if the mobile user is using internet services such as video streaming and web
browsing. Hence, energy efficiency in mobile computing, although it is a research area
that has been established for more than a decade, has once again become a hot topic. A
major target of this research area is to develop techniques for reducing the energy con-
sumption of mobile devices while trying to maintain the device performance, which is
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possible because very often the devices consume more energy than is strictly necessary
for a particular task.

About a decade ago when this research area was popular, the research focus was on
the energy efficiency of computation [1], such as the energy consumption of micro-
processors, since mobile internet services such as email were still in their early stages.
Today, mobile devices, as well as application scenarios, have changed drastically.

With mobile internet services becoming popular, wireless data transmission is becom-
ing a major source of energy consumption on mobile internet devices. Additionally,
with more sensors, such as global positioning system (GPS) receivers, available on
the devices, the context monitoring and its energy consumption also becomes a chal-
lenge. Hence, now is the right time to revisit energy-efficient techniques and to develop
techniques to solve the existing and upcoming challenges. Indeed, the mobile sys-
tems research community has become very active in the area of smartphone energy
consumption analysis and optimization with many recent proposals and results in the
field.

A holistic approach

A holistic approach is needed to understand the energy consumption of a complex sys-
tem such as a smartphone. Figure 1.1 gives an overview of the different facets that
need to be considered when examining smartphone energy consumption. The energy
draw of the device is determined by its physical properties and hardware compo-
nents. Therefore the power profiles of the chipset, hardware accelerators, and dedicated
hardware-level functions are crucial. At the device level, pertinent issues include paral-
lelism and scheduling over multiple cores, as well as intra-device optimization. At this
level, the impact of applications and processes needs to be understood by mapping soft-
ware activities to hardware resources. This mapping can be done on different levels of
abstraction from the process level to the system call level.

Expanding beyond the device, at the inter-device level, optimizations can be car-
ried out across devices typically in the local communication context. This is a new
and emerging area of optimization with only a few examples at the moment. A more
frequently employed approach is to connect the smartphone operating system and appli-
cations to the Internet to be able to send power-hungry tasks to the fixed network
for processing. This process is called offloading and it is frequently used to alleviate
resource limitations at the device.

The computing environment is becoming increasingly complex and distributed. A
smartphone may interact with other phones and wearable items, such as smart watches,
and augmented reality devices, such as the Google Glass prototype and product. Figure
1.2 illustrates the distributed mobile environment. Smartphones typically have one or
more connections with internet servers. These connections are used to synchronize the
platform and application state between the mobile device and the cloud. For exam-
ple, an always-on connection is used to push asynchronous updates to mobile devices.
Smartphones can communicate in the local context through protocols such as Bluetooth,
Bluetooth Low Energy, and Wi-Fi Direct. The local communication today is still quite
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limited, but with the advent of wearable devices, such as smart watches, and augmented
reality devices, this is expected to change. This environment will be a fertile ground for
new innovative applications that sense and interact with users in myriad ways; however,
it also presents many challenges including energy efficiency, user interaction, security,
software configuration, and communications.

Finally, we have the user and groups of users that carry the devices and interact
with their software and hardware. Ultimately, the way people interact with the devices
has a very large impact on the use of hardware resources and thus the overall energy
consumption. In addition, the system can give recommendations to users on how to
improve the energy efficiency of the system. This can be achieved through options that
the users can set, such as the back-light and connectivity modes, or by recommending
software updates or software-use strategies. For example, on the Samsung Galaxy S4
users can control the battery use by adjusting the power-saving mode settings. These
settings relate to the CPU, screen, background color, and haptic feedback. Indeed, the
term human-battery interaction (HBI) has recently been coined to describe how users
charge and discharge the smartphone battery and manage the settings relating to battery
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use [2]. Thus we have to factor in the human element to understand the real-life energy
consumption of smartphones.

Stakeholders

Figure 1.3 presents the key stakeholders for feature phones and smartphones. Feature
phones, or GSM phones, are closed embedded devices that typically do not support
extensive third-party software. Today the differences between feature phones and smart-
phones relate specifically to the extent of the application ecosystem, the hardware and
software subsystems available for applications, and advanced operating system features
such as multitasking. The stakeholders have an interest to ensure that the devices and
the ecosystem around the devices function properly and that the devices are energy effi-
cient. Today this is much harder to ensure given the complexity of the devices and their
capabilities, as well as the huge numbers of applications using the device capabilities in
unpredictable ways.
The stakeholders have different interests and requirements:

* End users require the mobile devices to have long operating times without affecting
usability and performance.

® Device manufacturers are responsible for the smartphone hardware integration into a
complete product and sometimes also the mobile platform. Each hardware component
needs to be optimized for energy efficiency; but this is not enough, the combinations
of components in runtime usage also need to be considered and optimized.

e Telecom equipment manufacturers, such as Nokia Solutions and Networks (NSN),
Ericsson, and Huawei, develop wireless network technologies, such as the 3G and 4G
cellular networks. Energy efficiency is a key requirement for these networks both for
the mobile devices and the infrastructure.

| Context awarencess | Application developer

OS provider / device

| Sl | manufacturer
| Multitasking |
| Applications Application developer

Telecom operator

| Mobile OS and platform | OS provider / device manufacturer
| Telecom equipment manufacturer

| Wireless connectivity

Feature phone Smartphone Device manufacturer

End user

Key stakeholders in smartphone development
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e Telecom operators are interested in keeping the end users satisfied and offering
high-quality services. Therefore operators have an interest in ensuring that harm-
ful applications are not run on the phones and that the network usage is efficient.
On the other hand, mobile phone energy consumption is not the primary concern of
mobile network operators. Operators are indirectly addressing mobile phone energy
consumption through the configuration and deployment of wireless access networks.

¢ Platform providers are responsible for the operating system and many of the mid-
dleware components inside the mobile platform. For example, Google, Microsoft,
and Mozilla are developing their mobile platforms that are then used by third par-
ties. Energy efficiency is a key requirement for the OS and the middleware. The
current mobile platforms employ various solutions to monitor and control energy
consumption.

® Application developers aim to create the best possible applications for end users. Low
energy consumption is one requirement for a good application. The end users would
not consider purchasing an application that drains their battery in one hour if there
are competing applications that work much longer. Therefore the mobile developer is
interested in ensuring that the overall energy consumption of the application is in line
with expectations and that there are no energy- or performance-related software bugs.

Smartphone hardware and software

From the hardware perspective, the modern smartphone is a general purpose computing
device and a sensing system that consists of the essential components of a computer
with dedicated signal processing and radio subsystems as well as a battery. The re-
chargeable battery stores energy that is discharged when powering the device. The
software part of the device consists of the operating system (OS) including the device
drivers, the middleware and libraries, and mobile applications running on top of the OS
and middleware.

Compared to the feature phone, the smartphone has gained quite a lot in terms of soft-
ware and hardware complexity. Early feature phones, or GSM handsets, were closed
systems that did not support third-party software on the devices. These devices were
designed for two specific tasks: voice communication and simple text messaging. For
such devices it is relatively straightforward to develop energy-consumption models
and then optimize the devices based on the models. In contrast, smartphones support
third-party software and have many new functions, such as multiple radios and commu-
nication techniques: TCP/IP, web and email, FM radio, GPS reception, music and video
playback, and so on.

Table 1.1 presents example smartphones and their characteristics (adapted from [3]).
We observe that many of the smartphone properties are evolving at an exponential pace.
The cellular technology evolution can be seen through five year leaps. The downlink
speeds have improved by a ten-fold factor at every leap. The display size is increasing
in powers of two and the size of the software on the device is increasing in powers of ten,
with the latest generation having a preset footprint of several gigabytes and the capacity
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Table 1.1. Evolution of mobile phones

1995 2000 2005 2010 2015
Cellular 2G 2.5-3G 3.5G Transition 4G
generation towards 4G
Standard GSM GPRS  HSPA HSPA,LTE LTE, LTE-A
Downlink 0.01 0.1 1 10 100
(Mb/s)
Display pixels 4 16 64 256 1024
(x 1000)
Comms - - WiFi, WiFi, WiFi,
modules Bluetooth  Bluetooth Bluetooth LE,
RFID
Battery 1 2 3 4 5

capacity (Wh)

for tens of gigabytes of user content. The battery capacity in terms of watt-hours is
increasing linearly.

Battery technology has not developed as fast as smartphone power requirements,
making energy a limited resource. Battery capacity is determined and limited by its
chemical properties. Thermal limitations must also be taken into account in the design
of smartphones and other mobile battery-powered devices. Without active cooling the
power consumption of a small device is limited to approximately three watts [4]. Battery
capacity can be increased with physically larger batteries; however, this would lead to
larger devices which is not a desirable solution. Indeed, alternative solutions are highly
sought after by academia and industry.

An important part of the added value of the devices comes from the application-
centered ecosystems, in which third-party developers develop and distribute mobile
applications through application stores or similar marketplaces. The mobile application
market started its tremendous growth in 2008 with the advent of the Apple AppStore
and since then hundreds of thousands of mobile applications have been made available
in various stores and distributed to mobile devices.

Interest in the energy consumption of devices has shifted from the energy-efficient
design of feature phones for a small number of basic tasks to the overall energy
optimization of smartphones that run arbitrary third-party software. In addition to
energy-efficient hardware, the OS and platform developers need to consider the
energy consumption of the device and its components to be able to optimize energy
consumption in specific usage scenarios.

Energy problems have increased with the growth of the smartphone and tablet
markets and with the phenomenal success of mobile software. Smartphone users are
frequently asking for advice on how to improve the operating time of their devices,
and there are many mobile applications for tracking energy usage of the devices. The
general advice for smartphone users is to turn off extra functionality such as Wi-Fi
or GPS, dim the background light, and avoid the use of applications that consume a
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lot of energy. Concern over energy consumption has also resulted in new kinds of bug
called energy bug (ebugs) that are software or hardware errors that manifest in excessive
energy consumption [5].

Indeed, the above concerns and requirements toward energy efficiency have resulted
in the rise of battery-monitoring applications and overall interest in detecting unusual
energy behavior of applications and hardware components.

Given that heavy battery use may discourage consumers from downloading and using
an application, application developers have become interested in optimizing their appli-
cation design for energy efficiency. This is a new field and, although some tools exist,
there is no well-established technique for analyzing the energy consumption of mobile
applications.

In this book, our central tenet is that smartphone energy consumption can be sig-
nificantly reduced by focusing on the design of applications, middleware, and the
OS taking the underlying hardware into account. Thus it is central to understand the
higher-level activities of the applications, what happens within the software stack,
and how those activities map to hardware resource consumption.

Increased capabilities of smartphones

The increasing coverage of mobile broadband networks has been accompanied by a
significant boost in the capabilities of mobile devices. Feature phones and personal
data assistants (PDAs) are being replaced by smartphones and sub-notebook form-
factor tablet devices, such as Apple’s iPad series, Samsung’s Galaxy Tab, and other
Android tablets. The new devices are equipped with high-performance processors,
large-volume storage, multiple network interfaces, high-resolution displays, and rich
sensors. All these capabilities together make it possible for mobile devices to handle
much more complex tasks. It has opened a door to mobile applications that require
heavy computation, high-speed data transmission, and rich context information.

Table 1.2 presents example smartphones and their capabilities. The ARM processors
dominate the smartphone market and almost all current smartphones use ARM-based
CPUs. The clock speed of the devices has increased over the years: more than tripled
from 2008 to 2013. In addition, the battery capacity has increased, but as mentioned
above the capacity has fallen behind the other capabilities.

The sensing capabilities of smartphones have also increased over the years. Today’s
smartphone has many ways to probe the internal and external operating environment.
Internal sensors monitor the status of the battery, CPU, and wireless networks. External
sensors monitor and estimate the orientation and acceleration of the device, the location,
physical proximity, compass direction, temperature, atmospheric pressure, humidity,
and user gestures. Box 1.1 outlines the sensors on the Samsung Galaxy S4 smartphone.
This smartphone has an interesting solution for controlling the onboard sensors. The
device uses an Atmel AVR microcontroller-based sensor hub for managing the sensors
in real time.
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Table 1.2. Example smartphones and their characteristics

Device CPU Clock speed Issue  Year Battery
Apple Samsung 412 MHz Single 2008 1219 mAh
iPhone 3G ARMI11
Nokia N97 ARMI11 434 MHz Single 2009 1500 mAh
Nokia TI ARM 600 MHz Dual 2009 1320 mAh
N900 Cortex A8
Apple Apple 800 MHz Dual 2010 1420 mAh
iPhone 4 ARM Cortex A8
Samsung TI ARM 1200 MHz  Dual 2011 1750 mAh
Galaxy Nexus CortexA9
Apple iPhone 5 Apple A6 1300 MHz  Dual 2012 1440 mAh
Nokia Qualcomm 1500 MHz Dual 2012 2000 mAh
Lumia 920 APQ8055
(Snapdrag on S4)
Samsung Qualcomm 1600 MHZ Quad 2013 2600 mAh
Galaxy S4 Krait: ARM Cortex A15
Cortex A15 and
and ARM 1200 MHz
Cortex A7 Cortex A7

e Gyroscope
® Proximity
e Compass

® Barometer

® Humidity
e Gesture

e Temperature

e Accelerometer

Box 1.1 Samsung Galaxy S4 sensors

Example of context-awareness: The Motorola Moto X“ released in August 2013
is based on the Qualcomm Snapdragon S4 pro (1.7 GHz dual-core Krait CPU),
quad-core Adreno 320 GPU, a natural language processor, and a contextual com-
puting processor. The device has a 2200 mAh battery and runs the Android 4.2.2 OS
extended with context-awareness support. Specifically, the new feature of the phone
is continuous audio sensing with the Google Now product. The device can wake at
any time to hear the user’s voice and react to the command and the surroundings.
Indeed, context awareness is now being introduced to mobile applications and oper-
ating systems. This places even greater requirements on the energy efficiency of the
software and hardware to keep the operating times of the devices reasonable.

January 6, 2014

http://www.motorola.com/us/shop-all-mobile-phones/Moto-X/FLEXR1.html




1.3

1.3.1

1.3 Mobile communications 11

Mobile communications

During the previous decade, the wireless industry has moved into the Internet era and we
have witnessed revolutionary changes in wireless networks, mobile devices, and mobile
applications. Mobile broadband networks have become ubiquitous with the advent of
cellular technologies, such as 3G and LTE, and WLAN networks. Wireless Local Area
Networks (WLANSs) are non-cellular wireless broadband networks. The Wi-Fi Alliance
defines Wi-Fi as any wireless network based on IEEE 802.11 standards. In practice,
WLAN and Wi-Fi are considered to be synonymous, although WLAN also relates to
wireless standards other than 802.11. In this book, by WLAN we mean specifically
IEEE 802.11 technologies unless indicated otherwise.

Network traffic growth

Mobile broadband networks that provide high-speed internet access have been widely
deployed. In 2010, 3G cellular networks were available in 143 countries and had 694
million subscribers. In addition, over 750,000 Wi-Fi hotspots had been installed and
were used by 700 million people around the world!. According to the estimates by
the ITU, there were over 1 billion 3G subscribers at the end of 2011 with an annual
growth rate of 45%. In addition to 3G, significant growth is expected for the next gen-
eration Long Term Evolution (LTE) and LTE Advanced (LTE-A) networks that are now
being introduced by mobile operators. Cisco’s recent estimates? state that 76% of global
mobile devices are supported by 2G networks, 23% by 3G networks, and 1% by 4G net-
works. Cisco estimates that the share of 4G will grow to 10% by 2017 with 45% share
of the total mobile data traffic. The role of Wi-Fi networks is becoming important with
33% of mobile data traffic being offloaded from cellular to Wi-Fi or fixed networks in
2012. Cisco’s report expects this number of grow to 46% by 2017.

A recent Ericsson Mobility Report® reported 6.6 billion mobile subscriptions includ-
ing over 2 billion mobile broadband users in 2013. The report anticipates 9.3 billion
mobile subscriptions by the end of 2019, with a four-fold increase of mobile broadband
from 2 to 8 billion. The number of LTE subscriptions is expected to exceed 2.6 billion
by the end of 2019.

Smartphone traffic has grown tremendously over the last five years. Figure 1.4 illus-
trates the growth predictions of mobile traffic by device type. In addition, laptops and
tablets are also driving traffic growth. Machine-to-Machine (M2M) traffic is a new
development, and it is expected to grow significantly in the next five years, because
of the emergence of various networked sensors and actuators.

According to Cisco’s Visual Networking Index report published in 2013, the average
mobile user consumed 201 megabytes of data per month in 2012. This traffic volume is

! Cisco. The future of hotspots: Making Wi-Fi as secure and easy to use as cellular, 2011.
2 Cisco. Visual Networking Index: Global Mobile Data Traffic Forecast Update 2012-2017, 2013.
3 http://www.ericsson.com/mobility-report, accessed January 6, 2014
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expected to grow to 2 gigabytes of data per month by 2017. The video and audio play-
back hours are growing fast, as are other application-related communications. Mobile
video is expected to represent 66% of global mobile data traffic by 2017.

Cellular standards

Figure 1.5 illustrates the evolution of the network architecture of the different cellular
technologies. A cellular network is a wireless network that consists of cells that are
served by at least one fixed-location basestation. Neighboring cells employ different
frequencies to minimize interference and to provide sufficient bandwidth. The mobile
phone system is an example of a cellular network that is based on licensed spectrum.
The 3rd Generation Partnership Project (3GPP) is the main standardization organization
for 2G-5G cellular standards.

The overall design has evolved from a hierarchical circuit-switched design to a flat
packet-based design. At the same time, the speeds of the wireless links and the core
network have increased tremendously from the slow speed of 9.6 kbps in 1991 to several
hundreds of kbps in early 2000 to the current speeds of hundreds of Mbps. The next
generation cellular networks are expected reach gigabit speeds. Figure 1.6 depicts the
evolution of the transfer speeds from 2G GSM to 4G LTE-A. It is notable that the
transfer speeds are asymmetric and wireless network designers typically assume that
downlink is more frequently used than uplink. This has partially changed over the last
decade with user-generated content placing more emphasis on uplink. Indeed, the more
recent cellular standards have improved the uplink speeds. 5G is the next generation
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Evolution of 3GPP cellular standards

cellular network architecture that is now being designed and researched. We discuss 5G
briefly in Chapter 16.

GSM was designed for real-time services building on circuit-switched networking.
While this design favors real-time voice communications, it is not ideal for data ser-
vices that have to be realized through slow circuit-switched modem connections. GPRS
was designed to address the data limitations of GSM by providing more efficient IP
(Internet Protocol) services relying on the same air interface and TDMA (Time Division
Multiple Access). With the development of Universal Mobile Telecommunication Sys-
tem (UMTS), the access method was improved by basing it on CDMA (Code Division
Multiple Access). UMTS supports both circuit-switched and packet-switched opera-
tion. The former is used for voice communications whereas the latter is needed for data
services. The user equipment receives an IP address when data services are first used,
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Table 1.3. 802.11 wireless standards

Standard Year Band Data rate
802.11b 1999 2.4 GHz 11 MB/s
802.11a 1999 5 GHz 54 Mb/s
802.11g 2003 2.4 GHz 54 Mbl/s
802.1In 2009 2.4 GHz, 5 GHz 600 MB/s
802.11lac  — 6 GHz

802.11ac  — 6 GHz 6.93 Gb/s
802.11ad — 2.4 GHz, 5 GHz, 60 GHz 6.76 Gb/s

and this IP is given up when the data service is no longer needed. As a consequence,
circuit-switched paging is needed for establishing data services.

The current generation of wireless access networks is based on the evolved packet
system (EPS) that is IP based. Both voice and data services are built on top of the IP.
In EPS, the mobile device receives an IP address when it is turned on and the address
is released when the device is turned off. 4G wireless access networks are based on the
LTE standard that uses OFDMA (Orthogonal Frequency Division Multiple Access) to
obtain faster data rates. Performance improvements include large bandwidth, high-order
modulation, and multiple antenna transmission. In addition to LTE, the core network
(Evolved Packet Core) can support also non-3GPP technologies, such as Wi-Fi based
access networks.

The access network structure has been simplified for LTE with the network consisting
of the base stations and the Evolved Node Bs (eNBs). There is no centralized controller
and eNBs are interconnected toward the core network through the S1-interface. The aim
of this new design is to improve connection setup and handoff performance.

Wi-Fi

Compared with cellular networks, such as 3G or LTE, Wi-Fi is based on unlicensed
spectrum and is primarily used as a wireless hotspot technology. Wi-Fi can provide a
much higher data rate, up to 7 Gbps with the 802.11ad protocol or 54 Mbps with the
older 802.11g WLAN. Table 1.3 gives an overview of the 802.11 standards. The Wi-Fi
networks are typically based on hotspots that cover a certain area, such as an office or
a café. The coverage of a Wi-Fi base station is smaller than of a 3G/LTE base station
and in general the Wi-Fi coverage is fragmented to isolated hotspots whereas cellular
coverage is more uniform. Thus it is popular to have both 3G/LTE and Wi-Fi interfaces
in a single mobile device and switch between the interfaces depending on the availability
and quality of wireless networks.

Near-field standards

Table 1.4 presents an overview of near-field wireless communication standards. The
key standards are Bluetooth (802.15.3), IrDA, and ZigBee and IEEE 802.15.4. Of these
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Table 1.4. Near-field communication standards

Standard Frequency Data rate Range Use cases
Bluetooth, 2.4 GHz, 1 Mbit/s,up to  5-10 meters Peripherals
802.15.3 5-7 GHz 480 Mbits/s
IrDA 870 nm infrared 2.4 kbit/s to 1 meter Remote control,
16 Mbits/s peripherals
ZigBee, IEEE 868, 915, 20, 40, 100 meters ~ Wireless sensors
802.15.4 2.4GHz 250 kbits/s

Bluetooth is available on most smartphones and the new Bluetooth Low Energy is
becoming more popular as well.

Power saving mechanisms

Wireless standards typically include power-saving mechanisms and techniques. For
example, the Wi-Fi 802.11 standard has a power saving mechanism (PSM) that aims
to keep the device in the sleep state for as long as possible by switching the mode after
data transmission or reception. The sleep state consumes significantly less energy than
the receive and transmit states. In 3G WCDMA networks, the Radio Resource Control
(RRC) protocol controls the radio resources. The RRC has four different states and it
controls state transitions between them. Typically a state transfer from a high-power
state into a lower power state occurs after a timeout expires. The state has low energy
consumption; however, the state transitions incur IDLE signaling cost that burdens the
network. The Fast Dormancy extension aims to minimize the so-called tail energy phe-
nomenon, in which the system lingers in a high-power state after data communication
has taken place. With Fast Dormancy, the phone can directly request the network to
transition to a low-power state. In 4G LTE networks, the state machine is simplified
with only two states: connected and idle. A timer with a typical timeout of 10 s is asso-
ciated with the transition from the connected to the idle state. In addition, LTE has a
discontinuous reception mode that keeps the state machine in the connected mode, but
with a duty cycle that periodically wakes to check for incoming packets. This mode has
a timer that causes a state transfer to the idle state when it expires. The discontinuous
mode significantly reduces the energy consumption of the wireless protocol.

Anatomy of a smartphone

To develop energy-efficient techniques, the first step is to understand how energy is
consumed on a smartphone. A smartphone consists of hardware components, such
as microprocessors, wireless network interfaces, storage, cameras, and a touchscreen,
and software running on top of them. The hardware components are the actual energy
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consumers. Experimental measurements of smartphones indicate that applications run-
ning on the devices spend a major part of their energy in I/O heavy activities, such as
using the cellular/Wi-Fi interfaces and GPS [5]. We illustrate the differences between
GSM feature phones and smartphones by comparing their hardware and software. We
will return to these components of the smartphone later in the book and develop both
component- and system-specific energy models.

Feature phones and smartphones

For GSM feature phones, the digital processing units, RF transceivers, and power man-
agement units are all integrated on a single system on a chip (SoC). The power amplifier,
DRAM (Dynamic Random Access Memory), and flash memories are provided by sepa-
rate chips. The two classical use cases for feature phones are the standby and talk modes.
Today, feature phones can be used to access web resources and run limited applications.
The power profiles of the modes are very different. The expected power dissipation of
the standby mode is about SmW and the talk mode is about 800mW. The radio and the
power amplifier take a large part of the power dissipation when making a call. The CPU,
DSP (Digital Signal Processing), and memories account for approximately 5% of the
overall power dissipation in idle and talk modes. In talk mode, the power amplifier is
responsible for IW of power dissipation during a call. In standby mode, the RF receiver
dominates due to paging with the base station [3].

The situation is not so clear-cut for smartphones that have specialized subsystems on
the SoC for various tasks, and that run much more complex software processes. The
modern smartphone consists of various programmable cores and accelerators that are
clustered by their function. These components are connected by a locally optimized
memory hierarchy or interconnect, and they share access to the off-chip memory. The
ARM architecture is the key hardware environment for smartphones and mobile devices.
Android, i0S, Windows Phone, Blackberry 10, Firefox OS, and Tizen are all based on
the ARM architecture.

The typical smartphone hardware design differs from traditional laptops and desk-
tops in that the highly integrated hardware modules provide specific functionality.
Laptops and desktops typically rely more on the general purpose CPU rather than
auxiliary processors.

System on chip (SoC)

Figure 1.7 illustrates the hardware subsystems of a typical smartphone. The heart of the
SoC is the ARM CPU complemented by a GPU and a Digital Signal Processor (DSP).
Typically the GPU is programmable and compliant with specific OpenGL and DirectX
standards. The DSP typically features the Image, Video, Audio (IVA) accelerator and an
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Overview of typical smartphone subsystems

Image Signal Processor (ISP). The I/O controllers on the right-hand-side of the diagram
are implemented by a specific chip and the internal configuration varies with the design.
The Wi-Fi, cellular modem, and other auxiliary devices are connected via system buses,
such as the internal USB or multichannel buffered serial port (McBSP) [6, 7]. The Wi-Fi
and cellular modem can also be an integrated part of the SoC.

Lower power serial busses facilitate the communication between the internal system
components, such as wireless radios, displays, sensors, and the battery. The I2C bus is
a typical example of a low-power serial bus that connects these components together.
For mobile devices, these busses need to be low power and this is reflected in their
maximum data rates.

The number of CPU cores has been increasing in recent years. First dual-core systems
became popular and today we have quad-core and beyond systems. A multicore smart-
phone may also have a different kinds of cores, for example high-performance cores for
heavy tasks and low-performance cores for background processing, such as mail syn-
chronization. Certain OS functions are also being introduced into the hardware, such as
the coordination of sensing functions on a smartphone.

Thus the smartphone hardware is becoming more complex and non-deterministic.
While these developments aim to improve performance and energy efficiency, they also
make it more difficult to understand the energy consumption of the smartphone.

Battery

A battery is a chemical system that stores energy. It consists of reactive components
that, when combined, result in the full reaction. The components of a battery are the



18

Figure 1.8

Introduction

Battery size (mAh)
3000

2500

2000

1500
1000
500

Apple Nokia Nokia Apple Samsung Apple Nokia Samsung
iPhone 3G N97 N900 iPhone 4 Galaxy iPhone 5 Lumia 920 Galaxy S4
Nexus

o

Evolution of smartphone battery capacity

metallic lithium, cathode, and electrolyte. The battery life obtainable from a battery
can be determined by dividing the capacity, in mWh by the product of the voltage and
current demand [8].

Batteries can be classified into non-chargeable primary batteries and rechargeable
secondary batteries. Smartphones and other mobile devices have secondary batteries.
Lithium-ion batteries are the most popular batteries for smartphones at the moment.
They have become popular due to their thinness, lightness, and efficiency. Lithium-ion
batteries do not have any memory effect so it is not necessary to empty the battery before
recharging. The battery type has the lowest self-discharge rate of 5-10% per month that
compares favorably with nickel-metal hydride (NiMH) and nickel-cadmium batteries.

Rechargeable lithium-ion (Li-ion), also known as lithium—metal hydride (LiMH), and
lithium polymer (Li-Po) batteries are used in today’s smartphones. For example, the
iPhone 5 has a lithium-ion battery with a capacity of 1440 mAh and the Galaxy S 4
has a battery with a capacity of 2600 mAh. Figure 1.8 illustrates the evolution of smart-
phone battery capacities. As mentioned at the beginning of this chapter, batteries have
not kept up with Moore’s Law that states that the performance of electronics doubles
every 18 months. This is due to the chemical nature of batteries and the fact that there
are theoretical limits on the amount of electrical energy that can be obtained from the
materials [8].

Today’s smartphones have considerably larger batteries than emerging wearable com-
puting devices, such as smart watches and augmented reality devices. Many of the
current smart watches have smartphone features or integrate with smartphones. Emerg-
ing smart watches from Sony and Samsung run a modified version of the Android
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operating system. The batteries of these wearable devices are considerably smaller
than the batteries of smartphones. For example, the Samsung Gear smart watch has
a 315 mAh battery and the Sony Smartwatch 2 has a 140 mAh battery. The emerging
Google Glass augmented reality device is expected to have a battery in the 500-600
mAh range.

When discharging and drawing current from the battery, the temperature rise is
limited by the available energy. When charging there is no such limit and a safety mech-
anism must be used to detect when the battery has become fully charged. Minimizing
internal resistance also minimizes the heat generation.

The environment also has an impact on the behavior of a battery. High battery tem-
peratures cause heat transfer to the environment through conduction, convection, and
radiation. Low battery temperatures on the other hand cause the battery to gain heat
from the surroundings. If the temperature of the environment is very high, the thermal
management faces significant challenges in maintaining a reasonable operating tem-
perature. Low-power batteries, such as those in smartphones, use protection circuits to
maintain the recommended operating temperature limits.

Thermal limits

Figure 1.9 illustrates the power requirements for communications [4]. The power out-
put of the wireless subsystems on a phone is governed by regulation. Three watts is
considered to be the cut-off point after which special cooling solutions are needed. A
frequently used power budget example for a 3GPP feature phone streaming a video at
384 kb/s consists of 1.2 W for cellular communications, 1 W for A/V and backlight dis-
play, and 0.8 W for the CPU and memory [9]. Given the three watt limit, both hardware
and software systems need to be optimized to cope with the increasing complexity of
the device. Current and forthcoming smartphones use energy optimizations throughout
the hardware and software design to minimize power use.

Operating system

The operating system (OS) is responsible for overseeing and managing the hardware
and software components on the smartphone and it is responsible for the system-level
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power management. We look at the mobile OSs in more detail in Chapter 8. Figure
1.10 presents a generalized view the mobile OS. The typical OS has a layered struc-
ture with the kernel and the drivers being closest to the hardware. The middleware
layer includes the libraries, services, and APIs for application support and development.
Newer features of mobile OSs include cloud integration and context awareness.

Each mobile OS has its own power management. For example, Android OS has its
own power management on top of the standard Linux power management. The design
goal is to ensure that the system does not draw power if the applications or services do
not require power.

A classical example of OS-level power management is the Advanced Configuration
and Power Interface (ACPI) [10] aimed at personal computers. ACPI replaces the older
Advanced Power Management (APM) solution and provides an industry standard for
OS-level device configuration and power management. The previous standard, APM,
allowed control at the BIOS level, whereas ACPI allows this control at the OS level. In
APM, the power management starts when the device becomes idle, and the OS has no
control or knowledge over this power state change.

Mobile applications

In the last five years, we have seen an explosion of the mobile application market.
Today, thousands of new applications are published every day through online shops
like Google’s Play Store, Amazon’s App Store, Apple’s App Store, and Microsoft’s
Windows Phone Marketplace. Figure 1.11 illustrates the growth of these application
platforms. The most popular mobile applications are no longer telephone services, but
internet services, such as Facebook, YouTube, Google Maps, Twitter, and Pandora.
This phenomenon also reflects the ongoing transformation of the wireless industry.
Companies such as Apple, Google, and Microsoft, which previously were not wire-
less companies, are now playing increasing important roles in the mobile device and
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application markets. On the other hand, the change in the usage of mobile devices poses
new challenges to the research on mobile computing.

Summary

In this chapter, we introduced the smartphone operating environment and the key chal-
lenges from the energy efficiency perspective. Smartphone batteries have not evolved as
fast as system and networking performance, emphasizing the need for energy-efficient
hardware and software. The smartphone operating environment can be seen to have
multiple layers: chipsets and hardware subsystems, integrated device level, inter-device
level, Internet and cloud, and the user level. All of these layers need to be considered to
understand and optimize smartphone energy consumption.

We discussed how third-party applications may use the hardware of the smartphone
in new ways, while feature phones had no such applications and were more predictable
in their energy use. We introduced the SoC-based architecture of a smartphone, and how
that makes measuring individual components difficult. We discussed the battery, which
is limited in size and allowed maximum temperature. The battery technology defines its
energy capacity and what kind of hardware it is capable of supporting. We touched on
the topic of operating system power management.
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2.1

Energy and power primer

In this chapter, we define the basic concepts necessary to undertake smartphone energy
modeling and optimization. We start with the definitions of energy and power and then
consider wireless communications and mathematical tools. The key mathematical tools
include error, deviation, and statistical significance, as well as linear regression and
prediction techniques.

Energy and power

The two crucial concepts are energy and power. The former denotes the capacity of
a system to perform work. The latter is the rate of energy consumption, that is, how
much the system is doing work. The SI unit for energy is the joule (J) defined as the
amount of energy required to continuously produce one watt for one second (Ws). The
ST unit for power is the watt (W) defined as one joule per second (J/s). Watts describe the
instantaneous energy consumption rate of a system at which energy must be provided
for the system to operate. Thus watts describe the electric load of a system.
More formally, we defined electric power as,

P= %:IV, 2.1

where Q is the electric charge measured in coulombs (C), V is the electric potential
energy per unit charge measured in volts (V), ¢ is the time, and [/ is the electric current
measured in amperes (A). One ampere is one coulomb per second. Thus the electric
power, P, is produced by the current, /, with charge, O, every ¢ seconds over a potential
difference of V.

The energy cost of a task can be measured by the power, P, and the time duration of
the task, 7, giving

E=PT. (2.2)

The energy cost of an arbitrary task can be determined by integrating the power over
time as illustrated by Figure 2.1. Given the power as a function, P(f), the previous
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The watt-hour (Wh) is a unit of energy equal to one watt for one hour, or 3.6 kilo-
joules. For example, if a 1 W device runs for 7 hours, it has consumed 7 Wh. The
kilowatt-hour is defined similarly, and it is commonly used as a billing unit for energy
to households by electric companies.

The energy content of a battery is typically given in ampere-hours (Ah). The
ampere-hour is a unit of electric charge with one ampere-hour being equal to 3600
coulombs. Smartphone battery capacities are commonly given in milliampere-hours
(mAh), one mAh being 3.6 coulombs. We can convert watt-ours to ampere-hours
by dividing the watt-hour value by the power source voltage (Wh = V Ah).
This conversion is approximate, because the voltage is not constant during energy
discharge.

Ohm’s Law and resistance

The power delivered by the battery or another source of electricity is given by P = VI;
however, the actual current at any particular instance depends on the load. If we ignore
the internal resistance of the battery, the current drawn by the load is given by Ohm’s
Law. Ohm’s Law introduces the constant of proportionality, the resistance (R), by stating
that the current through a conductor between two points is directly proportional to the
potential difference between the points.

I=—, 2.4

R 2.4

where [ is the current, V is the voltage, and R is the resistance of the conductor in Ohms.
Charging or discharging a battery generates heat due to the internal resistance of
the battery. This phenomenon is known as joule heating. The power dissipated due to
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internal resistance is given by:
P=1°R;, (2.3)

where I is the current and R; is the internal resistance.

For example, let us assume that a GPS module takes 280 mW. With 3.7 V this gives
the current draw of 280 mW/3.7V=75 mA. Given the battery capacity of a typical
smartphone, 2200 mAh, the battery lasts 2200 mAh/75 mA = 29 hours.

Ideal voltage source and open-circuit voltage (OCV)

An ideal voltage source can maintain a fixed voltage irrespective of the load resistance
or the output current. An ideal voltage source alone is not sufficient to model real-life
batteries and other sources of electrical energy; however, the ideal source combined
with additional combinations of impedance elements are frequently used in modeling.
These battery models aim to find relationships between currents and voltages.

Open-circuit voltage (OCV) is frequently used to estimate the state of charge (SOC).
The OCV is the difference of the electrical potential between the two terminals of the
battery when there is no external load. The internal resistance of the battery is an impor-
tant parameter of an OCV that has nonlinear properties. The internal resistance depends
on the SOC of the battery, the battery temperature, and the method that is used to mea-
sure it. The modeling is also complicated by the observation that the OCV and SOC
relationship varies between batteries and is affected by temperature, capacity loss, and
activation polarization effects [1, 2, 3].

Several nonlinear equations have been developed to model the nonlinear part of the
OCYV circuit. These models typically include the hysteresis effect that causes the dis-
charge curve to be under the charging curve for the same amount of charge. We will
return to these models in Chapter 3.

Power computation

Energy can be saved on multiple levels in the hardware and software architecture. At
the circuit and transistor levels, energy can be saved by changing the voltage and fre-
quency of the circuit. The total power of CMOS logic circuits is determined by the
clock rate, the supply voltage, and the capacitances of the transistors. The larger the
capacitance, the more the transistors need to work to change the output charge. The
higher the source voltage, the more the output has to change. The higher the clock fre-
quency, the more power is wasted during switching. The capacitances are determined
during the chip design; however, the clock rate and voltage can be varied at runtime. By
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varying the clock rate and the supply voltage, it is possible to obtain linear and quadratic
improvements, respectively.
The overall power consumption is given by

P = Pgwieh + Psaic (2.6)

where Py, 18 the dynamic switching power and Py is the static leakage power.
The formula does not include the lost power due to the short circuit due to a transistor
switching that is a relatively small term in the dynamic switching power [4].

The CPU consists of transistors that can switch states every clock cycle. Each switch
of states between a complementary pair of transistors results in wasted power. Typically,
most of the gates in the CPU switch states every clock cycle. Thus the higher the clock
rate, the higher the amount of wasted energy. In addition to the clock rate, the voltage
also affects the power consumption of the CPU.

The dynamic switching loss is the power used by switching of the state of the
transistors. This loss can be determined using the formula

Powirch = x C x V2 x f, 2.7

where o denotes the switching activity, C is the average capacitance of the transistors,
V is the supply voltage, and f is the clock frequency [5]. The power consumption is
proportional to the product of the square of the supply voltage and the frequency. The
power consumption decreases quadratically with the reduction of the voltage. The for-
mula is not exact for modern chips, because memory circuits and static leakage current
also need to be taken into account.

The clock rate and the supply voltage are parameters for the energy optimization of
the CPU [6, 7]. Major energy savings can be made by adjusting either the supply voltage
or the clock rate or both of them at the same time. Indeed, dynamic voltage scaling is
widely used to improve the power consumption of battery-powered devices. Both low
voltage and lowered clock frequencies are used to minimize the power consumption of
components such as CPUs and DSPs.

The operating frequency has an approximately linear relationship with the operating
voltage given by the following equation [4]:

Viorm = ﬂl + ,32 anorma (28)

where B1 = Vi /Viuax and By = 1 — By. Vy, is the threshold voltage at which a transistor
conducts and begins to switch.

Figure 2.2 illustrates the relationships among the operating frequency, process com-
pletion time, and energy consumption. The process is executed on two different systems
at different voltage and frequency levels. The top process runs at high frequency and is
completed quickly. The lower process runs at a halved processor frequency and supply
voltage and takes much longer to complete. The lower frequency and supply voltage
lead to a smaller energy consumption [7]. Suppose that the new frequency is f/2, then
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from Eq. (2.7) we obtain the new switching power

v\’ 1
P;witch =axCx <5> X]% = gpswitch- (29)

Now, the completion time, 7', of the process is doubled for the lower frequency:

/
switch —

Plin X T x2= éPswmh xTx2= %Pswitch x T, (2.10)
giving an improvement of 1/4 with the lower frequency while significantly increasing
the execution time of the task. To compensate for the performance loss, we can divide
the task into two subtasks and run these in parallel using two cores. The dynamic power
can decrease by a factor of two compared to the original case.

Running a task at a slower speed saves energy; however, it will take longer to exe-
cute the task thus affecting the performance. Voltage and frequency scaling can help to
reduce the energy cost of the CPU; however, it may also increase the energy cost of
the overall device due to hardware subsystem usage. Dynamic voltage and frequency
scaling favor parallelism and having multiple voltage/frequency scaled cores executing
tasks.

Power loss

There are two types of power loss in a CPU chip, resistive loss and leakage. Resis-
tive loss occurs in the conducting lines of the chip and increases when the line width
decreases. The chemistry of the metal contributes to the resistive loss. Leakage is
caused by quantum tunneling of the electrons through the transistor insulating layers
and between interconnections.

Leakage power is a dominant consumer of power in the CPU. The leakage depends
on the supply voltage and the area of the gates:

Pleakage x V x Area. (21 1)
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A linear decrease of voltage results in a quadratic decrease of the switching loss;
however, it only results in a linear decrease of the static leakage. Thus static leakage
can become dominant with low-voltage integrated circuits with a high density of tran-
sistors. If voltage scaling is not useful due to the dominant role of the leakage power,
the processors will become less power efficient.

To address leakage, mobile SoCs are typically designed to allow portions of the
chip to be powered off through power gating. Modern SoCs consist of multiple power
domains that can be switched off when necessary.

Radio power

A radio’s transmit and receive power is typically measured in the power ratio in decibels

(dBm) with reference to one milliwatt. This unit is a convenient measure of absolute

power, because it can express both very large and small values. The dBW is a similar

unit referenced to one watt. Since dBW is referenced to the watt, it differs from the

decibel (dB) that is a dimensionless unit used for assessing the ratio between two values.
The power, P, can be converted to dBm with the formula:

x =10 x log 10(1000P). (2.12)

Similarly, the dBm value of x can be converted into watts:

1
P=
1000

x 1010, (2.13)

Table 2.1 gives example dBm values and the corresponding power levels.

The received signal strength indicator (RSSI) is an important metric in wireless com-
munications that measures the amount of energy associated with the received bits. RSSI
is an indicator of the RF signal strength received by the device. RSSI is vendor specific
and typically it is indicated in dBm or percentages. For example, the 802.11 standard
does not define any mapping between RSSI and the power consumption.

The ambient level of radio energy on the specific channel, the noise floor, should
be understood. Ambient noise can stem from microwave ovens, Bluetooth, and other
devices.

The signal-to-noise ratio (SNR) measures the level of a signal to the level of the
background noise. SNR is defined as a logarithm of the ratio of signal power to the
noise power, given in the following equation

(signal power
O — Wy

- > = log (signal power) — log(noise power). (2.14)
noise power

The signal levels in wireless cellular communications are typically given in dBm. The
RX level denotes the power of the received cellular signal and the TX level corresponds
to the transmission power of the cellular communications. The RX levels are typically
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Table 2.1. Example dBm values

dBm Power Example
60dBm 1kW Combined radiated RF power of microwave oven
33dBm 2W Maximum output of a Power Class 1 3G phone

27dBm 500 mW  Typical cellular phone call

20dBm 100 mW  Bluetooth Class 1 radio (range up to 100 meters)
15dBm 32mW Typical Wi-Fi transmission power

4 dBm 2.5 mW Bluetooth Class 2 radio (range approx. 30 meters)

0 dBm 1 mW Bluetooth Class 1 radio (approx. one meter range)

from —30 to —120 dBm and for TX the levels are given in positive dBm. For RX a
lower value means a poorer signal and for TX a higher value means higher transmission
power.

Duty cycle

Many devices have a dynamic power demand, for example smartphones and embedded
sensing devices. These devices have an idle or sleep power consumption of the order
of micro-watts and their active peak power consumption can be of the order of watts.
The difference between these two modes, idle and active, can be several orders of mag-
nitude. The battery and power delivery system must support these wide power-demand
bandwidths.

Figure 2.3 illustrates the duty cycle that is defined by the active time as a proportion
of the total time duration of the cycle. Given a periodic event, the duty cycle is the ratio
of the duration of the active state, T,, to the total duration of the cycle, T

D=T,/T. (2.15)

Figure 2.3 illustrates the transition between the idle and active states and the corre-
sponding times 7}, for active and T for sleep states for the duration T = T}, + T;. The
power spent during time, 7, can be determined as the power consumption of the states
P, and P; for the active and idle states. The power consumption of the duty state is
significantly larger than for the idle state. The average power consumption is given by

P, T, +PT;
Pcmgz F p;‘ — . (216)

The duty cycle is very important for wireless communications that typically have at
least three states: idle, transmitting, and receiving. The latter two states are the high-
power states of wireless radios. The overall power can be optimized by making the
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Example of a duty cycle

duty cycles short so that the device spends most of its time in a lower power state and
minimizes the time in the high-power state. For example, with the wireless example, the
radio would have longer intervals between transmissions and receptions and keep the
active states as short as possible. Minimizing the duty cycle is also crucial for sensing
applications.

A modern smartphone consists of many subsystems that have their own duty cycles.
The duty cycle parameters can, in many cases, be changed through software, allow-
ing possible energy improvements. Microcontrollers are responsible for managing
various sensors and typically the low-level code is event-driven to avoid polling that
can be harmful for performance and has a high overhead. Recently, hardware-based
sensor hub solutions have been introduced to even further optimize many on-device
sensors. The Samsung Galaxy S4 has an Atmel AVR microcontroller-based sensor
hub solution that gathers and processes data from the onboard sensors in real-time.
With this kind of coordinated hardware-based solution, it is possible to optimize
the duty cycles of the various sensing subsystems. On the other hand, this solu-
tion makes it difficult to model the device and allow third-party applications to tune
system parameters.

Mathematical tools

This section discusses mathematical tools for characterizing data and identifying mean-
ingful data properties. We start with a simple example of statistical significance and
error, and follow with increasingly advanced tools.

Error, deviation, and statistical significance

With any experiment in any area of natural science, published results should be
accurate and reliable. When measuring variable quantities like energy consumption,
measurement errors can occur. Typically, hardware measurement devices come with
specifications of how small the error is guaranteed to be, such as £ 2 mA. However, the
energy consumption can also vary during the measurement, giving different values even
if the error was negligible. Therefore, a sufficient number of repeats for each experiment
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is required. Using the average of many experiment runs minimizes the error caused by
natural variance of the underlying system. The standard deviation or error of the mea-
surements should be mentioned together with the average when publishing the results.
With large errors, few conclusions can be made from the result.

Statistical indicators example

Consider the following example. We connect a power meter with high accuracy and
sampling rate to a smartphone. Assume that the measurement error of the power meter
is = 8mW. We run an experiment where the phone screen is on, the phone is connected
to the Internet via Wi-Fi, and is otherwise idle. We then measure the average power
consumption over 10 minutes. We repeat the experiment five times. Assume we get the
following results:

1301 mW
1112 mW
978 mW

1212 mW
1155 mW

ARl

Our mean (average) power consumption m, would be 1151.6 mW. The average error
or deviation from the mean is given by the formula

n

1
E = - i — 1y, 2.17
rrory " Z |xi —m ( )

i=1

where x; is an experiment result and 7 is the number of results, 5 in our case. Our error
would then be % x (|1301 — 1151.6] + [1112 — 1151.6] 41978 — 1151.6| + 1212 —
1151.6] 41155 — 1151.6|)= 85.28 mW. This error is small compared to the mean, ~
7.4%, so the result s statistically significant. If our measurements were widely different,
the error would be larger than the average, and the results would not be reliable.

Another commonly used measure of reliability is the variance and its square root, the
standard deviation. The variance of our results is calculated in a similar way to the error,
but each difference from the mean is squared:

ln
Vary = — - —my)>, 2.18
arx ”;(x my) (2.18)

The variance of our results is therefore Vary = 11537.04 mW and the standard
deviation o = 107.41 mW.
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Linear regression

Equation (2.19) shows a general form of a linear regression model with p predictor
variables [8].

fo0=Po+ > Bigixij). (2.19)

J=l.p

where gi(x;;) is a preprocessing function of the original value of the predictor
variable x; ;.

Given n observations including the values of p predictor variables and the values
of the corresponding responses y; (i = 1..n), the values of the intercept, By, and each
coefficient, B; (j = 1..p), are automatically adjusted during the model fitting toward a
model in which the response can be the best predicted from the predictor variables.
After the model is built, given the values of the predictor variables, the estimated power
consumption will be found.

Prediction techniques

We introduce two predictive models that are widely used in context prediction for
context-aware power management. One is a linear predictive model called ARIMA
(Autoregressive Integrated Moving Average), while the other is called NFI (Newton
Forward Interpolation). The first one requires offline model training, while the other
one can be used for online prediction without offline training.

Autoregressive integrated moving average (ARIMA)

Classical linear time series models are based on the idea that the current value of the
series can be explained as a function of the past values of the series and some other
independent variables. ARIMA is one of the most famous linear predictive models used
for network prediction. ARIMA is an integration of three models: an autoregressive
model of order p, a moving average model of order ¢, and a differencing model of
order d.

According to the definition in [9], a process, X; , is said to be ARIMA (p, d, q) if

@(B)(1 — BY'X, = 0(B)w, (2.20)

where B is a backward shift operator, ¢(B) is an autoregressive operator, 6(B) is a mov-
ing average operator, and w;, is assumed to be Gaussian white noise. The three operators
can be expressed as below.

BX, = X,_y, (2.21)
9B)=1—¢1B—@:B> —--- —,B" (¢, <> 0), (2.22)
0(B)=1+06,B+6,B>+...+6,B1(0, <> 0) (2.23)

where ¢;...¢, and 6;...6, are constants.
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Let Y(t) be the predicted context value at time, 7, and Y (7 — i) be the observed context
value at time (f — i) . The time series of the context is considered to be an ARIMA
(p, d, g) model if

d p q
YO =p+) Yt—i)+ed Ye—i)—0) elt—i), (2.24)

i=1 d=1 i=1

where e(f — i) is the residual of prediction at time (t — i) and p is the intercept.

The values of p, d, and g are identified based on the analysis of the autocorrelation
function (ACF) and the partial autocorrelation function (PACF), while the estimation of
parameters 6, ¢, and p are based on the least squares method which aims to minimize
the mean square error (MSE) of residuals as shown in Eq. (2.25).

MSE = E(Y(t) — Y(1))? (2.25)

Newton forward interpolation (NFI)
The observation at time, x, in a time series is defined as a function f(x), and the values
of x are tabulated at interval / as shown in Eq. (2.26).

xX=xo+ixh, (2.26)

where the first value of x is xy and i is the number of intervals between x and xo. When
only a few discrete values of f(x),i =0, 1,2, ... are known, NFI aims to find the general
form of f(x) based on known values by using the finite difference formulas.

Let f; = f(x) =f(xo + i x h), and the finite forward difference of a function is defined
by Af; =fi;1 — fi . Higher orders, such as the jth(j < i) order forward difference A'f;,
can be obtained by repeating the operations of the forward difference operator j times.
For example,

Afo=hi —fo, A%fo = AA) = o = 2fi + o (2.27)

The NFI model fits the observation at time x with an i;, degree polynomial as below.

A 1 A?
J@)=fo+ (X—xo)% + E(X—Xo)(x—xl)h—zfo
’ , (2.28)
1 AV
o (i—1)! (x — x0)(x — x1). --(X—Xz—l)T

When only the past i observations are known, up to the (i — 1)tk order forward dif-
ference can be developed. The prediction of the SNR at time x, corresponding to the
(i+ D)th observation, is defined as a function g(x).

A 1 A2
g(x) =f0+(x_x0)%+5(X—Xo)(X—x1)h—'2fO
' . (2.29)
1 Al—lfo
+ - —!(x—xo)(x—xl). ..()c—)ci,z)F

(i=1
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Compared to f(x), the error term, e(x), is approximated as Eq. (2.30).

ANy
N

1
e(X)=fi—g) = ﬁ(x —x0)(x —x1)...(x —xy_1) (2.30)

Unlike ARIMA, NFI can predict future values online directly based on past observa-

tions without offline training. Since the prediction accuracy of NFI depends on the size
of N, the size of N can be selected by applying the least squares method to the training
data sets as used in ARIMA model fitting.

Summary

In

this chapter, we presented a primer on the concepts relating to energy and power:

The two key concepts are energy and power. The energy cost of a task can be mea-
sured by the power, P, and the time duration of the task, 7', by E = PT (Eq. (2.2)).The
energy cost of an arbitrary task can be determined by integrating the power over time.
The energy content of a battery is typically given in ampere-hours (Ah).

The clock rate and the supply voltage are parameters for the energy optimization of
the CPU. Major energy savings can be made by adjusting either the supply voltage or
the clock rate or both of them at the same time.

The ideal voltage source combined with additional combinations of impedance ele-
ments are frequently used in modeling (open-circuit voltage (OCV)). These battery
models aim to find relationships between currents and voltages.

A duty cycle determines the active time of a device or a subsystem. The duty cycle is
very important for wireless communications that typically have at least three states:
idle, transmitting, and receiving.

The key mathematical tools include error, standard deviation, statistical significance,
linear regression, and ARIMA and NFI.
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3.1

Smartphone batteries

In this chapter we give an overview of smartphone batteries and their modeling. Battery
models are important when the remaining battery capacity needs to be estimated. In this
chapter, we give an overview of smartphone Li-Po batteries, their static and dynamic
parameters and characteristics, and charging technology, and then consider techniques
for assessing and modeling a battery SOC.

Overview

Figure 3.1 presents an overview of the Li-ion battery charging and discharging process.
Current is carried by lithium ions (Li+) that move from negative (anode) to positive
(cathode) electrodes during discharging. The lithium ions move in the reverse direction
when charging the battery. The ions move through the non-aqueous electrolyte and the
separator. Applying a charge places the battery in a closed circuit voltage, in which
the voltage behavior is set by the internal battery resistance. Charging and discharging
distorts the battery and it can take up to 24 hours for the battery to stabilize.

Battery life is proportional to the active reaction sites across the cathode. When the
discharge current is low, inactive reaction sites are uniformly distributed over the vol-
ume of the cathode. When the discharge current is high, the volume of inactive sites
at the outer surface of the cathode is large, causing active sites to become unreachable.
As a consequence, the battery capacity is reduced at high discharge rates. When a high
current is drawn from the battery, the diffusion rate cannot match the rate at which ions
are being absorbed at the cathode. Thus the concentration of positively charged ions
diminishes near the cathode while increasing near the anode. This change in the con-
centration causes the voltage to drop. If the battery is allowed to rest, diffusion causes
the concentration gradient to decrease resulting in the recovery of charge.

Lithium batteries have been investigated since 1912; however, the commercialization
of the technology started in the early 1970s. The batteries first used lithium metal on
the anodes that was later observed to be an unstable anode material when charging.
This called for a non-metallic solution and lithium ions proved to be a more stable and
efficient solution although Li-Ion batteries require safety measures when charging and
discharging. The first commercial Li-Ion battery was released by Sony in 1990. The
Li-Ion battery technology has become very successful since the 1990s, and today most
portable devices use these batteries. Improved material developments have increased the
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energy density from 75 to 200 Wh/kg and the cycle life of the batteries has increased as
well. Li-Ion batteries have efficiencies very close to 100% [1].

Lithium cobalt oxide is a frequently used compound in smartphone Li-Ion batteries;
however, there are many other compounds that have their own advantages and disad-
vantages. The voltage of a typical Li-Ion battery is 3.6 V or 3.7 V, the specific energy is
130-200 Wh/kg with cycle lives of up to 1000 and more depending on the technology
[2, 3]. The self-discharge rate of Li-Ion batteries is low, between 5 and 10%. Moreover,
Li-Ion batteries do not suffer from the memory effect found in nickel-cadmium (NiCd)
and nickel metal hydride (NiMH) batteries, in which the batteries require full discharge
cycles. The main drawback of Li-Ion batteries is that they require protection circuits to
be built into the batteries.

Lithium polymer (Li-Po) batteries have become a very popular solution for smart-
phones. Li-Ion and Li-Po batteries have similar characteristics with the key difference
being the electrolyte state that is liquid in Li-Ion and polymer gel in Li-Po. The Li-Po
batteries can be shaped better due to the polymer gel and thus they are the preferred
technology for smartphone and mobile device batteries [2]. The thin form-factor and
packaging materials with the current Li-Po implementations allow for a small increase
in the energy density; however, the production cost is increased as well.
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Battery properties can be characterized by static and dynamic parameters. The for-
mer defines the physical characteristics of the battery, such as the nominal voltage
and cycle life. These characteristics stem from the electrochemical nature of the bat-
tery. The latter, on the other hand, defines the parameters that affect the runtime
usage of the battery, most importantly charging and discharging of the battery.

Static battery parameters

The static battery parameters define the physical characteristics of the battery. These
parameters are defined and tested by the manufacturer of the battery. When the chemical
construction of the battery is complete, it is programmed with the static information
such as the maximum voltage and capacity.

Important battery parameters are [2]:

* Theoretical voltage: the theoretical voltage is determined by the electrode materials.

* Nominal voltage: the normal voltage of the battery measured across the positive and
negative terminals of the battery The nominal voltage is what can be achieved in
practice whereas the theoretical voltage cannot be achieved due to battery properties.

e Specific energy: the amount of energy in watt-hours (Wh) per unit mass (kg) that the
battery can deliver.

e Cut-off voltage: the minimum voltage for the battery that defines the empty state.

e Capacity or nominal capacity: the total ampere-hours available when discharging the
battery at a certain discharge current. The discharge current is typically specified as a
C-rate from a full state of charge to the cut-off voltage.

e Maximum continuous discharge current: the maximum current draw for the battery.

e Energy or nominal energy: the total watt-hours available when the battery is dis-
charged at a certain current specified by the C-rate from a full charge to the cut-off
voltage.

e Cycle life: The number of discharge—charge cycles the battery supports before it fails
to meet the specific performance requirements. Typically cycle life is defined as the
number of discharge—charge cycles before the battery reaches 80% capacity [4]. The
cycle life is specific for charge and discharge conditions. Li-lon AND Li-Po batteries
typically sustain from 400 to 1000 cycles.

o Self-discharge rate: the battery slowly discharges energy even if it has no load because
of the electro-chemical reactions. The rate of this energy depletion is called the self-
discharge rate. Li-Ion and Li-Po batteries typically have small self-discharge rates.

e Shelf-life: the battery shelf-life is the time that a battery can be stored in an inactive
state before the capacity reaches 80%. The battery depletion in the inactive state is
due to the loss of active materials.

The discharge current is often expressed as a C-rate that normalizes it against the
battery capacity. A C-rate is a measure of the discharge rate relative to the maximum
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capacity of the battery:

=M x C,, 3.1

where [ is the discharge current, C denotes the C-rate in ampere-hours, n is the time for
which the C-rate is the determined, and M is a constant factor of C.

For example, a C-rate of 1, denoted by 1 C, states that the discharge current will
empty the battery in 1 hour. A rate of 0.1 C means that the battery is emptied in
10 hours or 10% discharge per hour. For a 2500 mAh battery a C-rate of 0.5 C
means discharging the battery for two hours with a 1250 mA current. Li-Ion/polymer
batteries are electronically protected against high discharge currents. Depending on
the battery type, the discharge current is limited somewhere between 1 C and 2 C.

Dynamic battery parameters

Dynamic battery parameters determine the runtime usage, operating environment, and
operating condition of the battery. Important variables for describing battery condition
include the following:

State of charge (SOC) gives the battery capacity in percentages.

State of discharge (SOD), or depth of discharge (DOD), gives the capacity that has
been discharged as a percentage of the maximum capacity. A discharge to 80% or
more DOD is said to be a deep discharge.

Terminal voltage gives the voltage between the battery terminals with load. The
terminal voltage varies with the current and SOC.

Open-circuit voltage (OCV) defines the voltage between the battery terminals with
no load. OCV depends on SOC and increases with the charge.

Internal resistance gives the resistance in the battery. Increasing internal resistance
reduces battery efficiency as more heat is produced.

Service life gives the time that a battery can be used in various operating conditions
(loads and temperatures).

State of health (SOH) is a figure that represents the health of a battery. A SOH
value of 100% means that the battery’s condition is ideal. A smaller value means
that the battery performance degraded from the ideal condition defined by battery
specification.

Temperature

The battery temperature during discharging has a significant effect on the capacity
and the voltage. Temperature affects the internal resistance and increases the chemi-
cal activity of the battery. With higher temperatures, the internal resistance decreases
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and the discharge voltage increases as well as the capacity and power. However, high
temperatures increase the self-discharge effect resulting in reduced capacity. Lower tem-
peratures, on the other hand, result in a decrease in capacity due to slowing of the
chemical activity.

The internal properties of the Li-Ion battery have an Arrhenius dependence on tem-
perature. The relationship is given by Eq. (3.2), in which ® represents the conductivity
of the electrolyte. ®,,; and T, denote the values at a reference temperature. E,(P)
denotes the activation energy of the evolution process and the sensitivity of & to
temperature [5].

o— E(D) /1 1
=Cwexp | == (777 (3.2)

Battery age and service life

Batteries are based on chemical reactions that deteriorate over time. The chemical
properties as well as the operating and storage temperatures and the discharge behav-
ior affect the performance and capacity of the battery. Low temperatures decrease the
self-discharge as well as discharge behavior.

A rechargeable battery sustains a certain number of charge—discharge cycles before
the battery is exhausted. An internal cycle counter within the smart battery keeps track
of the cycle count. The cycle count is incremented when 70-80% of the capacity has
been used from a full charge. Intermittent charging is not taken into account.

The service life gives the length of time that a battery is expected to operate. In an
ideal setting, the service life of a battery would simply be the capacity of the battery
divided by the load in terms of current [6]. This simple approach does not work in real-
istic situations, because it does not capture the various nonlinear effects of the battery,
including the internal resistance, temperature, and age.

The service life of a battery can be approximated in a given discharge setting.
Peukert’s equation is frequently used to assess the service life under constant load [2]:

nlogl +logt =1logC, 3.3)

where [ is the discharge rate (the load), ¢ is the time, and 7 is the slope of the line.
It should be noted that the curve is linear on a log—log plot with the exception of the
ends, where there are nonlinear artefacts due to battery limitations with high rates and
self-discharge at low rates.

Peukert’s equation has been found to be reasonably good for predicting service times
for constant loads. The model can be extended for non-constant loads by replacing the
constant, /, by a function representing the discharge distribution. In addition to Peukert’s
equation, a number of modeling techniques have been proposed, such as analytical
diffusion models, the Kinetic Battery Model, and various stochastic models [6].
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State of health

Battery diagnostics is important for ensuring proper battery operation. The performance
of a battery varies with time, charging and discharging patterns, and the operating envir-
onment. As the battery ages, the performance reduces because of changes in the battery
chemistry [7]. In addition, many different harmful events can result in battery damage,
such as over-voltage, over-charging, and over-depleting the battery.

The SOH is a figure that represents the health of a battery. A SOH value of 100%
means that the battery’s condition is ideal when compared to the battery’s specification.
The SOH value of a battery is typically maximum when it is manufactured, but this
value decreases over time due to usage. The SOH value is useful in deciding when to
replace a battery as well as in determining the battery’s service life.

A battery management system within the smart battery evaluates the health of the
battery and determines the SOH value. The system uses a combination of battery
parameters to make this estimation. These parameters include the capacity, voltage,
self-discharge, number of cycles, and internal resistance.

The two main methods for determining the SOH for Li-Ion batteries are the
impedance- and capacitance-based techniques [8]. In the former technique the
impedance is measured for a new battery, Ry, is the initial measurement, and then
the measurement is repeated to capture battery aging effects with R; for the ith
measurement. The SOH is then given by the following equation in percentages:

R:
SOH = — x 100. (3.4)
Ro

In the latter technique, the SOH is determined based on capacitance instead of
impedance. In this case, Cy is the initial battery capacitance and C; is the ith capacitance
measurement:

SOH = E: x 100. (3.5)
Co

The full discharge test estimates the SOH by first fully discharging the battery and
measuring the charge delivered by the battery, and then comparing this value to the
charge delivered when the battery was new [7].

For a new, fully charged battery both the SOH and SOC are at 100%. When the
battery is discharged, the SOC gives the percentage of the remaining capacity and the
SOH describes the full charge that can be obtained from the battery.

Smart hatteries

Today’s smartphone batteries have hardware interfaces for reading both static and
dynamic parameters. Batteries that have such interfaces are called smart batteries. A
smart battery is a battery that has special hardware for monitoring its internal state
and environment. A battery typically has five terminals: namely the plus and minus,
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The heart of a smart battery is the fuel gauge IC. The fuel gauge typically measures
the battery voltage, temperature, and sometimes current. Based on the measure-
ments, the chip estimates the SOC and SOD. For example, the Maxim MAX17040
uses the voltage and temperature for capacity estimation based on its internal battery
model [9]. Another technique is to use an internal current sense resistor to estimate
the amount of charge discharged from the battery [10].

clock, data, and a safety signal. The safety signal typically consists of the operating
temperature of the battery.

The monitoring hardware typically estimates the voltage, current, and temperature
of the battery. These basic variables are then used to estimate the SOC and SOH. This
information can be accessed over a low-power serial bus, such as the SMBus (System
Management Bus). A smartphone or a smart battery charger can access this information
over the bus and make decisions regarding the battery.

The smart battery exposes registers that store parameter values. These registers are
updated periodically with new values. The smartphone OS and its drivers can access
these values through the serial bus. The access cost in terms of energy consumption is
negligible [9].

The smart battery interfaces vary from device to device. For example, some smart
battery units are instrumented with the selection of a suitable sense resistor. A higher
resistance value will result in a smaller error but higher power dissipation. Therefore
the sense resistor size is typically chosen to be as small as possible in smartphone
designs [10].

Table 3.1 presents the update rate, sampling rate, resolution, and error for three fre-
quently used smart battery units. The update rates of the interfaces are limited and are
typically well below 4 Hz. The resolution and error vary between units. The instant
battery readings have been demonstrated to have a high error [9].

The limitations of the smart battery, namely update rate and accuracy, can be partly
addressed in software. One solution is to average across several smart battery read-
ings. This increases the accuracy at the price of a reduced update rate [9]. The second
solution is to detect the battery update rate and synchronize measurement operations
on the device [11, 12]. We discuss these techniques in Chapter 10.

The smartphone and the charger typically access the following information from the
smart battery interface:

Static parameters for voltage, current, and temperature.

Dynamic voltage, current, power, and temperature. Estimation of the SOC and SOH
Battery cycle count.

Battery design capacity.

Remaining time to full charge.

M
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Table 3.1. Example smart battery interfaces

Battery unit Update rate  Sampling rate Resolution Error
Maxim DS2784 0.28 Hz 18.6 kHz 104 n A +1%.
(Google Nexus One)
Maxim 2 Hz 32 kHz internal ~ Voltage: 1.25 mV  £+12.5 mV
MAX17040 clock SOC: 1/256%.
(Samsung Galaxy
Nexus)
TI BQ27200 0.39 Hz 100 kHz internal 2.7 mv +25 mV, Current
(Nokia N900) clock gain variablility
+0.5%

6. Remaining run time.
7. Manufacturer and product information.

Chargers

The energy supply of a rechargeable battery is replenished in the charging process that
takes charge into the battery. Charging is implemented by a charging device, the battery
charger. The charger needs to monitor the battery during charging to prevent overload
and thus safety is one key design goal for chargers. In addition to safety, the charging
process needs to be efficient and fast. The charger has the following key functions [2]:

e Taking charge into the battery in the charging process.
® Monitoring and stabilizing the charging rate to optimize the charging process.
e Terminating charging when the maximum charge has been taken to the battery.

Charging process

Li-Po and Li-Ion batteries are typically charged with the constant current (CC) or con-
stant current/constant voltage (CC/CV) schemes. In the CC method, the charger varies
the voltage to maintain a constant flow of current to the battery. The charging pro-
cess ends when the voltage reaches the full charge level. In the constant voltage (CV)
method, the charger is a DC power supply for the battery. The standard method to charge
a Li-Ion or Li-Po battery is to combine the CC and CV methods [3]. In the CC/CV
charging method, the charging current needs to be near the C-rate of the battery. This
means that the charger must be capable of safely giving current at the C-rate. A lower
charging rate is also possible, but will result in a longer charging time.
The CC/CV method consists of four stages, as illustrated in Figure 3.2 [3, 4]:

e Stage 1: Voltage rises with constant current to the maximum voltage. The charge rate
is typically between 0.5 C and 1 C. This stage ends when the voltage peaks after
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Four charging stages

which the next stage starts. The SOC is about 60—85% at this point and the next stage

slowly increases this toward the maximum.

e Stage 2: The battery is saturated in this stage by applying a constant voltage (typically
4.2 V) causing the current to drop. The current waveform resembles an exponential

decay.

e Stage 3: Charging is terminated when the current drops below 3% of the rated current.
e Stage 4: If the device is in the charger, a topping charge may be applied to compensate

for the self-discharge.

Charger circuit

Figure 3.3 presents an overview of the battery charger circuit. The charger measures the
voltage and follows the above stages 1 to 4. First the voltage rises with constant current
and then the battery is saturated. The battery is fully charged when the voltage reaches
4.2 V and the drop across the resistor is negligible. At this point there is only a very

small current going into the battery [13].

The charger measures the voltage, Vp, at the terminals of the battery. This voltage is
the sum of the voltage drop, Vg, across the internal resistor (equivalent series resistance)
and the battery cell voltage, V. The following equations describe the voltage of the

battery during charging [13]:
VR = IC X R,

VB = VC X VR,
VB = Vc+(1c XR).

(3.6)
(3.7)
(3.8)
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Table 3.2. Summary of USB charging specifications

Standard Voltage  Maximum current

USB 1.0 and 2.0 5V 500 mA

USB 3.0 5V 900 mA

USB Battery Charging 5V 1500 mA
specification 1.0 2007

USB Battery Charging 5V 5000 mA

specification 1.2 2010

[ Battery

Vr %
Ve Charger
+

.

Charger circuit

In addition to CC, CV, and CC/CYV, pulsed chargers charge the battery in pulses. The
rate is controlled by adjusting the length of the pulses. A rest period between the pulses
is used to allow the battery to stabilize.

USB charging

The mobile phone industry has agreed on a standard for charging mobile phones with a
micro USB connector. These chargers use 5 V for charging and the smart controller is
inside the phone rather than in the charger [14]. The controller monitors the voltage and
other parameters during the charging process. The USB socket consists of four pins:
two inside pins for data and two outside pins provide the 5 V power supply. The current
provided by the USB power supply depends on the type of USB port. The USB Battery
Charging Specification of 2007 defines three different port types: a downstream port,
a charging downstream port, and a charging port. The last one is used by USB wall
chargers. With the older USB 1.0 and 2.0 standards, the downstream port can deliver up
to 500 mA and with USB 3.0 up to 900 mA. The charging downstream and charging
ports can deliver up to 1500 mA. The maximum current for the charging downstream
port was increased to 5 A in the 1.2 version (2010) of the specification. There are several
USB extensions, such as the USB Power Deliverable specification, that increase the
charging power of the basic connector. Table 3.2 gives a summary of the USB charging
specifications.
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A study of over 4000 Android users indicated that AC-based wall chargers are the
popular choice for overall phone charging with the exception of short charges where
non-AC USB is much more popular [15]. USB, as reported by the Android API, was
used 39% of the time for charging mobile phones.

The USB interface is frequently used for charging; however, older versions of it
could only support currents up to 1.5 A. A 2500 mAh battery can be charged in
two hours with a charge rate of C/2 = 1250 mA. The same battery needs four hours
to charge with C/4 = 625 mA. This simple example illustrates the impact of the
charging rate; however, in practice this analysis does not apply to Li-Ion and Li-Po
batteries, because the C-rate changes during the charging process.

Wireless charging

In addition to USB, wireless charging has also become more popular. The main com-
ponents of a wireless charging system are a power transmitter and a receiver. A stable
power source, typically an AC line, powers the transmitter. The receiver, on the other
hand, is located on a mobile device powered by a battery. The transmitter then sends
power wirelessly to the receiver.

This technique is based on charging that uses an electromagnetic field to transfer
energy to the smartphone’s battery. Energy is sent through an inductive coupling within
a charging base and the smartphone to transfer energy from the base to the mobile
device.

Standards such as the Wireless Power Consortium (WPC)! established in 2008 and
the Alliance for Wireless Power? established in 2012 are now being implemented in
commercial products. WPC’s Qi is supported by many Android and Windows Phone
smartphone manufacturers and it supports the transfer of power over distances of up to
4 cm. This system is based on a power transmission pad and a receiver in a portable
device.

Charging behavior and cycle age

In addition to the charging current, the charging behavior of the mobile phone user also
plays an important role for the longevity of the battery. Mobile phones are typically
recharged when the battery SOC reaches an average low level of 30% of the battery
capacity [15]. This charging behavior is beneficial for Li-Ion and Li-Po batteries used
in the phones and the number of cycles is increased by a factor of 5 to 10 [4].

! http://www.wirelesspowerconsortium. com accessed January 6, 2014.
2 http://www.rezence.com accessed January 6, 2014.
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To increase the cycle life a battery [4]:

e Recharge the battery when it reaches below 30% SOC. This extends by the cycle
life a factor from 5 to 10.

® Avoid full discharge cycles and charging to 100%.

e Select a charger with a minimum charge current termination, as this also helps to
avoid charging to full capacity thus increasing the cycle life.

* Avoid extreme battery temperatures that are harmful for the internal chemistry of
the battery.

Discharge current

In an ideal case, a battery is exhausted by discharging it at the theoretical voltage defined
by the electrode materials of the battery. The battery is discharged until its capacity is
fully used and the voltage drops to zero. In practice, when a battery is discharged, its
voltage is below the theoretical voltage due to the properties of the battery [2]. This
difference is due to the internal resistance and processes, such as the polarization of
active materials and the accumulation of discharge products, that occurs during dis-
charge. The energy stored by a battery is not in practice fully used due to the average
discharge voltage being lower than the theoretical voltage, and because the battery is
not fully discharged to zero volts.
The two key nonlinear battery effects are [6]:

e Rate capacity effect, in which the voltage drops faster for high discharge currents.
This means that an increase in the discharging current results in a decrease in the
discharging efficiency.

® Recovery effect, in which the battery recovers during idle periods resulting in an
increase in voltage. This is visible in a sawtooth pattern in the discharge curve.

Figure 3.4 illustrates the discharge curve of the Li-Ion battery. The curve is monoton-
ically decreasing. The energy capacity and discharge curve of the battery are affected by
the discharge current, temperature, battery age, and the nonlinear effects. As the current
is increased both the voltage and capacity are reduced.

The discharge process can be characterized through three key discharge modes: con-
stant resistance, constant current, and constant power. In the first, the external resistance
is fixed and the current and voltage vary with time following the equation V = IR.
The current decreases in proportion to the decrease in battery voltage due to internal
resistance. In the second, the current remains constant and the C-rate describes the dis-
charging. In the third, the power, P = IV, is constant resulting in increasing current to
compensate for the decreasing voltage due to internal resistance. Comparing these three
modes, the voltage drops fastest for the constant power mode resulting in the smallest
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charge capacity. Discharging at a constant external resistance gives the largest charge
capacity.

In addition, the discharge type plays an important role. By discharge type we mean the
temporal discharge of the battery, for example whether it is continuous or intermittent. If
the discharge is intermittent, the battery will be in idle mode after a continuous discharge
allowing it to recover some battery voltage. This results in a sawtooth discharge in which
the voltage recovers during idle periods and decreases during discharges.

Smartphones operate with many workloads, so the discharge load changes thus affect
the battery voltage and the service time. Since the voltage recovers in the sawtooth
pattern, the overall service time is improved, resulting in a longer operating time. The
smart battery typically has a capacitor in parallel that provides instantaneous high cur-
rent. This helps the system to cope with intermittent discharge, such as the GSM pulse
mode communication. For GSM pulse mode, the high current pulse is of the order of
1 A and the low current pulse is 0.1 A. A basic smartphone typically operates in con-
stant power mode with an average current around 300 mA and maximum current peak
at 1 A[10].

Discharge efficiency

The discharge efficiency is defined as the ratio of the battery’s output current to the
degradation rate of its stored charge. As mentioned above, the rate capacity effect
describes the phenomenon that an increase of battery discharging current leads to a
decrease in the discharge efficiency. It is evaluated by an empirical equation, called
Peukert’s formula, as follows [2]:

T=—, (3.9)
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where C is the theoretical capacity (in Ah, equal to capacity at one ampere), / is the
current, 7' is the battery life, and n is the Peukert number for the battery.
The equation is often formulated to a known capacity and discharge rate:

k
T:H(%) ¢ (3.10)

in which H is the rated discharge time, C is the rated capacity for that discharge rate, /
is the actual discharge current, & is the Peukert constant, and 7 is the discharge time of
the battery.

If the Peukert’s exponent is known, it is possible to determine the battery capacity at
any given C-rate:

C k—1
ceffzc(E) . 3.11)

State of charge (SOC) and state of discharge (SOD)

The state of charge (SOC) of a battery gives the level of the charge in the battery in
percentages, in which 0% denotes an empty battery and 100% a full battery. The SOC
is typically determined by

SOC = (C, — Qp)/Cy, (3.12)

where C, is the nominal capacity and Q) is the net discharge.

As discussed in this chapter, the fuel gauge chip has an internal algorithm for
determining the SOC value. In addition, the battery driver software running on the
smartphone may apply corrections to the value given by the chip. Some fuel gauge chips
measure voltage, current, and temperature and allow the driver to obtain this informa-
tion. For example, the Maxim MAX17047 chip has registers for current measurement
values that can be read over the I?C bus.

The state of discharge (SOD), or depth of discharge (DOD), is an alternate form of
SOC, being its inverse. Thus, 100% SOD denotes an empty battery and 0% denotes a
full battery.

The discharge rate is an important measure of how fast the battery level, as measured
by the SOD, is being depleted per second. The discharge rate in percentages per second
is given by the following equation:

_ ASOD
VN

r

, (3.13)

where ASOD is the difference in the battery level during At.
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State of charge (SOC) measurement

The SOC is typically measured by indirect means with the exception of batteries that
offer access to the liquid electrolyte. In this case the SOC value can be determined based
on the pH level of the electrolyte. For other types of battery, there are in principle three
estimation techniques frequently used by commercial products:

e Load voltage: this technique is suitable for applications that have constant load.

e Coulomb or ampere counting: this technique estimates the difference between the
accumulated coulombs from the beginning of the discharge and the known full-charge
capacity. The technique has limited accuracy for variable loads, because it does not
take the nonlinear discharge effect into account.

e Internal resistance: this technique determines the battery state by measuring the
frequency response of the battery. This typically requires a testing period.

The load voltage and coulomb counting techniques can be combined for an overall
battery estimation technique that takes into account cycle counts and temperature. In
the following, we briefly outline the load voltage and coulomb counting techniques,
and their combination.

Load voltage

The load voltage technique is based on converting the battery voltage to the SOC with
a known discharge curve of the battery. Due to the internal properties of the battery, the
voltage is affected by the battery current and the temperature. A charge or discharge
changes the voltage so that it no longer represents the true state of charge. The voltage
reading can thus be made more accurate by applying a correction term that is propor-
tional to the current. In addition, the result can be further improved by correcting the
OCV to take the temperature into account. For accurate results, this technique may
require considerable time for a battery to attain equilibrium.

The SOC estimation typically relies on the OCV of a Li-Ion battery, more formally
SOC =f(OCV). This is complicated by the observation that the OCV cannot be directly
measured at the battery terminals. As a consequence, the SOC is calculated with only
the battery voltage and current at the terminals.

Coulomb counting

In coulomb counting the idea is to measure the current going in and out of the battery.
If we charge a battery for two hours at one ampere, we should have the same energy
available when discharging the battery with the exception of the energy that was lost
due to inefficiencies in the battery and the storage loss. The energy loss results in a
measurement error for this technique.

The coulomb counting technique determines the SOC by measuring the battery cur-
rent and integrating it in time. The main limitation of the approach is that full charge
should happen regularly, and when it does not occur often enough the error term
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increases. The technique needs to be recalibrated regularly, for example by setting the
SOC to full charge when charging has been completed.
The SOC can be calculated as

SOC =S0Ci — /(Ibat/cusable)dtv (314)

where C,;qp. depends on capacity fading [16], that is the irreversible loss of the capacity
due to temperature, time, and cycle number. Calendar life relates to losses when the
battery is inactive. Usable battery capacity is then

Cumble = Cinitial X CCFa (315)

where CCF = 1 — ( Calendar life losses + Cycle life losses).

Combined techniques

The load voltage and coulomb counting techniques are frequently combined to over-
come their specific limitations. Their combination has been observed to work well with
Li-Ton batteries [17, 18]. The battery current is integrated with the coulomb counting to
obtain the relative charge in and out of the battery. The voltage is measured to calibrate
the SOC. Many of the proposed combined estimation techniques rely on an electrical
model for the state of charge. A Kalman filter is then used to predict over-voltage and
improve the estimation accuracy [17].
A combined SOC can be obtained with the following equation [19]:

SOC =aSOC. + (1x)SOC,, (3.16)

where SOC, is the coulomb-counting based SOC and SOC, is the estimated OCV of
the battery. The parameter « € [0, 1] is a weighting factor.

Open-circuit voltage (OCV) models

For proper power management, we need reliable information on the power source and its
condition (remaining capacity, maximum rated capacity), and the power characteristics
with voltage, current, and SOC. This information is typically provided by the smart
battery interface; however, as we have observed in this chapter, the information provided
by the smart battery interface is typically coarse grained and has limited update rates. In
addition, battery parameters change as a function of the discharge rate and temperature,
and they are affected by factors such as self-discharge and battery age. Smartphones
have complex discharge profiles making parameter estimation more challenging.
Assuming that we obtain a power supply with unknown properties, there are two
basic measurements that can be carried out to probe the properties of this black box.
First, it is possible to measure the OCV across the terminals without any load. This
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measurement can be done with a voltmeter. This OCV denotes the highest voltage that
can be obtained from the power supply. When a load is applied to the battery, the voltage
across the positive and negative terminals decreases due to the internal resistance. The
second basic measurement is to determine the output current that can be determined by
short-circuiting the output terminals.

Equivalent circuit models are used to capture the properties and characteristics of
the battery. A battery circuit model typically consists of resistors, capacitors, and
voltage sources. An ideal voltage source typically represents the OCV and the rest
of the circuit represents the internal resistance and dynamic properties of the battery.
The SOC can be determined based on the measured OCV using a lookup table.
The OCV voltage is needed for estimating the SOC, because the SOC cannot be
determined directly with current sensing technologies.

The Rint model

Many OCV models have been proposed in literature. The simplest one is the Rint model
outlined in Figure 3.5 that has an ideal voltage source that defines the OCV. The terminal
voltage, V, can be obtained from the open-circuit measurement. The resistance, Ry, can
be obtained with an additional measurement with a fully charged battery with load at the
terminal. The model does not take into account the dynamic properties of the battery,
such as the electrolyte concentration and internal impedance.

The OCV and the resistance are both functions of the SOC and temperature. This
model does not take into account the transient behavior of the Li-Ion cells and thus it is
not useful for estimating the SOC in dynamic operation [20].

The Rint model is based on an ideal voltage source, OCV, that defines the OCYV,
the terminal voltage V, the resistance R, and the current /. This model is given by the
following equation:

V=0CV—-IxR. (3.17)

The Thevenin model

To address the limitations of the Rint model, many more elaborate models have been
proposed [20, 18, 17]. The Thevenin model is frequently used to extend the Rint model
to take into account the dynamic properties of the battery. This model is illustrated in
Figure 3.6 and it includes the OCV and the internal resistances and capacitances. The
internal resistance consists of the ohmic resistance, R, and the polarization resistance, r.
The equivalent capacitance, C, describes the transient response during charging and
discharging. V. is the voltage across C. The electrical behavior of the model is described
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0CV-SO0C relationship

Figure 3.7 illustrates the relationship between the battery voltage and the SOC. Energy
is lost in the charging and discharging process due to chemical hysteresis [3]. The actual
battery voltage depends on the SOC and when the battery is in an equilibrium state it
will be between the charge and discharge curves.

The OCV depends on the current SOC level; however, the OCV deviates from its true
value due to hysteresis. The observed voltage for a given SOC is greater than the OCV
after charging, and it is less than the OCV of the same SOC after discharging.

Figure 3.8 presents an example discharge scenario, in which part of the battery capac-
ity has been used. The difference between the actual discharge curve and the OCV curve
is explained by the load I x R and the dynamic properties of the battery. The expected
future discharge curve will meet the cutoff point before the OCV curve due to the load
and the dynamic battery properties [21].

It has been shown that there is a time-independent bijection between the OCV and
the SOC [19]. The OCV-SOC curve is nonlinear, but the SOC variations are expected
to be small with ordinary current rates. The OCV-SOC curve can be mapped with a line
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with slope b; and OCV intersection by [22]:
OCV =f(SOC)=b; x SOC + by. (3.19)

The parameter by is the battery terminal voltage when the SOC is zero and b; is
determined when by and OCV are known when SOC is at 100%. The challenge with this
approach is that the OCV measurement requires the battery to be disconnected from the
load. There are several proposals that relax this requirement and allow OCV estimation
under load conditions. We discuss this estimation in the following subsections.
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Lookup tables: from voltage to SOD

If the rated battery energy capacity, E, and the discharge curve of the battery are known,
then the energy draw can be estimated based on the following equation [23]:

P x (t; — ) = E x (SOD(V}) — SOD(V5)), (3.20)

where P is the average power in the time interval [¢, /2] and SOD(V;) is the battery state
of discharge (the inverse of SOC) level at voltage V;. Given the voltage measurements,
the SOD values can be obtained using a battery-specific lookup table. The lookup table
characterizes a battery from the fully charged state to the fully discharged state using a
constant discharge current.

PowerBooter is an example of a power profiler that does not need any external
measurement equipment, but can perform online power modeling of a smartphone
and its components. The technique uses on-device voltage sensors and battery dis-
charge curves to estimate power consumption [23]. PowerBooter and its application,
PowerTutor, are investigated in more detail in Chapter 10.

Obtaining current from voltage

Assuming the Thevenin model, the battery voltage, V, at a certain point in time can be
determined from

V=0CV—V.—R,x1, (3.21)

where OCV is the open-circuit voltage of the remaining capacity of battery, V. is the
voltage drop on the capacitance, R, is one of the two internal resistors, and / is the
discharge current. When the current changes, the product of R, x I is affected. This
voltage drop is illustrated in Figure 3.9. The voltage drop is called the internal resistance
effect. After the fast change, the voltage slowly decreases because of the current draw
due to discharging.

Equation (3.21) does not take the operating temperature into account. This can be
introduced with a new term, AT [16]:

V=0CV—-V.—Ry,xI—AT. (3.22)

The instantaneous voltage change, R, x Al, has been called the V-edge that is linearly
proportional the change of current. Decomposing the delta, we have Vg = R X I —
Ry, x Iy. Thus the relationship

1
I=—x Vedge + 1y, (3.23)
Ry
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can be used to determine the current value. A calibrated battery model is needed to use
this observation for obtaining the current [12].

The V-edge system builds an online power model an a smartphone by measuring
voltage dynamics. V-edge estimates the power draw based on the instantaneous volt-
age that is calibrated once with SOD metering. The model is faster to create and
update than SOD-only approaches. Online power profilers are examined in more
detail in Chapter 10.

Summary

In this chapter, we have examined the characteristics and modeling of smartphone
batteries. Battery models are vital to understand the remaining operating time of smart-
phones and other devices. Battery capacity estimation is made difficult by the dynamic
operating environment. Furthermore, it is difficult to obtain reliable information
regarding the battery SOC and condition.

The key observations are the following:

® Battery properties can be characterized by static and dynamic parameters. The static
parameters define the physical characteristics of the battery, such as the nominal volt-
age and cycle life. The dynamic parameters define the parameters that affect the
runtime usage of the battery, most importantly the charging and discharging of the
battery.

® Today’s smartphone batteries have hardware interfaces for reading both static and
dynamic parameters. A smart battery is a battery that has special hardware for mon-
itoring its internal state and environment. The heart of a smart battery is the fuel
gauge IC.

* Power management requires reliable information about the power source and its
condition and the power characteristics (voltage, current, SOC).
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e Battery capacity measurement is challenging, because the capacity changes as a func-
tion of the discharge rate and temperature. In addition, factors such as self-discharge
and age need to be taken into account.

e Three SOC estimation techniques are frequently used in commercial products: load
voltage, coulomb or ampere counting, and internal resistance. The techniques require
calibration.
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Energy measurement

To improve the energy efficiency of a smartphone, a reliable way to measure the energy
consumption of the phone is required. A reliable energy measurement method gives
consistent results under the same usage scenario, and responds quickly to variations
in energy use. Any energy-efficiency improvements, and energy performance with
different workloads can then be measured with the energy-measurement method.

This chapter discusses energy measurement. We discuss the nature of energy and how
it must be measured, and the case of the smartphone and its subsystems as the object of
study. We explain direct hardware measurement of power, profile-based software power
estimation, building such profiles from hardware measurements, and conclude with a
hands-on example.

Hardware- and software-based energy measurement

Draining energy from a battery is a continuous chemical process. The only way to be
sure how much energy is being consumed is to measure it constantly as it is being
drained. However, doing this affects the use of energy in different ways depending on
the measurement method used.

There are two main types of energy measurement: hardware-based and software-
based. Hardware-based measurement uses physical tools like power meters that are
wired to the smartphone hardware and/or the battery interfaces. Software-based mea-
surement runs on the smartphone energy-profiling software that records the readings
of platform-specific built-in indicators of energy use. Note that the software used for
measurement also drains the smartphone battery.

In hardware-based measurement, the measurement tools are not powered by smart-
phone batteries, and therefore do not affect the energy drain rate of the smartphone.
Many measurement tools also consist of a DC power supply that can be used for pow-
ering the smartphone. An external DC power supply is used to eliminate the variance of
supply voltage caused by the chemical characteristics of batteries. The sampling rate of
hardware-based power measurement can reach 5000 Hz, depending on the measurement
tools used.

Energy-profiling software used in software-based power measurement reads battery
statistics and other real-time battery information, such as the level of the remained bat-
tery capacity, the voltage/current drained from the battery, and temperature, through
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APIs provided by mobile OSs. They can also depend on other information from the
mobile OS, such as the system call use, and which features are used, such as GPS or
Wi-Fi. This software can sample battery information at intervals dictated by the operat-
ing systems. The sampling frequency ranges from one sample in minutes up to several
Hz, typically much lower than with hardware power measurement devices. The primary
problem with increasing the sampling frequency is that taking a sample drains energy
and affects the results of energy measurement. The higher the sampling frequency, the
greater the error of energy measurement.

When measuring new systems with either software or hardware, a calibration step
is recommended. When using a fixed-voltage power source, calibration is not needed.
With the phone battery and a hardware measurement device, accuracy depends on the
size of the resistor used. For an example, see Worked examples at the end of this chapter.
To calibrate software tools, we can measure energy consumption with the hardware tool
and then with the software tool, and adjust the software’s internal model and correction
factors accordingly.

When measuring a specific hardware component’s energy impact, we can first mea-
sure the base energy drain of the device without that component, and use that as a
baseline. It can then be subtracted from the measured energy use with the component
enabled, giving an indication of the component’s energy impact.

Measuring smartphone subsystems

Modern smartphones are built with many power-hungry hardware components, such as
multicore processors, large and bright screens, powerful communication chips, and var-
ious sensors. In addition, a significant amount of energy is consumed by the software
processes that run in the background. Examples include the processes used for synchro-
nizing calendar events, emails and application data; staying connected to messaging
and social networking services; and handling incoming calls. In this section, we dis-
cuss these hardware subsystems and software components from an energy perspective
measurement.

The modern smartphone is a highly integrated piece of hardware. This tight integra-
tion means that measuring the energy use of a single subsystem is difficult without
disassembling the device [1]. The information required for this, such as the circuit
design specifications, is not publicly available, except for a very few products [2]. How-
ever, it is possible to measure the energy use of the entire device with the control over the
subsystems to some extent. Truly independent measurement of some subsystems may
not be possible, since none of the hardware components in a smartphone are isolated.
For example, it is common to have Bluetooth and Wi-Fi radio embedded on the same
chip. If a user turns on the Wi-Fi radio, the entire chip will be powered on. Therefore, if
we measure the energy use of Wi-Fi and Bluetooth independently, and then measure the
energy use of the smartphone when both Wi-Fi and Bluetooth are turned on, the sum
of the two independent measurements will be greater than the combined energy use of
both media.
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Hardware subsystems

The most notable energy consumers among the hardware subsystems are the screen, the
wireless network interfaces, and the CPU. Certain sensors such as the GPS receiver and
the camera can also drain comparable amounts of energy when fully powered. These
are discussed in detail in Section 7.4.

To measure the energy consumption of the screen alone is difficult, since mobile
operating systems couple having the screen on with peaks of CPU activity. Only when
all user processes are terminated, and all wireless communication and sensor hardware
is turned off is it possible to get close to the scenario where only the screen is con-
suming energy. We attempt this in the worked example in Section 4.6.1. Similarly, to
measure the energy consumption of the CPU, we can turn off the screen and request full
CPU power from the operating system (i.e. with the WakeLock mechanism in Android).
Communications and sensors should still be turned off as before. However, for the CPU
case, we need to define the workloads that we want to measure the energy consumption
of. We could saturate the CPU with computation to get the 100% CPU usage energy
consumption, or generate a light load to determine the minimum consumption of the
CPU required for the CPU to be on and stay in its lowest power state.

During wireless communication, the CPU is always on to handle the traffic. There-
fore, it is hard to completely decouple the cost of the CPU from the power measurement.
We can, however, send messages that are as large as possible to ensure that the cost of
traffic handling is ignorable, compared to the cost of uploading/download data. See
Section 7.3 for more detail on the energy characteristics of different wireless network
interfaces.

Battery

Battery technology is described in Chapter 3. Measurement of the battery characteristics
can be done easily if the battery can be detached from the smartphone. The smart battery
interface of the smartphone can often estimate the voltage and SOC of the battery, which
can be used to establish a battery profile. Such a profile can enhance the accuracy of
software-based energy measurement by relating changes in the SOC to the amounts of
energy consumed.

Operating system and software

The operating system and other software running on the smartphone greatly influences
the energy consumption of the underlying hardware components. For measurement of
operating system components, knowing the structure of the system and which compo-
nents are active at a certain time is necessary. The most detailed information for this
purpose can be obtained by instrumenting the operating system itself, and tracking the
system calls. This approach has been tried on Android and Windows phones [3] with
customized images of mobile operating systems.
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Some factors of the operating system can also be measured using a custom appli-
cation, given that other applications are not running. The application would use the
operating system service whose energy use is to be measured, while the smartphone is
connected to measurement hardware. Proper care must be taken to make sure that other
applications and services are not running. In cases where this is difficult, repeating the
measurements and operating system calls can also mitigate the error caused by other
applications.

Sensors

Sensors such as the GPS receiver and the compass can drain the battery quickly when
active. Obtaining the location from network information instead of GPS fixes is often
less accurate but more energy efficient. Section 7.4 gives a detailed picture of the energy
efficiency of different sensors.

Estimating device lifetime

The simplest way to determine how long the smartphone battery will last while doing a
task is to perform that task, starting with a full battery, until the smartphone turns off due
to low battery. The time from the beginning with full battery to the time the smartphone
turned off is the estimated smartphone lifetime for that task.

Letting the battery drain from 100% to 0 can be time consuming, and when comparing
different tasks, it must be repeated for each task. To conserve time, a measurement
device can be used that shows how much energy is being consumed by the task. Thus
scenarios of a fixed length can be planned, where many tasks are done in a shorter period
of time, and their energy consumptions compared with each other as well as other such
scenarios.

Energy measurement techniques

The goal of energy measurement is to collect data that can be used for analyzing the
energy consumption behavior of the smartphone and for building models for describing
the behavior. Power models based on energy measurement can later be used to estimate
the energy consumption, without depending on the energy-measurement framework that
was used to build the profile. The benefit of such a model is that once built, it can be
used on many systems of the same type. For smartphones, such models can reach a high
accuracy on device models of the same type [4].

Software-based measurement

By definition, software-based measurement suffers from a feedback loop. The energy-
profiling software causes an energy overhead, thus biasing the measurement result. One
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way to mitigate the error is to quantify the measurement overhead using hardware-based
energy measurement, and then subtract the overhead from the readings of the energy-
profiling software. Such mitigation is valid only under the conditions that the overhead
has been measured accurately. It is therefore important to be conservative in uncertain
conditions, such as when running the energy-profiling software on a different device,
with unmeasured hardware components, or with other software running on the device.
Chapter 10 discusses energy-profiling software in detail. The Android battery statistics
system discussed in Chapter 10 gives a good example of the workings of a software
energy-profiling tool. The next section discusses smart battery APIs, an example of
software-based energy measurement.

Smart battery APls

Power measurement relies on the equations P = IV and E = PT, and in the straightfor-
ward case we can multiply the measured voltage with the current for some time period
to obtain the energy cost. The energy cost is thus easy to determine, given that the volt-
age and current values can be measured accurately, for example, with an external power
meter. Unfortunately, this is challenging especially with on-device profiling using the
standard APIs provided by mobile OSs. The APIs typically allow applications to query
and subscribe to coarse-grained information, such as the battery voltage and the SOC.
Table 4.1 presents an overview of the APIs available on modern smartphone operating
systems.

As discussed in Chapter 3, the power measurement of batteries typically relies on the
load voltage or coulomb counting methods. The former requires the load voltage and
discharge curve of the battery, whereas the latter requires that current can be measured.
Nonlinear discharge effects need to be addressed in both methods to obtain accurate
results for the battery SOC. For online on-device power profiles we have the following
limitations [5, 6]:

e Update rate of the battery status is low.
® The readings of the smart battery interface are not accurate.
® The required information may not be available, namely the current.

Figure 4.1 shows an overview of battery power estimation techniques. Depending
on the smart battery API, voltage or current may not be available. The SOC is often
available, so a coarse measurement of battery percentage change over time can be
done on-device relatively easily. However, the voltage and current are required for
finer-grained attribution of energy consumption to parts of the smartphone system, or
applications that run on it. If these are not available, they can be estimated by software to
some extent. For example, after measuring a battery’s discharge rate from full to empty
in a laboratory environment, its discharge curve that is how quickly the battery drains
over time can be constructed. Combined with knowledge about the discharge process
outlined in Chapter 3, this can can be used to estimate the voltage on similar batteries
and smartphones. However, with a different battery or smartphone, results will vary.
Current is usually not available, or is coarse grained. In summary, the smart battery API
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is well-suited for coarse grained battery monitoring, but is insufficient for fine-grained
energy measurement, and therefore hardware energy measurement is the best option
for this purpose. Table 3.1 in Section 3.4 gives an indication of the sampling rate and
accuracy achievable with smart battery APIs. These can be improved with software:

e The smart battery accuracy limitation can be alleviated by averaging over several
smart battery readings. This increases accuracy while reducing the update rate [6].

e The smart battery update rate can be improved by first detecting the update rate
and then synchronizing on-device measurement operations to minimize delay and
inaccuracy [5, 7].

The next section considers hardware-based energy measurement and using such
measurements in the construction of power profiles.

Hardware energy measurement and ground truth

The most accurate energy-profiling method is hardware-based energy measurement.
As described in Section 4.1, the sampling rate obtained with a hardware measurement
device is in 1000 s of Hz. A popular piece of power measurement hardware, the Mon-
soon Power Monitor', has an output sampling rate of 5000 Hz. A hardware energy

! http://msoon.com/LabEquipment/PowerMonitor/ accessed January 6, 2014.
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measurement device should be accurate and have a high sampling rate. It should offer
a way to measure energy unsupervised, storing measured data on a digital medium.
Finally, it should allow observation of the momentary voltage, current, and power as
they are being measured. Controlling the measurement device with a computer enables
all of these properties.

For hardware measurement, we need to measure the energy used by the smartphone
under the conditions that we want to model. For example, to model the energy usage of
the screen of the smartphone, we would keep the screen on at various brightness levels,
one at a time, for a fixed period of time. We could then construct a model using standard
techniques. The model would be able to estimate the energy usage of the screen when
given the screen brightness level of the smartphone.

Hardware measurement is affected by some of the same issues as software-based
measurement. Since the hardware measurement device measures the energy used by the
entire smartphone, not just a single hardware component, the model will always contain
some noise. Shutting down applications and hardware components that are not being
profiled is essential. This noise cannot be eliminated completely without full control of
the software and hardware of the smartphone, however. The noise can be mitigated with
longer profiling periods. The longer the smartphone is in a particular model state, the
more accurately its average energy use will be measured.

Worked examples

This section illustrates setups for hardware power measurement. First, we examine the
case where both the measurement device and the power source are external. In this case,
we consider two ways to feed power to the smartphone: using a fake battery and using
the original battery with the power terminals insulated. We then briefly consider the
case where the original battery is used as the power source, and only the measurement
device is an external piece of hardware.

Measuring powered by an external power source

The most reliable way to do hardware-based energy measurement is to use a fake bat-
tery. This avoids contact errors and allows a greater range of movement for the device
than using raw wires. Such a fake battery is shown in Figure 4.2. A fake battery is a
piece of circuit board, or an original battery casing, with + and — terminals in the same
order as the original battery, and leads connected to them for easy measurement. The
fake battery should be the same size as the original battery so it stays firmly in the
battery enclosure. In the best case, the device backplate can be replaced with the leads
coming out between it and the phone.

Some smartphones will not boot up if they do not detect the presence of a battery,
so, fake batteries for smartphones should also include a sense resistor connected in
series with the — or ground lead, and exposed as another terminal. For example, Rice
et al. [8] use a resistor of 0.02 2. This provides the phone with a fabricated estimate of
the remaining battery capacity. A battery temperature sensing pin may also be needed.
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Figure 4.2 A Google Nexus S smartphone, a fake battery, and the original battery

Figure 4.3 A Samsung Galaxy S III ready for hardware power measurement, with battery terminals taped
over and phone terminals connected to standard leads with copper tape

A quicker way to start hardware power measurement, without a fake battery, is by
using the original battery, insulation tape, and copper tape. This method is prone to
contact errors and the lead may accidentally be pulled out. For experiments that require
the use of the GPS, accelerometer, or orientation sensors, this is not recommended.

Figure 4.3 illustrates this approach. The Samsung Galaxy S3 smartphone in the pic-
ture has two strips of copper tape leading out of the phone casing, from the + and —
terminals of the phone to the red and black leads, respectively. The original battery has
the corresponding terminals taped over with insulation tape, so that the phone will be
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Table 4.2. Fake battery compared with the original battery, when used with an
external power source and measurement device

Property Original battery ~ Fake battery
Contact errors Yes No

Free device movement No Yes

Requires electrical engineering No Yes

Reusable and quick to attach and detach No Yes

Usable on all devices Yes No

Minimal time to build and setup Yes No

Full battery information available Yes Possible

Usable with all hardware power sources ~ Yes Yes
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A screenshot of the PowerTool software, measuring the energy use of a smartphone while
powering it at 4 V

powered with an external power source only. Note that the other terminals of the bat-
tery should be left open. We can now replace the original battery and close the phone
casing, leaving the copper tape sandwiched between the insulation tape and the phone
terminals. The original battery’s temperature and sense terminals will be connected to
the phone as usual, and the system will not be able to distinguish this setup from the
original battery.

Table 4.2 compares the approaches of hardware power measurement, using an exter-
nal power source and either the original battery or a fake battery. With a correctly
constructed fake battery, reuse is quick and easy, the smartphone is fully movable for
use of, for example the accelerometer and orientation sensors, and the phone shutting
down due to contact errors (i.e. the circuit breaking because wires are disconnected) is
very rare. However, fake batteries take some time and effort to construct, require basic
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The Google Nexus S smartphone with a multimeter connected for measuring current

electrical engineering, and may not provide the smartphone with the temperature and
capacity information that the original battery can provide. Finally, fake batteries cannot
be used with devices without an easily replaceable battery.

In externally powered hardware power measurement, the voltage given to the phone
determines the battery level the phone will report. With a 3.7 V battery, voltages below
3.7 V result in low battery levels, while voltages from 4.0 V up to 4.3 V often result in
the phone reporting more than 80% charge. To avoid the phone’s power-saving mode,
set the voltage to 4.0 V when measuring.

Measuring powered by the original battery

When profiling a battery measurement application, we need to measure battery drain
with the application and with hardware. In this case, powering the phone externally is
not possible.

Figure 4.5 shows a Google Nexus S smartphone with a multimeter connected to it.
The multimeter is placed between the + terminal of the battery and the + terminal of the
phone. In the figure, copper tape connects the battery + terminal to one of the multimeter
leads, and there is insulation tape on the copper tape, insulating it from the phone’s +
terminal when the battery is replaced. The + terminal of the phone has copper tape on
it in the same way, connecting to the other lead of the multimeter. To start measuring,
we replace the battery and make sure the two copper tapes and leads do not touch. We
then turn the multimeter on to the DC current measurement position. Finally, we turn
the phone on.
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Table 4.3. A simple energy profile for screen brightness on Samsung
Galaxy S Il and S4 smartphones

Brightness level ~Average power for S III  Average power for S4

Maximum 874.25 mW 933.48 mW
150 of 255 744.31 mW 766.77 mW
Minimum 598.30 mW 632.21 mW

This approach has some limitations, such as not being able to measure the voltage,
a relatively low sample rate, and no easy storage of current values. Better multimeters
can eliminate some of these. To measure voltage as well, we can add an oscilloscope to
the setup, or replace the multimeter/oscilloscope with the Monsoon Power Monitor.

Simple hardware energy profiling example

To illustrate basic hardware energy profiling, in this section we consider the impact
of screen brightness on two Android phones: a Samsung Galaxy S III and a Samsung
Galaxy S4.

First, we connect the smartphone in question to the Monsoon Power Monitor as illus-
trated in Figure 4.3. We then connect the Power Monitor to a Windows computer, and
start the PowerTool software. In PowerTool, we set Vout to 4 V and enable Vout, as
shown in Figure 4.4. After this the light between the Power Monitor’s two inputs should
light up green. We turn on the smartphone and wait for it to boot to the main screen.
Figure 4.6 shows the correct setup with a Samsung Galaxy S4 smartphone.

Before the experiment, we went to the display settings of the smartphone and made
sure that automatic brightness was off, and the screen timeout was set to 10 minutes.
We also turned off Wi-Fi, Bluetooth, mobile data, GPS, sound, and screen rotation, and
removed any SIM cards or SD cards. We divided the hardware measurement experiment
into three scenarios: maximum brightness, 150 of 255 brightness, and minimum bright-
ness. In each of the scenarios, we set the screen brightness to the above-mentioned level
and turned off the screen. To set the screen brightness accurately, we can use a screen
brightness widget, or a simple Android application. Please see Appendix A for a simple
Android application that sets the brightness level to a specified value.

We then simultaneously turn the screen on and press RUN in PowerTool, and unlock
the phone. We let the phone stay on until its screen turns off. We then press STOP on
PowerTool, and select the measured power data for exactly the first 10 minutes. This
gives an average power value on the right side of the screen in PowerTool. We will use
this in our model.

Table 4.3 shows the results of the experiment described above.

We have put the source for an Android application that implements this simple energy
profile on GitHub.? The application uses simple interpolation to estimate energy use for
unverified values. For screen brightness values between 0 and 150, on the S4, we used

2 https://github.com/lagerspetz/brightness-energy-profile accessed January 6, 2014.
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A Samsung Galaxy S4 being measured by the Power Monitor
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A simple energy profile for screen brightness on the S4

632.21 x b, where b is the brightness value. For values between 150 and 255, we used
(v — 150)/(255 — 150) x 766.77. The values for the S3 are handled similarly when
running on an S3. For other devices, the values for the S3 are used, and results will be
inaccurate.

Please see Appendix A for a simple Android application that estimates the energy use
of the device based on screen brightness and the model shown in Table 4.3.

This simple model has an error of less than 1 mW when the brightness is set to
minimum on a factory-reset S4 phone sitting on the main screen. When brightness is
set to 75, a value not included in the profile, the simple interpolation gives us a value
of 699.49 mW while the actual usage is 684.57 mW, so the error is 15 mW. For 200,
the error is 61 mW, again overestimating the energy use. For 250, close to the measured
maximum value of 255, the error is 44 mW.

In Figure 4.7, the energy profile for the S4 is compared against actual energy use.
The profile is accurate at the measured brightness levels, but the error grows quickly in
other conditions, especially at higher brightness levels. Compensation variables should
be calculated if the same profile is to be used with other devices.
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Summary

In this chapter, we discussed the nature of energy consumption and the challenges
for measuring it accurately. We introduced software-based methods for energy mea-
surement and profiling, such as the smart battery API. We discussed the process of
hardware-based energy measurement. We introduced three ways to measure energy
using hardware:

¢ with an external power source and the original battery,
¢ with an external power source and a fake battery, and
e powered by the original battery.

We concluded with how hardware-based power measurement can be accomplished
for an off-the-shelf modern smartphone, and how the resulting values can be used to
build a power profile. Chapter 10 discusses power-profiling software in detail.
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5.1

On human behavior and
energy efficiency

The smartphone is a highly integrated and complex device. Its energy efficiency can
be optimized in various ways, but the charging behavior and application use pattern
have a large impact on battery life and energy efficiency. This section discusses the
impact of human behavior on the energy efficiency and battery life of a smartphone. It
continues with the other side of the coin: how battery-awareness applications change
human behavior. Finally, it lists some techniques for how to get the most of remaining
battery life as a smartphone user.

Human-battery interaction

The term human—battery interaction was coined by Banerjee et al. in [1]. It refers to
the different ways that the user interacts with the smartphone battery. The interactions
happen in both directions with the user determining the charging patterns and power
management related phone configuration, and the phone giving feedback on the battery
status and power consumption.

The charging pattern of a particular user is of interest because it can give indications
about whether the user in fact ever even runs out of battery. For example, a particular
user may always charge the phone overnight regardless of the current battery level. The
charging behavior guides the power management of the device so that it is neither too
conservative nor too aggressive. Coming back to the example user who charges the
phone every night, if the battery would last longer than one day with that user’s typical
usage, there is no need for further energy savings and, instead, more energy could be
spent improving the quality of the mobile services they use. Llama [1] is an example
of such a power-management system. It tries to predict the amount of so-called excess
energy that would be left over when the user starts recharging the mobile device, and
then uses that energy to improve the quality of service (QoS) of the applications being
used.

Many studies on the charging behavior have been conducted to date [1, 2, 3, 4, 5]. All
of them agree on a couple of salient points. First, recharging is triggered by either the
current battery level or the context which derives from time and/or location, which leads
to two distinguishable user types. This observation is of notable importance to power-
management systems such as the one mentioned above. Specifically, context-driven
charging behavior allows power-management solutions to improve the QoS without
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having any negative influence on the user experience. In contrast, users tend to be sensi-
tive toward changes in the recharging cycle, which means that a user who recharges
the phone only when the battery reaches a low level would notice and be annoyed
by any significant increase in energy consumption. A second common finding is that
the user behavior may vary a lot. Even changes in user type were noticed in one of
the studies. Therefore, it is clear that a one-size-fits-all solution does not work and the
power-management solutions must adapt to user behavior.

Most of the existing studies sample only a very small number of users, even just a
few tens of users, with the exception of one study of about 4000 Android users [6] and
another one of about 20 000 BlackBerry users [5]. However, with the rapid development
in the mobile industry, these two studies are becoming old and there is clearly room for
many more large-scale studies.

User behavior has a significant effect on the workload and energy consumption of a
mobile device. For example, users can choose which applications to use and how to use
those applications, such as when to send a search request and which video to watch.
Moreover, to some extent, they can also decide which access point to connect to and
where to store data.

Some user studies [7, 8] have focused on the relationship between the user behavior
and the power consumption of the mobile device. A typical methodology is to install
a context-monitoring application on users’ mobile devices. The application tracks the
mobile device settings, hardware resource consumption, network traffic, and/or the user
inputs. This information is then used to estimate the power consumption based on power
models and to match user activities with the power consumption. For example, Shye
et al. [7] developed a logger application for Android G1 mobile phones and used it
to collect traces of real user activity. The log included the hardware information, such
as the CPU use for each CPU operating mode, the brightness of the screen, and the
count of bytes transferred with Wi-Fi during a given interval. The log was entered into
a linear regression power model to obtain the power consumption corresponding to user
activities.

As shown in the user study by Rahmati et al. [9], most mobile users had no knowledge
of the power characteristics of their devices and applications. Moreover, most mobile
users underuse the power-saving settings of their mobile devices. Hence, in addition
to improving the energy efficiency of hardware/software by taking user behavior into
account, we also firmly believe that the tools that can show the predicted battery life [10]
and can demonstrate the relationship between power consumption and user activities
will help mobile users to extend their device battery lifetimes.

Human factors in battery-awareness applications

As discussed before, human behavior affects the mobile device and its battery. In this
section we consider the reverse: how mobile battery-awareness applications can affect
human behavior.



Figure 5.1

5.2 Human factors in battery-awareness applications 75

Changes in behavior

Stopped using applications : : i
replaced with similar ones#
Kills running application ; ;
more often

Uses hogs and bugs less
Stopped using applications
not replaced functionality

Restarts applications more
often

It hasn’t changed _—'—,
0 10 20 30 40 50
% of the respondents

|El Beginners W Advanced user%

Carat changed the application use behavior of users

The primary goal of mobile battery-awareness applications is to make the user aware
of what consumes energy. It is natural to consider the effect they have on human behav-
ior. To understand how better energy awareness changes user behavior, Athukorala
et al. [11] conducted a survey of 1140 Carat users, and asked them how the application
has changed their behavior. The Carat application is discussed in Section 10.7.3. The
authors call users who had used Carat for more than three months Advanced users, and
those who had used it less Beginners. Figure 5.1 shows some of the results. Advanced
users are much more likely to stop using applications that are identified as high energy
consumers by Carat. They also close applications more often than beginners, and use
highly energy-consuming applications less. In contrast, beginners think the application
has not changed their behavior. The results also showed that advanced users open Carat
less frequently than beginners. However, they have gained better battery life, charge
their devices less frequently, kill reported hogs and bugs more often, and have learned
to better manage their battery without the help of Carat. The authors propose four
guidelines for building battery-awareness applications:

1. Building on the observation that further understanding promotes use of a feature,
battery-awareness applications should expose to the user not just recommendations,
but also the reasoning or data behind them,

2. As long-term users are highly valuable in a community-based system that learns
from users, such as Carat, the authors suggest tailoring community-based battery
awareness applications to retain long-term users.

3. The audience of an application can be very diverse, and it is crucial to use precise
vocabulary. The authors suggest taking into account the audience when formulating
feedback to convey precisely what is intended.

4. The authors recommend that battery-awareness applications distinguish sys-
tem components from third-party applications when making diagnoses and
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recommendations. System applications often cannot be stopped or removed by the
user, and this should be taken into account when making recommendations.

The guidelines of Athukorala et al. target community-based mobile battery awareness
applications. Single-device applications can take advantage of all except the second one.

While the guidelines above are helpful for battery-awareness application developers,
smartphone users may be interested in what they can do right now to improve the battery
life of their device. To conclude the discussion of human behavior, the next section
discusses the challenge of getting the most out of remaining battery life, while still
communicating with others.

Box 5.1 General advice for maximizing the smartphone standby time

To maximize the standby time of your smartphone, you can do one or more of the
following things:

e Turn off Wi-Fi

e Turn off cellular data connections

e Turn off Bluetooth

e Turn the screen off

® Reduce screen brightness or use automatic screen brightness
e Terminate all applications that you are not actively using
e Turn off GPS

e Turn off gesture and face detection

e Turn off speech recognition or voice activation

e Use SMS instead of internet messaging

e Use cellular calls instead of VoIP

Experiment: Getting the most of remaining battery life

A challenge that mobile device users face today is getting the battery to last for the
entire day. Especially, when the battery is low, it is important to make it last as long as
possible while staying connected with email, phone, or VoIP functionality. Box 5.1 lists
general advice for maximizing the standby time of a smartphone.

This section is a detailed experiment on how to get the most out of the last 15% of the
smartphone battery. We follow the general advice above and consider a few scenarios
that include internet-based and cellular communication. The results in this section have
been summarized from [12].

Experimental setup

For this experiment we use the Google Nexus S. Table 5.1 shows the specifications of
the Google Nexus S smartphone. Note that the device has an AMOLED display, 5.55
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Table 5.1. Feature specifications of the Google Nexus S

Feature Specification

SoC Samsung Exynos 3 Single

CPU 1 GHz single-core ARM cortex-AS8 processor
oS Android 4.0.4

RAM 512MB

Storage 16GB

Display Super AMOLED 800 x 480 pixels

Network  2G: GSM 850 /900 / 1800 / 1900
3G: HSDPA 900/ 1700 / 2100

Data SPEED: HSDPA, 7.2 Mbps; HSUPA, 5.76 Mbps
WLAN: Wi-Fi 802.11 b/g/n, DLNA, Wi-Fi hotspot

Bluetooth  Yes, v2.1 with A2DP

Battery 1500 mAh, 3.7V, Li-ion 5.55Wh

Wh battery capacity, and high-speed connectivity. Energy use is measured using the
Monsoon Power Monitor, introduced in Section 4.5. The experiment is run until 15%
of 5.55 Wh, that is, 832.5 mWh, is consumed. Then, the duration of the experiment and
the average power is recorded.

The experiment examines two communication activities, email and calling. Calling
is further divided into VoIP and cellular calls. The experiment aims to minimize the
battery drain during the activities, and therefore obtain the longest possible battery life,
when only 15% of the battery capacity is remaining. In this experiment, we assume that
the phone has no built-in power-saving mode, and that the phone can remain functional
for the entire span of 15% to 0%. For phones with automatic power-saving modes, the
benefits of the actions here will be smaller, especially the effect of screen brightness.
Most mobile devices typically shut down before the battery reaches 0%, but the actions
in this section can be used for any 15% of the battery; specifically, for the purposes of
this experiment, the span could as well be 20% to 5% or 100% to 85%.

We also compare the battery drain between different communication technologies
(Wi-Fi, 3G, and 2G) and display brightness levels (Auto, Minimum, and Maximum).

Email

This section examines how long users can keep sending emails with 15%, or 0.8325 Wh,
of the battery capacity available. The email application in this experiment is Gmail.
The procedure was to log on to Gmail, create a new email (100 characters) with an
attachment (2MB), and send it every 2 minutes. The average time for completing
this process is 85 seconds. For completeness, we also conduct the experiment with-
out attachments. For this case, nine emails are sent within 10 minutes, with minimum
backlight brightness.
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Table 5.2. Expected battery life while using email with different
communication methods and brightness levels

Data type Wi-Fi  Wi-Fi 3G 3G 2G 2G
Brightness level Auto Max Auto Max Auto Max
Avg. power (W) 0.98 149 125 176 187 239
Battery life (min) 51.12 3358 40.11 2856 26.89 21.06
# Emails sent 15 9 11 8 8 6

Table 5.3. Expected battery life with Skype, screen brightness set to
minimum and with the display turned off, on Wi-Fi, 3G, and 2G

Data type WiFi WiFi 3G 3G 2G  2G

Brightness Level ~ Min Off  Min Off  Min Off
Avg. power (W) L1t 073 159 012 181 0.14
Battery life (min) 44.99 68.62 31.64 41.67 27.64 36.01

Phone and VolP calls

In this scenario, Skype or the dialer application is used to make a phone call and keep
the call running. The experiment is performed in a relatively quiet environment. With
Skype, we also examine the case where the screen is locked. Usually Android will turn
off the screen during a call, but when users accidentally touch the screen, it will turn on
again. Locking the screen guarantees that it uses no energy.

Email scenario results

Table 5.2 shows the results of the email scenario. The longest battery life is achieved
with automatic brightness while using Wi-Fi.

With minimum screen brightness, there were improvements of 5% to 13% in expected
battery life, when compared to setting brightness to automatic. This amounted to one
extra email in all scenarios. However, the difference between maximum and automatic
brightness is much larger, up to 52%.

Interestingly, using 3G is more efficient than 2G, even though it is usually the
more power-hungry alternative. However, if we send emails without attachments,
2G improves expected battery life by 2.2% over 3G. Wi-Fi is the most effective
communication method in this case giving a 11.8% improvement over 3G.

Phone call and VolP results

Table 5.3 shows that the battery lasts the longest with Skype when the screen is turned
off and Wi-Fi is used. With no nearby Wi-Fi access points, the second option is 3G,
with about 60% of the battery life, just over 41 minutes.
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Table 5.4. Expected battery life on a cellular
call, display turned off, on Wi-Fi, 3G, and 2G

Data type WiFi 3G 2G

Avg. power (W) 0.73 073  0.58
Battery life (min) 68.91 68.87 86.11

The power consumption of cellular calls is noticeably lower than that of Skype, as
seen in Table 5.4. Disabling data connectivity or switching to 2G gives the best battery
life here. Note that when on a cellular call with 2G only, the data connection cannot be
used simultaneously, so switching to 2G and turning off mobile data does not give an
additional battery life benefit.

Summary of control points

This section lists the actions for getting the longest battery life while still being able to
communicate on a smartphone.
The actions in order of decreasing improvement for using email are:

—_

. Connect to Wi-Fi, set screen brightness to minimum or automatic.
2. Connect to 3G, set screen brightness to minimum or automatic.

(98]

. Connect to 2G, set screen brightness to minimum or automatic.

Note that 2G gives better battery life with short emails without attachments.
For Skype, the actions are:

—_

. Connect to Wi-Fi, lock the screen.
. Connect to 3G, lock the screen.

[\S}

For cellular calls, the actions are:

—_

. Disable mobile data or connect to 2G, lock the screen.
. Connect to 3G, lock the screen.
. Connect to Wi-Fi, lock the screen.

|SSIN )

Summary

This chapter discussed the human behavior aspect of smartphone battery management,
specifically the charging behavior, and the impact on energy consumption of the way
users interact with their devices. User studies show that most smartphone users are not
aware of the power-saving features of their devices. To show how a battery-awareness
application helped change this for the better, we described a user study done with Carat

users and concluded it with helpful advice for getting the most out of remaining battery
life.
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6.1.1

Overview

A mobile device consists of hardware components, such as microprocessors, wireless
network interfaces, display and touchscreen, storage, cameras and sensors; and software
including the operating system and applications. To understand and optimize energy
consumption, models are needed for the subsystems and components of the smartphone,
including the OS and applications.

In this chapter, we give an overview of the smartphone energy consumption and the
methodologies that can be used for power modeling and optimization. We aim to answer
the question: where is the smartphone energy spent? and its follow-up question: how can
we maximize the energy efficiency?

Methodology

To address the above questions, the first thing we need is a well-defined and rigorous
methodology.

Energy profiling terminology

For a thorough treatment of a topic, it is generally important that the core concepts are
properly named and that the terminology is consistent and well understood. Otherwise,
it is difficult to grasp what exactly is software-based energy profiling and optimization.
Furthermore, as we will see especially in the profilers section, the literature is rich with
plenty of different kinds of solution which are presented as unique tools but are often
combinations of different kinds of underlying technique. Hence, it is necessary to be
able to categorize these solutions and to analyze their advantages and disadvantages,
which requires a good understanding of the relevance of the different components of
an individual energy profiler, such as a specific power-modeling technique. For these
reasons, we briefly define here the most important terms that we use in this part.

* Power model is a mathematical representation of power draw. It can be a function
of variables that quantify the impacting factors of power consumption, such as the
use of a hardware component and the number of packets delivered through a wireless
network interface, with the desired power draw as output. Usually the values of these
variables can be directly obtained from measurement carried out on the smartphone
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or in the network. A power model can characterize a single subsystem, a combination
of them, or even a whole smartphone (system-level model). A simple example of a
subsystem power model is a coarse-grained power model of display that is a function
of a single variable: brightness level (the example given in Section 4.6.1).

¢ Energy model is the equivalent of power model for energy consumption. Hence, it is
a mathematical representation of the amount of energy consumed by the execution of
a specific task or a piece of code.

* Power measurement is the act of measuring the power draw of a smartphone or its
subsystem using an external instrument (e.g. a multimeter) connected to the smart-
phone or a smart battery interface that directly provides instantaneous power values.
The values are usually averaged over a specific time window.

¢ Power estimation/prediction reports the power draw of a smartphone or its subsys-
tem based on power model(s). The accuracy of the power estimation/prediction relies
on the accuracy of the power models used. Depending on whether the inputs describe
the instantaneous state or the average workload over a specific time window, the report
can be the desired instantaneous power draw or the average of the desired power draw
over the time window. If the inputs describe the workload that has been executed, the
report is an estimate of how much power was consumed by the given workload. How-
ever, if the inputs are the predicted workload or state, the report is a prediction of how
much power would be consumed to complete the predicted workload or to stay in the
predicted state.

® Power and/or energy profiler/monitor is a system that characterizes the power
and/or energy consumption of a smartphone. Different profilers provide this charac-
terization on different abstraction levels (e.g. system vs. application) and in different
levels of granularity (error, sampling rate). Power values are typically reported as
averages over a specified time window, whereas energy values can also be reported
per task. The profiler is either based on power measurements, that is it is an external
instrument, or on power estimation in which case it relies on power and/or energy
models and it may require training and calibration. A model-based profiler is usually
a piece of software running on the smartphone.

Model-based energy and power profiling

Figure 6.1 gives an overview of the model-based energy and power-profiling process.
The figure divides the process into different phases that can be based on human, offline
machine, or online machine activity. For example, method selection and parametrization
typically involve human activity. The modeling and verification and validation phases
can involve both offline and online machine activity. Actual usage of a power model in
the estimation phase is typically automatic and performed online.

The process starts with the expert selecting the method and basic modeling tools.
After this, the power measurement phase starts first with calibration and then with the
power measurements. The power measurements can be combined with system logs and
other relevant information to better understand the fine-grained power consumption of
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The process of energy and power profiling includes modeling, estimation, and a feedback loop
through validation and verification to refine and recalibrate the models

the device. The measurements, expert knowledge, and additional information are then
used according to the methodology to create a power model of the device.

The power model is then used to estimate the online power consumption. This phase
can use system logs for fine-grained and accurate estimation. The generated power and
energy estimates need to be verified and validated through online or offline activity. The
estimates are compared with the actual power measurements to understand the accu-
racy of the estimation phase and the underlying model. This phase typically involves
analyzing system logs for sources of inaccuracy. This phase provides valuable input for
the expert overseeing the model generation and usage process. The verification and val-
idation phase can also directly provide feedback to the modeling and calibration phase.
Thus the feedback loop can be fully automatic without human activity or it can involve
the expert user.

Power modeling

To answer our first question, that is where is the energy spent, we need to model the
energy consumption and to understand how the different hardware and software com-
ponents affect the overall energy consumption of the smartphone. This is a non-trivial
task, because the elementary energy consumption of components may exhibit nonlinear-
ity and the individual models may not add up in a linear fashion. For example, hardware
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components may have dependencies, for example shared circuitry. Let us consider the
case where we have two separate and independently derived power models for the Wi-Fi
and LTE of a smartphone that has a modem subsystem for the two wireless proto-
cols.The power models work well when only one of the wireless protocols is used,
but when Wi-Fi and LTE are used together the linear combination of the models does
not work well, because they do not take into account the integrated nature of the hard-
ware implementation. Indeed, while it is important to understand the specific energy
models of the components, it is also as important to understand how the various compo-
nents work together and how to combine the models. In this book, we consider various
modeling techniques, including holistic techniques.

Overall process

When modeling power or energy consumption, the smartphone is the test subject that
is monitored, as illustrated Figure 6.1. Power measurements are necessary to build and
refine a power model. The measured power consumption data and system state are first
used to train and build power-consumption models. In this phase, a set of well-defined
experiments explore the power consumption with various inputs and settings. In addi-
tion, a model obtained from training can be updated based on runtime observations.
The power model estimates the power draw of the system based on observations of the
device behavior.

The offline learning and calibration part typically uses external power monitoring
tools for high accuracy energy-consumption data. With these tools it is possible to mea-
sure the energy draw of the device with an external power supply as well as with the
regular smartphone battery as the power supply. In many cases it is desirable to have the
battery included to factor in its effects that were examined in Chapter 3.

The power monitors report the overall energy draw of the smartphone. In many cases,
we are interested in the energy profile of a particular subsystem of the device. Devel-
opment versions of smartphones typically have hardware debug interfaces that allow
the energy consumption of a specific subsystem to be read; however, these interfaces
are not available on consumer devices. Therefore, other techniques are needed to build
subsystem-specific models.

Power measurements

By now it should be clear that power measurements are an integral part of the power/en-
ergy modeling process. Figure 6.2 presents a simple taxonomy of power measurement.
Assuming that only device-level power information is available, the methods at hand
are to use an external power monitor tool or to use on-board software API interfaces
for self-monitoring to read the current, voltage, or battery capacity. The measure-
ment can then focus on the device, its subsystems, or software running on the device.
The self-monitoring methods will introduce bias due to the monitoring software run-
ning on the device. Moreover, the software APIs typically provide coarse-grained data.
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Instrumentation of the application or OS is needed to be able to map the overall power
consumption to subsystems and software processes.

In Chapter 4, we examined external power monitors and considered two important
cases: measurement with the original battery and with a fake battery. In the former case,
the battery effects are included in the measurement. In the latter case, the battery effects
are not involved. The external power monitors are the gold standard for smartphone and
mobile device power analysis due to their high precision and accuracy. They are limited
by requiring a laboratory setting and they cannot be used to measure large numbers
of devices. Therefore, model-based energy profilers are needed for outdoor and mobile
experiments as well as for wide-scale energy profiling of thousands of devices.

Subsystem models

A subsystem-specific energy model can be built by carefully designed experiments tar-
geting the subsystem of interest. For example, if Wi-Fi uplink is the target subsystem
and use case, all the other features would be turned off to the extent possible. The chal-
lenge is that the smartphone is a complex device consisting of many subsystems and
countless interactions between them when running software.

Box 6.1 Example energy model

An energy model can be formulated as follows for a component-based system [1]:

YO =f(x1(), x2(0), ..., Xu (1)), (6.1)

where y(#) represents the energy draw in the time interval ¢, and the functions
x1(8), ..., x,(¢) represent the component-level behaviors. The function f can be linear
or nonlinear. The overall energy drain for a given time period can be obtained by
integrating y(f) over the period. The accuracy of the energy estimation is determined
by the granularity of the time intervals. Typically time intervals of at least 10 ms
(100 Hz) are needed for reliably estimating per-application energy consumption in a
multitasking system.
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Insights on application and subsystem energy behavior can be gained by comple-
menting the external measurement with data from an instrumented OS and application.
The additional instrumentation data provide a fine-grained view to the internals of the
device.

Taxonomy

Figure 6.3 outlines a taxonomy for power modeling. The model can be based on the use
of resources [2], power triggers [3], or code analysis, to give some frequently used meth-
ods. Linear regression is frequently used to estimate the power or energy consumption.
A model based on linear regression captures the relationship between an input workload
and the power consumption. For example, resource use is frequently employed with lin-
ear regression to model the energy consumption of CPU usage, screen brightness, and
network activity. The benefit of linear regression is that it is simple to implement and
efficient. On the other hand, this method is limited by the linearity assumption, because
the relationships typically exhibit nonlinearity. A more sophisticated method is to build
finite state machines (FSMs) that capture the power states of the system and transitions
between power states. Such a system typically relies on power triggers and can capture
more complex energy consumption behaviors. We provide a detailed treatment of differ-
ent modeling approaches in Chapter 9. Specifically, we will go through three different
example approaches that correspond to use-based, system call-based, and event-based
modeling.

In practice, models are imperfect and the operating environment changes all the time,
making prediction difficult. Models are also limited by the information exposed by the
underlying system, the battery sensor, and the granularity of the exposed information
varies. The overall accuracy of software profilers varies and depends on the underlying
models and their calibration, the granularity and accuracy of the input data given by the
smartphone software, and the errors from not isolating the device from the measurement
instrument. The software profiler is running in the same device that it is measuring and
thus it will introduce error to the output.

P del
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Power optimization

To address the second question, that is how to maximize the energy efficiency, we need
to have the above energy models of the components as well as knowledge of the con-
trol points and options to choose that allow optimization decisions to be made based
on the models. An optimization decision is a system configuration change, an option
to select that, given the current knowledge, will lead to an improved situation aiming
for the optimal energy consumption of the device. Ideally, the models allow the pre-
diction of system behavior into the near future and assessment of the impact of various
changes to system parameters. Then it is a matter of selecting the suitable changes for
execution.

Figure 6.4 illustrates the energy optimization control loop running on the device, in
which the the previously learned model is used to make optimization decisions online.
The decisions then in turn affect the energy consumption creating a control loop. The
methodology is typically divided into two distinct parts: offline training and calibration,
and online prediction and optimization.

The work presented in [4] provides an example of energy-aware optimizations. In
that system, the supply and consumption of energy is monitored based on which the
system behavior is steered either toward good user experience, if plenty of energy is
available, or toward energy conservation, if energy is scarce. The system is based on the
PowerScope [5] energy profiler. We discuss this work in more detail in Chapters 8 (the
Odyssey OS in Section 8.6) and 10 (PowerScope).
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Summary and organization of Part Il

In this chapter, we presented an overview of Part II which focuses on the charac-
terization of the energy consumption of smartphones and their subsystems. The key
observations are the following:

* A holistic approach is necessary to understand the overall energy consumption of a
complex system, such as a smartphone, but the power draw of a specific subsystem is
often characterized separately.

® Power and energy profiling is a key concept in energy-consumption characteriza-
tion and it always involves power measurements and often also power and energy
modeling.

® Power and energy modeling builds on the power measurement that is used to create
elementary subsystem models and learn the relationships between subsystems and
software processes.

e Power measurement is typically complemented by measurement data from the OS
and applications, which are required to correlate software processes and their parts
with energy consumption and hardware subsystem use. However, such measurements
require instrumentation of the software system.

® The elementary energy consumption of components may exhibit nonlinearity and the
individual models may not add up in a linear fashion.

e Power and energy profiling typically has an offline learning and calibration part.
Offline power-measurement techniques are very accurate, but they require a labo-
ratory environment. Online measurement can be used anywhere, but it has limited
accuracy. Online techniques require either offline or online calibration.

* Energy optimization of smartphones and applications involve optimization decisions.
An optimization decision is a system configuration change that is expected to improve
a situation aiming for the optimal energy consumption of a device. Estimates and
feedback from a power and energy profiler is an essential part of the optimization
process.

Part I is organized so that after this overview chapter, we first look inside a smart-
phone and cover the different hardware subsystems of it in detail and discuss their
energy-consumption characteristics in Chapter 7. Next in Chapter 8, we study the most
important piece of software residing in the smartphone: the OS. We cover the main-
stream OSs and their features relevant to the phone’s energy consumption. We also take
a look at a few research prototypes of OSs that specifically target energy-efficient oper-
ations. After these two chapters, we have covered enough background to look in depth
at the main subjects of this part: power modeling and power/energy profilers. Chapters
9 and 10 are devoted to these topics.
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To develop energy-efficient techniques, the first step is to understand how energy is
consumed on a mobile device. A mobile device consists of hardware components, such
as microprocessors, wireless network interfaces, storage, cameras and a touchscreen,
and software running on top of these hardware components. Lower power serial busses
facilitate the communication between the internal system components. These hardware
components are the actual energy consumers.

Smartphone and mobile device power optimization happens on multiple levels:

e Silicon-level, in which the transistor capacitance and the chip design affect the energy
efficiency. Higher capacitance requires the transistors to do more work.

e SoC-level, in which multiple power/voltage/clock domains can be used to support
granular power management with the help of software. In addition, dynamic voltage
and frequency scaling (DVFES) is used to dynamically adjust both the voltage and
frequency to meet the given energy and performance level.

e Software-level, in which various power managers monitor and control the energy and
power settings. A high-level framework is needed to perform system-wide tuning and
optimization.

There are several choices that contribute critically to the overall efficiency of a mobile
device, for instance from an energy-consumption viewpoint. They are the SoC including
the CPU, display technology, communications technology, and the OS. The system-
level power management is coordinated by the OS. In this chapter, we survey these
crucial components and examine their energy consumption.

CPU and SoC

There are two fundamentally different basic philosophies in designing CPUs: CISC
(Complicated Instruction Set Computer) and RISC (Reduced Instruction Set Computer)
[1]. These two architectures differ because the instruction sets possible in the CPU are
laid out using maximalistic and minimalistic principles, respectively. In this section, we
discuss the choice of CPU and focus on the RISC-based ARM processors and SoCs
that are frequently used in mobile devices. We then examine power-saving techniques,
power states, and multicore and multiprocessor systems.
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Choice of CPU

RISC designs are based on the notion of getting higher performance per machine code
unit from a simplified (not complex) instruction because the simplicity enables faster
execution. Thus, the RISC concept uses a small but optimized set of instructions, rather
than a more specialized set of instructions used in many other architectures. Further-
more, RISC systems use memory with the load/store architecture. In RISC processors,
memory is accessed through specific instructions and arithmetic/logical instructions do
not access memory directly. In a CISC processor, single instructions can execute many
low-level operations, for example load from memory, store to memory, and arithmetic
operations. CISC processors may execute multi-step operations and addressing within
single instructions. Consequently, CISC instruction sets are inherently compact and
semantically rich and the work performed per machine code byte is therefore higher
than in a RISC processor. This can be advantageous in cache-based implementations.
Actually the defining feature of a CISC processor is not the number or complexity of
instructions, but the use of memory accesses by the arithmetic instructions themselves.
The RISC architecture is characterized by the load/store strategy instead.

Both architectures were used early in the development of computing hardware. For
instance, CISC principles were used in the x86 processor family and RISC-type archi-
tectures in the ARM family. The resulting differences are profound: in x86 processors
the instruction set is built with detailed and more complex instructions aiming to cater
for many programming needs straight at the CPU level, whereas ARM processors use a
significantly smaller set of simpler instructions.

ARM processors and SoCs

The ARM processor architecture was first developed by the British computer manu-
facturer Acorn Computers in the 1980s for their personal computers. Since then ARM
has become the most important processor architecture for mobile devices. ARM pro-
cessors are 32-bit RISC processors that have an optimized architecture that minimizes
the transistor count and has a very low power consumption [2, 3]. The benefits of this
simplified design are improved power usage and heat output and reduced cost as well
as integrability with other components into low-power SoCs. The approach also lends
itself well to multicore systems in which manufacturers obtain a higher core count with
reduced cost and lower power requirements.

The core requirements for mobile processors include energy efficiency (in general
that means low power consumption) and — because memory is at premium in small
portable devices — small code size. The ARM processor architecture supports the 32-bit
ARM and 16-bit Thumb instruction sets. The Thumb instruction set features a subset of
the most commonly used 32-bit ARM instructions that have been compressed into 16-bit
opcodes. The Thumb extension adds a Thumb decompressor in the instruction pipeline
to aregular ARM processor. This generally makes the code size 30% smaller (with some
inconsequential reduction in processing times). Low power consumption is achieved
through RISC, accurate branch prediction, and optimized processor extensions, such as
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DSPs. ARM SoCs use multiple power-saving techniques, such as fine-grained power
and clock gating, and DVFS, which is discussed in the next subsection. Comparing
the smallest ARM processors with corresponding CPUs in the x86 family we note that
the latter are expected to operate at 100 W power levels whereas ARM Cortex-A9, for
example, operates between 500 and 2000 mW.

It is therefore unsurprising that ARM processors have captured a sizable share of the
combined mobile phone market and that they are used in Android phones and Apple’s
10S devices. The CPU choice for mobile devices thus reflects different needs and leads
to different hardware in use than, let us say, in desktop or laptop markets and particularly
in the server system world where x86 processors prevail.

In Section 1.4.2 we examined a basic SoC design with the key hardware components.
Today’s SoC designs are more complicated than this basic design with multiple cores
and additional co-processors. The ARM processors and SoCs include the ARM Cortex,
Qualcomm Snapdragon, TI OMAP, nVidia Tegra, Marvell Xscale, and Apple’s SoCs
used in iPhones and iPads. The ARM family of processors consists of several differ-
ent core designs that include the ARMS, ARM9, ARM11, Cortex-A8, Cortex-A9, and
Cortex-A15 designs. These designs are licensed by manufacturers from ARM and then
integrated with their SoCs with components such as RAM, GPU, and baseband proces-
sors. It is also possible for companies to acquire a license from ARM to design their own
CPU cores using the ARM instruction set. These licensees include Apple, Qualcomm,
Marvell, and Nvidia. The popular ARMv7 is used by the Cortex-A9 and Cortex-A15
designs from ARM as well as Qualcomm’s Krait and Apple’s A6. ARMvS is the latest
version of the processor architecture and the Apple A7 was the first implementation of
the design.

The five popular SoCs used by smartphones today are:

® Qualcomm’s Snapdragon which consists of four versions from S1 to S4. The S4 ver-
sion is the latest and most powerful with Qualcomm’s Krait CPU that supports up to
four cores, Adreno GPU, LTE modem, and dedicated cores for multimedia process-
ing. Figure 7.1 gives an overview of the Snapdragon SoC architecture that illustrates
the modern SoC designs.

e Texas Instrument’s OMAP (Open Media Applications Platform). The OMAP 3 series
is single core featuring ARM Cortex-A8 and a PowerVR SGX530 GPU. The OMAP
4 series features dual-core ARM Cortex-A9 processors, a PowerVR SG54x GPUs,
and two additional Cortex-M3 cores for lightweight tasks. The OMAP 5 is the next
extension of the SoC family with two ARM Cortex-A15 cores, improved PowerVR
GPU, and several dedicated cores. These SoCs feature the SmartReflex power-saving
technology from TL

e Samsung’s Exynos SoCs are used in their smartphones and tablets. The latest version
of Exynos is 5 Octa and it features a quad-core Cortex-A15 and a quad-core Cortex-
A7, ARM Mali GPU, and auxiliary processors.

e Nvidia’s Tegra SoCs are multicore and based on ARM cores with an ultra low-power
(ULP) GeForce GPU. The latest version, Tegra 4, supports ARM-A15 cores in quad-
or octa-core configurations.
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e Apple’s CPUs and SoCs are designed by Apple based on the ARM architecture. The
Apple A6 is based on the ARMv7 dual-core CPU and integrated with a PowerVR
GPU and image signal processor. The A7 used is based on an Apple-designed 64-bit
ARMV8-A dual-core CPU, a GPU, and auxiliary processors.

Figure 7.2 illustrates the evolution of CPU and SoC performance with the Geek-
bench2! as reported by Nvidia [4]. The performance of mobile processors has improved
to match desktop processors, such as the Intel Core-i5. The number of CPU cores has
increased to a maximum of eight and at the same time GPUs have evolved. The number
of auxiliary co-processors has also increased.

Typically, a state-of-the-art SoC has each core in its own power domain and the volt-
age and clock speed of a core can be set independently. CPU caches are used to reduce
the number of off-chip memory accesses. Caches store most frequently used data in
on-chip memory supporting fast access. Typically, each core has its own instruction and
data caches (L1 cache). The cores can also share a common larger cache (L2 cache).

In addition to multiple CPU cores, an additional low-power CPU core has been pro-
posed to address low-intensity background tasks [5]. The Nvidias Tegra 4 features such
a battery saver core that is optimized for low power. When the quad-core main CPU is
not needed, the system switches to the battery saver core and completely switches off
the main CPU. The battery saver core has its own L2 cache and the L2 cache used by
the other cores can be power gated.

! http://www.primatelabs.com/geekbench/ accessed January 6, 2014.
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Comparison of mobile CPU and SoC performance

The ARM-based SoCs use dedicated controllers for realizing different functions
making them very different from the desktop PCs that rely on a single CPU for
most of the work. The benefit of dedicated controllers is their efficiency compared to
software-based implementations. The dedicated chips and circuits can carry out the
tasks more efficiently and with fewer cycles than a software implementation. Indeed,
it is not uncommon to first have software-based implementation of a process or algo-
rithm, such as audio processing or graphics generation, that is then implemented in
hardware for increasing efficiency.

CPU speed

The internal speed of the CPU depends mainly on two things: the time spent waiting for
data or for instructions and the parallelism of the processor work. The less time spent
waiting and the more tasks executed simultaneously, the faster the overall processing.
However, many processors have been designed with an in-order execution of instruction
stream in mind. In SoC architectures the available memory bandwidth is smaller than
in CPU’s used for example in laptops: the memory is slower, the bus is slower, and
parallel access is not possible for a satisfactory number of memory chips. All these
features reduce the true memory bandwidth. Furthermore, we must remember that in
CPUs using a strongly serial processing model every cache miss will stall the pipeline
and halt the thread, possibly forcing the CPU to switch processes. SoC CPUs normally
also use the same external memory as the GPUs and this sharing of vital resources tends
to harm the speed of both chips.
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Alternatively, we could make the instruction stream faster by increasing the CPU
clock frequency. The fundamental methods of doing this have their benefits but also
their drawbacks. There are three factors that determine the maximum achievable clock
frequency and which are feasible in creating faster chips:

1. Increase the density of transistor elements on the chip. Smaller transistors are faster
and also more power efficient when active. The disadvantage is that they consume
more power when idle.

2. Increase the voltage of the chip: this enables a higher switching speed. Here the
drawback is also increased power consumption.

3. Increase the length of the pipeline. With long pipelines, work can be divided into
shorter steps and the processing becomes faster. Unfortunately, power consumption
is increased.

Power saving techniques

Dynamic Power Management (DPM) is a design methodology for energy and power
management of dynamically reconfiguring systems [6]. The goal for a DPM system is
to provide the requested services and performance with a minimum power consump-
tion. To minimize power consumption, the system needs to find the minimum number
of active components or the parameters of such components that result in minimized
power draw. The key insight and fundamental assumption of DPM is that the system
workload is not uniform, but varies as a function of time. The more the system knows
about the workload and its future behavior, the more effective the power-saving plan that
can be designed and implemented. A central component in any system implementing
DPM is a power manager that monitors and controls the system. The power manager
follows a power-management policy that determines the parameters that are monitored
and controlled [7].
Recalling Eq. (2.7) from Chapter 2,

Pyirch =0 x Cx V2 x f, (7.1)

we observe that it is possible to tune the operating voltage and frequency to achieve
energy savings with the tradeoff in task-execution time.

This observation is at the heart of the two well-known active system power optimiza-
tion techniques: DVFS (Dynamic Voltage and Frequency Scaling) [8, 9, 10] and DPS
(Dynamic Power Switching) [11]. DVFS minimizes power needs by trying to reduce the
operating frequency and the core voltage to levels sufficient to execute current tasks but
with no excess resources left. This is important in situations where the CPU is not idle
but not fully occupied either, typically when a background thread tries to force the CPU
to keep its resources (frequency and voltage) at their highest level without using them
fully. DPS detects the true need of resource use in a CPU and, if there are no current
computational tasks, forces the CPU into the minimal power state. This often happens
when a CPU is waiting for completion of a DMA (Direct Memory Access) instruction.
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DPS and DVFS techniques differ because DPS mainly lowers leakage. DPS may
reduce the clock and core voltage to zero, thereby eliminating power needs altogether,
but we must note that zero power necessitates saving the CPU state on shutdown and
loading it again when power is applied. This requires extra power in itself and therefore
the DPS main parameter, the maximum allowed idling time, must reflect the true needs
of the instruction stream to guarantee that the mechanism offers real power advantages
over the simplest method of plain idling. Figure 7.3 gives an example of these two
complementary techniques. In the example, DVES is used when there is an active load
on the system, and DPS is used when the system is idle.

As an example of DPS, we have the Dynamic Power Management (DPM) in Linux
and Android. This is typically combined with DVES to reduce the voltage and clock fre-
quency of components to save energy. System-level power management policies govern
the implementation of DPM and DVFS. After investigating the P- and C-states in more
detail, we will take the Linux CPU frequency subsystem as an example.

Energy and thermal management at the SoC level requires hardware probes at certain
locations to obtain accurate temperature information. In addition to hardware probes,
software monitors can also be used to track the hardware sensors and factor in their
distance and runtime characteristics. This can help hardware designers to reduce the
number of hardware probes and thus save silicon area [12].

Processor performance monitor counters, adaptive feedback controllers, and thermal,
delay, or wear out monitors have been considered for SoC-level energy and thermal
system management [12]. Performance counters are useful in determining the functional
use of components that can then be correlated with temperature and energy usage.

Most of the power- and temperature-aware monitoring approaches involve both hard-
ware and software components. The software running at the OS or Virtual Machine
Monitor level then uses thermal and energy consumption data for setting the DVFS and
other parameters for triggering task migration.

P- and C-states in CPU

At the processor level we can manage power consumption with two different
strategies:

1. Control of the CPU performance states using frequency and core voltage (P-states).
2. Use of processor operating states (C-states).
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The ACPI specification [13] is the industry-standard solution for power management
used by the desktop and laptop industry. We can take ACPI as an example of a power-
management standard that is based on P- and C-states. Current smartphones use these
states as well, but they are not based on ACPI.

The processor P-states are for plain power control. Generally there are at least two
P-states available:

1. PO that is the normal state of high voltage and adequate clock frequency.
2. P1 that uses both low core voltage and low clock frequency. This is for situations
where the CPU is often idle.

An increasing P-state number means lowering the clock frequency and core voltage in
arunning processor. The set of P-states is CPU-dependent and differences exist between
CPU types. A P-set always starts with PO, which means the highest performance with
the highest voltage and core frequency. The combinations of frequency/voltage used for
different states vary between implementations but both the power consumption and the
performance will always decrease with the growing P-number. Power saving uses the
clock frequency and core voltage as parameters but they are not fully independent. If
the CPU frequency is lowered, the voltage can be lowered simultaneously without any
problems in efficiency. This is fortuitous because a greater performance gain per unit of
used power is thus achieved quite easily.

Power saving can be also implemented with several C-states, which are independent
of P-states and cumulative. The aim is to turn off all those parts that are not necessary
when the CPU is idle. The use of C-states is a recent trend, used originally in laptops
but also increasingly in servers.

The set of C-states implemented in a CPU is numbered from O upwards and CO is
the active state, that is the CPU is executing an instruction (C1 mode is also always
defined). All other states or sleep modes are for when the CPU is idle, the higher the
number, the more components have been shut down to conserve power. The drawback
in C-states is that the time required to go back to the zero-state grows when the depth
of the processor sleep increases (higher latency). The latency level can be controlled in
some C-states (depends on the processor) by using submodes, which facilitate choosing
a suitable latency time while preserving the power-saving feature.

Figure 7.4 illustrates the P- and C-states. P-states are used to transition between the
highest power state to the idle mode typically with the voltage and frequency scaling
technique. C-states are used to shutdown idle components to achieve power savings.

In the following we list the typical C-states [14, 13]:

® CO: The processor is unrestricted and all components are on.

e Cl1: The processor is partially stopped. Software may stop the CPU internal clocks
but the bus interface and APIC (Advanced Programmable Interrupt Controller) run
normally.

e (C2: The processor clock is set unconditionally into the stop clock state. Hardware
stops the main internal clocks. All software-visible states are maintained but the
waking-up requires interrupts and takes additional time.
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® (C3: CPU is powered down into the sleep state. All internal clocks are unconditionally
stopped and the cache is not updated. In different implementations the time of wake-
up through interrupts may vary somewhat.

® C4: The processor is disconnected from the system causing deep sleep.

The difference between C-states and P-states is one of operational level and can be
summarized as follows:

e In C-states starting from C1 the processor is idle but partially in use.
e P-state is an operational concept and defined solely by the clock frequency and
core voltage.

Controlling the CPU frequency dynamically at runtime requires a specific infras-
tructure in the processor for setting the power policy, be it static or dynamic. This
infrastructure typically has the following components:

* A subsystem for connecting the low-level technologies and policies at the higher
level.

® A system of in-kernel policy governors. They are essentially pre-configured power
schemes with the ability to modify the clock frequency according to required needs.
Typically these governors use the P-states to change frequencies for lower power
consumption. They will switch between clock frequencies, on the basis of the cur-
rent CPU use level trying to save power while not unduly losing performance. The
governors are tunable allowing some customizing of the frequency scaling.

® Drivers implementing the technology in a CPU-specific way.

As an example of smartphone C-states, we consider the Nexus 4 smartphone based
on the Snapdragon S4 SoC. Table 7.1 presents the four CPU C-states of the Nexus 4
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Table 7.1. Nexus 4 smartphone C-states

State Idle Power (mW)
CO0 433
Cl 390
C2 330
C3 200
Without idle states 1060

and their power draw [15]. In the CO state for Nexus 4, the CPU clocks are disabled
but other components are active. Higher C-states progressively shut down more CPU
components resulting in more efficient idle-mode operation. The overall power saving
is drastic, from 1060 mW to 433 mW in CO to 200 mW in C3.

Example: Linux CPU frequency subsystem

As an example of DVFS and DPS, we consider the Linux CPU frequency subsystem

that has supported dynamic processor frequencies since the 2.6.0 Linux kernel [16].

The CPU frequency subsystem uses governors and daemons for implementing a static

or dynamic power-management policy. In the dynamic setting, the governors tune the

CPU frequencies based on the CPU use. The subsystem consists of five governors that

set the CPU frequency and change it based on feedback from the system or the user.
The five governors are:

e Performance governor that gives the highest CPU frequency and performance. This
governor statically sets the highest frequency value and allows the tuning of this
highest value.

® Powersave governor that sets the lowest CPU frequency and system speed. In a similar
manner to the performance governor, this governor statically sets the lowest frequency
value and allows tuning to this lowest value. This governor does not result in signifi-
cant power savings, because it causes tasks to run for longer and thus the CPU cannot
enter the low-power C-states.

e Userspace governor that allows the CPU frequency to be set manually. This gover-
nor works together with the userspace processor frequency daemons that provide the
processor frequency values. The component can be used to implement custom power
policies.

¢ Ondemand governor is an in-kernel governor to dynamically set the CPU frequency
based on CPU use. The governor monitors the CPU use and when a certain threshold
is exceeded, sets the frequency to the highest possible. Similarly, when the use is
below the threshold, the CPU frequency is dropped to the level below the current
level. Thus the frequency is set based on the CPU use and the threshold value. The
frequency range, the threshold, and the usage testing rate can be tuned.

¢ Conservative governor is similar to the ondemand governor, but allows a more gradual
increase of the power consumption. The governor adjusts the frequency based on the
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CPU use step-by-step and does not jump to the highest frequency immediately when
a threshold is exceeded as in the ondemand governor.

Figure 7.5 illustrates the governors. The performance governor always sets the high-
est CPU frequency. The powersave governor, very similarly, always sets the lowest
possible CPU frequency. The ondemand governor and its variants set the CPU frequency
dynamically based on the CPU use and the thresholds.

Figure 7.6 illustrates the CPU frequency subsystem with the in-kernel and userspace
governors. The CPUfreq module provides an interface to the CPU-specific frequency
control techniques and policies. The kernel governors are responsible for changing
the CPU frequency based on the given policy, such as the CPU use threshold in the
ondemand governor. The userspace governor exports the CPUfreq data to the userspace
programs through the /sys file system and allows userspace daemons to control the CPU
frequency. Userspace programs include the powersave daemon for controlling many
aspects of power saving, cpuspeed that monitors the system’s idle percentage and sets
the CPU frequency and voltage accordingly, and the CPUfreqd that is a small userspace
daemon that sets the CPU frequency and voltage based on the battery level, temperature,
running programs, CPU, etc.
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Hot-plugging

Hot-plugging is the process of adding or removing components on a live system without
shutting down the system first. CPU hot-plugging can be used to save power on mobile
devices. For example, on an octa-core system some of the cores can be shutdown and
then later activated when they are needed. On a running system, this means that any
tasks running on the cores that are to be shutdown need to be migrated to cores that are
kept active. Hot-plugging requires a scheduler that monitors the load on the cores and
then implements power-saving actions and migrates tasks before shutting down cores.
This technique saves power; however, when more CPU power is needed it takes some
time to active more cores and migrate tasks to them. In addition, when a task is migrated
to another core there can be a cache penalty as the target core will not have a cache for
the incoming task.

Hot-swapping and task migration are supported by many current multi-processor SoC
architectures, such as ARM’s big. LITTLE, Nvidia’s Tegra, and Qualcomm’s Krait. The
architectural details, such as cache management, differ between the architectures. In the
next section, we examine ARM’s big. LITTLE architecture as an example system that
allows hot-plugging and task placement over multiple cores.

ARM'’s big.LITTLE architecture

The ARM big. LITTLE? is a computing architecture that combines slow and low-power
processor cores with faster and more power demanding cores [17]. The aim of the archi-
tecture is to realize a multi-core processor that can dynamically adjust to the computing
requirements. This architecture is used, for example, by the Samsung Galaxy Note 3
and S4 smartphones (Exynos 5 Octa).

The architecture supports three ways of arranging cores depending on the Linux
kernel scheduler implementation:

e Clustered model, in which the OS scheduler observes one of the two processor
clusters, and the scheduler transitions between the clusters based on the observed
load.

® In-kernel switcher pairs a more powerful core with a less powerful core with the
option of having many identical pairs on a chip. Each pair can be seen to be a virtual
core with only one of the constituent cores active. The active core is selected based
on the load. More elaborate configurations have also been proposed.

e Heterogeneous multiprocessing (MP) enables the use of all physical cores simultane-
ously. High priority or computationally demanding threads are run by the powerful
cores, while low priority or less demanding threads are run on the less powerful cores.

ARM’s big.LITTLE architecture extends DVFS with CPU migration. In this process,
the DVES algorithm monitors the load on each CPU and then migrates tasks between the
higher and lower performance CPUs. When the load is low it is handled by the lower

2 http://www.thinkbiglittle.com accessed January 6, 2014.
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performance CPU. When the load is high it is transferred to the higher performance
CPU. If a processor becomes unused, it can be powered down. Moreover, if a cluster of
processors becomes inactive, it can be powered down as well.

Figure 7.7 illustrates the system with Cortex-15 and Cortex-A7. The framework
allows seamless migration of tasks across the processor cores. The Cortex-A15—Cortex-
A7 system is designed to migrate tasks between the processor clusters in less than 20
microseconds with 1 GHz processors [17]. In a larger system, the processor core pair
can be seen as a virtual core. Depending on the operating mode, for each virtual core the
Linux scheduler can then either choose the active physical core or use all the physical
cores simultaneously (MP mode).

An energy-efficiency comparison of Cortex-A15 and Cortex-A7 indicates significant
power savings with a variety of benchmarks. For example, the Dhrystone benchmark
gives an energy-efficiency benefit of 3.5x for the A7 with a performance benefit of 1.9x
for the A15. This encourages the use of the slower processor for lightweight tasks [17].

Graphics processing unit (GPU)

In modern smartphone designs, graphics processing is typically offloaded to the GPU
that has a high-performance graphics processing pipeline. An SoC thus consists of
one or more CPUs, one or more GPUs, a DSP, and application-specific accelerators.
Typically GPUs are used to realize 3D rendering in games and graphics-intensive appli-
cations; however, the latest GPUs, such as Nvidia’s project Logan, also allow general
purpose computing with the GPU. The performance of mobile GPUs has dramatically
increased in recent years. The current generation of mobile GPUs is on a par with the
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graphics power of game consoles, such as Sony’s PlayStation 3 (NVidia GF7800) and
Microsoft’s Xbox 360 (ATI R500) [4].
The four well-known mobile GPUs are:

e Adreno GPU in the Qualcomm’s Snapdragon line of SoCs.

e PowerVR GPU used in TI's OMAP line of SoCs.

e Mali in the ARM architecture.

e GeForce ULP (ultra low-power) in the Tegra line of SoCs from Nvidia.

Rather than focusing on performance alone, mobile GPUs emphasize low power con-
sumption. An embedded GPU shares the system bus with the other processors and
components, and can access the external memory of the device. The memory access
is a bottleneck for mobile GPUs and their desktop counterparts have dedicated memory
to ensure a high bandwidth to memory.

Energy-efficient operation requires that the number of memory transactions between
the GPU and the external memory is as low as possible. Mobile GPUs use various on-
chip caching techniques to reduce the memory traffic [18]. For example, the Qualcomm
Snapdragon Adreno GPU has two modes for rendering: deferred and direct. The former
breaks the display into smaller tiles and renders them independently. Smaller tiles can
be stored in the GPU memory thus reducing GPU memory traffic to the external mem-
ory [19]. The latter mode computes the scene and then renders the pixels directly to the
screen. The Adreno GPU can decide at runtime whether to use deferred or direct render-
ing depending on which one gives the best power efficiency. The PowerVR GPU uses a
similar tiling technique in which one tile is rendered at a time with all the necessary data
for the rendering kept in the on-chip memory. The Tegra GeForce has on-chip caches to
reduce the number of memory transactions during rendering. Other advanced optimiza-
tion techniques used in the Tegra 4 GPU include multiple levels of clock gating, display
request grouping, and DVFS [5].

Modern desktop GPUs have hundreds of cores and the number of cores for mobile
GPUs will also soon be over several hundred. Some applications can use all the cores
and for these applications the performance per watt increases linearly. For applications
that cannot use all the cores, the performance per watt becomes saturated. The optimal
number of GPU cores is the one that gives the highest performance per watt [20].

An empirical power model has been proposed for GPUs that can be used to predict the
optimal number of active processors for a given application [20]. This model is based
on execution times. With the predicted number of active cores, up to 22% of runtime
GPU energy consumption can be saved.

Modern smartphone operating systems support GPUs for 2D and 3D graphics. The
OpenGL ES rendering API [21] is the key graphics programming interface for mobile
devices with programmable GPUs. OpenGL ES is a subset of the widely used OpenGL
standard for desktop 2D and 3D graphics. To take advantage of the benefits offered by a
GPU, the developers need to implement the applications with the API and the primitive
graphics operations and write the necessary shader programs.

Some GPUs can be used for generic computations, for example signal processing
and face recognition. For example, a Gabor face feature extraction algorithm was
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implemented with the Tegra GPU and OpenGL ES and the shader language. The
resulting GPU-based algorithm achieved a 4.25 times faster speed compared to the
CPU-based version [18]. This indicates that a mobile GPU can significantly improve the
performance of vision tasks while still requiring low power. The GPU-supported face
feature extraction was observed to result in a 3.98 times lower energy consumption than
the CPU-based counterpart. While the power draw increased due to the intensive use
of the GPU, the significant improvement in the running time of the algorithm resulted
in the low energy consumption. The overall face recognition application benefited from
the GPU-based algorithm with 1.85 times improvement in the running time and 1.83
times lower energy consumption.

GPUs are an integral part of smartphone SoCs and are essential for graphics-
heavy applications, such as games. Certain generic processing tasks, such as face
recognition,can also be offloaded to GPUs. Near-future emerging applications include
augmented reality that requires intensive image processing for object and face recogni-
tion [4].

Modeling the CPU

Next, we outline the development of simple power models for the smartphone SoC and
CPU based on the usage and linear regression. The development of our simple model
proceeds in the following phases:

® Design of training phase with different CPU loads. The loads should be realistic and
reflect the real-life workloads on the device.

e Power measurement of the training loads on the smartphone. An external power
monitor tool is typically used for high-accuracy measurements.

e Creation of a power model for the CPU energy consumption.

A power model can be derived in a similar manner for various hardware components
including the display, cellular network, Wi-Fi, and GPS. As mentioned, linear regression
is frequently used, but it may result in a significant estimation error if the underlying
phenomena are nonlinear. A linear model may also abstract important low-level details
relating to power states and transitions between them. A power model of the whole
system can then be built on top of the component power models.

After the model has been built, it can be used to estimate the power consumption of
the CPU and make power-management decisions. Power management requires that we
have control points, options to choose, to modify the system behavior.

Processor power model based on counters

Isci and Martanosi have proposed a power model for CPUs based on performance coun-
ters [22, 12]. They correlate hardware performance counters and system logs with total
power measurements with an external power monitor to obtain a fine-grained view of
energy consumption of the CPU. A similar approach can be used to model GPUs [20].
The monitored CPU components include the bus control, L1 and L2 caches, buffers,
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integer execution, floating point execution, and queues. The performance counter
metrics are mapped to the CPU components.

The model collects architectural statistics, such as cycles per instruction, mem-
ory references, cache misses, and on-chip communication details, together with the
application-level details to optimize performance and meet the desired energy and
temperature goals. Given a CPU with N components, the ith component denoted by
C;, the model is based on component access rates given by a performance counter
or a combination of performance counters. For CPU component C;, the maximum
power, MaxPower(C;) and ArchitecturalScaling(C;) are heuristics and are estimated
empirically.

P(C;) = AccessRate(C;) x ArchitecturalScaling(C;) x MaxPower(C;)
+NonGatedClockPower(C;). (7.2)

The total power of the CPU is given by the following equation:

N
Piota = ZP(C,») + Idle power. (7.3)

i=1

Single core regression model

Assuming a linear relationship between power consumption and CPU load, the linear
regression model would be the following:

Popyu=ax Ugp,+b, (7.4)

where a and b are constants, and U,,,, is the CPU use. The latter term indicates the power
consumption of the CPU. This simple model does not take the DVFS into account, but
it can be extended to include the voltage and frequency scaling.

The power model can then be used in power estimation to predict the power con-
sumption without power measurements. Following our example, given that CPU use is
20% for a give duration, 7, we can determine the energy consumption using Ej,,; =
(a20 4 b)T. The energy consumption of an application that uses the CPU in a dynamic
manner can be determined using

Ewar =Y P, x AT, (7.5)
i

where Pipu is the i-th measurement of CPU use and AT is the time interval of the

measurement.

Single core regression model with DVFS

DVES can significantly improve the energy efficiency of the CPU. The obtained benefit
depends on the idle power consumption of the CPU and the execution time of the tasks
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with different CPU voltages and frequency levels. The effect of DVFS can be examined
using the following simple equation [23]:

E=Pxt+Pige X (tyax — 1), (7.6)

where E gives the total energy of the workload, P is the average power over the work-
load, ¢ is the execution time of the workload, P;4, is the idle power of the CPU, and 7,
is the maximum running time of the workload over all frequencies.

Multicore regression model

Yifan Zhang et al. studied the power modeling of multicore smartphone CPUs and they
have identified that the traditional frequency- and use, based regression techniques are
prone to errors in the multicore setting [15]. Based on this observation they developed
a new regression-based power model for multicore CPUs based on the time spent in
C-states. This model builds on a model of a single core working at frequency, f, that is
the given by the following equation [15]:

Peore= ) _ Be, x WED¢, + pu x U +c, (7.7)

where WEDc¢, is the weighted average entry duration for idle state C;, B¢, and By are
coefficients of WED(,, U is the usage rate, and ¢ is a constant. A power model is created
by obtaining the coefficients by linear regression on the training data with WED(, and
U, and the associated P,..

The multicore model extends the above single-core model and it is given by [15]:

Nc
Pcpy = Ppr N, +ZPA,c'ore,U,-jp (7.8)

1

where N¢ is the number of cores, Pp; n. is the baseline CPU power with N¢ cores,
and Pa core,u;.f; 15 the power increment due to core i when running at frequency, f;, with
usage of U;. The term P core, v, f; can be predicted using the single-core model (N¢ = 1)
and with the measurement of the constant Pp; y,..

Display

The display is definitely one of the most energy-consuming components in a modern
mobile phone, especially now, when smartphones have started using touch-sensitive
full HD screens. After the CPU, the screen is therefore the next robust challenge for
energy efficiency. The trend is for users to watch online videos with their phones on
the new emerging mobile networks and this increases the screen energy needs, drain-
ing the batteries. It has been shown that the display is among the most power-hungry
smartphone hardware components with a 400 mW (LCD panel, touchscreen, backlight,
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and graphics accelerator) power draw, second to the GSM module with a 700—800 mW
power draw at full capacity.

Display technologies

There are a few technologies used today for displays of mobile devices: TFT liquid
crystal display (LCD), reflective LCD, and organic light-emitting diode (OLED). Both
TFT LCDs and OLED displays are used in the current smartphones and tablet devices.

LCD pixels are based on their filtering ability, which can be changed by the panel
hardware. Light from the light source is pixel-wise filtered according to the parameter
values in the display memory. The opacity of the LCD pixel is adjusted so that smaller
values increase the pixel opacity. Thus, the maximum value a pixel can attain is the
strength of the backlight. The reflective LCD does not use a backlight, resulting in a
relatively small power draw, but the screens do not work well in dimly lit situations. In
TFT LCD displays, the LCD panel is enhanced with a backlight, a light source giving
illumination to the panel from behind. Modern screens use LED arrays to generate the
backlighting, the older method is CCLF (cold cathode fluorescent lamps).

TFT LCD technology comes in three varieties: transmissive, reflective, and
transflective.

1. In transmissive displays the backpanel lighting is used for pixel illuminating. Gen-
erally this technology gives a very good quality of display and can be applied in
widely variable ambient light environments. They are usable in typical room light-
ing but also in complete darkness, while the contrast remains high and the colors
vivid. The worst case for these panels occurs in full sunlight where they may become
unreadable because the ambient light chokes the backlight.

2. In reflective LCDs there is no backlight at all, instead the available ambient light
is used. Therefore the reflective LCD is much more power-efficient than backlit
displays. Furthermore they operate quite reasonably in brightly lit outdoor environ-
ments, which gives them an advantage over transmissive displays. The downside is
the frontlight normally necessary for dimly lit situations.

3. In a transflective LCD, backlight is used but there is also a reflective mirror. This
technique aims to combine the good points of transmissive and reflective panels and
guarantee an adequate performance independent of ambient lighting.

OLED displays come in different families, passive-matrix (PMOLED) and active-
matrix addressing schemes (AMOLED). AMOLED uses a thin-film transistor back-
plane to switch each pixel on or off resulting in a higher resolution. In contrast to
transmissive LCD displays, OLED displays do not need a backlight. Most of the smart-
phones currently on the market use AMOLED displays with the exception of iPhones
that use the LCD technology.

Power consumption of smartphone displays

All the LCD technologies require an external light source, backlight or frontlight. The
light source is by far the greatest power sink in these screens because the LCD filter
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needs low power when compared to the light sources. Hence, the power consumption of
areflective LCD can be much smaller than a transmissive one, and, for the same reason,
a transflective LCD can also demonstrate an improved power efficiency compared to a
purely transmissive LCD, especially when exposed to bright ambient light. The power
draw of a transmissive LCD display is mostly characterized by the strength of the back-
light, which is usually an adjustable parameter in smartphones, and the displayed color
scheme has little relevance.

In contrast to LCD displays, the power draw of OLED displays is not just a simple
function of the strength of the backlight; it depends on the colors displayed. AMOLED
displays have been power modeled as a linear function of a standard RGB color scheme
[24], which basically means that the brighter the color, the more power is drawn, and
that the white screen draws most power. However, recent research work has shown
that a linear relationship may not accurately capture the power-consumption dynamics
of AMOLED displays of modern smartphones, suggesting that the exact relationship
between power and pixel colors of the display are more complex [25, 26].

Box 7.1 Smartphone screen scrolling and energy

An interesting fact related to the power draw of smartphone displays is that the
scrolling operation has been reported to consume a significant amount of energy
on smartphones. This phenomenon stems from the observation that the highest pos-
sible frame rate is used when scrolling, which may result in up to 50% of the total
power consumption of the smartphone. The energy consumption of scrolling can
be mitigated by setting the frame rate in an adaptive manner to provide a desirable
balance between user experience and power draw. Results with an adaptive scheme
indicate that significant power savings, up to 58% of CPU and 34% of the total
energy consumption, are possible for the scrolling operation [27].

The dependency of the power draw of an OLED display on the colors shown nat-
urally gives rise to optimization schemes where the color scheme is chosen in such a
way that power draw is minimized. An example of such a solution is presented in [24],
where the web browser of a smartphone is instrumented to perform color transforma-
tions on the fly. These kinds of scheme can be parametrized so that the visible effect
of the transformations can be controlled by the user. For example, the user may want
to specify a maximal degree of distortion from the original color scheme caused by the
transformations, which may of course also limit the achievable energy savings.

Wireless network interfaces

A mobile device relies on its communication hardware and software, and the trend in
recent years has been to intensify and increase all communication-related features in
the devices. This means that the cost in power and energy created by communication
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is growing and this is creating an urgent need to make chips faster and less power-
consuming.

Wireless communication differs in many ways from the wired transfer of information.
A higher bit rate in a wireless link means generally decreased energy consumption per
gigabyte, but communication theory shows that this requires a higher. This again acts
contrariwise, increasing the power needs of transmission. So, power-saving measures
are also important with wireless communication.

Overall, wireless communication is one of the biggest energy consumers in a smart-
phone during typical usage. However, the energy consumption depends highly on the
type of access network used and the workload offered, that is the specific traffic patterns
caused by the applications being used. Indeed, smartphones today have several wireless
network interfaces (WNI) that implement different kinds of wireless communication
technology. We next take a detailed look at the characteristics of the power draw of
the three most used wireless technologies present in every modern smartphone: Wi-Fi,
Bluetooth, and cellular network interfaces (3G and LTE).

Wi-F

Basics

Wireless local area network (WLAN) equipment based on the IEEE 802.11 standard
[28] are prevalent in the market, including practically every smartphone model out there.
Wi-Fi is the often more familiar name used for this technology, although strictly speak-
ing it is a trademark of the Wi-Fi Alliance that provides certification for those devices
based on the 802.11 standard and having required level of interoperability.

Wi-Fi can be used in two different modes: adhoc and infrastructure. Adhoc is rarely
used nowadays because Wi-Fi infrastructure, that is access points (APs), are so exten-
sively deployed for indoor coverage. In the infrastructure mode, the Wi-Fi client, such
as a smartphone, first needs to discover an AP and then associate with it before it can
begin communicating with the Internet. The discovery part can be done in two basic
ways. The first one is passive, where the client scans, that is, listens, to the different
Wi-Fi channels for any incoming beacon frames which are sent by APs periodically
to advertise their presence. After receiving such a beacon frame, the client device may
begin association. The second approach is active, where the client broadcasts special
frames to which the APs respond. In this way, the discovery may be performed more
quickly because the client does not need to wait for the AP to transmit its beacon frame.

Data is transmitted in frames and it is governed by the Medium Access Control
(MAC) protocol in Wi-Fi. The medium access in Wi-Fi is random access, meaning that
there is no centralized control and scheduling of the transmission of different clients.
The MAC protocol used is called CSMA/CA, which stands for Carrier Sense Multi-
ple Access with Collision Avoidance. The basic idea is that any client can transmit at
any time but it needs to first listen for the channel and only transmit if no one else is
transmitting at the moment. Even so, collisions, that is simultaneous transmissions that
render both signals undecodable, may occur. To detect collisions, Wi-Fi uses acknowl-
edgments, and when there is a collision, each client chooses a random backoff time
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during which it is not allowed to transmit. The randomness makes it possible to avoid
synchronization between transmitting clients, which would lead to a deadlock situation.
For a more comprehensive coverage of Wi-Fi, we refer the reader to [29].

Energy consumption

We divide the discussion of the energy consumption of Wi-Fi into two parts. First we
look at the energy consumed during the discovery and association stage during which
we say that the client is in a non-connected mode. The AP discovery is the most energy-
consuming part of this mode because scanning, that is actively listening to a radio
channel, draws almost as much power as transmitting. The exact amount of energy
spent in the discovery phase depends on many factors but its duration is the key met-
ric. Active discovery is typically faster than passive discovery and, therefore, also more
energy efficient. The frequency at which new APs are scanned for is another factor that
greatly affects the overall energy consumption. In Chapter 13, we study how the overall
discovery energy can be reduced. The key insight in those solutions is to try to deduce
in less energy-consuming ways an opportune moment to begin scanning, that is when a
new AP is expected to be in range.

Once connected, the actual data transfer takes place. A WNI typically has several
operating modes, each of which corresponds to a specific activity. Wi-Fi has three
basic modes which are transmit, receive, and idle, which correspond to the transmit-
ting, receiving, and listening for incoming frames. Each of the modes correspond to a
specific power state.

The 802.11 standard defines a power-saving mechanism (PSM) [28]. It introduces a
possibility for the client to enter sleep mode when it is not actively receiving or trans-
mitting data. In this mode, the radio is mostly powered off and the WNI draws typically
an order of magnitude less power than the idle mode. In sleep mode, the radio is only
powered on periodically to receive a beacon frame from the AP intervals (e.g. 100 ms)
that notifies the client of any incoming packets. The AP with which the client is associ-
ated must be notified by the client before it goes to sleep so that the AP knows to buffer
any incoming packets that arrive between beacons and are destined for that client. To
reduce the negative performance impact of PSM, an adaptive version of it, also known
as PSM Adaptive, has been widely adopted in commercial products. In PSM Adaptive,
the network interface stays in the idle mode for a fixed period of time, such as 100 ms,
before going to sleep. The length of this period is also sometimes called the PSM time-
out and its default value varies from device to device. Figure 7.8 illustrates the state
diagram of Wi-Fi after it is associated with an AP. CAM is enabled when PSM Adap-
tive is disabled, and vice versa. Pz, Pg, P;, and Py represent the power consumption for
transmit, receive, idle, and sleep modes.

Besides the sleep mode, which is designed for reducing the energy wasted in idle
mode, some low-power states have been used for improving the energy efficiency in
transmit and receive modes. For example, on the Android G1, the transmit mode of
the WNI is refined into two sub-states [30]. Each of these sub-states corresponds to a
certain level of power consumption. Given a sub-state, the power consumption of the
WNI is assumed to be constant. The WNI works in the sub-state with higher power
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consumption only if the packet rate is over a certain threshold. This is similar to the
DVFS used in the microprocessor, which adapts the clock frequency to the processing
workload [31].

Enhancements by 802.11n/ac

The more recent amendments to the 802.11 standard include 802.11n and 802.11ac,
which introduce several new features and enhancements compared to their predecessors,
802.11a/b/g. The most important new physical layer enhancements include multiple
input, multiple output (MIMO) support and channel bonding. In addition, two new
power-saving mechanisms are included: spatial multiplexing power save (SMPS) and
power save multi-poll (PSMP).

MIMO enables the use of multiple antennas, each with its own RF chain, simulta-
neously for data transmission/reception. MIMO can be used in two ways. One is to
increase the spatial diversity by simultaneously transmitting redundant data streams
encoded in a special way to increase the range and robustness of data transmission.
The other way is to do spatial multiplexing by transmitting multiple separate spatial
data streams simultaneously to increase the transmission rate. Channel bonding allows
adjacent 20 MHz channels to be combined into wider single channels, thereby multiply-
ing the bandwidth and transmission rate. The difference between the two amendments
is that 802.11ac, for which the theoretical peak data rates are beyond a gigabit per sec-
ond, can use wider channels (up to 160 MHz) and up to eight spatial streams for MIMO
operations compared to a maximum of 40 MHz channels and four spatial streams in
802.11n.

In [32], the authors measured the energy consumption of 802.11n and discovered that
only the number of active RF chains has a significant impact on the power draw. From
an energy-consumption perspective, it seems mostly irrelevant whether the multiple RF
chains are used for spatial diversity or multiplexing. According to the measurement
results, the increase in power is not proportional to the number of RF chains that are
active. They found that a two-antenna MIMO consumes roughly 50% more power than



114

7.3.2

Smartphone subsystems

a single antenna configuration when transmitting, while a three-antenna configuration
only adds another 5% to the power draw. This observation suggests that using more
antennas, if available, is energy efficient but only if they are used to transmit/receive at
a high rate. In other words, a single antenna configuration is the most energy efficient up
to the maximum data rate that it can support. Beyond that data rate, multi-antenna con-
figurations can potentially provide better energy efficiency. However, the configuration
that achieves the highest throughput is not the most energy efficient in all cases. There-
fore, finding the energy optimal MIMO configurations through rate adaptation, that is
slowing down communication to save energy, has been recently under active research.
Some example algorithms for energy-aware rate adaptation are proposed in [33, 34].

As for the other enhancements, using channel bonding has a negligible impact on
power consumption according to their results, which means that it should be used
whenever possible because it increases energy efficiency. SMPS and PSMP do not alter
the basic behavior of the power-saving mechanism of 802.11. Both reduce the energy
consumed during idle periods. SMPS reduces the power draw when the client is not
receiving by switching off all but one RF chain. PSMP effectively makes it possible
for the client to sleep for as much of the idle time as possible. Hence, both of these
mechanisms impact the power levels in idle and sleep states.

Bluetooth

Bluetooth technology dates back to 1994 and it was created by Ericsson. Since then it
has undergone several revisions and the latest major revision of the specification 4.0
was released in 2010 and its latest version is 4.1, released in December 2013.

Bluetooth uses the same frequency range for communication as Wi-Fi does. How-
ever, the two differ from each other in several important ways. First, Bluetooth is a
device-to-device communication technology and it does not have an equivalent dis-
tinction of infrastructure and adhoc modes as Wi-Fi has. The channel access is also
different: Bluetooth uses the adaptive frequency-hopping spread spectrum (AFH) as
opposed to Wi-Fi’s random access (CSMA/CA). In AFH, the device continuously hops
from one frequency to another 1600 times per second according to an agreed sequence.
AFH is robust against interference from other Bluetooth devices because of different
hop sequences. It is also robust against interference from other technologies using
the same spectrum through adaptation of the hopping sequence: when interference is
detected, occupied frequencies, such as those overlapping with busy Wi-Fi channels,
are blacklisted and omitted from the hop sequence.

Bluetooth communication can be divided into activities done in non-connected
and connected states. Behavior in the non-connected state includes discovering other
Bluetooth-capable devices and establishing a connection with them, while the connected
state includes the actual data transfer. We next discuss both in turn.

Device discovery
Discovering other devices using Bluetooth usually consumes a significant amount of
energy. A device uses a process called inquiry to discover other devices. During this
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process, the inquiring device sends an inquiry message at every time slot in two dif-
ferent frequencies and spends the next time slot waiting for responses on the same
frequencies. The frequencies used follow pseudo-randomly selected trains of sequences.
A discoverable device hops according to a pre-specified hopping sequence, listens for
incoming inquiry messages, and responds upon receiving one. Therefore, because of
the frequency-hopping channel access, the discovery phase in Bluetooth requires ran-
domly polling for frequencies to find the other device. As a consequence, the discovery
takes usually much longer, up to 10 seconds, compared to Wi-Fi using active scanning,
for instance, which takes typically less than a second. Inquiry is followed by paging to
establish a connection between the devices.

The energy consumption of a smartphone during the discovery phase is relatively
large, in large part due to the long duration. The energy consumption also depends
on whether the smartphone is scanning for other devices or just being discoverable,
meaning that it listens for incoming inquiry messages. The power draw is typically
higher when inquiring compared to being discoverable but there is significant variation
between different phones as demonstrated by the measurement results presented in [35].

Because of the proportionally large energy demand of Bluetooth discovery, the energy
efficiency of the discovery mechanism has been studied so it can be optimized. Blue-
tooth also allows the discoverable device to only selectively listen for incoming inquiry
messages. Two parameters, the scan window and scan interval, control how often and
for how long the device listens, which also directly influence how much energy is con-
sumed. In opportunistic discovery scenarios, where both devices can be either inquiring
or act as discoverable device, the time spent in each phase also has an important role.
Indeed, if two devices never happen to take the opposite roles at the same time, they will
never discover each other. It has been shown that tuning these parameters has a signifi-
cant impact on the overall energy consumption [36]. Dynamically tuning the parameters
so that more “aggressive” discovery is performed when new devices could be expected
to be in range can be very beneficial in opportunistic discovery scenarios.

Data transmission

Once connected, the two devices hop along the same sequence of frequencies and
exchange messages. The power consumption during Bluetooth data transmission is rel-
atively constant regardless of the data rate. Compared to Wi-Fi, the power consumption
of Bluetooth is lower, but the throughput achievable is also lower than that of Wi-Fi.
Therefore, in most cases Wi-Fi yields a better energy utility, that is, more bits trans-
ferred per joule spent. This result is true for bulk data transfers, whereas low bit rate
transfers, such as audio streaming, would be more energy efficient to receive or transmit
using Bluetooth [35].

Bluetooth low energy

Bluetooth low energy (BLE) was introduced into the standard in version 4.0. It makes
low rate and very low-power communications possible using Bluetooth. However, it
is not compatible with classic Bluetooth in the sense that a pure classic device cannot
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communicate with a BLE device. For this reason, dual-mode devices have been intro-
duced, of which a typical example is a smartphone. It can act as both a classic and a
BLE device. The original idea of BLE was to be able to support communications for
coin cell battery operated devices with up to two years of battery life. Needless to say,
the energy consumption must be very low for such scenarios.

BLE communication takes place between a slave and a master device. Compared to
classic Bluetooth, the device discovery has been simplified so that there are three dedi-
cated advertisement channels on which a slave device periodically sends advertisement
messages. The periodicity is determined by an advertising interval. The master device
must listen (or scan) on one or several of those channels for incoming advertisements.
Upon receiving one, the master can initiate a connection with the slave.

BLE makes heavy use of duty cycling. All the data transfer in BLE happens through
so-called connection events where both the slave and master wake up in synchrony to
exchange messages. The two devices can sleep for the remaining time. The frequency
of such events is determined by the connection interval parameter.

The way BLE achieves low energy consumption is a combination of two key fea-
tures: long duty cycles and ultra low power consumption in sleep mode. The energy
consumption during the discovery phase is heavily asymmetric. The slave only needs
to periodically send an advertisement message and listen for a short while for a reply,
whereas the master needs to scan the channels for incoming messages and may need to
spend a considerable amount of energy. The energy consumption of the discovery phase
can be influenced through setting the corresponding parameters [37].

To illustrate the energy consumption once connected, Figure 7.9 plots the energy util-
ity as a function of packet size. The plot was generated using a power model generated
from measurements with a BLE keyfob [38]. There is a certain amount of overhead
energy spent for each connection event, so when the size grows the energy utility
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increases as well. The curve has a sawtooth shape because the payload size is limited to
a maximum of 27 Bytes at the link layer, which corresponds to 23 Bytes of application
data when taking protocol headers into account. Therefore, the energy utility steps down
each time the 23 Bytes boundary is crossed and an extra packet has to be included to
convey the entire application PDU (Protocol Data Unit). To put these numbers into per-
spective, a classic Bluetooth bulk transfer achieves an energy utility of roughly 15-30
kB/J using RFCOMM and up to 200 kB/J with audio streaming [35], which are rather
far from the energy utility of BLE. As for Wi-Fi, the results presented in [39] demon-
strate that Wi-Fi’s energy utility is highly linear. In the low bit rate range, it is clearly
less energy efficient than BLE but, in contrast, the peak rates deliver very high energy
utility, up to 2.5 MB/J.

Example power measurements

To get a better idea about how the energy consumption of using classic Bluetooth
compares to the low-energy version with a smartphone, we show some measurement
results from using a modern Android smartphone. The OS had been upgraded to the
Android 4.3 to get BLE support. The phone, similar to all other BLE-capable phones,
runs a dual-mode Bluetooth chip where the same radio is used for both classic and low-
energy communications. We wrote our own very simple application that sequentially
uses both kinds of Bluetooth and recorded a six-minute long power trace when using
that application.

Figure 7.10 shows the average power consumption in different modes which we
extracted from the power trace. The idle power when running the application and hav-
ing the Bluetooth interface enabled was subtracted from the results. In fact, whether
Bluetooth was enabled or not seemed to have no impact on the device power draw.
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Classic Bluetooth’s discovery seemed to be slightly more power hungry than the sim-
pler BLE discovery (BT disc vs. BLE scan), as expected. Interestingly, there was no
huge difference between the power consumption of the two types of Bluetooth while
being connected and idle (BT conn vs. BLE sleep). So, it seems that when using BLE,
the Bluetooth radio circuitry is hardly switched into a sleep mode in between the con-
nection events. Surprisingly, BLE connection events draw the highest amount of power
(BLE cevent).

To illustrate the difference in energy consumption when receiving 20 Bytes of data
over classic Bluetooth and over BLE, we plotted power traces corresponding to the two
cases in Figure 7.11. With the used device, it seems more energy efficient to receive even
small amounts of data using the classic Bluetooth instead of BLE. These measurements
suggest that the current smartphones have not (yet) been optimized for BLE power effi-
ciency. Hence, the low-energy part of BLE mainly applies today to the battery-operated
peripherals and small gadgets that connect to the smartphone using BLE.

Cellular networks

HSPA (3G) and LTE (4G) are currently the two dominant types of cellular net-
work that are used for data communication. We next describe the energy-consumption
characteristics of each of them in turn.

HSPA (3G)

In the HSPA cellular network, the use of radio resources and power consumption of
a mobile phone is controlled by the radio resource control (RRC) protocol. The most
relevant part of the RRC from the energy-consumption perspective are the four states
out of which three correspond to specific transport channels:
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CELL_DCH is used for data transmission involving relatively large traffic volumes,
such as bulk transfer in streaming applications. It provides the best network throughput,
but it also creates the highest power consumption. Therefore, RRC protocol switches the
state from CELL_DCH to CELL_FACH for sending/receiving a small volume of traffic
with lower power consumption, and to the CELL_PCH state to get the lowest power
consumption when there is no active data transmission on the mobile device [40]. The
fourth state is idle in which the RRC connection does not exist. The power draw in the
idle state is almost the same as in the CELL_PCH state.

Figure 7.12 illustrates the RRC state machine and the inactivity timers that control
the transitions among these states. After no data has been received or transmitted for a
timer-specified duration, a state transition occurs. The timer values are typically around
several seconds and are controlled by the network operator. Some operators may not
enable CELL_PCH in their network and in that case the RRC connection is terminated
upon the expiry of T2. The figure also shows that operating in different states draws
different amounts of power. The figure also depicts a mechanisms called fast dormancy
which we discuss in Section 7.3.5.

LTE (4G)

LTE (Long Term Evolution) is the latest generation of cellular network technologies.
LTE behavior with respect to energy consumption can also be described in terms
of states. However, LTE’s state diagram only contains two states: RRC_IDLE and
RRC_CONNECTED [41]. Similarly to 3G, there is an inactivity timer with a typical
value of 10 s associated with the transition from the connected to the idle state. The
power draw in the RRC_CONNECTED state is much higher than in the RRC_IDLE
state.
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Monitoring the RRC state

The open-source Application Resource Optimizer (ARO) from AT&T Labs® can be
used to obtain packet-level smartphone network traces of both Android and iOS phones.
We can apply HSPA or LTE profiles of network providers on these traces. ARO esti-
mates the RRC state changes from the traces, which requires a certain number of
network-specific parameters, in particular the inactivity timers controlling RRC state
demotions, to be known. These parameters can be inferred through a separate profiling
process* or they can be known a priori.

Figure 7.13 shows a trace of the popular Angry Birds game. The trace is 143 sec-
onds long and contains starting the application, two minutes of playing Angry Birds,
and closing it. At the top of the figure, Throughput shows the change in bandwidth
requirements across the trace. Packets UL and DL show the density of uploaded and
downloaded packets. Bursts shows the placement of data traffic bursts (only one in this
figure). User input shows when the user pressed hardware buttons on the device, such
as the home and back buttons.

The two rows at the bottom are the 3G and the LTE power states when applying
AT&T’s network parameter settings with the trace. Focusing on the 3G as an example,
the ramp-ups colored with the darkest shade of gray indicate state promotions to a higher
power mode, such as from idle to DCH right at the beginning of the trace. The height
of the bar indicates the power draw of the state. CELL_FACH, the second lowest power
state, is colored with the same dark gray. The next darkest shade of gray indicates active
data transmission in the CELL_DCH state. The lightest shade of gray designates time
spent in the CELL_DCH state without active data transfer waiting for the inactivity
timer to expire, resulting in so-called tail energy, which we discuss more in the next
section. While the diagram does not give power values directly, it shows the behavior of
the two communication technologies when facing small but continuous traffic.

3 https://github.com/attdevsupport/ARO accessed January 6, 2014.
4 Detailed description of how the network- specific parameters can be inferred is presented in [42].
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Another solution called RILAnalyzer is an on-device tool to monitor the RRC states
of a 3G modem [43]. It works on rooted Android phones that have the Intel/Infineon
XGold chipset. The tool queries the 3G state information using the radio interface layer
(RIL) through which the modem exposes such information to the OS. In addition, the
tool collects IP packets through userspace logger leveraging iptables. The fact that RIL-
Analyzer directly queries the RRC state is the main difference to ARO which estimates
the state and requires the a priori known network parameters.

Tools such as the ones presented above are very useful for application developers
who want an easy way to get at least a rough understanding of the energy efficiency
of their application from the wireless-communication perspective and, consequently, to
optimize it.

Tail energy

All the WNIs have one specific characteristic related to energy consumption in common.
As we have just learned, all the different WNIs have mechanisms to ensure that the radio
is not fully powered on all the time. Furthermore, the transitions from active to more
passive modes, where the radio sleeps at least part of the time, are based on timers. The
energy that is consumed because of powered on radio for the inactivity timer specified
duration is often called tail energy [44]. It is present in all WNIs, but the amount of it
may differ substantially.

The timer values are wildly different with the different access technologies. Typical
values for an HSPA and LTE networks are up to ten seconds or more, whereas Wi-Fi
puts the radio to sleep after only one to two hundred milliseconds. The timer values
are not specified in the standards and in cellular networks, they are set and controlled
by the network operators. Consequently, the amount of tail energy is vastly differ-
ent depending on the technology and the specific operator-dependent configuration.
Figure 7.14 illustrates how tail energy is consumed with 3G. Timers T1 and T2 con-
trol the transitions from CELL_DCH to CELL_FACH and from CELL-FACH further to
CELL_PCH or idle, respectively. P1 and P2 are the power drawn in the corresponding
states.

Why do such timers exist in the first place if they lead to excess energy consump-
tion? In a sense, the timers and the tail energy caused by them are the price to pay for
more efficient radio access network resource consumption and shorter application-level
latency. The reason is that switching modes between sleep and active power modes takes
a non-negligible amount of time because of hardware limitations. Furthermore, schedul-
ing the shared resources of a radio access network efficiently becomes a difficult task if
the duration of resource use can be arbitrarily short. This is true especially with appli-
cations that communicate in a sporadic manner, that is transmitting or receiving packets
every now and then without a regular and predictable structure in traffic patterns. Note
that the issue is not as prominent with Wi-Fi because it has no central scheduler but
relies instead on random medium access.
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Mechanisms to reduce tail energy

The impact of tail energy on the overall energy consumption of data communication
using 3G or LTE is so dominant that special mechanisms to mitigate it have been devised
for the cellular access networks. Table 7.2 summarizes the characteristics of tail energy
when using different wireless access networks with a typical modern smartphone and
the mechanisms to mitigate it. The delta values for the power draw in different states
is simply the power in the idle state after the tail energy has been subtracted from the
power in that state, for example, APpcy = Pper — Ppcn.-

Fast dormancy in 3G

Fast dormancy (FD) is a technique that allows the 3G WNI to switch directly from
CELL_DCH to CELL_PCH or to the idle state. There are two types of FD. Initially,
some phones started to support a non-standard mechanism that relies on misusing a
specific signaling message: the phone transmits a signaling connection release indica-
tion message, normally used to communicate certain error conditions by the phone, to
the network which causes a tear down of the PS signaling connection. The WNI may
end up either in the CELL_PCH or the IDLE state.

The good news is that power draw is immediately lower. The bad news is that when
there is a new communication the phone must re-establish the signaling connection,
which introduces additional delay and more signaling traffic into the network than if
the WNI had transitioned into the CELL_PCH state without releasing the signaling con-
nection. Especially due to the signaling storms experienced by operators [45], 3GPP
Release 8 introduced a new mechanism. This standardized mechanism is a network-
controlled FD where the phone indicates to the network that the data session is finished
for now and requests the network to transition the device into an appropriate state. The
network decides whether the request is granted or not and to which state the device is
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Table 7.2. Tail energy and built-in mitigation mechanisms with different wireless access
networks, with typical power and timer values; actual values depend on the hardware and
cellular network configuration

WNI Tail timers Power values Mitigation mechanisms

Wi-Fi (with PSM) Tpsy =0.2s  APjge =0.78 W Unnecessary

HSPA (3G) T, =8s APpcy =0.78 W Fast dormancy (FD),
T,=3s APpacyu =0.59 W continuous packet
connectivity (CPC)
LTE Tige =108 APcomected = 1.3 W Connected mode DRX/DTS

transitioned. For example, very frequent transitions to CELL_PCH may not be allowed,
again due to increased signaling traffic. The problem with the signaling traffic when
using legacy FD (referred to as autonomous signaling connection release) and analysis
of the effectiveness of the standardized FD to mitigate the problem are explained in
detail in [46].

Discontinuous reception and transmission in active states

Discontinuous reception and transmission used specifically in connected states is
another set of mechanisms based on duty cycling. It is employed in both LTE and HSPA
networks. The idea is that when the device has no data to transmit or receive, it sleeps
most of the time and only periodically wakes up to receive control sub-frames indicat-
ing whether new incoming packets are buffered at the base station. So, the mechanism
is very similar in nature to the PSM of Wi-Fi. Note that in non-active states, such as
CELL_PCH or RRC_IDLE, discontinuous reception is automatically applied, which is
why these states have naturally low power consumption. The idea is simply that the
same mechanism is applied in the active states CELL_DCH and RRC_CONNECTED
even during active data transmission.

In LTE networks, these mechanisms are dubbed cDRX/cDTX where the “c” stands
for connected mode. The state diagram of LTE with cDRX/cDTX enabled is shown
in Figure 7.15. As show in the figure, the activation of discontinuous reception is also
controlled with a timer (we refer to it as Tpgyx). The WNI goes through different DRX
cycles short and long until the inactivity timer expires and the interface goes to the
RRC_IDLE state. Figure 7.16 illustrates the way that the different cycles work in cDRX:
after the Tprx of no packets received, the DRX short cycle is activated during which the
radio is awakened periodically for 7,,, amount of time to receive control frames from the
base station. After a predefined number of short cycles, the DRX long cycle is activated,
which simply means that the radio wakes up less frequently. This goes on until the LTE
inactivity timer expires.

Continuous packet connectivity (CPC) is an equivalent solution for HSPA data com-
munication (3G) [47]. It the activates DTX/DRX mechanisms in the CELL_DCH state.
It was introduced in the 3GPP Release 7.

The energy savings achieved through discontinuous reception are highly dependent
on the configuration. The shorter the DRX inactivity and the on-duration timers, and the
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longer the DRX cycles, the less energy is consumed. However, such “aggressive” timer
configuration, that is long DRX cycles and short timers, may increase the delay and
reduce the responsiveness of some applications. Consider, for example, web browsing
where requests and page loads occur every now and then and the user reads the ren-
dered page in between. With such applications the user experience may worsen due to
increased perceived latency in page loading caused by an aggressive timer configuration.

Smartphones also currently put some constraints on the range of effective DRX cycle
configurations. It turns out that because of hardware and/or modem software limitations,
the energy savings, compared to the case of not having DRX enabled at all, decrease
substantially with the current chipsets when reducing the DRX cycle length. Figure 7.17
shows some example measurement results with three modern smartphones from differ-
ent manufacturers. In these measurements, the on-duration was set to 10 ms. Therefore,
if we assume negligible power draw when the radio is in sleep mode, a theoretically
optimal DRX implementation would have kept the radio on for 10 ms and allowed it
to be off for 70 ms when using an 80 ms DRX cycle, for instance. That calculation
yields 87.5% energy savings compared to the case when DRX is disabled. In contrast,
we observe roughly 20-40% energy savings, which means that there is still some room
for optimization even if there will always be some overhead associated with the switch-
ing of the radio. These limitations are crucially important for the energy efficiency of
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Voice over LTE (VoLTE)[48]. If DRX is used in conjunction with VOLTE, a DRX cycle
of only 20 or 40 milliseconds must be applicable.

Sensors

In recent years, mobile phones have undergone an evolution from simple communica-
tion devices into effective multi-sensor platforms, starting a new era of context-aware
applications and services. As the increase of new sensing and computational capabilities
emerge at an increasing pace, energy-efficient sensor management has become a central
concern for mobile sensing. We next look at the different kinds of sensor embedded in
typical smartphones and their energy-consumption characteristics.

Types of sensors in smartphones

There can be tens of sensors integrated into modern smartphones and more are being
packed into each new generation of phones. Consequently, for clarity and ease of refer-
ring we group the sensors into four categories based on the type of context the sensors
are used for:

® Motion sensors describe the orientation and movement of the phone and include
accelerometers, gyroscopes, and magnetometers. Additionally, many phones include
virtual sensors, such as a rotation sensor, a linear acceleration sensor, a gravity sensor,
and a significant motion sensor, which capture specific aspects of one or more of the
underlying hardware sensors.
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® Wireless sensors send and receive information from external sources and include sen-
sors such as GSM, GPS, Wi-Fi, Bluetooth, NFC (Near Field Communication), and
infrared.

¢ Environmental sensors sense various information from the phone’s immediate sur-
roundings and include sensors such as a microphone, camera(s), and light, proximity,
pressure, humidity, and temperature sensors.

¢ Internal sensors track the state of the phone’s main functions, such as the battery level,
voltage and temperature, the current state of the phone’s screen, and the current state
of the phone calls.

The above categorization is based on encompassing sensors used for sensing similar
context. Motions sensors are a natural choice for any activity recognition tasks and can
provide an easy, low-energy solution for detecting mobile and stationary periods. The
primary uses wireless sensors can be divided into location sensing and sensing for data
communication, but they have also found use in other domains, such as detecting crowd-
ing in public spaces and estimating the cognitive state of the user. From the wireless
sensors, GPS should be distinguished as a special case for energy-efficient sensing, as it
is both one of the most employed sensors, as well as one of the most energy consuming
ones. Environmental sensors, in addition to the multiple uses of camera and microphone,
provide information about the user’s immediate surroundings, which can be fused with
motion sensors for more accurate activity recognition, or provide hints for positioning
from location change. The main use of internal sensors is to filter and adjust the use of
other sensors, and to ensure that the phone’s hardware is not overly strained. Addition-
ally, motion sensors can greatly benefit from information when the phone movement is
caused by user interaction, for example because of an ongoing phone call rather than
the user’s physical movement.

Characterizing the energy consumption of sensors

When designing a sensor-sampling strategy, it is necessary for the developer to have
a clear understanding about the sensor’s behavior and what are the key factors for its
energy consumption. For this purpose, it is useful to have at least a coarse-grain charac-
terization of the energy consumption, typically in the form of a very simple deterministic
power model (we discuss the different types of power model in Chapter 9).

A sensor power model describes the different stages and the associated energy con-
sumption of a given sensor. For example, Table 7.3 lists measured power and energy
values for a particular smartphone. Obviously, the absolute values shown in the table
do not hold for all smartphones. The phone hardware and OS may have a signifi-
cant impact on the energy-consumption characteristics. Each sensor typically consumes
some energy for triggering the sensor on and off, and draws power while sensing. Also,
keeping the sensor powered on but not actively sensing, typically draws some power,
that is idle power.

The granularity of the models can be extended to include different stages of the sam-
pling phase. For instance, the sampling phase of a GPS sensor can be divided into
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Table 7.3. Sample energy and power measures for sensors of the Samsung Galaxy S2

Sensor Switch ON  Switch OFF  Sampling Idle Pre-sampling
Accelerometer - - 21 mW - -
Gravity - - 25 mW — -
L.Acceleration — — 25 mW — —
Magnetometer - - 48 mW 20 mW -
Orientation - - 499mW 20 mW -
Rotation — — 50mW 21 mW =
Gyroscope - - 130 mW 22 mW 44 mJ
Microphone 123 mJ 36 mJ 101 mW = -

GPS 77 m] — 176 mW - 198 mW
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achieving a GPS lock and tracking position, as illustrated in Figure 7.18. More pre-
cise models can be created by adding further information to the models, for example
the effect of different sampling rates on the energy consumption, the standard deviation
of the energy consumption, and the duration of switching the sensor on/off.

Multiple processors for continuous sensing

Continuous sensing involves the constant monitoring of onboard sensors, such as an
accelerometer, microphone, or camera. Thus continuous sensing burdens the processor
and uses a lot of energy. Current and forthcoming smartphones support the offloading
of sensing tasks to auxiliary processors and low-performance cores to save energy. For
example, the Android OS supports batching sensing operations, and as an example we
can consider the Samsung Galaxy S4 smartphone that has a hardware chip for aggre-
gating and optimizing sensor data gathering and processing. Figure 7.19 illustrates a
sensor hub co-processor that performs always-on monitoring of sensors, allowing the
host CPU to sleep. Sensor hubs are an effective way to offload sensing data polling
and processing from the main application cores to a more dedicated hardware processor
[49].

Most sensing applications consist of a sequence of stages that process sensor data.
The typical stages include the following [50]:
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e Sampling and buffering, in which the sensors are sampled and the data is placed into
a buffer.

¢ Filtering, in which the interesting parts of the data are identified and selected for
further processing.

e Feature extraction, in which features are extracted from the data to perform
classification.

e (lassification, in which the data is classified based on the extracted features by using
machine learning or probabilistic methods.

e Post-processing, in which the applications react to the sensing result.

Assuming that an application consists of N stages and that we have more than one
processor for running the stages, the central question is how to place the stages across
the processors. The placement decision needs to take into account the energy character-
istics of the processors as well as the processor wakeup and stage/task scheduling cost
[50].

Given that we have a high-performance core and a lower performance core for
sensing tasks, it is clear that computationally heavy operations should be run on the
high-performance core. The low-performance core, on the other hand, would be suit-
able for reading sensors and then handing over the data to the high-performance core
for intensive processing, such as speech recognition.

Assuming that the low-cost processor is the most suitable for a specific computation
stage, i, we have the following bound for the slow-down of the stage [50]:

M _pM trans | pL
Pactive leeep + E /Paclive (7 9)
L ™ ’ ’
active i

S <
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M M . . .
where P, and Pg,,, are the power consumptions of the high-performance main

core when in active and sleep states, respectively. In a similar fashion, Pt  is the
power consumption of the low-performance core, E”" is the transition cost for stage
placement on the main core, and T is the execution time of the stage on the main core.

The slow-down factor is dependent on the hardware and on the computation. For
example, the memory size of the processor, data parallel instruction sets, floating point
units, bus speed, DMA availability, cache size, processor frequency and frequency
scaling, and auxiliary components such as DSP instructions affect the outcome. Exper-
imental results indicate that the transition cost for the main core is several orders of
magnitude higher than for the low-performance core. Moreover, the sleep state cost
of the main core is significant and comparable to the low-performance core in the
active state. Most energy benefits are achieved when placing simple and frequently used
sampling and buffering tasks to the low-performance core [50].

In addition to stage scheduling across heterogeneous processors, programming
abstractions are also needed to support application development using multiple proces-
sors. The Reflex platform aims to make it easier to develop for multi-processor mobile
platforms [51]. This approach abstracts low-level development issues by using a shared
distributed memory abstraction.

Camera

Taking images and capturing videos with smartphones and sharing those with others
is increasingly popular. When shooting a video, the smartphone uses the display, the
camera internal hardware such as the image sensor, the CPU for encoding the video, and
it also files 1O operations for temporary storage of the encoded content. The total power
consumption can be very significant. In this section, we explain how much power and
by which hardware component the power is drawn while using a smartphone camera.

Image sensor

The heart of a modern smartphone’s camera is usually a CMOS (complementary metal-
oxide semiconductor) image sensor. It is cheaper to manufacture than a CCD (charged-
coupled device) image sensor which is the other often used sensor type. The sensor is
typically integrated into a mobile device, such as a smartphone, so that it is directly
connected to the application processor through MIPI interfaces.’> Applications use the
image sensor through the API exposed by the OS. The API allows the camera operations
to be controlled and usually also provides options to configure some of its properties,
such as those related to the image quality.

When powered on, a CMOS image sensor mostly alternates between active and idle
states and sometimes it can go to a standby mode. In the active state, the pixels are read

> MIPI (mobile industry processor interface) Alliance defines interfaces for mobile devices in order to have a
common set of them used by the mobile device industry.
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out from a pixel array, which is a component that consists of a set of photodetectors and
transistors, whereas in the idle state the sensor is on but the pixel array is not being read.
The sensor operates according to a clock. The clock speed determines the highest rate
at which pixels can be read and processed by the sensor, typically one pixel per clock
period. Hence, the amount of time spent in active vs. idle modes depends on the frame
rate, image resolution, and clock speed.

The work presented in [52] investigated the energy consumption of a CMOS image
sensor. It turns out that the image sensors are typically quite far from being energy pro-
portional with respect to image and video quality. Specifically, they consume much more
energy per frame with small frame rates than with high frame rates, and similarly, more
energy per pixel with low resolutions than with high resolutions. This phenomenon
stems mainly from the fact that most of the image sensors draw only a little less power
in the idle state compared to the active state, and that the standby mode is not actively
used.

The energy proportionality can be improved substantially by using two straightfor-
ward mechanisms: clock scaling and the standby mode. As is usually the case with such
circuits, the clock speed directly affects the power drawn by the image sensor in both
active and idle states in a linear manner: the lower the clock speed, the smaller the power.
However, the clock speed also determines the highest resolution and frame rate combi-
nation that the sensor can support. Therefore, by scaling the clock speed according to
the configured parameters, the energy consumption could be made more proportional
to these two parameters. In addition, using the standby mode to reduce the time spent
in the idle state can potentially reduce the energy consumption further. Of course, these
techniques reduce the energy consumption only when high-quality images and videos
are not required.

Dissecting the power drawn by smartphone cameras

To understand how much energy is consumed while recording a video in total and
individually by different operations involved, we performed measurements with three
different modern smartphones from different manufacturers running different operating
systems. We measured different cases to be able to decompose the power drawn by the
smartphone into sub-tasks. We specifically quantified the power drawn by the idle phone
operated in airplane mode, by the display, by having the camera switched on in focus
mode, and finally by recording the video which we call the shoot mode. We show the
power consumption break down in Figure 7.20 and we next discuss each part in turn.

Display

Of the tested phones, phone 1 uses in-plane switching liquid crystal display (IPS LCD)
and phones 2 and 3 use active-matrix organic light-emitting diode (AMOLED). To eval-
uate the display power consumption, we set the display to show only white or only
black color on the entire screen using a medium brightness level (the brightness level
can affect the power draw by up to half a watt). During the measurement there were no
background applications running and the device was in airplane mode. We chose white
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and black due to the usual dynamics in the power consumption by the display panels
for color reproduction; black drawing minimum power and white drawing maximum
power. The difference between the two was roughly 250 mW. We then computed their
average and show that in Figure 7.20. With these phones, OLED seems to draw about
300 mW more power than IPS LCD to display the same color.

Focus mode

Switching the camera on but not yet recording video causes the camera to focus on the
object being shot and display it on the screen. The camera internal hardware is effec-
tively being used in addition to the application that controls camera operations. Using
the knowledge we have about the average power consumed by the display, we calculated
the added power by this mode of operation and stacked it on top of the display power
in the figure. We note that the overall increase in power draw is very substantial, even
exceeding one watt. In addition, there are notable differences between the phones but
resolution does not yet play a role in this phase, which is at least partially explained by
the lack of energy proportionality of the image sensor discussed earlier in this section.

Shoot mode

When recording video, the power drawn by the processing and storing of the video
content to the file system is added. Again we measured this part in the same way by
subtracting the previous phase (focus mode) power from the total power in shoot mode
and stacking the result on top of the two earlier components in the figure. Again, we
observe that there are quite large differences between the phones: the extra power drawn
by recording the video is relatively small for phone 1 but clearly more significant for
phone 2 compared to just the focus mode power. In this last phase, the video resolution
also starts to play a role. The increase in power overall is not tremendous and it differs
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between the phones. For phone 3, which already draws pretty high power in lower res-
olution, the increase is only about 200 mW, whereas for phone 1 the increase is almost
500 mW.

Taking into account the battery capacities of the tested smartphones, we can compute
the operating time. Using a fully charged battery, the operating time varied between two
and three hours if continuously shooting video with the phones, which means that the
energy consumption rate is very high but the battery capacity may just be sufficient to
record an entire live event, such as a concert.

Summary

In this chapter, we examined the components and features of the smartphone including
the CPU and SoC, communications, display, sensor subsystems, and mobile operating
systems. The power management and optimization is implemented throughout these
components. The OS examined in Chapter 8 has the crucial role of managing the
device-level power parameters. We discussed the key components and our observations
included the following:

® The modern smartphone hardware consists of multiple physical CPU cores and aux-
iliary processors. The OS scheduler is responsible for distributing the load across
the processors. The system logic controls the CPU speed and furthermore enters/ex-
its C-states at the perceived need. These are the cause of frequent modifications of
parameters such as clock speed, number of CPU cores used, speed of the memory
bus, and voltages in the wiring system of the chips (CPU and memory). Changes in
all these parameters could be avoided if the CPU speed scaling is prevented. This also
directly decreases the probability of changes in memory buses (voltage and clock) and
in other components of the core. The scheduling system also contributes to the time
core components spend in low-power modes.

e Communication activities, such as cellular wireless, Wi-Fi, and Bluetooth consume
power when in receiving, transmitting, or scanning states. Thus, it is better to try to
use a mode (e.g. the so-called airplane mode) which decreases bias, when not measur-
ing just cell radio power. Also Wi-Fi or Bluetooth can be separately disabled/enabled
if need be.

* A notably power-hungry device is the screen and its backlight, both of which can
be turned on or off. In certain technologies, the color usage contributes to chang-
ing current usage causing bias. Thus, the safe bet is to turn the screen totally off if
possible.

® The camera is another component that exhibits a very significant power draw. How-
ever, optimization possibilities fortunately exist, as demonstrated by recent research
results.

As we have seen, the measurement of current use is a critical feature of the power
economy of a mobile device. There exist standard principles and methods to do this.
The following principles are important when measuring current use:
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® The current should be measured as average instantaneous current and we should use
the nominal voltage. Normally this requires using a standardized power source and
also special software tools meant for gauging batteries.

® No external charger should be used and no USB connection to the host should be
active, has this would cause external current usage and give lower measurement
values for the battery.

® An effort should be made to keep the mobile system outside the target component
(the component whose power consumption is to be measured) running in a stable
state, drawing constant only constant power from the battery. Thence we try to avoid
the measurement inaccuracy caused by the possible changing states of the device
surrounding the target component.
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Mobile operating systems

Mobile operating systems are a relatively new development in the computing world.
Mostly they are based on some existing older OS, typically written for stationary com-
puters and laptops. For example, Android is based on the Linux kernel, iOS on the Mac
OS X kernel, and Windows Phone on the Windows NT kernel. The mobile OS borrows
many features from the desktop world; however, it needs to meet the demands of the
mobile environment for communication needs, positioning of the device, power chal-
lenges caused by mobile operation with rechargeable batteries, and smaller size for the
convenience and comfort of users. The OS is responsible for overseeing and managing
the hardware and software components on the smartphone and it is responsible for the
system-level power management.

In this chapter, we examine four current state-of-the-art smartphone OSs—iOS, Win-
dows Phone, Firefox OS, and Android—as well as a number of energy-conserving
research prototypes. We focus on the current generation of mobile OSs given our focus
on smartphones. Classical examples of earlier feature phone OSs include the Symbian
OS and Windows Mobile [1]. After examining the four smartphone OSs, we compare
their features and properties.

Overview

Power management is an integral part of an OS that operates on multiple levels from
drivers to applications. As the functionalities and features of mobile devices are con-
stantly growing so is the demand for power. If the battery capacity is not increased, the
software and hardware have to be more power-efficient to keep the same battery life
when new features are being introduced to a device. For example, Linux makes use of
several power-saving techniques implemented in hardware, such as

e scaling core voltage,

e gating of system clock,

* memory cache disabling,

¢ use of power and sleep modes.

As a classic example we can consider ACPI [2], which is aimed at personal com-
puters. ACPI replaces the older APM solution and provides an industry-standard for
OS-level device configuration and power management. The previous standard, APM,
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allowed control at the BIOS level, whereas ACPI allows this control at the OS level. In
APM, the power management starts when the device becomes idle, and the OS has no
control or knowledge over this power state change. In addition, ACPI provides a struc-
tured tree for shutting off devices which prevents turning off single components before
their subsystem is powered down.

The smartphone OSs do not use ACPI; however, they employ techniques that
are very similar. We will observe that i0OS, Windows Phone, and Android all have
a power-management entity within the OS that monitors and controls driver-level
power management and allows component-level power management decisions. The
OSs also expose battery information to application developers and employ a number
of application-development patterns to save energy.

Mobile 0S

Table 8.1 shows a high-level feature comparison of the four major mobile device operat-
ing systems: Android, i0S, Firefox, and Windows Phone. Android and iOS application
ecosystems flourish and dominate at the moment, as shown in Figure 1.11. Windows
Phone has been gaining ground and has been competing with Blackberry,! which is
a popular platform especially for business users. Firefox OS is a new platform that is
exclusively based on HTMLS5 [3]. In addition to these mobile OSs, the Linux Foun-
dation is developing the Linux-based Tizen? for smartphones, in-vehicle infotainment
systems, and other devices.

The table examines the typical development languages, network features, back-
ground processing support, push notifications, energy and power monitoring, HTML 5,
open source nature, and third-party application installation processes. The OSs employ
similar principles and patterns, although the implementations and APIs are very
different.

The power managers of modern mobile OSs support component-level monitoring
and configuration that allows the power state of a component to be changed. Hardware
component dependencies are typically modeled with a tree or graph structure.

In general, Android has the least limited API set for gathering information about
the network, battery, and system. The network and connectivity APIs of the four OSs
support the key wireless standards, such as Bluetooth and Bluetooth LE, Wi-Fi, LTE,
and NFC, but typically the APIs are limited to querying the properties of the current
network and wireless connection.

Multitasking third-party applications is an important feature; however, it can lead to
a significant energy draw due to intensive or frequent background activities. Typically,
background tasks poll web resources, play audio content, or track on-board sensors,
such as acceleration sensors or GPS. This observation has led to task-based multitask-
ing, in which the developers use a multitasking API to create tasks that are run in the
background. The multitasking API typically allows the developer to specify the nature

! http://global.blackberry.com accessed January 6, 2014.
2 http://www.tizen.org accessed January 6, 2014.
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Android i0S FireFox OS Windows
Linux Linux Phone 8
Development Java, native Objective-C Javascript and ~ C# and NET,
code with JNI HTMLS5 various
and C/C++
Network Basic APIs: Basic APIs: No (only for Basic APIs:
features Bluetooth, Wi-Fi, Bluetooth, Wi-Fi, pre-installed Bluetooth, Wi-Fi,
cellular, NFC cellular, NFC applications) cellular, NFC
Network Network Network
information information information Set
Enumerate connection
access points preferences
Signal strength
Background Yes (services) Task-based No (planned) Multitasking API
processing multitasking
since version 4
Push Yes (Google Yes (iOs Push Yes (Firefox Yes (Microsoft
notification Cloud Notification) Push Push
Messaging) Notification) Notification
Service)
Energy and Battery status Monitoring since Battery status  Battery status
power monitoring 3.0
HTML 5 Yes Yes Yes Yes
Open Source Yes No Yes No
3rd party Certificate, Certificate, Certificate, app Certificate,
application Google Play Apple AppStore  stores and web  Windows Phone
installation sites Store

of a task, for example a location-tracking task, polling task, audio playback task, or VoIP
task. The OS scheduler can use this task-specific information to perform system-wide
optimizations.

All four OSs support push notification that aims to increase application respon-
siveness and reduce energy consumption due to polling. The idea is to use a single
connection for receiving push notification signals for multiple applications. The push
services have a similar design, in which the mobile application provides a URI or a
token to the web service that wants to send push notifications. This service then gives
this information with the push message to the push notification service that is responsi-
ble for delivering the message to the proper device. The target device receives the push
message through a long-lived connection with the push service. Once the message is
received it is then locally routed to the proper application.

All four OSs provide basic battery information that includes the battery level, remain-
ing operating time, and subscription of battery level changes or low battery situation.
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Android provides a wealth of information through the BatteryManager and BatteryStats
classes.

In addition to task-based multitasking and asynchronous events and push notification,
wake locks are a frequently used pattern for preventing unnecessary use of resources.
Windows Phone and iOS do not have explicit wake locks, but they allow the application
to prevent the display from being turned off. Android, however, builds the power-
management model on wake locks. The PowerManager uses wake locks to manage
the power states of peripherals, such as the screen display. If a peripheral does not
have a lock, it will be powered off and put to a low-power state to save energy. The
PowerManager has an API that applications can use to manage these locks.

Next, we investigate the mobile OSs in more detail and then compare their power-
management techniques and patterns.

i0S

iOS? is the mobile operating system from Apple used in the iPhone, iPad, iPod Touch,
and newer Apple TV products. The OS was originally published on January 9, 2007
simultaneously with the first iPhone device. There have been many versions of iOS since
the first release. The developer API has been actively improved by Apple over the years
and numerous new features have been added. The first versions of iOS did not support
multitasking for third-party applications; however, in 2010, iOS 4 offered multitask-
ing support for application developers. The design aims to offer multitasking-specific
APIs for background operations such as background audio play, VoIP, task comple-
tion, location services, and fast application switching. The goal was to optimize system
performance, for example in VoIP applications the user may now receive calls in the
background without causing delays.

The latest version is iOS 7 that extends the multitasking features by observing
application usage patterns and allowing applications to update their content in the back-
ground before the anticipated usage time. The so-called coalesced update is also a new
feature that groups application updates together to save energy by avoiding unneces-
sary radio usage. As discussed already in this chapter, going from idle mode to active
network usage requires a significant amount of energy.

The three key i0S device types are:

e iPad is a tablet computer that runs Apple’s i0S. iPad was originally released in April
2010. iPad has a multi-touchscreen and a virtual keyboard, built-in Wi-Fi, and on
several models mobile connectivity.

¢ iPod is a portable media (music) player, originally released in October 2001. It has
been modified and redesigned many times since the first version.

e iPhone is Apple’s smartphone line. iPhone was originally released in June 2007 and
there have been many generations of the product.

https://www.apple.com/ios/ accessed January 6, 2014.
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iOS has its roots in Apple’s own operating system software, Mac OS X, which it
resembles. The iOS kernel is similar to the Mac OS X kernel, but because it is compiled
for the ARM CPU architecture, it has custom modifications. i10OS uses the Core OS
(Darwin) foundation and its architecture is built around the XNU kernel and system
utilities. The general features of the XNU kernel include:

POSIX support.

e Networking.

File system support.
¢ Device drivers.

The iOS kernel is a hybrid which combines the Mach 3 microkernel and some
elements from BSD Unix (Berkeley Software Distribution). The device drivers are
implemented with an object-oriented API (I/O Kit). The iOS system utilities are the
layer above the kernel. Altogether there are four abstraction layers in iOS outlined in

Figure 8.1:

1. The Core OS layer which is the innermost layer and includes the kernel, TCP/IP
networking stack, sockets interface, power manager, file system management, and

security management.
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2. The Core Services layer which is necessary for the Mac OS X application interfaces
that are below the next two layers, for example APIs for networking, threads, and
web. There is also an embedded SQLite database and geolocation tools on this layer.

3. The Media layer handles many I/O interfaces such as OpenGL, audio recording,
video playback, and animation support.

4. The Cocoa Touch layer handles and manages multi-touch events and their control.
It has also an interface for accelerometer input and supports features for camera and
positioning. In modern devices, multi-touch gestures (tapping, swiping, pinching,
and reverse pinching) are increasingly used in the user interface and iOS has the
necessary tools. Also, in many applications the screen orientation is sensitive to the
device y-axis rotation; this is accomplished with internal accelerometers.

The i0OS SDK is used for both iPhone and iPad, because essentially iPad uses the
same 10S as iPhone. The support given by the SDK also covers universal applications
in addition to iPad and iPhone. A universal application uses the features available for
the given device type, relying on conditional statements.

Energy-saving patterns

Key i0S energy-saving patterns include task-based multitasking, push notifications,
asynchronous events, coalescing work, and coalesced updates.

In i0S, the power behavior of an application depends on its state, which can be fore-
ground inactive, foreground active, background inactive, and background active. When
an application is active and in the foreground, the system sends touch events to the appli-
cation for processing. The UIKit takes care of the event delivery. The key application
states are:

e Not running: application has not been launched or it was running and has been
terminated.

¢ Inactive: the application is running in the foreground, but is not receiving events.
Typically this state is only used for transitioning into other states.

e Active: the application is running in the foreground and processing events.

e Background: the application is in the background and running code.

e Suspended: the application is in the background and not executing code. The applica-
tion is still in the memory in this state. When memory becomes low, the system may
remove the application from memory.

Early iOS versions did not support multitasking for third-party applications. Since
i0S 4, multitasking is supported for certain types of long-running tasks. The back-
ground modes for i0OS 7 tasks are audio, location update, Voice-over-IP, newsstand
downloads, external accessory communication, Bluetooth networking, Bluetooth data
sharing, background fetch, and remote notification. Push notifications and asynchronous
events are useful in reacting to different kinds of local and remote changes without the
need to poll resources.
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Work should be coalesced when possible to perform a set of operations as a batch
rather than separately over a longer period of time. This allows the idle time of the
device to be maximized and reduces unnecessary waking of the device to perform
work. Coalesced updates is a new feature in iOS 7 that uses the wireless communication
triggered by one application for the background transfers of other applications.

Generic programming guidelines recommend avoiding polling with events and timer-
based scheduling. With event-based operation, the guidelines recommend disabling the
delivery of events that are not needed and when the events are needed their delivery
frequency should be set to the smallest feasible value. This is especially important for
the UTAccelerometer class that is used to receive accelerometer events. Display wake
locks can be realized through the idleTimerDisabled property of the shared UIApplica-
tion object. This property should be set to NO to ensure that the idle timer turns off the
display when the timer fires.

I/0 kit and power management

Mac OS X and iOS device drivers are developed using the 1/0 kit framework.* This
framework consists of the necessary libraries and header files for drivers and userspace
code to interact with kernel drivers. The I/O kit is responsible for the system’s power
management [4]. The power management is realized by kernel-level drivers. The power
management is realized through the IOService superclass from which the drivers are
derived.

Power management of devices is organized into a tree’ called the power plane, in
which parent nodes provide power for child devices. The power plane captures the
power dependencies of the devices. For example, a Wi-Fi modem (a leaf) is connected
to a bus (the parent). The IOService monitors and maintains a power hierarchy for the
devices so that when a device is transitioning between power states, all the child devices
have transitioned before the parent device. Power dependencies are taken into account in
the ordering of I/0 kit sleep and wake notifications. If a node in the power-management
tree, the power plane, receives a sleep notification, it will first notify its child nodes to
sleep before entering the sleep state. A wake notification, on the other hand, first wakes
the parent before waking the children.

Power can be saved by powering down an idle device. The IOService class provides
a timer facility for triggering a lower power state in devices that have not been used
recently. A driver can install a timer that expires after a duration has passed. This timer
determines how long the device can be idle at full power before transitioning into a low-
power state. In addition to the timer, the driver can inform the I/O kit when the hardware
was last used. This trigger is used to reset the timer when the hardware is used.

The I/0 kit power management is based on devices, power states, and attributes.
Each device has at least two power states, on and off, and attributes to these states. The
device driver is responsible for setting the attributes that determine the capabilities and

+ Documentation available at: https://developer.apple.com/ accessed January 6, 2014.
3 Itis possible for a device to have two parents making this a graph. In this case the ordering is not guaranteed.
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requirements of the device. The attributes determine the capability in a power state, the
device’s power requirements from its parent, and the power characteristics it can provide
to its children. These attribute fields are contained in the IOPMPowerState structure and
allow the specification of the device’s power state budget in milliwatts as well as the time
in microseconds required to attain, settle up, lower, and settle down the power state.

The drivers need to respond properly to system sleep and wake events and they may
also support other modes, such as an idle state. OS X defines two different types of
drivers: passive and active. A passive driver implements the basic power-management
features and it carries out custom power-saving actions. An active driver does this and
can also carry out advanced power-management features, such as transition between the
device’s power states.

Windows Phone 0S

Windows Phone® was launched in October 2010 as the successor to the Windows
Mobile OS. The current version is Windows Phone 8, released in October 2012. The cur-
rent kernel in Windows Phone 8 is based on the successful NT kernel of older Microsoft
operating systems. It is a 32-bit pre-emptive multitasking OS. The Windows Phone ker-
nel has been divided into two parts, one sharing code with Windows and the other part
having mobile-specific changes. The former is called the Windows Core System and the
latter the Mobile Core.

Only these two components, the core system and mobile core, are allowed to share
code between the mobile and static Windows systems. APIs may sometimes be sim-
ilar but the actual code in the APIs is different in Windows than in Windows Phone.
The actual Windows Phone system lies above the core with preset applications like
music, video tools, connection management, phone shell, and various platform ser-
vices. The platform provides services for the application level and is partitioned into
four components illustrated in Figure 8.2:

e Package Manager takes care of the application during its lifetime in the Windows
Phone system. It handles the installation and uninstallation and stores the metadata
related to the particular application, including the registered pinning and extension
point information.

e Execution Manager manages the execution of the applications. It also handles all
background agents and their logic. Execution Manager creates the required host pro-
cesses and initiates state messages for applications, for example startup, shutdown,
and stopping an application.

e Navigation Server is needed to take care of the moving of focus between foreground
applications installed on the phone. This is accomplished by sending commands to
the Execution Manager regarding applications to launch or applications to reactivate.
Navigation Server also records the status of the navigation stack.

® http://www.windowsphone.com/ accessed January 6, 2014.
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Overview of Windows Phone

® Resource Manager is the service that keeps track of the resources of all active system
processes. It can enforce constraints on processes while focusing on CPU and mem-
ory. Resource Manager is also responsible for terminating misbehaving applications
to try to guarantee the stable operation and response of the phone.

The NET Common Language Runtime (CLR) is responsible for executing appli-
cations. This is important because the application’s overall safety and specifically the
safety against buffer overflow (which can be disastrous) must be handled carefully and
the application verified correctly. The runtime executes each Windows Phone appli-
cation in its own isolated chamber that is based on the capabilities required by the
application. A basic set of permissions is given to the application chamber and this basic
set can be extended by capabilities that are granted when the application is installed. It
is not possible to add permissions after the installation [5].

Energy-saving patterns

The key patterns for application developers include task-based multitasking, push notifi-
cations, and display requests to keep the display active. The multitasking API is used to
implement background agents that can be periodic or resource intensive. Periodic tasks
are useful for short regularly occurring activities, such as sending the device’s location
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to the cloud. Resource-intensive tasks are longer running activities that require certain
requirements to be met for the processor activity, power source, and network status.
Push notifications allow the asynchronous activation of an application through a short
push message sent by a service. Instead of having a push communication channel for
each application, the OS and middleware maintain a dedicated connection, typically a
TCP connection, for the applications resulting in significant energy savings. An appli-
cation can also request that the display is kept on when a long video is being watched.
This allows application-specific overriding of the default display power-saving policy
that would otherwise dim or turn off the display [6].

Windows 8 Power Architecture

The Windows 8 Power Architecture builds on CPU and device power states, through
ACPI [2] or drivers, and defines a runtime power-management framework (PoFx) that
supports component-level power and clock management. Windows Phone 8 shares
codebase with Windows 8 and builds on the same architecture; however, it does not
feature ACPL

The key aim of PoFx is to provide the fine-grained control mechanisms to support
battery-powered devices always on always connected devices such as laptops, tablets,
and smartphones [7]. A device driver needs to register with PoFx to manage the power
usage of a component or subsystem.

The earlier versions of Windows supported power management at the device level.
PoFx extends this with component- and subsystem-level power management. Similar to
ACPI D- and S-states, on the device-level we have the D-states (DO is the on state) and
on the component-level we have the F-states (FO is the on state). PoFx maintains system-
wide information about the components and their power and clock domains. Device
drivers can provide component status and capability information to the PoFX through a
device driver interface (DDI). The component-level information includes the state and
activity level, state transition time, and the latency tolerance of the clients of the compo-
nent when waking from a low-power state. Given the system-wide and component-level
information, PoFX makes power optimization decisions by controlling the state transi-
tions of the components. These decisions require component dependencies as well as
power and clock domains to be taken into account in the decision making [7].

The key components in the Windows 8 power-management architecture are the
following:

® Power Manager that is responsible for managing the power usage of the system.
This manager maintains the system-wide power policy. The manager interacts with
device drivers and uses them to control component power state transitions. The power
manager considers the system activity level, battery level, power-related requests
(shutdown, hibernate sleep), and control panel settings.

e ACPI driver that is part of the OS (not supported by Windows Phone).

® Drivers provide information to the power manager, respond to power requests, and
manage the power states of individual devices.
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Firefox 0S

Firefox OS’ is an operating system for smartphones and tablet computers.® In the
beginning it was called Boot to Gecko (B2G) and its goal is to augment HTMLS5 [3]
applications in their direct interaction with the device hardware. In other words, HTMLS5
applications are basically run as native applications by FirefoxOS.

Firefox OS is a Linux-based open-source smartphone platform developed by Mozilla,
the non-profit organization that designed the Firefox browser. Firefox OS was released
in February 2012 and it offers a community-based alternative OS for mobile devices,
because it uses open standards, such as HTMLS5, JavaScript, and open Web APIs, for
direct communication with cellphone hardware. It is a competitor for proprietary mobile
OSs, such as iOS and Windows Phone. As an open-source system it is not unique
because it also competes with Android and Ubuntu Touch. There are several companies
developing mobile phone products based on the OS.

The three main software layers in Firefox OS are:

1. Gonk includes the underlying Linux kernel and hardware abstraction layer (HAL).
Open source concept covers the kernel and many of the user libraries. It is notable
that there are many common shared modules with the Android project, such as the
GPS and camera. Gonk was designed to be fully open to Gecko with all its features
and interfaces; Gecko cannot currently access other mobile OSs the same way.

2. Gecko is the runtime engine handling services for applications (actually it is a mod-
ified version of the rendering engine of Firefox). Gecko implements open standards,
such as HTML, CSS, and JavaScript, and contains several critical components:
stacks for networking and graphics, layout engine, JavaScript virtual machine, and
porting layers. It provides APIs to access the phone hardware; the interface to other
operating systems and browsers is uncomplicated because Gecko implements only
standard Open Web APIs.

3. Gaia is the HTMLS5 layer and user-interface for Firefox OS, managing everything
that appears on the screen. Gaia is coded entirely in HTML, CSS, and JavaScript
and has a variety of default applications.

Power management

The Firefox OS Power Management Web API consists of tools for managing a device’s
power settings. This API is only available for certified applications that are pre-installed
on Firefox OS devices. The API is non-standard at the moment. The API includes screen
power operations including setting the screen brightness, CPU power operations, and
advanced power features relating to wake locks. An application can request a wake lock
for a screen, CPU, or Wi-Fi resources.

7 http://www.mozilla.org/en-US/firefox/os/ accessed January 6, 2014.
8 http://developer.mozilla.org/ accessed January 6, 2014.
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Battery status API

Firefox OS also supports the battery status API from W3C [8]. This specification defines
the API calls for obtaining information about the battery status and condition. The API
allows querying of the charging status, charging time, discharging time, and battery level
of a device. The API also supports event handlers for tracking changes in the variables.

Android

Android’ is a Linux-based operating system and software platform for mobile devices,
developed by Google and the Open Handset Alliance!® in 2007. The Android platform
accepts code written in a Java-like language, following the common Java syntax. How-
ever, Android does not have a standard Linux kernel and it does not provide the standard
class libraries and APIs, accepting only libraries and APIs developed by Google. The
two newest versions of Android are 4.4 KitKat and 4.3 Jelly Bean, released in 2013.

Components (layers) of the Android architecture are illustrated in Figure 8.3 and they
can be summarized as follows:

® A customized Linux kernel that changes with major versions of Android (meaning
that old Android instances run on new kernels but not vice versa).

® An augmented set of hardware drivers (display, keypad, audio, communication).
The kernel additions have been incorporated under GNU licence to the open source
community.

e The kernel interface was coded in C and C++. It contains a set of open source C/C++
libraries for the components of the system (e.g., WebKit, libpng, and libsqlite)

e The Android application framework (set of APIs) to use the libraries.

e Core Libraries and the Dalvik Virtual Machine in the runtime component. Dalvik is
a register-based process virtual machine which executes Dalvik Executable Format
(DEF) code.

® Android runtime that executes the custom Java code. Applications for Android are
typically written in Java and compiled to a Java Virtual Machine (JVM) bytecode
(itself again compiled into DEF when installed on the device).

e Set of application managers on top of the libraries.

e Set of bundled applications on top of application managers. (e.g. browser, email
client, SMS program, maps)

Specifically, Linux was enhanced with the following components:

e Alarm driver with timers for waking sleeping devices.

* Memory management with Android shared memory driver (ashmem). This module
enhances the ability of applications to share memory and also manages the sharing in
the kernel.

® http://www.android.com accessed January 6, 2014.
10 http://www.openhandsetalliance.com accessed January 6, 2014.
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Overview of Android

e [PC (Inter-Process Communication Interface). The binder driver included enhances
inter-process communication. Data sharing is possible for several applications simul-
taneously using the shared memory. The binder handles and monitors threads so that
services registered as an IPC service can leave managing functions to the IPC module,
which also synchronizes processing,

e Standard Linux Power Management has been enhanced with Android Power Man-
agement that defines an active policy for managing and saving power.

® Low memory process killer

e Kernel debugger

e System logger.

Android power management

It is notable that many of the Android’s kernel components are inherited from the
Linux OS and several power-management components derive originally from Linux.
But Linux as an OS was mainly designed for stationary computers before the era of
ubiquitous mobile devices and therefore it is not optimized for phones or tablets in any
way. Yet the mobile devices are notoriously both resource-hungry and limitation-prone
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at the same time, making it critically important to optimize the OS for mobile usage.
Power saving is perhaps the central point of importance for users and therefore for
designers of applications, hardware, or the OS.

Suspend and hibernation as power-saving schemes inherited from the laptop world
are not sufficient for smartphones or for embedded systems. Mobile phones have a lim-
ited power supply in the form of their battery capacity, which creates a hard constraint
for the design process. Battery technology needs to develop, but also the other system
components should be able to help conserve power irrespective of the battery technol-
ogy. Android’s power-saving methodology aims just to make the usable life of a mobile
device between battery charges longer and richer.

PowerManager

Contrary to desktop Linux systems, Android does not use APM or ACPI for power
management, but instead has its own Linux power-management extension called Pow-
erManager!! that conserves battery life by turning off components while allowing
developers to selectively prevent these actions. Figure 8.4 illustrates the Android Power
Management framework. The PowerManager is implemented in Java and it interfaces
the OS and kernel-level power management features using Java Native Interface (JNI)
calls.

PowerManager uses wake locks to manage the power states of peripherals, such as
screen display, backlight, and keyboard backlight. The PowerManager provides an API
for requesting and releasing wake locks relating to peripherals. If a there is no lock for
a given peripheral, it will be powered off and kept in a low-power state to conserve
energy. The wake lock API has two parts: driver and userspace.

Applications can request that a certain peripheral is kept on through the API. Appli-
cations can also set partial wake locks that ensure that the CPU is running; however, the
screen display and the keyboard backlight are turned off according to the current policy.
A partial wake lock ensures that the CPU is on even if the user presses the power button.
With full wake locks, pressing the power button places the device into a sleep mode.

To make use of this facility, the Linux kernel was extended with a power driver mod-
ule that contains a set of low-level drivers specifically for controlling the power state of
supported peripherals. In addition to supporting wake locks, any driver can register its
own early suspend and late resume handlers. This allows drivers to handle power mode
configuration to the device before the kernel is suspended. In addition to the CPU, the
default peripherals that support wake locks are:'?

® backlight of display panel,
® backlight of keyboard,
¢ backlight of buttons.

' http://developer.android.com/reference/android/os/PowerManager.html accessed Jan-
uary 6, 2014.

12 Recent Android API recommends using the FLAG_KEEP_SCREEN_ON flag instead of wake locks for the
display.
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WakeLocks

Android controls power for the peripherals using locks (WakeLocks). A lock is set up
when an application wants a certain peripheral to remain active. Android checks the
states of locks and turns off all devices which are not locked in the on-state (unlocked
devices). PowerManager also monitors the device status, the battery condition, and the
circuitry charging the battery, so it can decide whether the system must be powered
down at some critical preset battery charge threshold.

All application calls relating to power management are routed through the Android
runtime PowerManager API, as illustrated in Figure 8.4. The native libraries sup-
porting the Android Runtime module are not allowed to call the power management
services, such as WakeLocks, directly because this would make the system unstable.
The Android PowerManager allows kernel drivers to register to receive notifications of
power up/down requests from the use space.

From the application perspective, wake locks are used as follows'?:

® The application must get a handle to an instance of a PowerManager service. This is
accomplished by calling Context.getSystemService().

3 http://www.kandroid.org/online-pdk/guide/power_management.html accessed January 6,
2014.
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e Application creates a wake lock and specifies the power-management flags for
devices.

Application activates the wake lock.

Application performs the desired operation.

Application releases the wake lock.

Care must be taken when using wake locks to ensure that energy is not spent unnec-
essarily in high-power states. Wake lock bugs have been observed frequently in Android
applications [9, 10]. According to Pathak et al., a no sleep bug occur when an applica-
tion becomes active, sets a wake lock, and then never releases the wake lock preventing
the system from sleeping. The bug can occur because the application never releasing
the lock, a race condition where the acquisition and releases happen in the wrong order
due to the race condition of threads, or when the release of the lock is delayed [9].

BatteryStats

The Android power-management system also monitors the battery life of the device and
implements a power-saving policy [11]. The PowerManager keeps track of the energy
consumption with a component called BatteryStats that is examined in Chapter 10. Bat-
teryStats performs time-based book-keeping of applications that is used to estimate their
energy consumption.

New sensing features

The latest KitKat version has new energy-saving mechanisms, such as the sensor batch-
ing and step detector and counter features. The sensor batching allows Android to use
the device hardware to obtain and deliver sensor events in batches. This allows the
application processor to spend longer periods in lower power states and then react to
sensor batches. The API uses a standard event listener and the batching interval can be
set by the developer. Immediate delivery of certain requested events between batches
is also supported. The sensor batching supports various sensing applications relating to
location and context. The step detector and step counter features are composite sensors
that allow applications to track steps when the user is walking, running, or climbing.
Android devices will implement these sensors in hardware for low power consumption.

Energy-aware 0S research prototypes

The current mobile operating systems employ many techniques for power saving, such
as scheduling, sleeping, and resource-management techniques applied on multiple lev-
els. Various dynamic power-management schemes have been proposed that are used
to control the power consumption of system components [12]. The idea of an energy-
aware operating system has been studied in the research community since the late 1990s.
The Odyssey proposal was one of the first to investigate energy efficiency. At the time,
energy was seen as a key limiting resource that should be minimized without sacrificing
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performance. This research waned during the next ten years, but interest was rekindled
with the advent of smartphones and mobile applications. Energy efficiency has become
a key requirement during this decade with many new proposals also in the operating
system area [13].

Odyssey 0S

The Odyssey OS and framework enable applications to gracefully degrade the data
fidelity to save energy. The key insight of this system is to dynamically modify applica-
tion behavior to conserve energy. This is achieved through the OS that monitors energy
consumption and supply, and sets the application parameters according to an energy
policy. The Odyssey OS uses an offline approach to energy management [14]. This
approach is based on the PowerScope profiler that creates a process-based energy con-
sumption profile [15]. The PowerScope approach employs an external power monitor
tool for accurate device-specific energy consumption data that is then correlated with
the process lists to understand the relations between software processes and energy
consumption.

Figure 8.5 illustrates the Odyssey architecture. Concurrent adaptation of diverse
applications is supported through the OS and kernel. Odyssey is conceptually an OS-
level system; however, it was implemented in the userspace with an interceptor module
in the kernel. The viceroy component is responsible for resource monitoring and man-
agement. The wardens encapsulate various data types, such as video, image, and audio
content. Odyssey uses a data-specific warden to decide at what level of fidelity appli-
cations should be executed. Odyssey does not require applications to extrapolate future
power requirements, but instead uses smoothed observations of present and historical
power usage to predict near-future behavior. The empirical results indicate a 30% energy
saving when degrading the image and video quality of various workloads.

Odyssey

Warden3

Application ] Warden2
Warden1

\Upcall
All system calls

Odyssey calls

Interceptor

Kernal

Overview of the Odyssey architecture
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ECOSystem

ECOSystem is an early example of an energy-aware OS [16]. This system allows users
to control per-application energy expenditure with energy allocation and accounting.
The key abstraction is called currentcy. This empowers applications to spend a certain
amount of energy up to a fixed limit. This enables application-specific energy budgets
that the OS monitors and enforces.

The overall goal is to achieve a user-specified battery lifetime through limiting energy
consumption. The system divides time into epochs and for each epoch a total amount
of currentcy is allocated, determined by the discharge rate needed to achieve the target
battery lifetime. If the amount of currentcy is less than 100% some components are
throttled. The available currentcy is split between the competing applications according
user-specified proportions. For each epoch, an application receives an allowance of cur-
rentcy based on its proportional share. The currentcy energy budgets are implemented
with resource containers that are given currentcy allocations, and that are charged by
the hardware resources that they use. The hardware resources have their own charging
policies.

The currentcy budget is determined based on the battery lifetime target and
application-specific proportional currentcy allocations. User preferences are reflected in
the application specific allocations, for example preference for interactive performance
instead of background performance. The limitation of this approach is that modern
mobile applications are complex and use system features and components in complex
ways.

Cinder 0S

The Cinder OS is an example of a more recent proposal of an energy-efficient mobile
OS [17]. This system builds on the HiStar exokernel and introduces device-level energy
budgeting and accounting. The energy consumption is estimated using standard device-
level techniques. The explicit flow control of HiStar allows fine-grained tracking of
resources use even across interprocess communication calls.

The system builds an offline energy model that is used to estimate the energy con-
sumption of system resources. The Cinder system monitors how applications use system
resources and correlates this usage to energy consumption. Cinder can amortize costs
across principals so that, for example, the costs due to multiple applications using inter-
net services can be determined even when they share some of the hardware resources.
This approach lends itself well to supporting energy budgets and limits for applica-
tions. Cinder uses an abstraction called reserve for modeling the energy consumption
of the device and its components. The system forms a resource consumption graph
with the battery as the root reserve of the graph. When applications use resources, the
corresponding reserves are consumed. The scheduler only schedules those threads for
running that have sufficient reserves. A second abstraction called the tap is used to
specify the rate of reserve consumption from one reserve to another.

The three key energy-management principles in Cinder are: isolation, delegation,
and subdivision. Isolation is a fundamental part of an OS and for Cinder this relate
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to application- and resource-specific energy budgets. Delegation allows applications
to reallocate their energy budgets to other applications and components. Subdivision
allows the budget to be divided into smaller parts. Subdivision combined with dele-
gation allows an application to share its energy while maintaining an internal energy
budget.

Cinder’s CPU scheduler is energy-aware and throttles threads that have empty energy
reserves. Energy in reserves can be delegated and subdivided. For example, a thread
can delegate energy to another thread. An application can also subdivide its reserve
to multiple subreserves allowing other threads to connect to these. Threads typically
manage energy with taps that allow reserve-to-reserve energy transfers.

Figure 8.6 illustrates the reserves and taps with two applications: an RSS applica-
tion running in the foreground and an email application running in the background.
Both applications have been given energy reserves from the root reserve. The fore-
ground applications has a budget of 100 mW and the email application has a budget
of 20 mW. The task manager has given the foreground application an energy tap
of 20 mW from the background application, to ensure that the foreground appli-
cation has sufficient energy to meet the user’s expectations and to be responsive.
Both applications use the network so the netd network daemon transfers energy from
their reserves into its own reserve. When the combined reserves of the requesting
application and the netd reserve have enough energy, the radio subsystem will be
started. Thus the applications’ network access is synchronized resulting in less energy
waste.

Example of Cinder reserves and taps

Summary

In this chapter, we have surveyed four well-known operating systems for mobile
devices: i0S, Android, Windows Phone, and Firefox OS. The systems are based on
three different underlying kernels: MacOS, Linux'4, and Windows NT. Android and
Firefox OS are examples of smartphone platforms based on open source, whereas i0OS
and Windows Phone are closed source. Each kernel and OS has its own power-saving

!4 kernel.org accessed January 6, 2014.
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schemes based on well-known patterns and solutions. All of the above systems use
dynamic power-management techniques, such as DVES and DPS.

The OS monitors and controls the power parameters of the device and implements an
energy-optimization policy. The OS provides the necessary API for drivers to interface
with the OS scheduler and power manager as well as APIs for application developers.
The power managers found in modern mobile OSs support component-level monitoring
and configuration, and typically model the component dependencies through a tree or
graph structure. Task-based multitasking, push notification, and the wake lock pattern
frequently use developer API-level solutions for reducing power consumption. Addi-
tional techniques include sensor data batching and asynchronous notification of status
changes.

Table 8.2 presents a comparison of the well-known mobile operating systems and
their power-management features and patterns. We examine the four OSs discussed in
this chapter as well as the Symbian Series 60 that is a classic example of a mobile
energy-efficient OS [18].

The table examines the low-level and high-level power management, energy-
conservation patterns, policies, and battery information. The kernel is responsible for
the low-level power management. This is realized by a power-management component
within the OS that interfaces with the device drivers. As discussed in this chapter, the
modern OSs support a tree-or graph-based component model that allowing fine-grained
power management.

The Symbian is a classic example of an OS designed for phones that have limited
batteries. This OS has a kernel-side framework with a power manager that monitors
and controls system components. The manager is responsible for the management
of the transitions between processor and peripheral power states as well as manag-
ing the components’ power requirements. The key power states are off, standby, and
active [19].

The energy conservation patterns include wake locks, multitasking APIs, push APIs,
coalesced updates, sensor batching, and asynchronous events including wakeup events.
In addition, the Symbian OS has specific design patterns for coping with limited devices,
such as the active object pattern that uses a single thread of execution for multiple
objects to conserve threads.

All the OSs provide the basic battery information through an API. Android and Sym-
bian provide the most information; however, none of the battery APIs guarantee to
provide reliable current and voltage data. We examine Android BatteryStats that per-
forms rudimentary time-based book-keeping of applications that is used to estimate
their energy consumption, later in Chapter 10. The Nokia Energy Profiler was one of the
first tools for on-device power profiling [20]. We survey smartphone energy-profiling
techniques in Chapter 10.

A number of energy-aware OS research prototypes have been proposed. These sys-
tems include techniques such as data fidelity tuning based on energy targets, and
fine-grained energy accounting and budgeting of how applications use system resources.
Table 8.3 compares the three examined energy-aware OSs: Odyssey, ECOSystem, and
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Table 8.3. Comparison of energy-aware 0Ss

159

oS Description Accounting and Proportionality ~ Application
budgets support
Odyssey Change Energy supply and  User Wardens
fidelity to demand are preference encapsulate data
achieve target monitored for based (priority) types
lifetime triggering
adaptation
ECOSystem Target Epoch based User User preferences
lifetime by preference as input for
limiting based competing
discharge rate applications,
Kernel
implementation
Cinder Fine-grained  Reserve, taps, and Resource Reserves, taps, and
resource energy sharing based policies for
accounting consumption (graphs) developers.
graphs. Command line
tools

Cinder. Odyssey uses data fidelity adaptation to meet an energy target. ECOSystem
and Cinder aim to achieve OS-level accounting and budgeting of energy. Compared
to ECOSystem, the newer Cinder proposal has a more advanced energy-budgeting
model based on reserves and taps organized as a graph. This model allows fine-grained
modeling of inter-process calls and resource sharing within a mobile device.

The main benefit of Odyssey is that the device lifetime can be increased by adjusting
data fidelity while taking user experience into account. ECOSystem’s benefit is that it
allows resources that exceed their energy budgets to be stopped, thus making it possible
to set the budgets to meet the desired battery lifetime. Cinder’s main benefit is having a
more sophisticated accounting and budgeting model that can cope with shared resources
and more complex dependencies.
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9.1

Power modeling

Our studies of power measurement have revealed that the power consumption of a
smartphone varies with the applications in use, the way the device user uses the appli-
cations, and the environment where the smartphone is operated. As power measurement
only tells us how much energy is being consumed by the whole smartphone or a hard-
ware component such as the display, more information is required for analyzing the
factors that affect the power consumption.

Power modeling is a technique that has been developed for quantifying the impact
of different factors using mathematical models. A power model can be specified for
a certain hardware component, a certain smartphone, or a certain piece of software.
The information used for defining the model variables can be provided by hard-
ware, OS, and/or applications, while the coefficients of these variables can be derived
from power measurement using deterministic and/or statistical methods. The method-
ology of deterministic and statistical power modeling is introduced in Section 9.1,
followed by three case studies: a deterministic power model of a Wi-Fi network
interface (Section 9.2), a statistical model of the overall power consumption of a
smartphone (Section 9.3), and a fine-grained energy profiler using system call traces
(Section 9.4).

Power models can be used for estimating the energy consumption of the hardware/-
software component. Examples of model-based energy profilers can be found in Chapter
10. More importantly, power models provide hints on improving the energy efficiency
of smartphones and applications. For example, the power models of Wi-Fi network
interfaces presented in Section 9.2 describe the impact of traffic burstiness on the Wi-
Fi transmission cost. According to these power models, it is more energy efficient to
send data in big chunks instead of small bursts. This provides the theoretical basis
for the traffic-aware adaptation of streaming applications that shape the traffic into
bursts to reduce the transmission cost (see Section 15.1). More examples are given in
Part III.

Methodology

A hardware component can work in several power states, corresponding to different
levels of power consumption. The power state a hardware component should be in any
particular time depends on the workload generated by the software running on it. As
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shown in Figure 9.1, software including the OS and applications generate the workload
of computing, I/O access, encoding/decoding, and other hardware operations. The work
is transformed into a set of circuit activities on the corresponding hardware components,
and the circuit activities consume energy. Software running on the same smartphone
by default share the underlying hardware resources. For example, multiple applications
that require internet connectivity can run simultaneously on a smartphone and access the
Internet through the same WNI. Therefore, the power state of a hardware component
should be determined by the aggregated workload.

From a software perspective, each hardware component has several operating modes.
For example, a Wi-Fi network interface has at least three operating modes, correspond-
ing to the operations of sending, receiving, and waiting for traffic. I n most cases where
one operating mode corresponds to exactly one power state, the power consumption of
the hardware component can be derived from the operating mode, and vice versa. There
are also exceptions where the hardware components automatically adapt their operation
to their current workload, and thus something the software sees as one single operating
mode can in fact include several hardware power states. For example, Pathak et al. [1]
observed that on HTC Tytn2 running Windows Mobile 6, the Wi-Fi network interface
can switch to a power state with a higher power consumption when the packet rate
exceeds 50 packets per second.

In this section we introduce two methods of power modeling: deterministic and sta-
tistical. The basic idea of deterministic power modeling is to map software operations to
hardware activities based on expert knowledge and to estimate the power consumed by
the hardware components involved based on their activities. Statistical power modeling
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aims to find out the relationship between power consumption and the model variables
based on statistical models like linear regression. The variables of statistical power mod-
els can be application-specific parameters, hardware performance metrics, and other
variables that are related to power consumption.

Deterministic power modeling based on operating mode

Deterministic power modeling can be used for studying the energy consumption of
hardware components, such as WNIs and displays. Each deterministic power model is
based on a power state machine which describes the transition between power states
of the hardware component in question. The total energy cost of a hardware com-
ponent over time is composed of the energy that the component spends in each of
its power states and of the energy spent during the transitions between the power
states.
A deterministic power model can be formally presented as follows.

E() =Y E(t)+> Y Ejixx Ci), ©.1)
J Jook

where E(t) is the total energy consumed by the hardware component over the duration ¢,
r=3 ;1j» 1 1s the duration spent in power state j, and Ej(#;) is the energy spent during ;.
Assuming that P}, the rate of energy consumption in power state j, is constant during #;,
E;(1j) can be calculated as the product of #; and P;. When the assumption fails, E;(#;) can
be a function of the power consumption with the operating mode, workload description,
and duration as variables.

Ej is the overhead caused by the transition from power state j to k, while C;(¥)
shows how many times this transition has occurred during 7. E; ; depends on the physical
characteristics and is usually assumed to be constant. The energy wasted in waiting
for the transition into a lower power state is often called tail energy. Sometimes, the
transition overhead is not counted in the energy consumption, because the transition
overhead is small enough to be safely ignored, or the monitoring of the transition is not
feasible.

Building a deterministic power model includes three steps:

1. Defining the operating modes of the hardware component.

2. Discovering the potential power state transition within each operating mode. This
type of state transition is usually related to the level of hardware usage. The state
transition may be triggered immediately when the usage crosses certain thresholds,
or after a predefined timer expires. To discover the potential thresholds and timers,
a feasible approach is to define the experiments in the way that the hardware usage
increases/decreases at various rates.

3. Measuring the power consumption of the hardware component in each power state
and the transition overhead if applicable.
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The operating modes of hardware components can be tracked using three methods,
depending on how much information is available.

First is to directly read the information about the operating mode from the hardware
component via a device driver of the OS. For instance, Quanto [2], a network-wide
energy profiler for embedded network devices, adopts this method. However, as stan-
dard device drivers do not usually expose the operating mode information, Quanto
requires modifications to device drivers.

Second is to estimate the operating mode based on system call traces, as proposed by
Pathak et al. [1]. System call traces can show which components are being requested as
well as the level of use being requested, as applications always access hardware (I/0)
components via system calls. By tracking the calling subroutine of each system call,
the hardware access can be related to the calling subroutine, which makes it possible to
estimate the energy consumption on a per-subroutine basis. An example of fine-grained
energy accounting using system call traces can be found in Section 9.4.

Third is to derive the operating mode from the measured workload. For example,
the workload of network transmission can be described with libpcap! packet traces.
These traces can tell if the wireless network interface is sending, receiving, or waiting
for packets. Moreover, they can provide traffic statistics, such as throughput and packet
rate, which are useful for detecting workload-driven power state transitions. In practice,
a power state machine of the WNI can be built by empirically correlating changes in
the packet traces to physically measured changes in power levels. With the help of such
a state machine, #; and C;x(#) could be derived from a libpcap packet trace. In Section
9.2, we show an example of deriving the operating mode of a Wi-Fi network interface
from different kinds of traffic statistics.

The accuracy of a deterministic power model depends on not only the accuracy of the
power measurement involved, but also how influential the undiscovered or uncontrol-
lable factors are in estimating the power consumption. For example, if certain sub-states
within an operating mode are not discovered, the power model cannot give an accu-
rate power estimation when the transition between these sub-states occurs. In addition,
environmental factors such as temperature may affect the energy efficiency of hard-
ware components. These factors are not always controllable in the practice of power
modeling.

Deterministic function-level power modeling for software component

Hardware function-level power estimation was earlier used for predicting the power dis-
sipation of the microprocessor [3, 4] at the design stage. This method assumes that the
energy required to execute a functional unit is approximately constant, and calculates
the total energy consumption as the aggregate of the per-functional-unit cost. As this
assumption could also hold for some software functional units, this method has been
extended to the power modeling of mobile OSs and applications.

! libpcap is a portable C/C++ library for network traffic capture. It is available on www.tcpdump.org accessed
March 3, 2014.
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Mobile OSs and applications can be decomposed into functional units. Building a
function-level power model of a piece of software includes three steps.

1. Measuring the amount of energy (in joules) consumed by each functional unit.

2. Profiling the execution of the target software and counting the functional units
invoked in the execution.

3. Calculating the total energy consumption as the aggregation of the energy cost of
each functional unit.

In practice the functional unit can be defined with various granularities, depending
on the software structure. For instance, Feeney et al. [5] proposed a collection of lin-
ear equations for calculating the energy consumption of the Wi-Fi network interface
in adhoc mode. Each linear equation corresponds to a software activity, such as send-
ing a point-to-point data packet. A similar method has been applied for analyzing the
processing overhead of protocols such as TCP [6] and Secure Sockets Layer (SSL)
protocol [7].

The study in [8] identified the energy components of an embedded OS by studying its
internal operations and classified them into system functions. It proposed to obtain the
base energy of each system function from the power measurement, and to calculate the
energy consumption of an embedded OS based on the base energy per system function.
Similarly, Li et al. [9] profiled the execution of the mobile OS as a set of kernel service
routines, and calculated its energy consumption based on the energy per kernel service
routine.

In mobile cloud offloading (see Chapter 14), function-level power models have been
used for estimating the computational cost of offloadable methods. Whether to offload
the methods at runtime is determined by the tradeoff between the estimated reduction
in computational cost and the increase in wireless transmission cost.

Statistical power modeling

Statistical power modeling employs statistical methods, such as linear regression, to
estimate the relationship between the power consumption and some measured vari-
able, such as transmission rate or processor clock speed. These methods have been
applied in analyzing the power consumption of software components as implemented
in PowerScope [10], as well as in modeling the system-level power consumption of the
smartphone hardware. Examples of the latter include PowerTutor [11], Sesame [12],
and the work presented in [13].

Taking linear regression (refer to Section 2.6.2) as an example, based on the linear
dependency of the output on the values of the predictor variables, the values of the
coefficients in linear regression models can reflect which variables have relatively more
effect on the power consumption. The bigger the coefficient value is compared to others,
the more effect the corresponding variable has on the power consumption.

A linear regression based power model can be built in five steps:
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1. Select the regression variables. For hardware components, the regression variables
can be the metrics that reflect the activity levels of the hardware resources, such as
the CPU cycle rate and network data rate.

2. Design the energy benchmark that stresses each regression variable and explores
their cross product. The benchmarks generate workloads in ways that correspond to
different activity levels of the hardware resources.

3. Run the energy benchmark to collect a set of observations. Each observation con-
sists of the values of each regression variable and the corresponding result of power
measurement. These observations are used for model fitting (Step 4) and validation
(Step 5). To test the predictive efficacy of the model, one of the core principles is that
the data used for building the model should be separated from the one used for final
validation. In practice, we can select, for example, two-thirds of the collected obser-
vations by random into a training data set. The remaining observations are collected
into a testing data set.

4. Use the training data set to form a linear regression model based on the least square
method [14]. The model can be used for runtime power estimation.

5. Validate the power model with the testing data set. The prediction accuracy is
evaluated by the prediction percentage error and the minimum square error.

More detailed descriptions of each step are given in the case study presented in
Section 9.3. In practice, the above method can be applied for both hardware components
and software components. For example, the power consumption of microprocessors was
modeled using the least square regression method, with parameters defined from hard-
ware performance counters [15], while that of an H.323 video encoder was modeled as
a function of the bit rate [16].

Deterministic power models of Wi-Fi network interface

On a mobile device, the energy consumption of wireless data transmission is mainly
caused by the operations on WNIs. These operations, such as sending/receiving a unit
of data through a WNI, are controlled by the software running on top of the WNIs,
including the hardware drivers, the network protocol stack, and the network applica-
tions. Instead of going through the source code of the software in use, an alternative
way of tracking the operations on WNIs is to monitor the traffic going through them.
Packet-level traffic traces can be collected using packet analyzers, like tcpdump? and
the open-source Application Resource Optimizer (ARO) from AT&T Labs?, which have
been ported to many mobile OSs, including Android and iOS. These packet analyzers
can capture packets and analyze the packet size, packet arrival time, source/destination
IP address, and other information indicated in the header of each packet.

We use the Wi-Fi interface as an example to explain how to obtain the values of the
parameters listed in Eq. (9.1) from packet-level traffic traces. We assume that the Wi-Fi

2 http://www.tcpdump.org accessed January 6, 2014.
3 https://github.com/attdevsupport/ARO accessed January 6, 2014.
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interface adopts the adaptive PSM (described in Section 7.3.1) and its state machine can
be illustrated as shown in Figure 7.8. The modeling process consists of two steps.

First, detect the transmit and receive modes based on the transmission direction of the
packets. The transmission direction can be worked out by comparing the source/destina-
tion IP address with the IP address assigned to the smartphone. After that, the time spent
in the transmit and receive modes is determined by the packet sizes and the processing
capacity of the Wi-Fi interface in the corresponding operating mode. The processing
capacity indicates how fast the Wi-Fi interface can handle packets locally. It is different
from the end-to-end network throughput. Given an operating mode, either transmit or
receive, its processing capacity can be assumed to be fixed. If the transmit and/or receive
mode includes sub-states, each of which corresponds to a certain processing capacity,
each sub-state is treated as an individual operating mode.

Second, detect idle and sleep modes based on packet intervals and the PSM timeout,
and counting the transitions that occur during the data transmission. Only if the packet
interval is bigger than the PSM timeout, does the transition from idle to sleep mode
occur and the packet interval is divided into two parts. The one equal to the PSM timeout
is spent in the idle mode, while the rest of the interval is spent in the sleep mode.
Depending on whether the network interface stays in idle or sleep mode at the end of
each packet interval, the transition from idle/sleep mode to transmit/receive mode can
also be derived.

The above method can also be applied for the power analysis of the 3G WCDMA
network interface [17], whose power state is defined by the RRC protocol [18]. Sim-
ilar to the adaptive PSM for Wi-Fi, the operating mode when sending/receiving data
can be detected by comparing the traffic volume with the ones that can be handled by
CELL_PCH and CELL_FACH. In addition, T1, T2, and T3 are the inactivity timers used
in CELL_DCH, CELL_FACH, and CELL_PCH, respectively. Each inactivity timer can
last for seconds. They work in the same manner as the PSM timeout in adaptive PSM.
When the values of these inactivity timers are known, comparing the traffic interval with
the timer values, we can figure out the duration spent in each operating mode.

Packets captured over a certain duration may belong to several applications and net-
work flows, as smartphones can run multiple network applications at the same time,
and each application may communicate using several network flows. Analyzing net-
work traffic using the concepts of flows and applications is intuitive, and many kinds of
traffic statistics at the flow and application levels can be derived from the packet-level
information. Power models based on the flow- and application-level traffic statistics can
bring insight to mobile application developers on how to improve the energy efficiency
of their applications. This is because the traffic statistics at the flow and application lev-
els are more related to the parameters of the mobile applications and network protocols.
On the other hand, it is not always feasible for packet-level traffic profiling to be run on
mobile platforms, because it usually requires root access and causes more overhead than
the traffic profiling with coarser granularity. Hence, it is worth developing power models
based on the statistics at the flow or application level, although their accuracy might be
lower than that of the packet-level power models. In the rest of this section, we showcase
deterministic power modeling of the Wi-Fi interface based on traffic burstiness.
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Definition of train burstiness

An internet flow can be considered as a train of packets. According to the definition of
“train burstiness” in [19], “a burst can be defined as a train of packets with a packet
interval less than a threshold 6”. An internet flow can then be divided into bins with one
burst in each bin. One burst includes one or more packets, depending on the distribution
of packet intervals and the value of 6.

Due to the difference in power between the transmit and receive modes, we add one
constraint to the definition of “train burstiness” [19]. We define a burst as a train of
packets with the same transmission direction and with each packet interval smaller than
the threshold 6. As shown in Figure 9.3, burst duration, T, is “the time elapsed between
the first and the last packets of a burst” [19], while burst size, Sp, is the amount of data
sent or received during T. Burst interval, 77, is the time elapsed between the last packet
of a burst and the first packet of the following burst. Bin duration, 7', includes the burst
duration and the burst interval.

Given an internet flow, we can detect all the bursts and then use the burst information
to calculate the average network throughput, 7, over the internet flow using

>_Sp > Sk
S =T 9.2)

7=

From Eq. (9.2), we can see that given a fixed amount of data and a fixed data rate limit,
the data can be delivered in different traffic patterns in terms of distributions of burst
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size and interval. We use the standard deviation of burst interval and that of burst size to
describe the regularity of the bursts. If internet flows consist of bursts with small stan-
dard deviations, such as those generated by audio streaming, we consider these flows to
be regularly bursty traffic and to be randomly bursty traffic otherwise. We describe the
power models that fit these two kinds of traffic in Section 9.2.2.

Downlink/uplink power consumption

According to our definition of train burstiness, a downlink or an uplink flow can be
divided into bins. We aggregate the energy spent in each bin into the transmission cost
of a flow.

We assume that the threshold value, 6, is always smaller than the PSM timeout,
Tiimeour» When the PSM is enabled. This means that the transition from the idle to the
sleep mode may only happen during burst intervals. Let Ty,, be the duration spent in
the sleep mode during a burst interval. As described in Eq. (9.3), only when the value
of T; is greater than that of 7y, can the Wi-Fi network interface switch to the sleep
mode. Let » be the bin data rate. In Eq. (9.4) we define a threshold r, as the bin data rate
when 77 is equal to Tyimeour-

Tsleep = TI - Ttimeouts when TI > Ttimeout~ (93)
S
ro=— 8 (9.4)
TB + Ttimeom‘

To evaluate the effect of the PSM, we define the following two scenarios. The Wi-Fi
network interface is expected to always stay in the idle mode during burst intervals in
Scenario 1. Thus only in Scenario 2 can the PSM save energy.

e Scenario 1: PSM is disabled, or r is not smaller than r. with PSM enabled.
e Scenario 2: r is smaller than r. with PSM enabled.



9.2 Deterministic power models of Wi-Fi network interface 171

Energy per bin

We denote by Pr, Pg, P;, and Pg the power when the Wi-Fi network interface stays in
the transmit, receive, idle, and sleep modes, respectively. As some modern smartphones
may support transmit power control, we make the simplifying assumption that the trans-
mit power stays the same within one burst and only can change between the bursts. We
estimate the power within one burst to be fixed to either Py or Pg, depending on the
transmission direction. Our estimation ignores the transition into the idle mode during
the packet intervals smaller than the threshold value, 6.

Downlink power consumption is the power consumed when receiving data. Let Ep
denote the transmission cost of a bin in joules, and P,(r) denote the average downlink
power in watts. In Scenario 1, the Wi-Fi network interface operates in the receive mode
when receiving data and in the idle mode otherwise. Thus Ep includes the energy spent
in the receive and idle modes. In Scenario 1, the value of P,(r) can increase linearly
with the bin data rate, r, as shown in Eq. (9.5).

Ep  PrTp+ PiT;

Tp
Pir)=—-2 = — P+ r-2(Pr—P).
a(r) T 1+VSB( r—Pr) (9.5)

SB
=

In Scenario 2, T; is divided into two parts, Tneous and Ty,. The Wi-Fi network
interface can be in the idle mode for a duration of Ty, after receiving the last packet
of data, and in the sleep mode after this until the end of the bin. Ep can then be divided
into three parts as shown in Eq. (9.6). Accordingly, the definition of P,(r) is refined into
Eq. (9.7).

Ep = PrTg + PiTiimeows + PSTY[EE[)- (96)

Ttimeom

T
Py(r) =Py +r i(PR —Po)+ (P, — Ps)| . 9.7)

Power over an internet flow
If the bursts included in an internet flow are regularly repeated, Sp and T can be con-
sidered to be fixed, while the length of the burst interval, 77, varies with the bin rate, r,
for example, 7; increases when r decreases.* In that case, the internet flow can be com-
pared to one single bin that repeats itself over and over again for the whole duration of
the flow. Thus Eqs (9.5) and (9.7) can be used for estimating the average power over the
internet flow by replacing r with the 7 defined in Eq. (9.2).

According to Eqgs (9.5) and (9.7), power increases linearly with the data rate for regu-
larly bursty traffic. We denote the energy utility of the internet flow by Ey(7) and define
itin Eq. (9.8). Similarly with power, we can see that Ey(7) increases with 7, which means

4 Keeping the burst size and burst duration constant and varying the length of the burst interval according
to the desired network throughput is a data-rate-limiting mechanism used in many traffic-shaping utilities,
such as Trickle [20]
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it is more energy efficient to transfer regularly bursty traffic at a higher rate.

7

Py(7)

Ey(r) = 9.8)

If the bursts included in an internet flow are not regularly repeated, which means
the burst sizes and intervals vary over time, the total energy consumption, E, can be
aggregated from the energy spent in each bin. When the PSM is disabled, E and P,(7)
can be calculated using Eqgs (9.9) and (9.10).

E=Y Ez=Y TsPp+Y T/P;. 9.9)

E STy
2T 2T
When the PSM is enabled, let 75 denote the total duration spent in the sleep mode

and c be the total number of burst intervals. P;(7) in this case can be obtained from Eq.
9.11).

Py(r) = =Pr— (Pr— Pp). (9.10)

— YT —Ts Ts
Py(7) = Pr— =L 5(Pp— P)) — = (Pg — Py), 9.11
1(T) = Pg ST (Pr—Pr) ZT( & — Ps) 9.1
where,
Ts=| > Ti|=clineu |[1— >, Ti]. (9.12)
T1>Timeout T1 =<Thimeout

The above Eqs (9.9)—(9.11) can be applied to estimate the average uplink power,
P,(7), by replacing P,(7) with P,(7), and Pg with Pr.

TCP download/upload power consumption

We model TCP transmission as a combination of separate downlink and uplink trans-
missions. Let r; be the downlink data rate and r, be the uplink data rate. Taking TCP
download as an example, r, is the data rate of downloading the files, while r, is the data
rate of sending ACKs.

We first discuss the power consumption of a TCP download. We assume that a down-
link burst includes n packets, and is followed by uplink bursts that consist of m ACKs
in total. Let the downlink burst size be Sy, and the size of one ACK be S,. The uplink
data rate, r,,, can be obtained from Eq. (9.13).

_ msackrd

9.13
Sap )

Ty

> Depending on the TCP version, there may be one ACK for each received packet or one ACK for multiple
received packets. Depending on the intervals between ACKs and the threshold value in the burst definition,
the ACKs may be divided into more than one uplink burst.
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We extend the definition of a bin here to have a bin including one downlink burst
and all the uplink bursts sent before the beginning of the next downlink burst. The bin
duration is the duration from the first packet in the downlink burst until the first packet of
the next downlink burst. We assume that the downlink and uplink bursts do not overlap.

We denote the downlink burst duration by 7,, and the uplink burst duration by 7,.
For TCP download/upload, we redefine the threshold of network throughput, r., in
Eq. (9.14). Having the data rate smaller than r. is a necessary condition for the Wi-Fi
network interface to go to sleep during a bin. Whether the interface will go to sleep and
how many times the interface will switch into the sleep mode within a bin depends on
each value of the burst intervals within the bin.

Sab

N A E— 9.14)
Td + Tu + Trimeour

re

Let the average power during the TCP download be P(r,). It consists of both downlink
and uplink power. In Scenario 1 defined in Section 9.2.2, P(r,) can be calculated based
on Eq. (9.5), as follows.

P(rq) = Py(ra) + Pu(ry) — Py
rTy

—p+ e p_p Pr—P
= I+S—db( r—Pr)+ (Pr—Pp) (9.15)

ack

rq
=PI+S_[Td(PR_PI)+Tu(PT_P1)]~
b

In Scenario 2 defined in Section 9.2.2, P(r,;) can be estimated using Eq. (9.16).

r
P(ra) = Py < [Tu(Pg—P5)

db (9.16)
+ Tu(PT - PS) + C(Tz‘imeom‘(PI - PS)]a

where o Tyimeons 18 the total duration the interface will spend in the idle mode during all
the burst intervals within a bin. The factor, «, is calculated as follows. Assume that there
are X burst intervals within the bin, out of which Y intervals are longer than Tiipeour At
the beginning of each of these Y intervals the interface stays in the idle mode for the
duration of Tjineons before going to sleep. Additionally, the interface stays in the idle
mode during the complete duration of the X—Y intervals that are shorter than Teou;-
The factor « is thus:

X-Y

a=Y+ T; : T; < Tiimeour- (917)

timeout "
i=1

Similar to the TCP download, the power consumption of the TCP upload can be
calculated as presented in Eqs (9.15) and (9.16) by replacing r; with r,,, and Sy, with the
data size of the uplink data burst. When considering the power consumption of multiple
TCP connections, the aggregate network data rate has to be taken into consideration. In
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Table 9.1. Different forms of power models

Information required Parameters Eq. Accuracy

Packet size, arrival time, Burst size, duration, interval, (9.15) High
transmission direction transmission direction (9.16)

Packet arrival time, Burst duration, transmission  (9.19) High
transmission direction direction

Throughput Throughput (9.20) Low

practice, we replace the r,; and r, in Eqs (9.15) and (9.16) with the aggregate data rate
in each direction. The extra protocol processing cost of multiple TCP connections can
be ignored when compared to the uplink and downlink transmission cost.

Simplified power models

As listed in Table 9.1, the models presented in Section 9.2.3 require information includ-
ing packet size, arrival time, and transmission direction. In this section we provide two
simplified power models that require less information for Scenario 1 defined in Section
9.2.2.

The first model estimates the average power over the internet flow based on the aver-
age power in active mode. Here we define active mode as the operating mode of the
Wi-Fi network interface when it stays in either the transmit or the receive mode. We
denote the average power in active mode by P, ive. It can be calculated based on the
durations of uplink and downlink bursts as shown in Eq. (9.18). The average power over
the internet flow can then be transformed from Eq. (9.10) into Eq. (9.19) by replacing
Pr with P4y.. Equation (9.19) can be applied to any traffic pattern and can be applied
for both TCP/UDP download and upload.

ZTMXPT+ZTdXPR
Pactivez
YT+ Ta

T,
P= Pactiue - L X (Pactiue _PI) (919)

ST

(9.18)

The second model simplifies the power models by ignoring ACKs. Due to the small
sizes of ACKs, receiving/sending an ACK in a modern smartphone usually costs less
than 1 ms. The energy cost of sending ACKSs is so small compared to the cost of trans-
mitting data packets. Thus the energy cost of ACKs can be dropped from Eqs (9.15)
and (9.16) for practical usage if a higher error rate is acceptable. In addition, the packet
intervals in each burst are limited by the threshold, 6. If we assume that the packet inter-
vals can be ignored, the data rate of a downlink burst can be considered to be equal to
the maximum processing capacity of the downlink traffic of the Wi-Fi network inter-
face. We denote it by 7,,,,. When the PSM is disabled, Eq. (9.15) can be simplified to
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Eq. (9.20).
rd
P(rg)=P;+ r—(PR —Py). (9.20)

max

To calculate the energy consumption of the TCP upload, replace Pr with Pr, ry with
Ty, and ry,qe with the maximum processing capacity of the uplink traffic in Eq. (9.20).

MAC layer retransmission

From the energy perspective, retransmitting a packet is no different to transmitting a
“fresh” packet. We ran Wireshark® on a Samsung Nexus S while sending packets in a
congested network, and then synchronized the traffic trace with the power-measurement
trace. As shown in Figure 9.4, the black line represents the I/O graph with each spike
corresponding to one IP packet captured by Wireshark running on the phone.” The gray
line shows the power consumption of the phone during data transmission. We can find
a lot more spikes in the gray line, each of which corresponds to a retransmitted packet.

The overhead caused by MAC layer retransmission includes two parts. One part is the
energy spent in retransmitting packets on the sender side. According to the retransmis-
sion mechanisms used in 802.11 [21], the sender may retransmit a packet several times
until the transmission succeeds or until the retransmission limit is reached. Let T} be

® www.wireshark.org accessed March 3, 2014.

7 The black line does not include MAC layer retransmission, since monitoring of retransmission at the MAC
layer requires the Wi-Fi network interface to run in monitor mode, but the interface cannot be used for
transmitting or receiving data while operating in monitor mode.
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the interval between a retransmitted packet and its previous packet. If the value of 7}, is
not greater than the threshold value, 0, and the previous packet is an uplink packet, the
retransmitted packet can be considered to be part of the uplink burst that the previous
packet belonged to. In other words, the uplink burst duration is increased by T;,, due to
retransmission. We define E(T;,) as the expected value of T}, and #(retransmit) as the
total number of retransmitted packets. The cost of retransmitting packets E,eransmir Can
be calculated as follows.

E otransmic = #(retransmit) x E(T;,) x (Pt — Py). 9.21)

Given a packet trace captured on the network layer, we denote its packet count by
#(packet). The value of #(retransmit) can be calculated as follows:

#(retransmit) = #(packet) x 7 er , (9.22)
where R, is the retransmission ratio calculated from the MAC layer traffic information.
For example, if we capture N packets on the MAC layer including M retransmission
attempts, the value of R, is equal to %

The other part of the retransmission overhead is caused by the increase in the baseline
cost, due to the DVFS mechanism of CPUs. The basic idea of DVFS is to adapt the CPU
frequency to the processing workload. The extra workload caused by retransmission
may lead to an increase in the CPU frequency, with the result that the baseline cost
represented by the values Py, Pg, P;, and Py increases accordingly. For example, in
Figure 9.4, the power in the idle mode during 0.1 s and 0.3 s is only 0.177 W, whereas
it gets close to 0.5 W during the interval between 0.8 s and 0.85 s. The device backlight
was turned off. Meanwhile, the power while sending packets increases by around 0.3
W when the retransmission starts. This change in power is consistent with the change
in the CPU frequency from 100 MHz to 200 MHz. Hence, to estimate the transmission
cost in congested networks, fine-grained CPU frequency measurement is necessary to
provide the right inputs for the power models.

Model evaluation

We built models of Wi-Fi transmission cost for the Samsung Nexus S following the
steps described in the above sections. In this section we briefly describe the experimental
setup and the results of the model evaluation. More detailed description can be found
in [22].

We first obtained the values of Pz, Pg, and P; from power measurement. Note that the
phone we used did not provide any interface for adjusting the PSM parameters. As the
measurement results with the default settings seemed to fit the “PSM disabled” version
of our power models, we did not provide the value of P for this phone. Additionally, we
observed that the CPU frequency of the Nexus S varied with the transmission rate. For
instance, when the display was turned off, the CPU frequency increased from 100 MHz
to 200 MHz whenever the data sending rate of the phone increased from 256 KBps to
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Table 9.2. Parameter values for Nexus S

CPU frequency Display Pp(W) Pr(W) Py (W) Datarate

(MHz) (KB/s)
100 Off 1.094 0.867 0.177 <128
100 Off  1.130 0903 0213  160~256
200 Off 1.245 1.021 0435 <512
100 On 1.217  0.887 0.742 512
200 On 1.376  1.050 0.800 1024
400 On 1.549 1208 0.890 <1536
Traffic Sniffer Client
(Kismet) (TCPdump)
WIFI AP ! power
Meter

N

Monsoon Power Tool/
FlukeView forms software

Linux Server
(TCP Server)
(Traffic Monitor —— Wireshark)
(Traffic Sharper —— Trickle)

Experimental setup

512 KBps.%. Table 9.2 lists the parameter values for each CPU frequency. The listed
data rate information is to show which values were used in our calculations. They are
not necessarily the exact thresholds used in DVFES. In addition, the values of Py and Pg
include the cost of network protocol processing.

We evaluated our models in TCP transmission scenarios at various data rates with
various traffic patterns and in different network environments. Our experimental setup
is illustrated in Figure 9.5, including the TCP download/upload setup, and power
measurement and traffic capturing tools. Our test cases are listed in Table 9.3.

We first conducted the experiments in an ideal network environment where the pro-
cessing latency and packet loss could be ignored. We applied the model presented in

8 Due to the partial wake up mechanism in Android, the CPU worked at a reduced frequency when the display
was turned off.



178

Power modeling

Table 9.3. List of test cases

No. Description No. flows Data rate limit

1) TCP download/upload 1 Enabled/Disabled

2) Concurrent TCP download/upload 2/4/8 Enabled/Disabled

3)  TCP download/upload in congested 1 Disabled
network

4)  Web browser, Fengxing (video 1 Disabled

streaming), Dropbox (file upload),
QQ(Instant messenger)

Table 9.4. MAPE of power models for Nexus S

No. downlink  No. uplink MAPE (%) No. downlink  No. uplink MAPE(%)

1 0 3.4+£2.0* 0 1 2.6£1.5%

42+1.7 4.1+44
2 0 33+1.7% 0 2 2.942.0%

24+£1.1 0 2 5.1£4.0
4 0 29+£20 0 4 5.1£1.5
8 0 22+14 0 8 59+1.8
1 1 2.1+£1.8* 1 1 2719
2 2 5.0£28 4 4 4.8+2.1

*The display was turned off.

Eqg. (9.19) to estimate the power consumption and compared the estimated power with
the physical power measurement. As listed in Table 9.4, the average MAPE of the TCP
download/upload with a single flow was at most 5.7%.

After that, we conducted TCP download/upload experiments in a congested network
environment, with the retransmission ratio varying between 10% and 30%. Due to the
interference caused by the neighboring APs, MAC layer retransmissions could not be
left ignored. Based on the collected MAC layer traffic traces, we calculated the retrans-
mission ratio, R,, and the expected value of the retransmitted packet interval, E(T;,).
The overhead of retransmitting packets was computed following Eq. (9.21). As listed in
Table 9.5, in upload cases, taking into account the retransmission overhead can improve
the power estimation accuracy by almost 50%.

We also evaluated the accuracy of the complete power models (Eqs (9.15) and (9.16)),
and the simplified one (Eq. (9.20)) with four real-life applications running on a Nexus S.
The descriptions of the tested applications are listed in Table 9.6 along with experiment
parameters and results. The traffic generated by these Android applications had different
characteristics, in terms of both traffic size and pattern.

According to our measurements, the phone does not seem to implement the tra-
ditional 802.11 PSM/PSM adaptive with the sleep mode, but does instead have a
DVFS-induced low-power state that is entered when an inactivity timer expires. This
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Table 9.5. MAPE of power estimation in congested networks

Test case R(%)  E(Tir)(ms) MAPE(%)

Download 11.24+1.5 - 24+12
Upload 20.6£23 0.8+£0.2 52+£4(11.0£1.4%)

* The retransmission overhead is not counted.

Table 9.6. Description of the experiments with Android applications

Application Description Display Throughput Duration Overhead MAPE
(KB/s) (s) (mW)* (%)
Fengxing Stream videos On 7.9 3054 103 5.4
video from youku.com
player
Dropbox Upload files to On 18.9 1578 112 53
Android dropbox.com
app
Web browser  Open web pages Off 13.9 509 41 4.3
on dalong.net
QQ instant Receive random Off 0.04 1068 127 8.6
messenger text messages

mechanism works in a manner similar enough to the 802.11 PSM that Eq. (9.16) can
be applied with good results by replacing Py with the measured power of the DVFS-
induced low-power state, and the value of the PSM timeout with the length of the
inactivity timer. We determined empirically the length of the inactivity timer to be about
1.35 s when the display was off, and to be 400 ms when the display was on.

As shown in Figure 9.6, all the models gave reasonable results, except for the QQ
messenger where only model Eq. (9.16) was able to estimate the power with good accu-
racy. This was caused by the exceptionally long burst intervals in the QQ messenger
traffic, during which the DVFES put the phone into the low-power state, which was only
accounted for in Eq. (9.16).

Statistical system-level power models of smartphones

We show an example of building a statistical power model for a Nokia N810 following
the steps described in Section 9.1.3.

Variable selection

The first step is to define the variables. As we would like to model the power con-
sumption of the processor, the Wi-Fi network interface, and the display, our variables
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are supposed to describe the workload of all three of these components. We initially
selected 21 regression variables, which reflected the power characteristics of the proces-
sor, the Wi-Fi network interface, and the display. The variables and their preprocessing
functions are described in Table 9.7.

We used hardware performance counters (HPCs) to estimate the power consumed by
the CPU processing and the memory access, as HPCs reflect the activity levels of the
hardware components in a processor such as the DATA cache andinstruction cache. In
addition, monitoring some HPCs such as the L3 cache miss counter allows us to track
the use of the off-chip memory. In practice, there are 17 HPCs available on our exper-
imental processor, ARM 1136, as listed in Table 9.7, but only the CPU cycle counter
CPU_CYCLES and any other two HPCs can be monitored simultaneously during run-
time. We defined an event rate for each HPC as shown in Table 9.7. HPCs are aggregate
counters. For CPU_CYCLES, we defined the event rate as the consumption rate of CPU
cycles, which can be calculated as the number of CPU cycles elapsed in a unit of time.
For the other HPCs, we defined the event rate of each HPC as the increment in the
HPC during a CPU cycle. It can be calculated as a ratio of the increment in the HPC to
the corresponding increment in CPU_CYCLES during the same monitoring period. The
event rates are normalized. The statistics used for normalization are calculated based on
the data set used for model fitting.

For the cost of the Wi-Fi network interface, we selected three network parameters
based on the knowledge gained from a previous study about power modeling of data
transmission. The power consumption of the data transmission through Wi-Fi linearly
increases with the upload/download data rate. Hence, we selected the upload and down-
load data rates as regression variables because they reflect the workload of the Wi-Fi
network interface. Moreover, the 802.11 power-saving mode has an impact on the power
consumption. For instance, when the data rate is lower than a threshold such as 32KB/s,
the power consumption is higher if the continuously active mode (CAM) is enabled. For
the requirement of nonnegative coefficients, we chose the CAM switch as a regression
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variable. When the power-saving mode is disabled, the value of the CAM switch is set
to 1. Otherwise, it is set to 0.

We used the brightness level to model the power consumption of the display. Assum-
ing that the resolutions of the displays are fixed during runtime, we divided the workload
of the display into six brightness levels, compatible with the screen configuration on a
Nokia N810.

Benchmark

The benchmark captures the values of the regression variables at a certain sampling
frequency when running the workloads. Each run of the workload lasts for a certain
monitoring period, such as 60 seconds.

For example, the workloads we used are categorized into five types: idle with differ-
ent brightness levels, audio/video players, audio/video recorders, file download/upload
at different network data rates, and streaming. In each category there are multiple
test cases as described in Table 9.8. They are chosen based on the following three
principles.

First, similar to the micro-benchmarks used in [23], our benchmark stresses the
selected variables and explores the space of their cross product. The resource consump-
tion of a real-life mobile application can be described in terms of four elements: CPU
processing intensity, memory access rate, network data rates, and the brightness level
of the display. Each element can be represented by one or multiple regression vari-
ables. We define the values of the first three elements to be low, medium, and high,
and the value of the fourth element to be equal to the brightness level of the display
set in the screen configuration. We chose the test cases in which the resource con-
sumption corresponded to as many different combinations of the values of the four
elements as possible, which made it possible for our model to be independent of usage
scenarios.

Second, we chose workloads with a fixed demand on hardware resources over a
sampling interval of the HPC event rates. Accordingly, the power consumption was con-
sidered to be stable during the sampling interval. A monitoring period included at least
one sampling interval. For workloads with a fixed demand on the hardware resources
over a given monitoring period, the values of the corresponding HPCs were increasing at
a constant rate. For example, in a case where a video playback with a fixed frame rate is
a workload with a fixed demand on the hardware resources over the monitoring period,
the increment in the HPCs such as CPU_CYCLES was stable in each sampling interval.
In this case, we calculated the average value of all the samples and considered it to be
one observation. For workloads with a varying demand on the hardware resources over
the monitoring period, we divided the monitoring period into several smaller periods in
each of which the demand can be considered to be stable. For example, an internet radio
test case can be divided into two periods: downloading only and downloading together
with playback. To simplify the synchronization of the HPCs, the network parameters
and the power consumption during data collection, we defined the test cases in the
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Table 9.8. Description of the workload used in the benchmark

Category

Description

Test case

Idle with different
brightness levels

Audio/Video
Players

Audio/Video
Recorders

File
Download/Upload at
Different Data Rates

Streaming

CPU and memory
workload: Low
wireless connection: No
Brightness level: 0~5

CPU and memory
workload:

Low~High

Wireless connection: No
Brightness level: O for
audio player; 5 for video
player.

CPU and memory
workload:

Medium

Wireless connection: No
Brightness level: 5

CPU and memory
workload:
Low~High

Wi-Fi connection: On
Network data rate
(KB/s): 16~400
Brightness level: 0

CPU and memory
workload: High
'Wi-Fi connection: On
Wi-Fi PSM: Enabled
Brightness level: 5

Keep the system idle without running any
applications and set the brightness level of
the display to different values.

Media player on N810: mplayer

Media file storage: Phone memory

Audio format: MP3, OGG, RM

Number of audio players in parallel: 1, 2, 3
Video format: AVI, MPEG

Number of video players in parallel: 1, 2

Run an embedded audio recorder to record
an audio file played on a machine close to
the experimental device.

Use the embedded camera to record a
video.

N810: netcat

Linux Server: netcat, Trickle (bandwidth
limiting utility)

Data rate limit: 16, 32, 128, 256, and
400KB/s.

CAM: On/off (data rate < 32KB/s); Off
(data rate > 32KB/s)

Download storage: phone memory,
/dev/dull

Upload storage: phone memory

Watch online TV programs transferred
from www.itv.com.

Encoding rate: 16 ~ 72KB/s

Listen to radio programs from three
different radio websites.

Download date rate: around 24KB/s
Use web browser to watch YouTube
videos online.

Download data rate: 46~136KB/s
depending on the network conditions.

way that the demand of the hardware resources can be stable for a relatively long

time.

Third, we chose the applications that are typical on the mobile devices in question.
All the applications we used are either embedded in our experimental device, or easy to
download and install from the support website for the device.
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Data collection

Our benchmark ran Oprofile® to access the HPCs from the userspace, and logged the
readings of the HPCs every second. The sampling interval of the HPCs was set to
100000 CPU cycles during the initialization of Oprofile. During runtime, three HPCs
at most can be accessed simultaneously on an ARM 1136, and one counter is reserved
to count the CPU cycles. Similarly with the multiplexing technique presented in [24],
to get a full observation including all 17 event rates, our benchmark repeated the same
test case eight times with two different HPCs monitored each time. We used the CPU
cycles as timers to multiplex the event rates. In other words, the eight samples from
the different runs can be merged into one full observation only when the event rate of
CPU_CYCLES in each sample is equal to each other.

In practice, we collected 60 samples continuously from the beginning of a test case
in each run, except for the streaming cases where we started the monitoring when the
playback started. After eight runs, we had 60 full observations. According to our obser-
vation, in most of the test cases, the difference among the 60 samples in a line is close
to zero. In these cases, instead of importing 60 similar observations into our data sets,
we only imported one observation, which included the average value of each HPC in
the 60 observations.

We use different test cases to generate two different data sets for model fitting and
evaluation, respectively. For example, we used the data collected from three types of
workload for model fitting, including idle with different brightness levels, audio/video
players, and file download/upload at different network data rates. For model evaluation,
we used the data collected from streaming, audio/video recorders, and file download/
upload at different network data rates. Even for the same type of workload, the test cases
used in model evaluation were different from those in model fitting.

Model fitting

We used a function called Isqnonneg'® in Matlab, which is meant for optimizing the
least-square objectives with a nonnegativity constraint. The nonnegativity constraint
reflects the fact that the rate of power consumption increases with the use of hardware
resources. Given a linear regression model with nonnegative variable coefficients, the
regression variables with relatively large coefficients would contribute more to the out-
put of the model, which is the overall power consumption of the smartphone in our
case.

During model fitting, we ran this function twice. In the first round, each observation
included seventeen HPC-based variables, three network parameters, and one display
parameter. After executing Isqnonneg, we chose three HPC-based variables with the
biggest coefficient values. They were the event rates of DCACHE_WB, TLB_MISS,
and CPU_CYCLES. In the second round, we fitted the observations including the three
selected event rates, the three network parameters, and the one display parameter to

° http://oprofile.sourceforge.net accessed January 6, 2014.
10 http://www.mathworks.se/help/optim/ug/lsqnonneg.html accessed January 6, 2014.
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a regression model by running Isqnonneg again. The final power model is presented
below.
Power(W) =0.7655 4 0.2474 x go(xp) + 0.0815 x g1(x1)
+0.0606 x ga(x2) +0.0011 x g17(x17)
+0.0015 x gs(x18) +0.3822 x g19(x19)
+0.125 x gao(x20)

(9.23)

where g;(x;)(j € [0..2,17..20]) is the preprocessing function as described in Table 9.7.
Let ¢y , c1, and ¢; be the increment in CPU_CYCLES, DCACHE_WB, and TLB_MISS
in the monitoring period d, respectively.

xo—1316.84 Co
8o(xo) = 1349423 Xo = rk
x1 —0.000901 c
g1(x) = W, X1 = 5’
x, —0.000513 c2
8209 =0 500365 2" ¢’ (9.24)

g17(x17) = x17, x17 : download data rate in KBps,
g18(x18) = x18, X138 : upload data rate in KBps,
g19(x19) = x19, x19 : CAM switch,

g20(x20) = X0, X0 : brightness level.

We define the idle mode of a mobile device as the status when there is no application
running. The value of the intercept, 0.7655, is close to the power consumption in the idle
mode with the display turned off. Among the three HPC-based variables, the event rate
of CPU_CYCLES, which describes the general workload of the processor, takes a large
part of the total power consumption. The event rates of TLB_MISS and DCACHE_WB
reflect the memory access efficiency in a CPU cycle. The coefficient values of the
non-HPC variable show an increase in the power consumption of the Wi-Fi network
interface or the display when the corresponding variable increases by one unit. For
example, an increase of 1 KBps in the upload data rate costs on average 1.5 mW
more power, and the network transmission with CAM-enabled costs on average 0.3822
W more when the network data rate is less than 32 KBps on the experimental
device.

Model validation

We used the testing data set to validate the regression model obtained in the previ-
ous step. To analyze the prediction accuracy for different workloads, we can use the
median error for each category of workload as the metric. For the data set used for
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model evaluation, the median percentage error in power estimation is 2.62%, and the
standard deviation of the error rate is 0.0376.

Discussion

When a new hardware component is installed into the mobile device, there are two ways
to update the system-level power model. One way is to add regression variables, which
describe the activity levels of the new hardware component, define new test cases to
stress the new variables, and fit the new data sets to a regression model. The other way
is to directly add an analytical power model of the new hardware component to the
existing system-level model. For the latter method, an analytical power modeling of the
hardware component must be built and validated beforehand.

Because the HPCs can be monitored for each process, we could also estimate the
computational power consumption of each process based on the per-process HPC
values. Assume that there are N processes contributing to the HPCs during a moni-
toring period, d. For the process i(i € [0..N — 1]), the increments in DCACHE_WB,
TLB_MISS, and CPU_CYCLES are defined as w;, m;, and u;, respectively. The total
number of CPU cycles elapsed in d is defined as ¢y, cop = Zi\:ol u;. We reform the pre-
processing functions of the HPC-based regression variables defined in Eq. (9.24) as
below.

N—1 u;
“ _1316.84
d T T
go(xo) = Z 1349.423

o= £—0000901 95
gi(x) = Z 000045 (9.25)

N=1 ™ () 000513
galw) = Z 0.000365

It is possible to estimate the computational power consumption of process i as shown
in Eq. (9.26). However, because there is no power meter available for measuring the
power consumption of each process, we have not been able to validate our power
breakdown of the processes.

Computational Power(W) = 0.7655 +0.2474 x go(xo) +0.0815 x g1(x1)
+0.0606 x gz(XZ)

(9.26)

The power consumption of a Wi-Fi network interface is estimated based on the
aggregate data rates in our model. When there are multiple flows sharing the network
interface, the traffic intervals can be inside a flow or between flows, and there is no com-
mon rule for assigning traffic intervals to each flow. In Section 9.4, we show an example
of tracking the per-process transmission cost using system-call-based power models.
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Eprof: fine-grained system call tracing energy profiler

Eprof [25] is a fine-grained energy profiler for applications written for Android and
Windows platforms. It profiles the energy consumption of each entity based on system-
call-based power models [1]. Here an entity can be a process, a thread, a subroutine,
or a system call. The procedure is to first track all the caller—callee invocations in the
code, then estimate the energy consumption based on predefined power models, and at
the end map the estimated energy consumption to entities based on the call graph. This
procedure is implemented with three components: code instrumentation and logging,
power modeling and energy accounting, and profile presentation.

Code instrumentation and logging

Applications on Android can be written using Android SDK in Java, or in native C/C++,
or in both using Google’s Native Development Kit (NDK). Java code runs within the
Dalvik VM, while the native C/C++ code runs out of the Dalvik VM. Eprof for Android
provides SDK routine, NDK routine, and system-call tracing.

The SDK routine tracing logs routing invocations and the time spent per invocation.
It is implemented with a modified version of the Android routine profiling frame-
work.!" For performance purposes, the modified version only counts all caller—callee
invocations, and periodically snapshots the routine call stack.

The NDK routine tracing was done by the gprof port of the NDK profiler.'? Pathak
etal. [1] used SystemTap to log CPU scheduling events in the sched.switch function in
the kernel. In addition, they used the ADB (Android Debugger) logging APIs to log dif-
ferent sensors, GPS, accelerometer, and camera accesses at the application framework
level, and to log disk/network at the Dalvik VM level.

To enable the above tracing functionalities, customized kernel images are required. In
addition, source code is needed for tracing the NDK part of applications. Regarding the
overhead of logging, according to the measurement results presented in [25], the logging
incurs overheads on the CPU and memory. The energy overhead varies between 0.40%
and 7.35% for the application on Android, while the logging rate for the application
varies between 60-70 KB/s.

Power modeling and energy accounting

The traces collected during an application run are postprocessed for model-based
accounting. Eprof uses both deterministic and statistical power modeling.

First, the power consumption behavior of each hardware component or the whole
mobile device is described with a finite state machine (FSM). Each state in the FSM
represents a power state of a component, or of a set of all components when extended to

" Android routine profiling framework marks routine boundaries with timestamps at runtime and calcu-
lates the runtime of each routine. Android debug class:http://developer.android.com/reference/
android/os/Debug.html accessed January 6, 2014.

12 http://code.google.com/p/android-ndk-profiler/ accessed January 6, 2014.
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model the overall power consumption of the smartphone. Each power state is annotated
with a (power, timeout duration) tuple, and the timing and workload of recent events
of the component. The transition between power states can be triggered by a timeout
activity, a new system call, or a change in hardware usage. Timeout activities can be
observed from a timer-based power-saving mechanism in which the component stays
in a power state for a while after finishing the operation and then switches into another
power state with lower power consumption. The duration the component stays in the
first power state is controlled by a predefined timer.

Second, although the power consumption within a power state is constant for compo-
nents like GPS and camera, for components like WNISs it varies with the workload on the
components. In the latter, usage-based linear regression power model is built for each
power state. This is different to the usage-based power model presented in Section 9.3,
as the level of use is estimated from the system call trace instead of the OS-level hard-
ware performance counters. There are two reasons why the system call trace is chosen.
First, as I/O components are always accessed through system calls, the system call trace
can tell which I/O component is requested. Together with the parameters of the system
calls, it can clearly indicate the usage of each I/O component. Second, a system call
can be related back to the calling subroutine and the hosting thread and process, which
makes it possible to account for energy consumption on a per-subroutine, per-thread, or
per-process basis.

Pathak et al. developed the CTester application suite, based on the domain knowl-
edge of system calls for each OS, to automate the construction of the FSM. I/O system
calls are classified into two categories: 1) initialization-based system calls that start or
stop a component, such as file open and close; 2) workload-based system calls which
generate workload for the component, such as file read and write. For each component,
the test application exercises the relevant system calls by interleaving initialization and
workload system calls. The range of input parameters to the consecutive workload-
based system calls is decided based on the throughput of the component. The idea is
to uncover the threshold on the workload that triggers the transition between sub-states
of the power state. After uncovering the FSM for each single component, a wrapper
application is invoked to create scenarios of concurrent system calls on multiple com-
ponents. The wrapper application invokes individual applications at a predetermined
timing. While running the application suite, the power consumption is measured using
an external power meter. The models using system calls as input are then built following
the deterministic and statistical power modeling methodologies.

Profile presentation

Energy consumption estimated from the power models is mapped back to the routines
following the call graph collected by the tracing tools (see Section 9.4.1). For tail energy,
Eprof applies a last-trigger policy which always includes the tail energy in the last entity
out of all the entities that would have triggered the tail. Eprof can provide a call-graph
view, which mimics the output of gprof [26] by replacing each time value with a (time,
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energy) value tuple. The results of energy accounting are visualized using an extended
version of Traceview in the Android SDK.

Accounting accuracy

As it is difficult to measure per-entity accounting accuracy, Pathak et al. proposed to
define accounting error as the percentage difference of the sum of all entity energies
except process 0 (which does not use any hardware component) with the ground truth
energy measured. They evaluated the accuracy of Eprof for Android with eight appli-
cations: Google on Browser, Facebook, AngryBirds, New York Times app, CNN on
Browser, Photo uploading, MapQuest, and Free Chess. Compared with split-time [9]
and usage-based power modeling, the error in Eprof at the process level is less than
6% for all the applications, much lower than the errors of the other two. At thread and
routine granularities, the accuracy of Eprof is as high as split-time and is higher than
that of usage-based power modeling. More detailed results are presented in [25].

Generally speaking, although the more complex logging functionalities may gen-
erate more overhead, the system-call-based power modeling used by Eprof provides
finer-grained and more accurate power estimation. Users can choose which power-
modeling method to use, depending on the actual requirement of accuracy, granularity,
and overhead.

Summary

In this chapter we introduced two power modeling methodologies: deterministic and
statistical. In practice, the deterministic methodology can be used for building power
models for individual hardware/software components, while the statistical methodology
can be applied to usage-based power models for a component or the whole device. In the
case where the power consumption within a power state varies with workload, a usage-
based power model can be built for each power state. We provide three case studies.
The first two case studies use deterministic and statistical methodologies, while the last
case study shows how to use a combination of these two methodologies.
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Power profilers

The rapid advancement of the communication and computing capabilities of smart-
phones has led to batteries depleting faster. The Android and Apple’s iOS application
ecosystem both include many applications that help their users manage the battery life of
their devices. Some of these are automated, and give little or no control to the user, turn-
ing off functionality that is not used and reducing the amount of time the phone spends
awake. Another class of battery-management applications is informational, providing
users with options, indicating how much energy each option will save, and keeping
track of the energy use of the phone. These applications are typically called energy
profilers or mobile battery-awareness applications. The former is targeted developers
whereas the latter is for users of the smartphones.

The primary goal of these applications is to make the developer or user aware of what
consumes energy. They give the user insight into the factors that consume battery power
on their mobile device and give advice on how to deal with them.

In this chapter, we consider the state of the art in energy and power modeling on
smartphones. Following the terminology presented in Chapter 6, an energy profiler is
a system that characterizes the energy consumption of a smartphone. Typically, the
profiler relies on power models that represent power draw. An energy profiler can be
a separate device or a software component running on the smartphone and using the
device’s battery interface for energy and power information. The energy profiler may
simply use a power model that has been generated in a laboratory environment or it can
build and maintain its own power model in order to adapt to a specific device and usage
patterns. The profiler can also be used to generate new power models.

Profilers can be categorized based on their operating environment. They can be used
in a laboratory setting in so called offline mode, they can support online on-device oper-
ation, or involve an offline calibration and online measurement parts. Any profiler that
relies on on-device measurements is limited by the battery API offered on the device.
We examined the battery APIs of today’s smartphones for the implementation of online
profilers in Chapter 4. In this chapter, we give a survey of well-known energy profilers
and compare their features.

Overview

In the general power-modeling process outlined in Chapter 6, a power-measurement
technique is used to build a model of a smartphone or its component with certain use
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cases. The power model can be correlated with execution traces, process lists, and other

information to have more detail on the causes of energy consumption. The power mea-

surement can be fully offline taking advantage of high-precision measurement devices

and a server to correlate the energy data with the smartphone derived data. There are

also alternatives to this laboratory setting, in which the profiler runs on the smartphone.
Ideally, an energy profiler would be:

® an online on-device that does not require external measurement devices or calibration,
e adaptive and able to cope with heterogeneous devices,
® having a high accuracy at a high sampling rate.

These requirements are challenging to meet, because it is difficult to determine the
power draw of the smartphone and its components due to limitations of the battery
interface and inaccuracies with battery modeling. We discussed the limitations of smart
battery interfaces in Chapter 3. The online profiler also introduces bias, because it is
running on the same device that it is measuring.

An energy profiler is a software or hardware component that monitors and charac-
terizes the energy consumption of a device. The energy consumption estimation is
based on power models. A power model can describe a single hardware subsystem or
a combination of them. The power model used by a profiler can be generated offline
in a laboratory setting, it can be updated and improved by the profiler, or it can
be created online running on the target device. If the power model requires power
estimation, an external measurement interface or a software API is needed for the
energy and power information. The profiler is limited by the accuracy of the power
estimation interface. Profilers can be categorized based on their operating environ-
ment: offline, online, and hybrid solutions. An energy profiler can work at different
levels of granularity depending on the power model used.

The following categories give insight into the various implementation and deploy-
ment strategies for profilers:

e Offline or online in a laboratory setting with an external monitoring device. Offline
energy profiling typically supports fine-grained and accurate characterization of the
energy consumption of the target device. The difference between offline and online
in this case is that with the latter the measurements are used immediately whereas in
the former case the analysis can be performed later.

¢ Online and on-device with offline calibration. In this case, the energy profiler runs
on the smartphone and uses a power model that was typically created in a laboratory
setting together with online information to characterize energy consumption.

¢ Fully online and on-device with self-calibration (self-constructive). In this case, the
energy profiler does not need a power model that has been created beforehand, but
instead creates it online using local information obtained through the smart battery
interface and the OS.
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e Energy diagnosis engines that aim to identify harmful energy consumption anomalies
and then mitigate these. A diagnosis engine can be on-device or it can be based on a
centralized server for performing the analysis. Typically the the analysis is performed
offline or when the smartphone is being charged to avoid performance and battery
problems.

The online information that is used together with the power model typically include
SOC and voltage and current from the smart battery interface, as well as details of how
hardware components are used. The on-device profiler typically uses the smart battery
interface in combination with a battery model, for example the Rint or Thevenin models
discussed in Chapter 3; however, not all profilers have a model for the battery.

The level of detail depends on the abstraction level of the energy profiler. The levels
of abstraction include the device, component, and process level. Component and process
level operations require more information about the system state. The former requires
the ability to map energy consumption to hardware components and the latter builds on
this and maps processes to hardware components.

The energy profilers can be categorized based on the underlying energy account-
ing technique. Frequently used accounting techniques are time based, usage based, and
FSMs.

® The time-based technique divides the time into slots and the power draw during a slot
is mapped to the active entities at that time.

® The usage-based technique keeps track of each system component usage and applies
a power model to obtain per-component power estimates.

e FSMs, on the other hand, build a more detailed view of how the system is used by
tracking, for example, system calls.

The usage-based models are typically created with linear regression techniques. The
regression-based models can be created in the lab with high-accuracy measurements of
microbenchmarks or they can be built as online on-devices based on measurements
based on the smart battery interface. Figure 4.1 gives an overview of the informa-
tion provided by the smart battery interface. Typically, the on-device profilers use the
SOC/SOD and voltage and current information provided by the battery interface. The
current reading is typically preferred; however, it is not available on most smart battery
interfaces. SOC/SOD can be used to construct an on-device power model; however, this
reading is typically inaccurate and it has a long model generation time due to the slow
update rate. The voltage reading can be used to infer current; however, either a discharge
curve is needed or the instant voltage dynamics need to be used.

Survey of energy profilers

Various energy profilers have been proposed to address the problem of accurate power
modeling and estimation. Table 10.1 lists well-known profilers in chronological order.
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Table 10.1. A list of energy profilers

Name/Authors Year Purpose

PowerScope 1999 Energy profiling of device and processes

Joule Watcher 2000 Fine-grained thread-level profiling

Nokia Energy Profiler 2006-2007 On-device standalone profiler

Shye et al. 2009 Energy profiling of device and components with a
logger application

PowerTutor 2009 Hybrid profiler based on PowerBooter

PowerBooter 2009-2010 Short-term power model for components

BattOr 2011 Portable power monitor

Sesame 2011 Self-constructive on-device power model for

device and components

PowerProf 2011 Self-constructive API-level power profiler

MobiBug 2011 Automatic diagnosis of application crashes

Carat 2012-2013 Application energy profiling and debugging

eProf 2012 Fine-grained power model for device,
components and applications

DevScope 2012 Self-constructive power model for device and
components

AppScope 2012 Fine-grained energy profiler for applications
based on DevScope

eDoctor 2012 Automatic diagnosis of battery drain problems

V-Edge 2013 Self-constructive power model for device and
components

In addition to energy profilers, various power consumption observations and studies
have been made [1].

The PowerScope is an early example of an offline profiler that can correlate power
draw with processes [2]. Joule Watcher is another example of a profiler that has an
offline calibration phase. Joule Watcher can provide fine-grained thread-level profil-
ing [3]. The Nokia Energy Profiler (NEP) is an early example of a fully online profiler
that uses the Symbian Series 60 device battery API to determine the power draw [4].
The NEP application is instrumented by Nokia to minimize measurement errors. NEP
has been designed as a tool for software developers who want to create energy-efficient
mobile applications.

Shye et al. presented a profiler based on a logger application and offline instrumenta-
tion [5]. PowerBooter is a short-term model for components and PowerTutor is a profiler
based on PowerBooter [6]. PowerBooter was the first profiler to use an automatic power
model creation by using on-device voltage sensors and battery discharge curves. Sesame
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[7], DevScope [8], and V-Edge [9] are online self-constructive profilers that aim to auto-
matically build and update smartphone and component power models. AppScope [10]
is a kernel-based energy profiler for Android that is based on DevScope. PowerProf [11]
is an unsupervised API-level energy profiler that uses genetic algorithms.

The battOr profiler is an example of a hardware device for portable power measure-
ment [12]. BattOr is attached to a smartphone and it uses the phone’s battery or a USB
for power. The measurement is accomplished by attaching the battOr profiler to the
phone’s power connections with the battery inside the phone.

MobiBug [13], Eprof [14], and Carat [15] aim to diagnose mobile applications for
energy anomalies. Of these Eprof is an example of an offline profiler that generates a
FSM model.

An energy profiler can work on multiple levels of abstraction that include device,
component, process, and application levels. For example, PowerBooter provides a short-
term model for components and PowerTutor uses the model in combination with usage
statistics to generate application-specific energy consumption reports and address the
questions of how applications use hardware components. In a similar manner, DevS-
cope generates device- and component-level models and AppScope builds on these to
estimate application energy consumption.

The online energy profilers typically employ linear models that are less accurate in
modeling the energy consumption of the communications subsystem than FSM-based
models. Linear models do not capture state changes in hardware components that are
necessary for fine-grained energy estimation of tail states and asynchronous system
behavior.

The existing energy profilers focus mainly on single CPU systems and they do not
model multiple cores, co-processors, or GPUs. As multicore systems have become more
popular they are now being introduced into energy profilers as well as GPUs. On-device
energy profilers do not typically model the cellular network state in detail. The RILAn-
alyzer application is an on-device tool for monitoring the RRC states of the 3G modem
subsystem on specific Android phones with the Intel/Infineon XGold chipset [16].

In addition to the above examples, the Android operating system has a built-in energy
profiler, BatteryStats, that shows statistics about battery use on the device. This can
be accessed from the battery option in the settings on most devices. BatteryStats is
examined in the next section in more detail.

Android battery management framework: battery statistics

The Android OS provides built-in energy models and a runtime statistics service called
BatteryStats for estimating component-level power usage. In this section, we examine
this service in more detail and report best practices from the Android forum [17] for
smartphone energy-consumption measurement.

The framework performs basic registering of usage statistics with the BatteryStats
service, mainly by tracking the usage of components, such as the CPU, display, cellular
wireless, Wi-Fi device, and GPS. All state changes in devices such as on/off, idle/full
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speed, and bright/dim are reported to the registering service. The usage data is col-
lected with timestamps and stored so that it can persist in the case of reboots. The
BatteryStats service does not monitor the physical power draw of the components, but
rather it records the timing that is then used to estimate the approximate power con-
sumption of the device. This estimation is based on the average power consumption of
the components that is given by component-specific profiles [17].

Furthermore, the system makes the effort to attribute the power consumption back
to the level of applications. If several applications share the use of one resource, and
thus the total cost of its energy consumption, BatteryStats makes the additional effort to
allocate the cost between the participating applications. A wake lock for a component
can be set by several applications and every instance of the lock is enough to prevent
the device from shifting to the suspended state. Then every application that has set a
partial lock shares the cost in power consumption of keeping the device active. Timing
of partial locks during their lifetime determines the exact partial costs.

BatteryStats stores the statistics for half an hour and thus prevents losing vital infor-
mation in a crash situation (which could be caused by battery problems). BatteryStats
gets the information from devices in two different ways, both implemented in the
framework:

1. The push method is used when services push all relevant state changes inside their
component space to the BatteryStats service.

2. The pull method creates a snapshot of the CPU and other components used by appli-
cations. Typically this is done periodically or at critical points such as at the starting
or stopping of an activity.

BatteryStats can be used by an energy profiler to obtain usage statistics data. For
example, it is used by PowerTutor. Usage statistics can also be obtained from the
Linux procfs/sysfs or performance counters. AppScope analyzes system call traces and
Android IPC to accurately estimate how applications use device hardware components
[10].

Power profile values

To be able to calculate the divided power costs over time, BatteryStats needs to have
a power profile. This is the table where the current consumption of components in a
device are stored and where the manufacturer must provide power consumption values
for different activity states. The power consumption in the power profile is measured
in milliamps (mA) of drawn current (nominal voltage). Fractional values can be used
to denote microamps. The given value of electric current means milliamperes drawn
directly from the battery [17].

The display is a typical example of a component in the power profile table. For the
display, the target is to approximate how much power it will take to keep the display on
for given time. For this the framework gathers two pieces of data: 1. brightness levels,
and 2. times spent at each level.
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In the power profile, BatteryStats can see the quantity of current in milliamps needed
to set the display at minimum brightness or maximum brightness and keep it there.
From the incoming data, BatteryStats obtains the time spent in each feasible brightness
level and it can then approximate the battery drain by interpolating the actual brightness
levels from the minimum/maximum values and then using simple multiplication and
addition.

The CPU is another example component in the power profile table. The CPU power
profile includes data for the CPU power drain in milliamperes for various clock speeds.
An application’s CPU time as a foreground process and as a background process can
be then multiplied by the power value (needed to have the CPU operate at the speeds
required by the application’s executable code) to find the battery drainage for the
application.

In general the measure for the power consumption of a component can be calculated
after estimating two separate values:

1. The power used by the component when it is in the targeted state (whether on, active,
or scanning).
2. The power (current) used by the component when it is switched off.

The comparative value for power consumption is then obtained by subtracting the
idle power usage from the usage in the target (active) state.

Measurement of the current

In a typical measurement of, for example, the power value for screen on, the device
should be kept at the following [17]:

e gstable state,

e CPU speed constant,

e airplane mode,

e a partial WakeLock set for blocking the system suspend.

This facilitates the measurement of stable current values. A measurement is taken
of the screen current off value. Then the screen is turned to minimum brightness. The
increase measured is the screen on power value.

The system’s suspend state itself is sometimes a target for power usage measure-
ments. Outside this it is a nuisance because when triggered it causes auxiliary variability
in the power consumption when it moves the system into C-states or P-states. Then it
must be avoided/prevented and this is accomplished by setting partial WakeLocks from
a development host. But sometimes we want to measure the power needed to enter the
suspend state in an Android system and then we must induce the suspension knowingly.

The complication with some components, such as cellular wireless or Wi-Fi, is that
their current usage waveform is not flat. Then we have to resort to measuring the average
current usage over some given time. This requires the monitoring system to be able to
compute average consumption.
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Measurement details

The Android power profile assumes that all CPUs share the set of available speeds
and other powering characteristics. The list of the available CPU speeds for the device
should be specified in the cpu.speeds entry of the power profile. Also in Android, the
framework can be stopped with sdb shell stop. This reduces the scheduling and helps to
keep the background power consumption static [17].

The number of online cores in the system often considerably affects the device’s
power consumption; to control the situation it might be necessary to make modifications
to the cpufreq driver. A satisfactory solution is to employ the userspace cpufreq governor
while using sysfs interfaces for speed settings. The specific cpufreq implementation of
the device is likely to set different requirements for the exact command structure.

Networking measurements need a network with a planned and known traffic density.
Then we can be sure that no unrealistic loads are weighing on the measurement values
of power consumption and that we get an approximation of average Wi-Fi usage. Note
that network traffic can be simulated in a controlled way using iperf.

There are two values in the system that can be useful for Wi-Fi measurements:

1. wifi.on gives a value for the power consumption of Wi-Fi, when it is enabled but not
actively participating in traffic.

2. wifi.scan gives the value for power consumed during a Wi-Fi AP scan. An appli-
cation can start a scan of this kind using the WifiManager class startScan()
APL

In the following we compare and examine the power profiles in more detail. Our
categorization of profilers is based on their mode of operation, online or offline, and
energy diagnosis capability.

Offline energy profiling in a laboratory

In this section, we examine offline energy profilers. An offline energy profiler requires
an external infrastructure, such as an external power monitor tool. Our key examples in
this category are PowerScope, Joule Watcher, the system by Shye et al., and the Eprof
profiler. We briefly examine each of the systems and then present a comparison of their
features.

PowerScope

PowerScope is an example of an early energy profiler that mapped energy consumption
to program structure [2]. The approach involves combining hardware measurement and
statistical sampling of system activity through kernel software support. The technique
is an example of offline energy profiling, in which the instrumented system is measured
by an external tool, and then later the data is post-processed and analyzed.
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The PowerScope energy analyzer generates activity-based profiles by integrating the
product of the instantaneous current and voltage over time. The value is approximated
by sampling the voltage, V;, and current, I, at regular intervals of length, Az. In the
implementation, this is simplified by assuming a constant voltage for the samples. The
energy over n samples using voltage measurement, V,,, is given by

E~ vaI,At. (10.1)
=0

This technique requires that the current is sampled at intervals of At and that the voltage
can be determined at a suitable level to keep the end result accurate. The energy use of
applications is estimated by measuring the time that the device spends in each state and
then determining the energy spent during that period.

PowerScope uses both online and offline techniques to profile applications. The
online part is realized by the profiler running on the target device connected to the
external power monitor. The data given by the profiler and the power monitor are then
combined at a server to obtain a process-specific energy profile. The profiler samples
the program counter and process identifier of code execution. The output of the online
profiling stage is a sequence of current samples and a correlated sequence of program
counter and process identifier samples. These are then combined in the offline stage
with symbol table information obtained from binaries. An example energy profile cre-
ated with this process would give the CPU time, total energy, and average power for
processes and procedures. The scalability of this approach is limited, because it requires
that the offline stage is done for each hardware configuration and device.

The Odyssey OS mentioned in Section 8.6 uses PowerScope to understand process
energy consumption [18]. This system modifies the system behavior to meet energy
objectives by choosing the most suitable fidelity for data transmission and processing.

Joule Watcher

Joule Watcher is an energy profiler that offers fine-grained thread-level profiling of
the device [3]. The profiler is based on counters in hardware drivers to register events
that indicate subsystem-level energy consumption. This system can measure the energy
consumption for a single fine-grained event, such as a disk access or a floating point
operation. The Linux kernel context switch routines and data structures were modified
to store performance monitoring event counter values. The energy consumption is deter-
mined with an external power monitor device and the regression-based power model is
built based on microbenchmarks. The power model can then be used in an online man-
ner once the power model has been created; however, this approach is limited, because
the power model needs to be trained for each device type and configuration in the lab.

An energy-aware scheduling system was proposed in conjunction with the Joule
Watcher profiler. The scheduler in this system evaluates the energy usage of each
thread and then throttles the system to meet the desired energy target. The throttling
is implemented by a dedicated throttling thread.
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Linear regression with a logging application

Shye et al. developed a technique for the energy profiling of devices and components
based on data gathered by a logger application [5]. The key idea is to gather smartphone
usage information and performance statistics with a userspace Logger application on
Android. The gathered data is then uploaded to a server by the logger. The data is used
to analyze usage patterns and for building a power-estimation model. The power esti-
mation is based on linear regression and the scheme is instrumented with offline power
measurements with a multimeter. Linear regression is used to fit a power-consumption
variable to a set of independent parameters, the statistics collected by the logger. The
aim is to find the relationships between the statistics that the logger has collected and
smartphone power consumption. The main limitation of the system is that it requires
the offline device-specific calibration phase.

Assuming that we have n hardware components and m samples, then in each sam-
ple, i, we have n measurements f; ;. Given the n components and m samples, we can
construct the measurement matrix X.

More formally the model takes the form,

P=kxe+ Xc, (10.2)

where P is the total system power, & is a constant offset of power not attributable to any
available measurement, e = (1...1)7, X is the measurement matrix, ¢ = (co, ¢i, ..., Cn)
for n measurements is the regression coefficient vector.

Given a single measurement, the power, p; ;, contributed by a hardware component
with coefficient, ¢;, is given by p; ; = B;; X ¢;. Given that k and ¢ have been determined,
this equation can be used to determine the power due to each hardware component.
Similarly, Eq. (10.2) gives the power consumed by the whole system with any sample
of measurements.

This work approximated the values of k and ¢ with offline system measurements,
X, with the measured power consumption of P. Different workloads are used to gen-
erate logs for the creation of the model. The training logs relate to specific hardware
components of the smartphone. The generated model is then validated with use-
case-specific workloads that are minutes long and combine various smartphone func-
tions. The reported resulting median relative error rate is less than 0.1%.

Fine-grained profiling with Eprof

The Eprof [14] system answers the question where is the energy spent inside applica-
tions. The system is a fine-grained energy profiler that uses OS-level instrumentation to
determine where energy is spent and identify power states and power-state transitions.
The system uses an offline process to construct an FSM-based model for a smartphone.
The FSM can capture power-state transition details, such as the the tail effect observed
with wireless communications. The FSM can also correlate energy draw with source
code. The system was used to find a family of energy bugs in applications [14]. The
Eprof profiler is investigated in more detail in Section 9.4.
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Table 10.2. Example power model based on regression

Component Parameter Description Range (B;;) Coefficient (c;)
CPU High Average CPU usage at 0-100 3.97 mW/%
384 MHz
Medium Average CPU usage at 0-100 2.79 mW/%
246 MHz
Screen Screen on Fraction of time screenison  0-1 150.31 mW
Brightness Screen brightness 0-255 2.07 mW/step
Call Ringing Fraction of time phone is — 761.70 mW
ringing
Off Hook Fraction of time interval 0-1 389.97 mW
during a call
EDGE Has traffic Fraction of intervals with 0-1 522.67 mW
EDGE traffic
Traffic amount ~ Number of bytes over EDGE >0 3.47 mW/byte
Wi-Fi On Fraction of time with Wi-Fi ~ 0-1 1.77 mW
Has traffic Fraction of time with Wi-Fi 0-1 658.93 mW
traffic
Traffic amount ~ Number of bytes over Wi-Fi >0 0.518 mW/byte
SD Card Traffic Number of sectors >0 0.0324 mW/sector
transferred
DSP Music on Fraction of time with music ~ 0-1 275.65 mW
playback
System System on Fraction of time not idle 0-1 169.08 mW
Summary

Table 10.3 presents a comparison of the three offline energy profilers presented above.
PowerScope is the oldest of these and requires kernel access for the instrumentation as
well as the power-measurement phase. A server is used to generate the power model
based on the observed software traces and the power measurements. Joule Watcher also
relies on a server and an external multimeter. The system by Shye et al. does not require
kernel or low-level access, but instead uses a userspace logger application for monitor-
ing the device and a multimeter for the power measurements. An external server is also
needed in this case.

The Eprof system follows a similar strategy, it instruments the kernel to obtain fine-
grained information regarding system calls. This information is then correlated with the
external power measurement. All three can profile the energy consumption of system
components and threads. The Eprof system also provides more fine-grained analysis of
energy consumption.

In a comparison of the three frequently used energy accounting techniques—usage
based (such as PowerTutor), time based (such as Powerscope), and system-call based
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(Eprof) the—usage-based energy accounting was observed to have errors in the range
3-50%, the time based between 15 and 80%, and Eprof below 6% [3]. The Eprof
profiler is more accurate, because it operates on the level of system calls which is
more fine-grained than thread or process level. Usage-based profiling has been shown
to demonstrate larger errors when working at finer granularities, because they do not
capture power state level details and asynchronous power behavior [19, 3].

Online on-device energy profilers with offline support

In this section, we examine online on-device energy profilers that rely on an offline
calibration and measurement phase. Profilers in this category are different from the
pure offline category, because the profiler is mainly expected to operate on the device in
an online manner. In the following, we briefly examine PowerBooter, PowerTutor, and
battOr. At the end of the section, we summarize the key similarities and differences of
the systems.

PowerBooter

PowerBooter is an automated power model creation technique that uses on-device volt-
age sensors and battery discharge curves based on the Rint model to estimate power
consumption [6]." The power consumption is then correlated with individual compo-
nents using regression. The system does not require external measurement equipment;
however, a smartphone-specific discharge curve is needed. The new idea of Power-
Booter was to use battery-state-based power-model generation. This involves keeping
smartphone components in specific power states so that their power consumption can
be determined through the change in battery SOD using a voltage sensor. This change
can be used to estimate the average power draw. When the component-specific average
power draw is known, it is possible to derive the power model using regression.

Figure 10.1 illustrates the key phases of PowerBooter. In the first step, the battery
discharge curve is constructed for the phone. The discharge curve varies from phone to
phone due to differences in battery type, age, temperature, and operating parameters.
The discharge curve can be obtained online and on-device by observing the constant
discharge behavior from a fully charged state. In the second step, the power consump-
tion is determined for each component state. The state of a component is varied while
keeping the rest of the system in a static configuration. The battery voltage is recorded at
the beginning and end of a discharge interval. The voltage is measured for 1 minute and
the battery is discharged for 15 minutes between the component voltage measurements.
In the third step, regression is used to create the power model. The battery voltage dif-
ferences for each discharge interval is used to determine the average power draw of the

! 'We have included PowerBooter in this category with the assumption that the discharge curve is given. With
automatic on-device discharge curve determination, this technique is in the online on-device category.
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15-minute intervals. Regression is then used to create the power model based on the
component average power draw estimates.

Table 10.4 presents an example PowerBooter power model for the HTC Dream smart-
phone [6]. The model includes categories for CPU, Wi-Fi, cellular network, audio, LCD,
and GPS. Some of the categories have multiple variables for accurately modeling the
subsystem, such as the CPU, Wi-Fi, and the cellular module. Equation 10.3 gives the
power model describing the overall power consumption based on the power draw of the
components.

(Bun X freqn + Bu X freq;) X util + Bepy x CPU _on
~+ Bpr X brightness + Bcon X GPS_on 4+ Beg x GPS_sl

+ Bwi—ria X Wi — Fi+ Bwi—rin X Wi — Fip+ (10.3)
+ Bac.idgie % 3Gigie + B3c_racu X 3Gmacu+
~+ B3c.ocu +3Gpch.

PowerTutor

The PowerTutor? application is based on PowerBooter power models. This Android
application shows energy use in a similar way to Android’s built-in profiler, but with

2 http://powertutor.org accessed January 7, 2014.
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Table 10.4. PowerBooter power model for HTC Dream smartphone

Category System variable  Range Power coefficient
CPU util 1-100 By, :4.34
Bu = 3.42
freq and freqy 0,1 -
CPU_on 0,1 Bepu - 121.46
Wi-Fi npackets, Ry 0— —
Rchannel 1-54 ﬁcr(Rchannel) =48-0.769 x Rchannel
Wi-Fil 0,1 ﬁWifFi_l 120
Wi‘Fih 071 ﬁWi—Fi_h 1710 + ,Bcr(Rchannel) X Rdala
Cellular data_rate 0-— -

downlink_queue  0- 3
uplink_queue 0- —

3Gidte 0,1 Bag.ae : 10
3GgacH 0,1 B3crach : 401
3Gpcn 0,1 Bscocn = 570
Audio Audio_on 0,1 Baudio : 384.62
LCD brightness 0-255 Py :2.40
GPS GPS_on 0,1 Bcon : 429.55
GPS sl 0,1 Bast 2 173.55

breakdowns per resource, such as CPU, Wi-Fi, and the screen, and per category, such
as how different applications have consumed energy or how different components of
the phone have been draining the battery. The PowerTutor application and chart views
are shown in Figure 10.2. Like the Nokia Energy Profiler, PowerTutor relies on power
profiles that have been created for a handful of devices. On other devices, measurements
will be less accurate.

PowerTutor uses the procfs and the Android BatteryStat service to obtain infor-
mation about usage statistics. PowerTutor does not consider the effects of running
multiple applications simultaneously but rather estimates the energy consumption for
each application separately. This approach simplifies the estimation and mitigates the
challenge of dividing the power consumption of hardware components to multiple
applications.

BattOr

The BattOr profiler is an interesting example of a hardware-based profiler that is
attached to the smartphone battery or a USB for power [12]. This profiler can give a
reliable power estimate of the smartphone. The main advantage of BattOr is mobility —
it can be carried with the smartphone. The measurements are stored on a SD mem-
ory card while the the device is mobile and they cannot be used at runtime. When the
device is stationary it is possible to stream the power measurements. BattOr requires
copper tape wiring to the phone that typically requires instrumentation in a laboratory.
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Summary

Table 10.5 presents a summary of the profilers examined in this section. The purpose
of the profilers varies from fine-grained thread-level profiling to portable power mon-
itoring with BattOr. PowerBooter relies on an offline phase for calibrating the battery
model that determines the discharge curve. The discharge curve is then used online to
determine the energy consumption given the voltage readings. It should be noted that
PowerBooter also has a fully automatic on-device process for determining the discharge
curve.

Kernel- and low-level access are typically required for component-level operations;
however, it is also possible to implement the profilers in the userspace. For example, the
PowerTutor application based on PowerBooter model runs in the userspace and accesses
the Android OS features for the statistics.

Online on-device energy profilers

In this section, we survey online on-device energy profilers that do not need exter-
nal power measurement or offline calibration. We briefly examine the Nokia Energy
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Profiler, PowerProf, Sesame, DevScope, AppScope, and V-Edge. At the end of the
section, we examine the similarities and differences of the profilers.

Nokia Energy Profiler

The Nokia Energy Profiler (NEP) is a stand-alone measurement application for the
Symbian OS that can simultaneously monitor multiple parameters, such as uplink and
downlink rates, WLAN and cellular signal strengths, and CPU usage [4]. The NEP tool
is a software-based energy-consumption profiler that is run on the mobile device being
profiled. Power-consumption measurements are implemented by observing the battery
voltage and current drain values. Battery current values are truly average values, because
the hardware integrates current consumption in the analog domain over the entire mea-
surement period. An important characteristic for any kind of instrumentation is that it
should introduce minimal disturbance to the actual measurements. This characteristic
must apply particularly for an energy-profiling application. In other words, NEP’s pro-
cessing and sleep periods have to be heavily optimized for low-power operation. This is
important because any kind of processing increases the total energy consumption.

Early consumer tools for energy awareness on smartphones include the NEP [20]
shown in Figure 10.3. This tool is used manually, and once activated it records a trace
of power usage. The user performed some activities with the device, and then returned
to the NEP. The application showed the amount of energy that had been used, in watts,
as a graph over time. The tool also recorded the Wi-Fi and mobile network activity,
battery voltage and current, and screen use. NEP ran on Symbian devices and relied on
device profiles built by the device manufacturer.

PowerProf

PowerProf [11] is an example of an unsupervised API-level energy profiler that uses
genetic algorithms. The basic premise is similar to PowerBooter; however, now genetic
algorithms are used to generate the model. PowerProf allows API-level tracking of the
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energy consumption. The genetic algorithms operate on the on-device measurements
and estimate a power model. The power model has one conditional function for each
phone feature. A conditional function models the feature’s power consumption through
four different power states defined by time parameters. PowerProf uses the NEP to
obtain battery information. The main focus of the work is to predict power consumption.

Sesame

Sesame is another example of an online energy profiler that automatically generates
the power model [7]. This proposal uses the smart battery interface and a number of
techniques to increase the accuracy and rate of the battery interface. They observed
that the smart battery interfaces are limited in terms of the update rate (4 Hz being
the highest observed), the error of the instant battery interface reading is high, and
that the instantaneous errors can be mitigated by averaging the readings thus reduc-
ing the rate. Sesame aims to realize adaptive models that statistically find the best
predictors. It uses a variant of linear regression, the total-least-squares method, to min-
imize the impact of predictor errors. Sesame also uses model molding to improve the
accuracy and rate by first building accurate but low-rate models, and then compressing
these to obtain high-rate models. A technique called predictor transformation is used
to improve the accuracy of a molded model by applying principal component analysis
(PCA).

Model molding consists of two phases that improve the accuracy and rate. The first
phase, called stretching, creates an accurate energy model at a much lower rate than
needed. This phase is especially useful if the smart battery interface does not give
reliable readings. This technique is inspired by the observation that the smart battery
interface has a slow update rate and that a more accurate estimate can be achieved by
averaging over several readings. For example, if the target rate is 100 Hz, Sesame first
constructs an accurate model at 0.01 Hz. The accurate low-rate model is simply con-
structed by averaging the energy consumption readings over an interval. The second step
compresses the low-rate model to derive a high-rate model. The compression is achieved
by applying the linear regression coefficients in calculating the energy consumption for
the desired time interval.

The key finding of Sesame is that the accuracy of the smart battery readings can
be improved with the proposed techniques. For example, an accuracy of 86% at 1 Hz
and 82% at 100 Hz are reported using the Nokia N90O smart battery interface with an
accuracy of 55% at 0.1 Hz. The accuracy is lower at a higher rate. This reduction in
accuracy is due to the overhead of data collection, the non-linearity of power behavior
and the relation of power consumption and system statistics, and invisible components
that are not included in the model.

DevScope

DevScope [8] is an example of a energy profiler that uses the smart battery interface
to generate an on-device dynamic linear regression-based power model. The DevScope
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authors observed that the smart battery interface has a low update rate. They proposed
a synchronization technique between the update rate and component-specific control.
The profiler works by probing the OS to obtain information about the components and
the configuration, such as the CPU details. The profiler also examines the smart battery
interface and determines the update rate of the battery interface. Similar to PowerBooter
and Sesame, the profiler then creates a component control scenario for power analysis
for the specific smartphone. The control scenario is then run and DevScope first clas-
sifies the data to the terms of the power model and then analyzes the classified data
to update the power coefficients of the regression model. For example, each CPU fre-
quency is tested with zero and maximum use to derive the information needed for the
CPU model.

To alleviate the slow update rate of the smart battery interface, DevScope synchro-
nizes the smart battery update events with the component tests. This contrasts with
Sesame’s solution of averaging battery readings for higher accuracy readings at a slower
rate. DevScope also tries to recognize power-state transitions; however, this requires
knowledge of the power-state durations and the battery update interval. Automatic
detection of power-state transitions is difficult, because the state transitions are governed
by the workload and the operating conditions. During component testing, DevScope
uses different workload sizes repeatedly to determine the threshold size that results in
a power-state change. This technique is applied for cellular and Wi-Fi connections to
determine the wireless network parameters and power state details.

AppScope

AppScope is an application energy-profiler framework for Android that uses the DevS-
cope hardware power models and usage statistics for each hardware component [10].
The usage statistics are based on kernel-level monitoring of activities for hardware
component requests. The AppScope framework has three key phases. The first phase
is about detecting process requests that involve hardware access. The second phase is
about analysis of usage statistics. The third phase involves a linear model-based appli-
cation estimation by summing up the energy consumption of each hardware component
used by an application.

The hardware component usage analyzer is responsible for collecting the component-
specific usage data that is needed to apply the power model. The analyzer uses
hardware-component to specific methods to collect the data, for example the Linux
Governor interface is used to obtain the CPU usage and frequency and the network
interface provides the Wi-Fi and cellular data. The Android IPC messaging is analyzed
for LCD display and GPS statistics.

The AppScope is reported to have an error rate below 7.5% during a 100-second
experiment of typical smartphone applications that do not use the GPU. The GPU-based
application, the Angry Birds game, in the experiment resulted in a 14.7% error due to
the fact that the GPU is not explicitly modeled by AppScope.

Experimental validation of the accuracy of AppScope reported that all applications,
with the exception of Angry Birds, showed an error rate below 7.5%.
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V-Edge

V-Edge [9] uses the battery voltage dynamics based on the Thevenin model to generate
a power model. The system is similar to PowerBooter, Sesame, and DevScope in that
it aims to generate the model without external measurement. V-Edge does not require
current information and it estimates power consumption based on the instantaneous
voltage that is calibrated once with SOD metering. This model avoids the slowness of
fully SOD-based approaches. The actual model is constructed in a similar manner to
PowerBooter by running carefully designed tests to determine the power consumption
of system components.

V-Edge determines the battery interface update interval in a similar manner to DevS-
cope. The smartphone is first placed into idle mode that is longer than the battery update
interval. The CPU usage is then increased, after which the voltage values are sampled
at 1 Hz. When the voltage drop due to the increased CPU use is detected at time 1,
the CPU is placed into idle mode again. When the new voltage change is detected the
sampling is stopped at time 2. The update interval is the difference, 2 — t1. When
this interval is known, the detection of the instantaneous current, the V-Edge, can be
bounded to two seconds. This then facilitates accurate current measurement based on
V-Edges. The OCV-based V-Edge technique is discussed in more detail in Chapter 3.

Summary

Table 10.6 presents a summary of the above online profilers. The NEP relies on low-
level access to the battery interface on Nokia devices. The tool has an internal model
calibrated by Nokia engineers. Thus this application is not truly online as it has certain
features that have been calibrated. Nevertheless, we have included it in this category,
because the developer does not have to have an external power-monitoring device to use
the tool. PowerProf is an API-level energy profiler that relies on the NEP API. Sesame,
DevScope, AppScope, and V-Edge are examples of truly online profilers that probe the
device and its battery interface to determine the operating conditions and to create test
cases for creating the power model on the fly. AppScope estimates the energy consump-
tion of applications and processes based on DevScope models in a similar manner to
PowerTutor without requiring device type specific offline calibration.

Energy diagnosis engines

In this section, we survey energy diagnosis engines that aim to find and analyze energy-
consumption anomalies.

MobiBug

The MobiBug [13] system advocates the use of failure reporting for mobile devices. The
idea is to gather the failure reports and statistics to a server and then diagnose mobile
applications. The analysis builds on three fundamental changes for failure reporting:
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Figure 10.4

10.7.2
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Overview of the MobiBug system

e spatial spreading that spreads monitoring load across devices,

e statistical inference that is used to model the application behavior and its dependen-
cies, and

e adaptive sampling that instruments the data collection across phones so that the
system learns about the failures.

Figure 10.4 depicts the MobiBug system. The purpose of the system is to provide
clues and automatic insight into the nature of software failures for developers. This is
achieved with the spatially spread monitoring of features enabled on the devices using
the system, and concentrating on software failures not seen before.

MobiBug’s spatial spreading of monitoring enables data to be gathered from diverse
environments with smaller total bandwidth costs. Each time a failure report is obtained,
it is compared against known failures. The more common a failure is, the more infor-
mation is gathered about it, and the more complete the view of its environment of
occurrence will be. When a failure is thoroughly explored, the system will stop instru-
mentation related to it, and concentrate on more rare failures. This will help developers
quickly gather a complete picture of the failure without incurring data costs for all users.

To the best of our knowledge, the MobiBug system was not deployed and is not
accessible to the public at the time of writing.

eDoctor

The eDoctor system is a recent example of a tool that helps regular users solve prob-
lems with abnormal battery drain. eDoctor runs on smartphone xxx and examines
application-execution phases to capture the runtime behavior of an application and then
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identifies abnormal execution phases that correlate with high energy draw. Based on this
analysis, the system can then recommend repair solutions to the end users [21].

Execution phases are identified by eDoctor based on active resources used by the
application, such as the GPS, network connectivity, or CPU use. The k-means clustering
algorithm was used to find phases within the execution intervals of applications. When
an application starts to exhibit previously unseen phases, or phases of abnormal length,
this is investigated as a potential problem. Together with configuration changes and
other information for an application, eDoctor can detect applications with abnormal
energy drain and identify a possible root cause.

The eDoctor data collector gathers data between recharges of the phone battery. All
analysis is done locally, the application does not send data out from the smartphone.
Therefore the application cannot detect energy issues caused by the local platform, or
those already present on the device when eDoctor is first used.

When eDoctor detects issues, it recommends installing a previous version of the
application, if the behavior manifested after an upgrade. It suggests reverting the appli-
cation’s configuration, if better performance was obtained with previous values, and if
the user wishes to use the problematic application, it recommends keeping it closed
between uses.

The eDoctor system was developed as an Android application, but it is not publicly
available at the time of writing.

Carat

To the best of our knowledge, Carat [15] is the first collaborative approach to mobile
battery awareness. The application can provide information about possible energy prob-
lems with a very low energy cost and minimal user attention. On a single device, it is not
possible to diagnose abnormal energy use. High energy use could be normal, specific
to a device, or a single user. Information from multiple devices is needed to identify
incorrect energy behavior of an application. By tapping into its community of devices,
Carat can identify applications that are globally high energy consumers or anomalous
energy users on particular devices.

In the Carat approach, data from the community of smartphones was combined to
find the average energy consumption of applications. Then, if the application exhibits
higher energy consumption on a subset of the smartphones, the distribution of energy-
consumption measurements on the subset and other smartphones is compared. If the
95% confidence error bars of the two distributions do not overlap, the application is
marked as a bug in the subset of smartphones. Bugs are further diagnosed with condi-
tions like Wi-Fi enabled or disabled, device moving or stationary, and which OS version
is used.

Carat has been implemented as an application on both the iOS and Android platforms.
It is available as a free download from Apple’s App Store and Google’s Play Store. The
application is opensource.® The client application sends intermittent, coarse-grained

3 http://carat.cs.berkeley.edu accessed January 6, 2014.
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Figure 10.5
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Actions

The Carat application advises users on how to improve battery life on iOS and Android

measurements to a server. The server correlates the running applications, device model,
and operating system with energy use. The system generates actions that the user could
take to improve the battery life, shown in Figure 10.5. The actions take the form of
suggestions to stop or restart applications, or to change the OS version. The amount
of improvement, error, and confidence of the suggestions given by Carat is calculated
and presented to the user along with the actions. Carat has been installed on more than
600,000 devices.

How Carat distinguishes energy bugs

For each application, a, Carat calculates the average battery drain, e,, across the entire
community, and the average battery drain of the average application, essentially the
average battery drain of the whole userbase of Carat, E:

_ Duta

n

E (10.4)
Carat then marks applications that have ¢, > E as hogs, if the difference between
the distribution of the battery drain measurements for a and that for all applications is
significant. Significance is discussed in detail in Section 10.7.3.
Hogs are typically applications that drain the battery faster because of their nature;
examples of hogs include VoIP, internet radio, and streaming video applications. For the
set of applications that are not hogs, Carat splits up the battery drain for each device, u,
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into the drain observed on that device, e, and on other devices, ¢,—,. If e,, > e,—, and
the difference of the distributions is significant, Carat marks the pair (a, u) a bug.

Energy bugs may be caused by a code error that only triggers under certain conditions
(which our analysis tries to discover), configurations, or user behaviors. Distinguishing
between hogs and bugs requires a collaborative method.

Battery drain rate distributions

Carat obtains a sample of the battery level and a list of running applications from its

client devices. For consecutive pairs of such samples, Carat creates a battery drain rate

probability distribution, r. The expected value, v, of this distribution is the expected bat-

tery drain rate during the time period delimited by the two samples. Taking the expected

values of all the rates that satisfy a condition, ¢, for example “Facebook was running on
n

device u” we get a set of means, V. = v;.

These are extracted from a large nunllber of random i.i.d. variables that represent the
true drain at each moment in time on participating devices, which is approximately nor-
mally distributed as N (u, %), according to the central limit theorem (CLT). Although
the parameters 1 and o2 are not known, they can be estimated using the rates probabil-
ity distributions (71, ..., r,). The well-known maximum likelihood estimators for these
parameters—obtained by maximizing the log-likelihood function—are as follows [15]:

By the Lehmann—Scheffé theorem, [ is the uniformly minimum variance unbiased
. A o2
estimator for p: ft ~ N (i, %-). A
This agrees with the CLT method. The estimator 42, however, is biased, so Bessel’s
correction must be applied to obtain the uniformly minimum variance unbiased
estimator for the sample variance:

n J—
§* = 6% = > (=
i=1

n—1 n—14

By our normality assumption, we can construct the f-statistic, ¢ = (@t — wu)/(s/+/n),
which has the student’s ¢-distribution with n — 1 degrees of freedom. We can approxi-
mate the error bounds on this estimate of u using a standard formula, where % is chosen
according to the desired confidence level. (For 95% confidence error bounds, & = 1.96):

. hs hs R
nrE M—E,M‘i‘ﬁ =[te
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Figure 10.6
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Carat compares distributions of the expected values of battery drain to identify anomalies
(d' > 0) and quantify the error and confidence ranges for expected battery drain under different
conditions

Significance in battery drain distributions
Let ¢; be the conditions of the subject distribution (e.g., application A is running) and
¢ be the conditions of the reference distribution (e.g., application A is not running). We
aim to ascertain whether ¢ corresponds to significantly greater energy use than c;. For
this to be answered in the affirmative, we require the following:
N hs 1 N hs 2 o N 0

Ml—ﬁ—uz—ﬁ =1 — f2 — (€1 +€) > 0.
Otherwise, the data does not support the assertion with the desired confidence.
Graphically, this corresponds to a positive value of d' in Figure 10.6.

Carat suggests actions that would improve battery life along with the expected value
of that improvement for an average client (starting from full charge and fully draining
the battery). The improvement if the client was to change from c; (experiencing the
anomaly) to ¢, (not experiencing it) follows directly from the distance metric d = 1 —
1>. Within our confidence bounds, however, the value of d could be as much as

S1 $2
e=h (_ + _) |
N2t /12
The estimated improvement is therefore d £ e. The distributions are in terms of battery

drain, so to convert the improvement into battery life in hours, they need to be inverted:

100

b= —— . 10.5
' % 3600 (10.5)

The worst-case subject distribution battery life within the 95% confidence error
bounds is then

biw = 100 (10.6)
"l 4 €) x 3600 ‘
and the best-case reference distribution battery life is
100
by (10.7)

T (i —e2) x 3600°
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Then
imax =b2b_blw (108)

gives the maximum battery life improvement in hours of battery life. If the best-case
subject distribution battery life is compared instead against the reference worst case we
get the minimum improvement

Imin = b2w - blb- (109)

These give the 95% confidence bounds for the improvement that Carat can present to the
user. As Carat gathers more data, the error associated with these improvement numbers
decreases.

Diagnosing energy bugs with Eprof

The Eprof energy profiler examined with offline profilers is used to identify energy
bugs in mobile applications. Energy bugs are a new breed of system misbehaviors.
An energy bug manifests in an application that exhibits excessive energy consumption
due to a software bug or hardware problem. The Eprof system was developed for fine-
grained application energy consumption analysis and for pinpointing energy hotspots in
source code.

Figure 10.7 gives an overview of discovered energy bugs by their type [22]. The tax-
onomy divides energy bugs into unknown, software, external, and hardware categories.
The software category consists of OS- and applications-related bugs. The application
category includes three different bug types: no-sleep, loop, and immortality. The no-
sleep bug relates to applications that do not properly release a wake lock thus preventing
the device from sleeping. The loop bug relates to situations where a part of an applica-
tion unnecessarily repeats some activity. The immortality bug occurs when a buggy
application is stopped by the user and is then restarted with the same buggy behavior.

In addition to bugs, the findings include the observation that 65-75% of the
energy consumption of certain free applications is due to third-party advertisement
modules [14].

Summary

Several energy diagnosis engines have been proposed recently that are summarized in
Table 10.7. These systems aim to find harmful energy consumption problems and ways
to mitigate them. The MobiBug system is based on failure reporting and centralized
analysis of the failure reports to diagnose mobile applications. The eDoctor system
takes a different view and detects abnormal battery drain online on the devices. This
system aims to find abnormal execution phases that have a high energy draw and then
recommend solutions to end users. The Carat diagnosis engine, on the other hand, takes
a collaborative approach and uses data gathered from the community to detect energy
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Figure 10.7
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anomalies. Thus Carat can also identify energy problems with the hardware and mobile
platform across a wide range of devices.

Summary

In this chapter, we surveyed energy profilers that are software or hardware components
that monitor and characterize smartphone energy consumption. Our survey included
sixteen energy profilers each belonging to one of four categories: offline or online in
a laboratory setting, online and on-device with offline calibration, and fully online and
on-device categories. The categories are defined as follows:

¢ The offline or online in a laboratory setting involves the use of an external power
monitor device. Offline energy profiling typically supports fine-grained and accurate
characterization of the energy consumption of the target device.

® The online and on-device with offline calibration setting places the energy profiler on
the smartphone where the profiling relies on a power model that is typically created
in a laboratory setting.

e The fully online and on-device with self-calibration (self-constructive) setting runs
the profiler on the smartphone without any need for offline calibration or model
building.

® The energy diagnosis engines aim to identify harmful energy consumption anomalies
and then mitigate these with either on-device or server-based solutions.

An energy profiler can operate on different levels of abstraction that include
the device, component, and process levels. Component- and process-level operation
requires more information about the system state. The former requires the ability to
map energy consumption to hardware components and the latter builds on this and maps
processes to hardware components.
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Power profilers

Typically, power models generated in the laboratory are based on fixed use cases.
These can be inaccurate with new devices and applications. The online self-constructive
energy profilers aim to generate these on the fly and make them personalized so that the
power models adapt to the use cases for higher accuracy.

The online information that is used together with a profiler power model, typically
include SOC, voltage, and current from the smart battery interface as well as details
on how hardware components are used. The underlying battery model is typically the
OCYV Rint or Thevenin as discussed in Chapter 3; however, not all profilers have a
battery model that is used for the power estimation. For example, PowerBooter is based
on the Rint and V-edge on the Thevenin models.

The online energy profilers typically employ linear models that are less accurate in
modeling the energy consumption of the communications subsystem than FSM-based
models. Linear models do not capture the state changes in hardware components that
are necessary for fine-grained energy estimation of tail states and asynchronous system
behavior.

Online on-device self-constructive profilers do not require external measurement
or information to create, update, and use power models. PowerBooter with the auto-
matic discharge curve determination, Sesame, DevScope, AppScope, and V-Edge are
examples of profilers in this category that probe the device and its battery interface to
determine the operating conditions and to create test cases for creating the power model
on the fly.

Several energy diagnosis engines have been proposed recently. These systems aim to
find harmful energy consumption problems and ways to mitigate them. The MobiBug
system is based on failure reporting and centralized analysis of the failure reports
to diagnose mobile applications. eDoctor runs on smartphones and identifies abnor-
mal execution phases that correlate with high energy draw. Based on this analysis the
system then recommends repair actions to users. Carat is a collaborative energy diag-
nosis engine that relies on crowdsourcing the data gathering. Carat identifies energy
anomalies across devices and reports energy hogs and bugs to users as well as giving
recommendations on how to mitigate energy problems. Carat is collaborative and dis-
tributed whereas eDoctor is a standalone application running locally on a device. In
addition, the Eprof system was used to find a number of energy bugs and characterize
them.
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11.1

Overview

We have so far learned the principles of how smartphones and their different compo-
nents consume energy. We have also looked at the power-management mechanisms
that are employed with the hardware components. Examples of such mechanisms
include DVES to scale the CPU power draw with the workload, and the use of sleep
state and discontinuous reception to optimize the energy consumption due to wireless
communication.

In this part, we take a look at a set of mechanisms to reduce energy consumption that
are built on top of the existing power-management techniques. In this chapter, we first
describe the nature and necessity of these mechanisms on a high level after which we
briefly introduce the different classes of solutions.

Underlying power-management techniques alone are not enough

Although almost all the hardware contained in modern smartphones has certain kinds of
in-built power-management mechanism, usually the whole device still consumes more
energy than would strictly be necessary unless another layer of optimization mecha-
nisms is employed. That slightly counter-intuitive observation stems from three main
observations:

1. The hardware components are not perfectly power proportional to the offered load.

2. The energy utility of the different subsystems, especially of wireless communication,
is context dependent.

3. The underlying hardware power-management mechanisms are rarely optimal for the
applications being used.

We discussed power proportionality earlier in the book, particular in the case of
wireless communication. Indeed, if we measure energy efficiency as energy consumed
per bit of data transmitted or received, this metric is hardly ever constant for a given
wireless communication technology. Instead, it usually changes as a function of the
data transmission rates, for instance. There are also other contextual factors that influ-
ence the energy utility of data transmission, such as the time-dependent quality of the
communication channel.

The third observation deserves a little bit more explanation. The reason why hardware
power-management mechanisms are application agnostic is largely the desire to design
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mechanisms that work with all kinds of application. For wireless communication, there
is an additional reason. The power management of radios is tightly integrated with the
lowest layers of the protocol stack — the physical and medium access layers — because
these layers implement the different wireless communication technologies. In addition,
in a typical layered network architecture, such as the one we use today for internet com-
munication, each layer of the protocol stack is only concerned with those functionalities
that are its responsibility and is completely ignorant of the lower and upper layer pro-
tocols that it interfaces with. Cross-layer solutions are an exception, but they are in the
minority. This design decision leads to a nice separation of concerns and makes appli-
cation development easy. These two facts, power management being an integral part of
the lowest layers of the protocol stack, and strict separation of concerns between the
layers, together lead to the fact that the power-management mechanisms are usually
completely ignorant of the applications.

This because observation matters applications may have several ways to reach their
goals. These different ways may appear the same from the user’s perspective and at the
same time vastly different from the underlying hardware’s perspective. Let us take a
simple example: A smartphone application decides that it should synchronize its data
with a cloud service (e.g. email or backup). This synchronization is not time critical
and can be either performed immediately using the HSPA connectivity that is the only
kind of wireless connectivity available at the moment, or it can be deferred until a Wi-
Fi connection is available. The former approach uses a less energy-efficient way to
transmit and receive data, which is why deferring the synchronization until the more
energy efficient Wi-Fi can be used would save energy. The two wireless communication
technologies are ignorant of such application semantics and cannot alone optimize the
energy consumption in the above described way.

In Figure 11.1 we have redrawn the illustration of the overview of which factors con-
tribute to the energy consumption in a smartphone that we introduced while discussing
power modeling in Part 2. This time we have annotated the figure to highlight further
ways to reduce the energy consumption of running a particular set of applications. In
principle, there are two ways:

1. Reduce the energy expenditure of doing a unit of work, that is improve the energy
use, such as running a piece of code or transmitting a bit of data, by either leveraging
power disproportionality or the context-dependency of energy consumption.

2. Reduce the amount of work that needs to be done by changing the application logic
and adapting it to user behavior.

The first two from our list of observations concerning energy efficiency — power dis-
proportionality and the context-dependency of energy consumption — can be exploited
to reduce the energy spent doing a unit of work. The third observation, application
agnosticity, gives rise to possibilities to further save energy by changing the behavior
of the application to reduce the amount of energy used or to change the nature of the
workload imposed by a given application on the smartphone hardware. An additional
way to optimize the application behavior is to learn user behavior and adapt to it, which
we demonstrate for the case of video streaming in a later chapter.
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How to further reduce the energy expenditure of applications

The distinguishing feature of these mechanisms is taking to a certain degree a holistic
viewpoint of energy-consumption optimization, which considers the device as a whole
with its diverse capabilities and also accounts for the application specificities and user
behavior. To this end, the mechanisms usually need to operate on software layers above
the device drivers of an individual hardware component. Another reason for the solu-
tions to operate on the application or middleware layer is that the application workload
is sometimes impossible to change in the desired way from the lower software layers.

The importance of timing and context

We learned earlier that wireless communication is one of the biggest energy con-
sumers in smartphones. The power disproportionality and context dependency of energy
efficiency are especially important concepts in wireless communication. They make
energy-aware scheduling a crucially important mechanism for achieving energy effi-
ciency. We cover this topic in Chapter 12. There are several dimensions to consider
in energy-aware scheduling. We briefly introduce them here and defer the detailed
treatment of the topic to the dedicated chapter.

The power disproportionality in the wireless communication technologies used in
modern smartphones is typically such that the energy utility measured, for instance, in
terms of bits per joule, increases with data rate. Therefore, scheduling application traffic
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in such a way that the aggregate instantaneous transmission rate is maximized is favor-
able for the sake of energy efficiency. This can sometimes be achieved through traffic
shaping, in which lower rate traffic is turned into higher rate bursts by means of buffer-
ing. Note that the average rate throughout a lifetime of a specific TCP connection, for
example, can remain the same, which sometimes makes it possible for some applica-
tions to use this mechanism to extend the battery life without any noticeable change in
the quality of experience (QoE) perceived by the user.

Another way to optimize energy efficiency by taking the power disproportionality
into account is through energy-aware scheduling of multiple flows, possibly generated
by different applications. Scheduling background traffic in this way is especially impor-
tant because of its detrimental effect on the smartphone battery life. Background traffic
can be generated by applications that would not otherwise use the wireless connectivity
at all, such as mobile advertising embedded into applications, or as a side product of
running applications that also need to transfer data as part of their core purpose, such as
web browsing or video streaming. It usually consists of very small occasional transfers
that consume a proportionally large amount of energy because of the tail energy phe-
nomenon, especially when using cellular network technologies. The goal for scheduling
background flows is to either bundle them in larger batches or to synchronize them
with foreground transfers. In this way, it is possible to amortize a large part of the tail
energy.

Scheduling the traffic in an energy-optimized way for a single smartphone is not
always enough because of contention with other phones using the same wireless access
network. When the shared channel is busy because another device is using it, other
devices must wait for their turn during which energy is consumed because of the
powered-on radio. There are several solutions that can alleviate the problem. Some are
very straightforward to deploy but do not necessary solve the problem in an optimal
way, while other solutions provide closer to optimal performance but would require
changes in the core protocols used, for instance, in Wi-Fi networks, which makes them
cumbersome to deploy.

The contextual dependency of the energy consumption of wireless communication
has also been studied quite a lot, but it is still an area of active research. There are basi-
cally two contextual dimensions that influence the energy consumption: location and
time. A mobile smartphone user will experience that the quality of connectivity changes
with location. The reason is simply that the coverage of wireless networks varies by geo-
graphic location due to many reasons. A static user may also experience changes in the
quality of wireless connectivity, which are mainly caused by the actions of others using
the same access network. For example, a crowded cell of a cellular network cannot offer
as high throughput for a single user as a lightly loaded one simply because the shared
resources are used by a different number of users. Theses changes in the quality of con-
nectivity directly impact the energy utility of data transfer. For this reason, the link to
traffic scheduling is obvious: The objective is to schedule data communication to occur
during time periods when the energy utility is as high as possible. The main challenge
lies in knowing or even predicting when such periods occur.
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Taking full advantage of the smartphone capabilities

As we discussed in the second part of the book, there is a lot of different hard-
ware packed into modern smartphones. Specifically, the communication capabilities are
extremely versatile because of the many technologies integrated into the phones (LTE,
HSPA, GSM, Wi-Fi, Bluetooth, BLE, and NFC).

An important thing to notice is that these technologies typically have different kinds
of energy consumption characteristic, which means that data transfer using a specific
WNI is likely to cause a different amount of energy to be consumed than the same data
transfer using another WNI. Therefore, energy can be saved if the WNI is chosen in a
smart way.

The selection of WNI must take into account that the technologies strike differ-
ent trade-offs in their characteristics. For example, Wi-Fi’s high data rates and energy
utility do not come free, since some sacrifices have been made in terms of communica-
tion range, which means that Wi-Fi coverage is typically not as ubiquitous as cellular
network connectivity. Therefore, some knowledge about the availability of different
alternative wireless networks must be gathered, and this is often done through predic-
tion. There is a strong link here to traffic scheduling, because sometimes data transfers
can be delayed until a more energy-efficient WNI can be used.

One of the most energy-consuming activities related to wireless communication that
smartphones routinely do is trying to discover available networks. Specifically, scanning
for available Wi-Fi networks is done by the phone continuously when it is not connected
to an access point. If Bluetooth was used in a similar opportunistic way as Wi-Fi, it
would need to continuously scan for available other devices which would be able to
provide connectivity. The problem is that scanning draws a significant amount of power.
Therefore, doing that all the time significantly reduces the battery life of a smartphone.
Fortunately, the scanning behavior can be optimized so that it is only done when new
networks could be in range, such as when the phone has moved. Movement, on the other
hand, can be predicted in different ways. One way is to make use of alternative WNIs
that are already powered on, such as tracking Bluetooth contact patterns or changes in
the set of overheard neighboring cells of a cellular network.

In Chapter 13, we study these different solutions that take advantage of the multiple
WNIs embedded in smartphones.

Getting a little help from friends

Sometimes everyone needs a bit of help from others. Smartphones are no different in
this sense. There are situations where the phone could ask another device to do some
work on its behalf, which would save energy by reducing the application-generated
workload to the underlying hardware.

Let us take sudoku solver as a simple example: An application needs to compute
solutions to a specific sudoku and present it to the user. It has two choices to accomplish
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this task. First is to use its own CPU to calculate the answer and the second is to ship
the characteristics of the sudoku, that is, the numbers and where they are located, to a
cloud that provides such a computing service. In the latter approach, the smartphone’s
own CPU is hardly used at all, making it potentially a lot more energy efficient, whereas
in the former one it needs to do all the work. Such a computing paradigm is often called
computation offloading and we have devoted Chapter 14 this topic.

A careful reader would have noticed a potential problem in the above example. While
such computation offloading reduces the computational work, it requires some wireless
communication to ship the required code and data to the cloud and the results back to
the phone, which is unnecessary in the local computing approach. Indeed, the biggest
challenge for computation offloading is to be able to accurately evaluate this trade-
off between computational and communication energy to make decisions on whether a
given task should be offloaded. Notice that because of the context dependency of the
energy consumption of wireless communication, this tradeoff must be evaluated and
offloading decisions made dynamically at runtime.

Communication offloading is a related concept. It refers to reducing the communica-
tion workload or, more specifically, the energy expenditure of the smartphone caused
by wireless communication by remotely executing some tasks that require wireless
communication. In fact, there are two different factors that contribute to the energy
efficiency: reducing the amount of traffic from/to the smartphone and optimizing the
traffic patterns (we learn more about energy-efficient traffic patterns in Chapter 12). It
is important not to confuse this concept with traffic offloading which refers to vertical
handovers, typically so that some traffic is offloaded from a cellular access network to
a Wi-Fi access network (Section 13.6).

There are several different systems proposed for offloading program execution from
smartphones. In Chapter 14, in addition to delving into the details of the basic principles,
we look at the different factors that should be taken into account when designing such
a system.

Summary

In this chapter, we presented an overview of the energy-optimization principles and
techniques that can be applied as an additional optimization layer on top of the
individual hardware-level power-management and optimization mechanisms. The key
observations are the following:

* Additional opportunities to save smartphone energy arise from three facts: 1. the dif-
ferent hardware components are not perfectly power proportional, 2. the energy utility
of the different subsystems is context dependent, and 3. the underlying hardware
power-management mechanisms rarely understand anything about the applications
being used.

® There are two fundamental ways to achieve the additional energy savings: 1. reduce
the energy expenditure of doing a unit of work, that is improve the energy utility,
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which is the target of solutions that exploit the power disproportionality and context
dependency of energy consumption, and 2. reduce the amount of work, which is the
goal of solutions that change the application logic.

e Traffic scheduling is an important class of mechanisms to improve the energy utility
of data transmission.

e Taking advantage of the many wireless technologies deployed in the smartphones is
another effective way to improve the energy utility of data transmission.

® Mobile cloud offloading can be used to reduce the amount of work that the smart-
phone needs to perform. However, the offloading systems must carefully evaluate the
tradeoff between reduced computational work vs. increased communication work.
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Traffic scheduling

Scheduling means timing actions in a proper way. Mobile systems undergo such deci-
sions continuously. For example, when to transmit the next packet or when to switch to
executing another process. Traditionally, computing systems have strived for maximum
performance or throughput of a system when designing different kinds of scheduling
mechanisms. Considering energy consumption provides a different perspective.

How scheduling saves energy

The first motivation for considering scheduling for the sake of energy efficiency is that
smartphones and their subsystems are not perfectly power proportional, sometimes very
far from it. In a perfectly power-proportional system the power draw would linearly
scale with the workload throughout the entire range of possible workloads.

To understand the benefits of energy-aware scheduling, let us consider an example of
wireless communication with a smartphone. Wireless communication typically provides
a better energy utility with a higher data rate. In other words, a higher data rate leads to
fewer joules consumed per bit transmitted or received. Because of this, it would be more
energy efficient to schedule multiple lower rate data flows in a maximally overlapping
manner than to schedule them individually.

Generally speaking, it is beneficial to exercise the above kind of “race-to-sleep”
scheduling policy on subsystems whose power consumption scales sublinearly with the
workload. WNIs exhibit such behavior because of their inherent tail energy, as shown
by Pathak et al. [1]. The main challenge is to find the optimal scheduling algorithm
that takes the possible constraints of the particular subsystem into account. Scheduling
algorithms in general have been studied for several decades.

There is also another motivation for using scheduling to improve the energy effi-
ciency of smartphones, especially when it comes to wireless communication. Energy
consumption is often context dependent and the context varies with time. The context
that affects the energy consumption includes wireless network conditions: signal-to-
noise ratio (SNR), network congestion (which in turn are influenced by many factors),
available wireless networks, and even temperature. The main challenge here is to pre-
dict those conditions that affect the scheduling decisions. In some cases it is possible,
while in others the conditions are simply too unpredictable.
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We focus in this chapter specifically on traffic scheduling. We look at different ways
of scheduling traffic and how that can help to reduce the energy consumption of smart-
phones. We summarize the different methods in Table 12.1 and discuss each method in
detail in the following sections.

Shaping traffic to “race to sleep”

The first technique that we study is traffic shaping. In a nutshell, it means buffering
packets that a server has sent at a constant rate for some time and then forwarding
these packets in a burst. To understand when and why that saves energy, we first discuss
the available bandwidth of an end-to-end network path and, specifically, the amount of
available bandwidth in different segments of such a path. Then we describe the actual
technique and make some model-based calculations of its effectiveness in different situ-
ations. Finally, we conclude with a short literature survey to give examples of proposed
systems that rely on traffic shaping to save energy.

Mismatch between throughput and available bandwidth

As we discussed in Chapter 7, all the radios integrated in smartphones are power man-
aged in one way or another. The basic mechanism is to switch a radio to low-power
sleep mode by powering off some of the circuitry when no data is being transmitted
or received. Furthermore, we know that the energy utility, namely bits transmitted per
joule spent, increases with throughput, regardless of which kind of wireless communi-
cation technology is used. Hence, energy can be saved if data communications can be
scheduled in such a way that the throughput of individual transfers and the sleep time
of the radio are increased compared to “normal” operation.

When is such scheduling possible? Intuitively, some spare bandwidth must exist at
the radio access network. Otherwise, there is no way to increase the throughput over the
last hop link (or first hop in case of upstream data transmission). Typically, a bulk data
transfer using TCP would try to use all the available bandwidth leaving no opportunities
for such scheduling. However, there are two situations where a discrepancy between the
throughput and available bandwidth arises. We illustrate those situations in Figure 12.1.
The numbers in the drawing correspond to the available bandwidth for the specific user
in the client side (left) and bandwidth use at the server side. They are only indicative
and can vary considerably case by case.!

In the first case, the application intentionally uses less bandwidth than is available
on the end-to-end path. For example, multimedia streaming applications fall into this
category when the server delivers content to the client at a rate which is relative to

' At the time of writing this book, the latest smartphones in the market were category 3 LTE devices which
could provide downlink data rates up to 100 Mbit/s using 2 x 2 MIMO. HSPA+ could offer up to 42 Mbit/s
data rates. As for Wi-Fi, the latest phones were already 802.11ac compliant but could only achieve data
rates up to 430 Mbit/s using a single spatial stream with an 80 MHz channel.
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Figure 12.1
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the encoding rate, the rate at which the client player consumes the content. This sit-
uation is illustrated in the figure with a video server that serves the client at 1.5 to 2
times the encoding rate. Such behavior is common among the popular on-demand video
streaming services, such as YouTube. The absolute rate of course depends on the video
encoding rate. Also some other applications throttle their transmission rate, for example
P2P content distribution applications do it to avoid saturating their uplink bandwidth
because that could severely hurt the performance of other applications. In contrast, a
web server would try to send the web page contents to the client as fast as possible to
minimize the transaction latency and maximize the QoE.

The second situation where the discrepancy arises is when the amount of available
bandwidth on an end-to-end path from a server to a wireless client is less than the
available bandwidth of the wireless access link. A typical scenario is a home or office
environment where Wi-Fi is the last hop. As the figure suggests, Wi-Fi nowadays offers
data rates of several hundred megabits (even up to gigabit rates with the latest 802.11ac),
whereas the data rates of home internet subscriptions, for instance, offered by ISPs
over ADSL or cable are usually much smaller. We note that this mismatch also exists
with cellular access networks where the peak downlink rates usually greatly exceed
the typical subscription rates of the clients (indicated by the rates between internet and
radio access in the figure). So, at least in principle, such traffic-scheduling opportunities
also exist with cellular access, although in practice, such solutions are much simpler to
deploy with Wi-Fi access.

How traffic shaping works

In the above-mentioned two cases, using the “race-to-sleep” strategy can save energy.
The trick is to schedule the data transmissions in such a way that as much of the wireless
access link bandwidth as possible is used at a time, which increases the total amount of
sleep time and reduces the overall energy consumption. In practice, it means delaying
the transfer of some of the packets to batch them into high-speed bursts. This kind of
scheduling is sometimes also called traffic shaping.

In the case where the application intentionally throttles the transmission rate, traffic
shaping at any vantage point along the path can save energy, for example at the server,
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proxy, or wireless access point. On the other hand, if the application uses all the band-
width available on the network path and traffic shaping is used to exploit the bandwidth
discrepancy between the different segments of the network path, the traffic shaping must
occur after the bottleneck link to have any impact. For example, the Wi-Fi access point
in Figure 12.1 would be an ideal location.

Because traffic shaping requires delaying some of the packets and delay directly
impacts the QoE of certain applications, it must be applied carefully. Some applica-
tions do not tolerate extra delay well. Inelastic applications, such as VoIP or video calls,
belong to this category. Also, delaying packets of transfers within web transactions
must be subtle. It is all right to delay some packets as long as the whole transaction is
not delayed, which would be visible to the user as a degraded QoE.

Figure 12.2 illustrates how this behavior leads to lower energy consumption when
playing an audio stream with a smartphone using HSPA connectivity. The figure shows
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traffic and power traces measured in two different cases. In both, the same audio stream
was played with the same smartphone, but in one case the constant bit-rate (CBR)
audio stream is shaped into bursts by a proxy before delivering it to the phone (Figure
12.2(b)), whereas in the other case the CBR stream is directly received from the server
(Figure 12.2(a)). It is easy to see how the bursty traffic patterns allow the radio to catch
some sleep in between receiving a batch of packets. In addition, comparing the duration
of power spikes to the duration of traffic spikes, the relatively long tail energy spent
after the reception of each burst can be clearly identified.

How much energy can be saved?

The exact amount of energy saved through traffic shaping depends on a number of fac-
tors. The discrepancy between the bandwidth used and the bandwidth available between
the traffic shaping point and the client is one of the most determinant factors. Indeed, the
more speed-up is achievable for the transmission, the more the sleep time can be pro-
longed. In addition, the characteristics and configuration of the wireless communication
technology used have an influence. Specifically, the inactivity timers that determine
the amount of tail energy are important, as we just saw in the example power traces.
When shaping traffic into bursts, the interval between the bursts must be longer than the
inactivity timers before any energy can be saved.

To better understand the magnitude of energy savings, we next compute some
results with example scenarios using simple power models for wireless communi-
cation. We assume constant power draw when the WNI is in the idle and sleep
modes. In addition, HSPA is assumed to have constant power draw in the active
CELL_DCH and CELL_FACH states as well as for LTE receiving and being idle in
the RRC_CONNECTED mode. These assumptions are not too far from reality, since
the most significant differences in power draw happen when switching from one mode
to another. To characterize the power draw while receiving data using Wi-Fi, we use a
simple model where the energy utility (bits transferred per joules spent) grows linearly
as a function of the data rate. The model is derived from the results presented in [2].
The parameters are listed in Table 12.2 and we have derived the power values from
measurements with smartphones. All active-state power values have been computed by
subtracting the power drawn by the WNI when it is in inactive mode (i.e., CELL_PCH,
RRC_IDLE, and Wi-Fi sleep) from the original measured total power draw. Max delay
denotes the longest amount of time that a single packet can be delayed before being bun-
dled into a transmission. A given value of max delay and the throughput of unshaped
traffic together determine the amount of data to transmit in a single burst. The variables
shaped rate and unshaped rate mean the throughput achievable end-to-end (all the way
from server to client) and only from the traffic-shaping point to the client, respectively.
Hence, the rate factor is always smaller than or equal to one and it is possible to save
energy only if it is smaller than one.

We compute the energy consumed by receiving the content as unshaped traffic using
Eq. (12.1) and the energy consumed by receiving the same content as shaped traffic
using Eq. (12.2). The former case is calculated simply by multiplying the RX power
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Table 12.2. Parameters used in power modeling the impact of traffic shaping

Constants Wi-Fi HSPA LTE Variables
rx power (W) P,.=0.8 P,.=1.5 Data rates unshaped rate r,,
(Mbit/s) shaped rate ry,

rate factor
ry =rus/rsh

Tail P,=0.4 P =028 Py=1.2 Maxdelay(s) T

power(W) P, =0.6

Tail timers (s) 77, =0.2 T,= T, =10 Amont of K

T,=3 data (MB)

with the time it takes to receive the content at the delivery rate of the server. In the
latter case, we calculate the energy using the bulk transfer rate from the vantage point
of traffic shaping to the client. In addition, we take into account the tail energy which is
spent in between receiving the bundles of content. Note that because of the periodicity
of the traffic shaping, we only need to compute the energy spent over a single period of
traffic shaping (max delay) to obtain comparable results.

S
Eunshaped = _Prx(rus) (121)

us

S
Eshaped = Eprx(rsh) +Etail(s) (122)

To compute the tail energy, we need to consider different cases depending on the
inactivity timers used by the WNI and their durations compared to the amount of idle
time in between receiving a bundle. Indeed, different amounts of idle time may allow a
different number of timers to expire which means that the radio can spend time in differ-
ent power states depending on the access network technology type and timer values. We
write out the tail energy computation in Eq. (12.3). We include two inactivity timers, T
and T, which correspond to the case of 3G. If the WNI only uses one inactivity timer,
as is the case for Wi-Fi and LTE, we simply set 7, = 0 and discard the middle equation
which is no longer valid.

S S S N
0<———<Ti: Eals) =P <———>

Tys Fsh Tys Fsh
S S S N
Th<———<T1+Tr: Eiy(s)=PT, — P,T) + P> (— — —>
Tys T'sh Tys T'sh
R N
T+ T, < ———: Epyls) =P T+ P, T, (12.3)
Tys Fsh

We plot the resulting average power draw (simply divided energy consumed by max
delay) when shaping traffic in Figure 12.3. The results are relative to the case when
no shaping is done, that is the rate factor is equal to one. In calculating the results, we
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Quantifying the energy-saving potential of traffic shaping

used for the shaped rates the maximum data rates supported by modern smartphones
today with the different technologies that we mentioned earlier (430 Mbit/s for Wi-Fi,
42 Mbit/s for HSPA+, 100 Mbit/s for LTE). The first thing to note is that the Wi-Fi
results look quite a bit different from the HSPA and LTE results which have a similar
shape. The reason is the major difference in the tail energy: the Wi-Fi tail is amortized
already by adding just a little bit of delay whereas such a delay delivers no visible energy
savings for the cellular network technologies. However, if traffic can be shaped with a
relatively long delay, such as a few tens of seconds, the energy-saving potential is also
considerable when using the cellular access network.

Supporting longer values of max delay for traffic requires first of all that the traffic is
such that the application generating the traffic does not become unusable but also that
the traffic shaper has enough buffering capacity. The required amount of buffer space
depends on the data rate of the unshaped traffic and max delay. To understand how
much is required, we plot example results for Wi-Fi and LTE in Figure 12.4. The shapes
of the surface plots are similar but the range of values is different. Wi-Fi, being able to
offer four times higher data rates, has equivalently larger buffer space requirements for
the same rate factor. However, the required buffer space for the same absolute values of
unshaped data rate and max delay are of course equal.
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Traffic shaping requires differing amounts of buffer space to hold delayed packets depending on
the difference in shaped and unshaped data rates and the amount of delay

How to translate these results into practice? Taking video streaming as an example,
a relatively high-quality video with 2 Mbit/s average encoding rate gives rate factors of
about 0.005 and 0.02 with Wi-Fi and LTE, respectively, which puts them right into the
lower end of the rate factor scale shown in the figures, delivering potentially large energy
savings with relatively little buffer space required. Let us consider bulk file transfer as
another example. If we assume that the user’s home internet connection policed to the
subscription rate forms the bottleneck on the network path and that the user has a fairly
high-end subscription of 100 Mbit/s, the rate factor becomes 0.23 for Wi-Fi. Such a
setup still has potential to cut down the average power consumption by more than half.

The energy consumption numbers presented here should be, as in any context, taken
with a pinch of salt; they always depend on the exact hardware used. Furthermore, wire-
less access is often shared among multiple users in which case the peak downlink rates
may not be achieved. Nevertheless, the results illustrate that such a simple mechanism
can be very powerful in saving energy.

Example solutions

There are numerous kinds of traffic-shaping solution proposed in the literature of which
we briefly introduce two here. EStreamer [3] is a multimedia stream delivery system
that can be deployed as a proxy or integrated into a streaming server. It shapes the CBR
traffic into bursts before delivering it to the mobile client. We revisit EStreamer in a
later section that focuses specifically on video streaming.

In [4], the authors propose using home routers as proxies for mobile clients in a Bit-
Torrent content-sharing network. These proxies can deliver content energy-efficiently
to the mobile devices by making use of the above-mentioned discrepancy in bandwidth
usage and availability. Their measurement results suggest that, compared to download-
ing the content directly to the phone with a native BitTorrent client, the proxy setup can
make energy saving of 40-50%.
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Catnap [5] aims to serve a similar purpose but in a more generic sense. It is essen-
tially an application-independent middlebox that sits at the wireless access point and
schedules delivery of data blocks, a.k.a. Application Data Units (ADUs), to the mobile
devices. The scheduler delays transmission of the first packets just enough to deliver
a particular ADU over the wireless access link without adding to the total transaction
delay. If the client indicates its willingness to accept additional delay, it can also run
in batch mode where it further delays individual packet transmissions to send an even
larger bunch of packets at a time.

Scheduling background traffic

Big data is a challenge for many computing systems today, but for mobile communica-
tion systems, small data is also a challenge. To understand why this is the case, we next
look at smartphone background transfers.

Problematic small transfers

Background traffic consists of typically small data transfers which happen either com-
pletely in the background, that is when the smartphone screen is off and the user is
not actively doing anything with it, or as a side product of using a particular applica-
tion, such as gaming and video streaming. In both cases the background traffic does not
contribute directly to the main purpose of the application. Common examples of back-
ground traffic include advertisement or analytics traffic, and synchronization of email,
calendar, and other such applications. There is typically no synchronization between dif-
ferent kinds of background traffic, and applications independently establish data flows
for such traffic.

From the energy-consumption perspective, these small data transfers are harmful if
they emerge in an isolated unsynchronized manner. In such cases, the radio is powered
on only because of that traffic. The long tail timers together with the high-power draw
in the active modes of cellular network interfaces make the situation especially bad. For
example, a large portion of the mobile advertisement traffic by default emerges in an
isolated manner and causes significant smartphone energy expenditure.

Such isolated background traffic causes an additional kind of harm for cellular net-
work operators. The small sporadic transmissions generate a large amount of state
transitions by the RRC protocol. For example, the RRC protocol used in the HSPA
network moves from the CELL_PCH state to the CELL_DCH state and back to the
CELL_PCH state again via the CELL_FACH state just for the sake of transmitting or
receiving a few kilobytes of data. The problem lies in the fact that each transition gen-
erates a number of signaling messages exchanged between the phone and the network.
When all the phones connected to the network go through such state transitions fre-
quently, the operator faces a signaling storm that has potential to degrade the service
[6]. Hence, there are also incentives from the operator side to minimize the number and
frequency of isolated background transactions.
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Example traffic and power traces illustrating the detrimental impact of background traffic on
energy consumption

How much energy is wasted?

Figure 12.5 shows an example of detrimental background transfers that are interspersed
with the actual content download periods in an unfortunate manner. Larger peaks in
traffic are the actual content and small peaks correspond to background traffic (note the
logarithmic scale). The smartphone used an HSPA network. In this particular case, the
content received is video stream and the background transfers were identified as peri-
odic updates of viewing progress sent to the video service provider’s statistics server.
Each individual chunk of content downloaded is in fact of the same size. We calcu-
lated the energy consumption for the best and worst case chunk downloads for similar
traces. These are also highlighted for this example in the figure and the net effect of the
background traffic was up to a 30% increase in energy consumption.

Let us now look at the problem more systematically. The underlying issue is that
the energy efficiency of small transfers is very poor, especially when using a cellular
access network, and therefore isolated small transfers cause a disproportionally large
drain on the battery. To understand how poor, we next model the energy utility as a
function of transfer size. To quantify this effect, we adapt the simple models we used
in the previous section when analyzing the effectiveness of traffic shaping for the case
of small transfers. The difference is that this time we account for the whole tail energy
for each transfer. In other words, we always consider the bottom case in Eq. (12.3).
Another thing that we do differently this time is to add TCP behavior into the model.
TCP, with its slow start mechanism, substantially slows down small transfers, which is
why it is necessary to take this into account [7]. We do not include packet loss in the
model because that would render the model unnecessarily much more complex.

In the absence of packet loss, TCP remains in slow start mode during the entire
small transfer. We further assume that the congestion window size has been reset to
its initial value before the transmission starts. We approximate the TCP’s congestion
window growth using geometric progression, where subsequent rounds of transmis-
sion of a congestion window’s worth of packets follow one another. In between these
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Table 12.3. Additional parameters used in energy modeling of small transfers

Parameter Value range Description
toee 50/100/80 ms  Round-trip time (RTT) for
Wi-Fi/HSPA/LTE
Wi 3 Initial congestion window (cwnd) size
y L5 cwnd increase rate per RTT
C 100/21/100 TCP bulk transfer capacity for
Mbps Wi-Fi/HSPA/LTE
S 0-1 MB Amount of received data
MSS 1460 B Maximum segment size

transmissions, the TCP sender must wait for incoming acknowledgments. We compute
the resulting transmission delay as the number of these rounds times the round-trip time
(RTT). We use the power constants in Table 12.2 and the new parameters described in
Table 12.3. TCP bulk download rates have been chosen according to typical peak rates
achievable with today’s smartphones and subscriptions. RTT values represent relatively
short-distance communication, such as within a continent, and an expected amount of
added delay by the HSPA (+50 ms) and LTE (+30 ms) access networks have been added
to their RTTs compared to Wi-Fi access.

We consider here specifically the case of receiving data but the same models can be
applied for data transmission by replacing the receive power with the transmit power
and updating the transfer rates. If the amount of data received is large enough to com-
pletely saturate the path, that is the congestion window grows larger than the bandwidth
delay product of the path, the TCP sender can transmit packets continuously and it does
not need to wait for incoming acknowledgments. Therefore, we divide the modeling
into two separate cases depending on whether the path become saturated or not. This
condition is expressed in Eq. (12.4) and is derived from the geometric progression by
solving the number of rounds required to transmit all the packets (left side of inequality)
and to grow the window beyond the bandwidth delay product of the path (right side of
inequality). As a side note, it is straightforward to solve the equation for the amount of
data (S) and check when this condition applies. With the values for RTT and TCP bulk
transfer capacity that we use, the path becomes saturated only if the amount of data is
greater than 1.9 MB, 780 kB, and 2 MB for Wi-Fi, HSPA, and LTE, respectively.

Sty—=1) 1< Ctyny
MSS’[U] - MSS’[U]

(12.4)

We then obtain Eq. (12.5) for the time it takes to receive the data depending on
whether the path become saturated during the transmission.

Sy —1
If Eq. (12.4) true: T, =log, ( A(/IJ;Sw ) + 1) tu (12.5)
1

_ MSSw,—Ctiuy

. Ctrtt 1—y
If Eq. (12.4) false: T, = |log, YSSw + 1|t + —c
1
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Energy utility of data transfer as a function of transfer size shows that small transfers are poison
to battery life

Using this time, we compute the energy spent on receiving the data according to
Eq. (12.6). We can safely ignore the impact of transmitting TCP acknowledgments
because of their small size and the fact that they interleave with the transmission of
the data packets. With the RTT values we used, the inactivity timers of the WNI power
management do not trigger, so we can also ignore any effects due to WNI transitioning
into sleep mode in between receiving flights of packets.

S N
E,= EPtx + (Trx - E) Pidgte + Etait (12.6)

Figure 12.6 plots the resulting energy utility as a function of the amount of data
received. We used a tail timer of three seconds with HSPA FD and an activation timer
of 100 ms for LTE DRX. The sawtooth shape of the curves is caused by the behavior
of TCP, which uses the congestion window to control how many packets can be sent
at a time. There is a drop in energy utility each time the amount of data to transfer
grows beyond the size of the congestion window during the last round, because then
the leftover packet must be sent in the next round, which delays the completion of the
transfer by roughly one RTT. It is clear that the energy utility degrades quickly when the
amount of data become small. The plot on the left shows that there is a big difference
between the different technologies: Wi-Fi energy utility has a very rapidly increasing
trend and LTE with DRX support also has a clearly higher slope than the plain LTE and
HSPA curves. The reason is again the differences in the magnitude of the tail energy.
When using Wi-Fi and LTE with DRX enabled, the tail energy is amortized with a
smaller amount of data transfer, while the long tail of HSPA and LTE without DRX
dominates the energy consumption even with 1 MB downloads.

The right-hand-side plot shows the same results on a log-log scale. We can see first
of all that there is a difference of two orders of magnitude in the energy utility with the
shortest tail technology compared to the longest tail technology for very small (single
packet) transfers. Furthermore, the decrease in energy utility is from two to three orders
of magnitude when comparing downloads of 1 MB to 1 KB.
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In the light of the above analysis, it is not so surprising that the small isolated back-
ground transfers have caught the attention of the research community and the industry.
As a result, different kinds of solution to mitigate their effect have been developed and
we look at these next.

Mitigating the energy overhead of background transfers

How to deal with the isolated background transfers? There are in principle three ways
to improve the energy efficiency of these transfers:

1. Schedule the background transfers so that they overlap with other foreground trans-
fers. This solution improves the energy utility of the background transfers because
they are merged together with foreground transfers that would in any case take
place and consume energy. One clever example of this approach is to schedule data
transfers with no tight timing constraints to happen during phone calls [8].

2. Bundle several small background transactions into larger batches. This option is still
available even when the first solution cannot be applied due to lack of foreground
traffic. Energy utility improves as a function of data size as we saw earlier.

3. Reduce the amount of background traffic. This solution is sometimes available but
it depends on the applications used. It must be applied per application, whereas the
above two can be applied in application-agnostic ways.

We next describe a couple of example solutions that implement one or several of
these approaches.

Synchronizing background transfers with network socket request manager
Qualcomm has developed a solution called NSRM: Network Socket Request Manager,
which at the time of writing was claimed to be commercially available soon [9].

NSRM is an example solution that batches small transfers together. It uses a gat-
ing concept, where background application requests are intercepted by the NSRM and
delayed until the gate opens. The gate is opened either periodically or when the user
activates the screen. Figure 12.7 illustrates how the gating works. There are two param-
eters: Ty, defines for how long the gate remains open once it has been opened and
T)erioa controls how frequently the gate is opened.

App1 App2 App3 Screen on  Screen off
request  request request L

iy

TR
Time
T A [ Gate open
Topen p Granted Gate closed
requests

NSRM gating mechanism
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An attractive property of this solution is that it works with existing applications
without requiring modifications to them. However, since the application developers
are potentially unaware of such a mechanism, it is unclear whether some applications
that have background tasks would behave in an unexpected manner in the presence of
NSRM. For example, the application developer may have integrated application-level
techniques to improve robustness, such as retransmitting messages in case they are not
delivered in time.

Box 12.1 HTML5 WebSockets and energy

HTMLS brings a number of convenient mechanisms that web developers can use.
One of these is WebSockets that provide a means for a server to push content to the
client. The underlying mechanism of a WebSocket is simply a TCP connection that
is continuously kept alive using heartbeat messages and it allows for two-way, full-
duplex communication. It is an improvement over techniques that use polling where
the client always needs to make a request before the server can send new content
to it.

WebSockets generate one form of background traffic that can be equally detrimental
to the battery life of a smartphone as any other background traffic. This happens
when a WebSocket is kept alive and idle for an extended period of time. Although
WebSockets reduce the header overhead significantly compared to basic HTTP, it
is often more important from the energy-consumption perspective to consider the
timing of the transfers and not the total amount of data. Therefore, the frequency of
the heartbeat messages used to keep the socket alive matters.

One of the commonly used libraries to implement WebSocket communication is
Socket.io. It uses a 25 s heartbeat interval by default. Obviously, by doubling this
interval, the energy consumption caused by the exchange of heartbeat messages
can be cut in half. A measurement study presented in [10] confirms that substan-
tial energy savings can be achieved when using an access technology that exhibits a
large tail energy, such as HSPA, whereas with Wi-Fi access the energy drain due to
these messages is almost negligible because of its small tail energy. However, with
certain devices and browsers, the WebSocket is automatically closed due to unknown
reasons, most likely another timer within a browser or the mobile OS, after less than
a minute if the heartbeat is configured to a value longer than that. This unfortunate
behavior underlines the need for further work in refining the support for Websockets
with long heartbeat intervals.

Dealing with mobile advertisements

Mobile advertising has become an important business as the capabilities of smartphones
has improved and their usage increased. The usual way advertisements are delivered
to smartphones is through ad networks [11]. They distribute ads created by ad pub-
lishers on behalf of ad agencies that brands have commissioned to make a mobile
advertising campaign. Ad networks provide a software development kit (SDK), so that
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advertisements can be embedeed into native applications in an easy way. The ads are
typically either banners shown persistently at the top or bottom of the page or full-screen
ads shown in between transitioning from one activity to another in an application.

Some measurement studies have shown that up to 75% of the energy consumed by
an applicaiton can be caused by advertising [1]. A very large part of this energy is
consumed by the traffic generated by fetching the ads to the applications from the ad
network in real time, which often causes isolated HTTP transactions that have a very
poor energy utility.

Fortunately, it is possible to combat this energy inefficiency by pre-fetching ads and
caching and serving them locally, which is what AdCache does [12]. So, in a sense,
it implements the approach where many background transactions are bundled together
but does it in a proactive manner instead of delaying transactions. The evaluation results
of AdCache suggest that such a solution can help to reduce the energy consumption of
certain applications by upto a half.

The downside of pre-fetching and caching ads is that the ad networks can no longer
deliver ads in real time, strictly speaking. This aspect becomes an issue with advertising
systems that sell “ad space” through real-time auctions, which is no longer possible if
ads need to be pre-fetched. A possible solution to this dilemma is to also do the auc-
tioning proactively. In other words, the system can change so that it tries to predict the
ad slots ahead of time for auctioning. Obviously, such predicted information is unreli-
able by nature and sometimes too many or too few slots may be sold. Nevertheless, it
seems that such prediction can achieve pretty good accuracy enabling the ad network to
maintain a tolerable level of overselling ads [13].

Context-aware scheduling

How context impacts the energy consumption

We have already stated at the beginning of this chapter that context can significantly
influence the energy consumption of smartphones. But what does context mean here?
Context really boils down to two characteristics of wireless connectivity: type and qual-
ity. Figure 12.8 illustrates the context that impacts the energy consumption of wireless
data transmission with smartphones.

The type of wireless network technology being used determines its energy-
consumption characteristics. Today’s smartphones allow seamless switching of the
network connection between cellular and Wi-Fi networks when the opportunity arises.
These two wireless networks have significantly different characteristics in terms of
energy consumption as we learned in Chapter 7. Hence, in addition to having more
bandwidth available, such opportunistic switching also can save energy. We defer
detailed discussion of this topic until Chapter 13.

Impact of signal strength
The quality of wireless network access varies over time. These temporal variations can
also have a major impact on the energy consumption of data communication. In this
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Context, such as throughput and data rate, directly impacts the energy utility

section, we focus on these contextual changes and their impact on the energy con-
sumption. We first need to distinguish between two different causes of wireless network
access quality degradations: signal quality and network load.

For signal quality, when the smartphone is in a poor network coverage area and
receives a weak signal from the base station, the first consequence is that it switches
to use a higher level of power amplification for transmission in an attempt to ensure that
any transmitted bits are correctly received by the base station. The higher transmit power
affects the power drawn by the WNI while receiving data as well, because in that case
the radio is also continuously transmitting signaling messages, such as received signal
strength reports, to the base station. More data needs to be potentially retransmitted
as well.

The second consequence of poor signal quality is that it typically also leads to switch-
ing to a lower over-the-air data rate which means lower energy utility. This is because
many of the wireless access networks, such as cellular and Wi-Fi networks, can use
several different modulation schemes and those schemes provide different tradeoffs
between data rate and robustness (i.e., bit error rate for a specific SNR regime). The
phone and the network can switch between the different schemes on the fly to control
that tradeoff dynamically. Hence, if the signal is weak, a scheme that provides a lower
data rate but more robust data transmission is selected.

We show some example results from measuring the impact of signal strength on the
power consumption and throughput in Figure 12.9. The measurements were conducted
in laboratory settings in a room that was completely isolated from external sources
of interference using a complete 3G/LTE network dedicated to the testing. We had a
control knob with which we could add a desired amount of attenuation to the signal.

The results comparing signal strength with power (Figure 12.9(a)) reveal a couple of
interesting things. First of all, the measurements confirm that the power drawn by both
the HSPA and the LTE smartphones increases when the wireless signal quality becomes
worse. The power consumption of HSPA scales less with the signal strength than LTE,
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where the power increases significantly more when the signal quality degrades. Interest-
ingly, the LTE phone seems to hit a power ceiling at approximately 45 dB attenuation
after which the power draw no longer increases. Indeed, 3.5 W is already a critically
high power. It also seems that the LTE phone can operate in a smaller SNR regime than
the HSPA phones. There may be many underlying reasons. The power controls of the
amplifiers may differ. Also the fact that the tested HSPA uses WCDMA while LTE uses
OFDMA as the multiple access protocol likely has some impact.

Figure 12.9(b) similarly confirms that the throughput of the TCP transfers is seriously
degraded when the signal is attenuated. The figure only shows HSPA results but LTE
behavior is comparable. Ten consecutive TCP transfers were measured in each case
and the box plots reveal that there is a notable amount of variation in the results. The
TCP throughput is severely influenced by IP-level packet loss (radio layer first tries to
retransmit data a certain number of times) which do not occur similarly for each transfer.

Similar phenomenon can be observed from Wi-Fi networks. We collected the traces
of signal and noise levels at 1 Hz while walking through a U-style corridor at a fixed
speed. The SNR was calculated, as shown in Figure 12.10(a), and tagged with the posi-
tion. We downloaded a 5.3 MB file from www.openss7.org using wget. We compared
the performance of the downloads with and without adaptations. With the adaptation
based on location information obtained from the signal strength traces is shown in
Figure 12.10(a), the mobile device pauses the downloading when it enters the areas
where SNR is predicted to be lower than 15 and turns off the WNI during the pause.
As shown in Figure 12.10(b), the downloading was paused for 85 seconds in total. The
WNI spent 83.637 seconds in receive mode, which cost 82 joules. Without adaptation,
the WNI spent 85.07 seconds in receive mode and another 20.29 seconds in idle mode
trying to repair the connection, which cost in total 97 joules. Hence, the download-
ing without adaptation consumed around 18% more energy. This result can be further
improved with more accurate location estimation, because, as shown in Figure 12.10(a),
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Impact of signal strength and noise level on throughput in Wi-Fi network

the error in location prediction causes a delay in resuming the download at the end of
the pauses.

Impact of network load
Network load refers to the number of clients connected to a specific wireless access
network and the amount of traffic that they generate. Obviously, as the total amount
of resources is limited and shared among all the users, the more competition there is,
the less each one gets. Therefore, the level of network load has a direct effect on the
throughput achievable by one client’s transmissions. Throughput, as we have learned,
directly impacts the energy utility so that the lower it is, the lower the utility is as well.
In [14], some measurement results on throughput variation are presented. The mea-
surements on two different cellular networks, one HSPA and one LTE network, show
that the variation is indeed quite large in a real network during peak hours, although such
results should not be generalized. In the same work, the authors hypothetically com-
pared downloading 5 MB of data within each 15 minutes using two different strategies:
downloading right away, in other words without any attempt to avoid high-load periods,
or by magically knowing the perfect moment, with respect to throughput achievable, to
download within each 15-minute period. The results suggest that, in theory, it would
have been possible to save almost 50% of the energy used if the network load and,
consequently, the throughput could have been perfectly predicted.

Leveraging contextual information to save energy

Given that the energy consumption of wireless data communication is so much affected
by these contextual factors, scheduling transfers at times when energy utility is at
its peak can save a considerable amount of energy compared to completely context-
unaware scheduling. The problem obviously lies in knowing, or rather being able to
predict, when the phone is going to have good connectivity.
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Predicting good connectivity with real-time measurements

There are a couple of ways to predict good connectivity. One approach is to do real-time
measurements with the smartphone and try to infer the relevant contextual information
from those measurements.

For example, continuous measurements of the signal strength might make it possible
to predict the future values of it based on the history. The intuition behind this kind of
“blind” prediction without the use of any other contextual information is that there is
some structure in the signal strength variations over time which can be identified and
used by using time series analysis algorithms. Some of these algorithms require offline
training to fit the model to the kind of data observed. We go through a case study that
uses this approach in Section 12.4.3.

A more recently introduced solution called LoadSense [14] builds on the insight that
the network load correlates well with energy efficiency. A high load causes low through-
put which prolongs transfers and leads to poor energy utility. The idea is to estimate the
load in the cellular network by comparing the total power of the channel with the power
of the pilot signal transmitted by the base station. Their ratio gives an indication of the
current load in the cell because the total power includes power from the communica-
tion of other clients, whereas only the base station contributes to the pilot signal power.
This power ratio is then measured in real time by each smartphone independently to
predict the current load. Using this estimate, background transfers can be scheduled
to happen when the load is low. A CSMA-type of protocol can be used together with
the load-sensing component to avoid all sensing clients starting background transfers
simultaneously.

Learning contextual information

Another way to predict good connectivity is to use the information that the quality of the
wireless connectivity is often tied to the geographic location of the smartphone. Many
phones together in a crowd-sourcing manner, for instance, can build an information base
that maps geographic location to the quality of the wireless network access. With the
help of such an information base, it is possible to predict good connectivity if only the
user’s geographic location can be guessed correctly ahead of time.

The key to practical location prediction is the observation that people tend to repeat
certain paths in their daily life. For example, going to work and back generates the
same trajectory every working day. The smartphone can learn this information and by
tracking the connectivity along such trajectories makes it possible to predict when the
phone will have good connectivity. Bartendr [15] is an example of a system that uses
this kind of mobility prediction to schedule transfers energy efficiently.

CasCap [16] takes a crowd-sourcing approach to learn contextual knowledge. Each
phone shares the information it has measured and possibly predicted along with location
information to a cloud. The gathered information and knowledge can then be used by all
the smartphones that participate in this crowd-sourcing to, among other things, schedule
traffic when good connectivity is predicted. The challenge with such an approach is to
get enough participants, because the context monitoring and sharing consume some
energy and bandwidth, and you need to install the application on each phone to do
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the data collection and sharing. On the other hand, to reduce this overhead, monitoring
does not need to be continuous and the context information can also be shared and
downloaded only at times of good connectivity. Furthermore, each phone gets to use the
knowledge learned by all other phones in addition to the contextual knowledge learned
through its own monitoring. So, the more participants there are in the system, the more
beneficial it is for each individual one.

Case study: Prediction of Wi-Fi SNR

Next, we go through a case study where we apply different prediction methods to
optimize the energy consumption of Wi-Fi communication. We consider the follow-
ing scenario: Alice’s mobile phone is connected to a Wi-Fi access point and she is in the
process of downloading a file. The network quality associated with the device fluctuates
between poor and strong. The application, with the help of prediction, foresees the sta-
tus of network, and hence chooses an adaptive action to transmit data during periods
of good connectivity to save energy. The adaptive action can be pausing, stopping, or
continuing the file download.

In the above scenario, the power-management software adapts the network trans-
mission to the wireless link quality to save energy. The wireless link quality can be
measured using metrics like the SNR.

We take this scenario as an example and use the prediction techniques presented in
Section 2.6.3 to predict the value of the SNR. Specifically, we build an ARIMA model
which belongs to a class of models that are trained offline based on collected data sets.
In other words, the procedure for offline training is to fit an ARIMA(p, d, q) model to the
collected data sets. The output of the model fitting includes the orders of autoregressive,
differencing, and moving average, p, d, g, and the estimated parameter values of the
autoregressive operator, the moving average operator, and the intercept, ¢, 6, 1.

The whole procedure starting from data collection can be summarized into the
following six steps:

1. Data collection: We can log the SNR value at a fixed frequency on the phone, so
that a time series can be divided into time slots with a fixed length. The length of the time
slot is chosen so that the measured SNR value does not change more than once during
one time slot. For example, we connected the SNR values of a Wi-Fi access point while
walking around a defined path inside our office building. The path involves different
types of physical obstacle, like wall structures and glass doors, and interferences caused
by other wireless networks. We collected in total 12 data traces at different times during
three days, where the collection of each set lasted 17 minutes. According to our SNR
measurements sampled at 10 Hz, in the scenarios where the phones move with the
users at walking speed, the measured SNR does not change more than once in one
second. Hence, it would be accurate enough to sample SNR at 1 Hz in this scenario.
The collected data sets can be divided into two parts, one for offline training, and the
other for model validation.

2. Data transformation: Data smoothing is often used for working out future trends,
such as the trend in stock prices. However, for short-term prediction, like SNR
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prediction, it is less clear whether data smoothing still helps to improve the predic-
tion accuracy. In practice, a good approach is to apply data smoothing over the training
data set, and compare the prediction accuracy between the models using a smoothed
data set and the original training data set. Here we give an example of applying a simple
moving average algorithm for a time series data set smoothing. According to the mov-
ing average algorithm, from the collected N data points, we can perform averaging for
every w data set, where w is often called the window size. The general expression for
the moving average is given below.

M) = Xi+ X1+ + Xewrt (12.7)

w

In general, as the window size increases the trend of the smoothed data set becomes
clearer, but with a risk of a shift in the function. To choose an optimal window size,
we suggest performing smoothing with a varied window size and selecting the best one
with the minimum MSE of the residuals. The residuals are the differences between the
original values and the smoothed values.

3. Model fitting: 1dentifying the orders of autoregressive, differencing, and moving
average by observing the ACF (autocorrelation function) and PACF (partial autocor-
relation function) of the residuals. The ACF plot is a bar chart of the coefficients of
correlation between a time series and lags of itself. The PACF plot is a plot of the partial
coefficient between the series and lags of itself.

In practice, we first plot the ACF and PACF of the residuals of the prediction based
on ARIMA(0, 0, 0). We can see from Figure 12.11(a) that the series has positive auto-
correlation up to a high number of lags, which means it probably needs a higher order
of differencing. As shown in Figure 12.11(b), the PACF plot has a significant spike only
at lag 1 and the lag-1 autocorrelation is positive, meaning that all the higher-order auto-
correlations are effectively explained by the lag-1 autocorrelation. In this case, the lag at
which the PACF cuts off can be considered the indicated number of AR term. Similarly,
if the ACF of the differenced series displays a sharp cutoff and/or the lag-1 autocorre-
lation is negative, then consider adding an MA term to the model. The lag at which the
ACF cuts off is the indicated number of MA terms. More practical instructions of fit-
ting ARIMA models can be found from an online course? provided by Duke University.
Note that it often happens that different combinations of (p, d, q) give similar results
at this stage. For the data sets we collected in Step 1, we get three candidate models,
ARIMA(0,1,1) and ARIMA(1,0,1) for the original training data set, and ARIMA(2,1,0)
for the smoothed training data sets.

4. Parameter estimation: Estimating the parameters of the expected models that
obtain the minimum MSE is the next step. Here are the three models we obtain after
this step:

ARIMA(O0,1,1):

Y(O) =Y(t—1)—0.1142 x e(t— 1), e(t— 1) = Y(t — 1) — Y(t — 1) (12.8)

2 Website: http://people.duke.edu/rnau/411home.htm accessed March 7, 2014.
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ARIMA(1,0,1):
V(1) = 22.165+0.7797 x (Y(1— 1) — 22.165) — 0.0052 x e(t— 1) (12.9)
ARIMA(2,0,1):

Y(6)=Y(t—1)+0.7748 x (Y(t— 1) = Y(t —2)) — 0.015 x (Y(t— 1)
—2xY(t=2)+Y(t—3)) (12.10)

5. Model testing: 1t is important to apply the models obtained from the previous step
to the testing data sets and to compare the accuracy of the models. For example, we can
calculate the MSE, NMSE, and SER for each model. NMSE is a function of the MSE
normalized by the variance of the actual data. The smaller the MSE and NMSE are, the
higher the accuracy is. Conversely, the bigger the SER is, the higher the accuracy is.

MSE
E— . (12.11)
E[E(Y(t) — Y(1))*]

(12.12)

2
SER:IOlogm( ELY @] )

E[(Y(1) - Y(1)*]

6. Model selection: Finally, we select the model that provides the smallest MSE and
NMSE, as well as the highest SER. Table 12.4 shows the accuracy of the three candidate
models. ARIMA(2,1,0) with training based on the smoothed data set showed the lowest
accuracy compared to the models obtained from the original data sets. ARIMA(1,0,1)
fitted the testing data sets better than the others. Therefore, we chose ARIMA(1,0,1) for
online SNR prediction.

The predicted SNR can be used as the conditions for triggering the adaptation to
Wi-Fi data transmission. An example adaptive policy is controlling whether to pause
or continue data transmission based on the comparison of the predicted SNR and pre-
defined threshold values. The effectiveness of the adaptation depends on the tradeoff
between the energy overhead caused by the SNR prediction and the energy savings
made by increased network throughput. The former one is considered to be stable and
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Table 12.4. Comparison of prediction accuracy
among different models

Model MSE NMSE SER

ARIMA(0,1,1)  97.586 0.425  7.457
ARIMA(1,0,1) 89.263 0.389  7.844
ARIMA(2,1,0) 174452 0.760  4.934

Table 12.5. Classification of network conditions based on SNR statistics

Type Description

1 SNR mean is smallerthan 15; SNR threshold is set to 15.
SNR mean is between 15 and 20; SNR threshold is set to 15
and 20.

3 SNR mean is bigger than 20, and standard deviation of SNR

is smallerthan 5. SNR threshold is set to 20.
4 SNR mean is bigger than 20. and standard deviation of SNR
is not smaller than 5. SNR threshold is set to 15 and 20.

independent of network conditions, whereas the latter one varies with network scenar-
ios. To work out the impact from different network scenarios on the effectiveness of our
adaptation, we divide the experimental network scenarios into four types based on the
mean and standard deviation of SNR values. A description of each type can be found
in Table 12.5. The type classification is mainly due to the fact that in real-time network
measurements it is hard to get a stable SNR value.

According to our evaluation results, when SNR values are generally low, as in Type 1,
the increase in network throughput is significant, and hence the adaptation is profitable.
In the scenarios where the SNR values fluctuate heavily even though the mean of the
SNR is high, such as Type 4, the adaptation could also save energy to a certain extent.
If the network conditions are relatively stable, for example, in Types 2 and 3, when the
standard deviation is less than 5, there is not much advantage for the threshold-based
adaptation. Energy consumption could not be saved, but is wasted due to the energy
overhead caused by network adaptations. In addition to the SNR range, the selection
of the threshold has an impact on the effectiveness of our adaptation. For example, in
the network conditions of Type 2, when the threshold is set to 20, the pause duration
is close to 0. However, when the threshold is changed to 15, the adaptation becomes
more energy efficient. Hence, in summary, threshold-based adaptation is energy efficient
when network conditions fluctuate in a big range or remain in a relatively bad state. In
other words, when SNR values are generally low, such as lower than 15, or when the
standard deviation of the SNR values is large, network adaptations help save energy by
up to 40%.
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Scheduling multiple devices

So far, we have discussed how data communication should be scheduled for a sin-
gle device. It turns out that when multiple smartphones communicate using the same
network at the same time, new challenges arise. Specifically, interference from other
communicating devices using the same wireless channel is another source of extra
energy consumption that can be reduced through scheduling.

The problem of co-channel interference applies specifically to random access wire-
less networks, such as Wi-Fi that uses CSMA/CA, where no central coordination
between the communicating devices exists. In such networks, interference due to two or
more devices incidentally transmitting at the same time causes packet loss because the
transmitted signals add up to a signal that cannot be decoded by the receivers. Packet
loss requires retransmissions which consume energy.

Furthermore, random access requires channel sensing and the probability that a chan-
nel needs to be sensed several times before finding a free channel increases with the
number of simultaneously communicating devices. Energy is consumed each time the
channel is sensed. Energy-aware scheduling mechanisms for random access wireless
networks have been extensively studied and Wi-Fi is, understandably, by far the most-
studied technology in this context. We next look at the specific problems related to
energy consumption that arise in Wi-Fi communication and solutions to mitigate them.

Reducing Wi-Fi contention when using PSM

In addition to the sources of energy waste described above that are inherent to ran-
dom access networks, Wi-Fi exhibits particular issues related to scheduling due to the
power-saving mode (PSM) which is widely used nowadays. Luckily these issues can be
addressed to a certain extent with clever techniques as we will see.

The first problem stems from the way that PSM is designed to work. When a client
using PSM is asleep, packets destined to it are typically put to the end of the transmit
queue of the AP. When the client wakes up from sleep mode to active mode to receive
the beacon frame and learns that packets are waiting to be delivered, it sends a request
to the AP in order to receive the pending frames.

The problem is that the woken up client may need to wait for some time before
being served, if packets destined to other clients are ahead in the queue. Figure 12.12
illustrates this scenario. Upon the second beacon, Client 1 receive its frames quickly
because Client 2 had no frames buffered to it. However, after the third beacon, Client
1 needs to wait with the radio powered on and listening to the channel while Client
2 is being serviced. Energy is being consumed all that time. In this example, Client 2
is also using PSM but such contention may also happen for other clients that are in
continuously active mode (CAM), that is they do not use PSM. Prioritizing the traffic
of PSM clients would help reduce such contention when a PSM client competes with
CAM clients but it creates unfairness. In addition, that solution does not work when
multiple PSM-enabled clients compete over the channel.



260

Figure 12.12

12.5.2

Traffic scheduling

[] Asleep [l Beacon Il PS-poll | out
Idlerxon  EE Frame(s) tin

]

E—> !
Beacon interval

Access
point

Client 1

Client 2

Time

Contention adds to energy consumption when using PSM with Wi-Fi

Some modifications to the 802.11 standard have been proposed to schedule the PSM
clients in a time-division multiplexing (TDM) manner [17]. In this approach, the traffic
can be scheduled in a near theoretically optimal manner making sure that the clients do
not need to spend time listening to the channel. The downside of this scheduled-PSM
approach is that it requires changes to both APs and clients, which means that standard
off-the-shelf equipment cannot be used as such.

A technique called AP virtualization is supported by modern Wi-Fi APs and it can
be used to alleviate the problem with multiple PSM clients without modifying the stan-
dard 802.11 behavior. In brief, the solution consists of specifying different PSM beacon
schedules for different clients in such a way that the devices do not wake up a the same
time and, as a consequence, do not request the buffered packets from the AP at the same
time. NAPMan is a solution that operates in this way [18]. Some software changes are
required to the AP in this approach as well, but off-the-shelf clients can be used.

Reducing inter-AP contention in Wi-Fi

The second problem is related to dense Wi-Fi deployments. The IEEE 802.11 standard
specifies a set of different channels that can be used to avoid co-channel interference
between APs in close proximity to each other. Indeed, these APs do not need to hear
each other’s traffic so they can communicate on a completely different frequency. How-
ever, there are only a few completely non-overlapping channels, namely the channels
1, 6, and 11 in the 2.4 GHz band. There are more in the 5 GHz band, which is used by
802.11n/ac in addition to the 2.4 GHz band. For this reason, these same non-overlapping
channels are very frequently used in Wi-Fi deployments.

As a result, it is not uncommon for a Wi-Fi-enabled smartphone to overhear many
access points at the same time, for instance, in an office or home environment (e.g. in
an apartment building). A client associated with one of these APs faces interferences
from overhearing the communication of another AP or a client connected to another
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AP even if the communication of the clients of a single AP would be energy-efficiently
scheduled.

Of course, having identified the problem, it is possible to devise a solution for it.
A logical approach would be to extend the solution that reduces single AP contention
to multiple APs, which is in essence what SleepWell [19] does. It tries to identify the
periodicity (caused by PSM beacon schedules) of the APs it overhears and reschedules
its own PSM cycle so that they would minimally coincide with the others. Similar to the
single AP solution, this approach also requires some software changes in the APs but
again smartphones need not be modified.

Summary

In this chapter, we studied traffic scheduling as a way to improve the energy efficiency
of the wireless communication of a smartphone. We identified several scenarios where
scheduling can be used:

o Traffic shaping, where high-rate bursts are formed from lower-rate traffic through a
kind of buffer and release mechanism, is an effective way to improve the energy utility
(bits per joules) of wireless data communication. It is based on the fact that the higher
the data transmission rate, the higher typically also the energy utility. Tail energy is
spent only once per burst. It is applicable in situations where the data transfer would
not otherwise use all the available bandwidth at the wireless access link. In addition,
the application whose traffic is shaped must be such that delaying some of the packets
is not critical to the QoS. The amount of energy that can be saved depends on the
wireless access technology used, the amount of spare bandwidth available, and the
longest allowed duration for delaying packets, which directly influences the interval
between the bursts and their sizes.

® Scheduling background transfers is important with smartphones today because of
many chatty background applications that cause small amounts of data to be trans-
mitted sporadically, which is very energy inefficient. Examples of such applications
include those that require periodic synchronization and those that push some content
to the phones, such as social network applications. Also advertisements embedded in
mobile applications generate such traffic. If the amount of background traffic cannot
be reduced, the traffic can be either scheduled to overlap with foreground transfers or
can be bundled together to form larger bursts of traffic. Both approaches improve the
energy utility of the individual transfers.

o Context-aware scheduling can sometimes save a very substantial amount of energy.
This is because the energy utility of wireless data communication is highly dependent
on the load of the access network and on the quality of the connectivity, which both
vary with time and location. Network load affects the throughput achievable, while the
quality of the wireless connectivity, that is the signal strength, influences two energy-
related attributes: the over-the-air data rate through the modulation scheme selected
and the transmit power used. The biggest challenge in context-aware scheduling is
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knowing or being able to predict the periods of time when connectivity will be good
and energy efficiency of the data transfer will be high. Several schemes have been
designed to that end, some of which track the mobility of the user and try to learn
periods of good connectivity from the history, while others rely on direct probing. Yet
another approach is crowd-sourcing and sharing of the context monitoring.
Reducing Wi-Fi contention through scheduling is necessary due to the random access
nature of the channel access in the 802.11 standard. Contention can cause unnecessary
energy waste when a smartphone Wi-Fi network interface wakes up from sleep mode
to receive packets but has to wait because other devices are occupying the channel.
Two varieties of this problem can be found in typical Wi-Fi deployments: intra-AP
contention, where several devices compete for the resources of a single Wi-Fi AP;
and inter-AP contention, where the overheard neighboring APs cause completely
unintentional contention in the AP in question. Scheduling solutions to mitigate both
problems have been designed. The most attractive solutions can be used directly just
by adding support to APs without any change to the 802.11 standard protocols or to
the smartphones.
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13.1

13.2

Exploiting multiple wireless
network interfaces

In this chapter, we continue to look at the different ways to reduce the energy consumed
by wireless communication. Our focus is on how to take advantage of the fact that
modern smartphones include many different wireless technologies integrated under the
hood and can even SWITCH seamlessly between some of those.

How using multiple WNIs saves energy

Smartphones today contain many different radio technologies including Wi-Fi, Blue-
tooth, BLE, and cellular radios. As we learned in Section 7.3, using different WNIs can
cause quite different amounts of energy to be consumed. More importantly, the energy
utility of the different technologies vary substantially. For this reason, opportunities to
save energy arise by using the WNIs wisely.

Recall from Section 7.3 that energy is consumed in non-connected and connected
modes. The former essentially means discovering an AP or another device in order to
establish communication, while the actual data transfer happens in the latter mode. The
amount of energy spent in such a discovery process can account for a large part of the
total amount of energy consumed. Fortunately, the differences in the energy consump-
tion between the different kinds of radio can be used in that process. In addition, keeping
multiple radios continuously powered on in the smartphone is usually unnecessary. In
most cases, it is enough to have one radio active so that the phone remains reachable
at all times to be able to receive phone calls or incoming messages pushed by mobile
services.

Energy consumption can be optimized in both non-connected and connected modes
by the smart use of different radios. We look at both cases and highlight the discussion
with example solutions proposed in the literature. We group the different techniques
into three categories which are summarized in Figure 13.1. We discuss each of them in
the following sections. Toward the end of the chapter, we go through a more detailed
case study on traffic offloading and its energy benefits for smartphones.

Tracking movement to optimize the discovery energy

The first category includes techniques to assist Wi-Fi ap discovery. There are two
sub-categories, the first of which is tracking the movement of the smartphone. To
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understand why it can help save discovery energy, consider a phone that scans for
existing Wi-Fi APs periodically with a given fixed interval. Now think about your
movement patterns during a typical week day. Most people remain static most of the
time, which is why it makes no sense for the smartphone to continuously search for
new APs which do not move either. So, tracking mobility to perform an AP scan only
when the phone has moved to a different location can save a substantial amount of
energy.

There are different ways of tracking smartphone movement. A crucial point is that
this continuous tracking must consume in total less energy than periodic Wi-Fi scan-
ning. For this reason, using the default location services available in smartphones
today is too power hungry to save any energy. They usually rely on GPS, among
other techniques, which is very power hungry and does not work indoors. Further-
more, those location services available in smartphones that do not rely on GPS but
extract location information from cell tower IDs, for example, usually make queries to
online servers in order to map the extracted information into absolute location, that is
coordinates.

A less energy consuming way for movement tracking is to continuously inspect the
IDs and received signal strengths of the overheard neighboring cell towers of the cel-
lular network that the smartphone is connected to. When that set of cell IDs and their
relative signal strengths change significantly, the phone can infer that it has moved a
certain distance. Note that the difference to using normal location services is that in
this scheme the phone does not learn its absolute position but only relative displace-
ment, which is enough for the purposes of movement-based triggering of discovery.
Hence, the energy consumed in resolving the absolute location is saved. In addition, the
information about neighboring cells enables the phone also to detect already visited and
scanned locations to a certain extent in order to defer rescanning in such situations. This
technique is used by Footprint [1], for instance, and the nice property of it is that the
neighboring cell information comes almost without any extra energy consumption since
the phone is in any case always connected through the cellular network interface. The
downside of this approach is the fact that the movement estimation is dependent on the
cellular network deployment: If the cell deployment and configuration are dense, the set
of overheard neighboring cells changes after a shorter distance traveled compared to a
less-dense network. Therefore, configuring the system to optimally trigger a new scan
is challenging.

Another way to track the movement is by using the internal sensors of the smart-
phone. As we learned earlier, smartphones contain a number of motion sensors that can
be used to track the movement of the phone. In addition, using these sensors typically
draws relatively little power but it obviously depends on the rate at which they are pro-
viding measurement samples. Furthermore, accurate movement tracking requires sensor
fusion, which means getting input from several motion sensors, such as the accelerom-
eter and gyroscope, but coarser grained and less accurate information can be obtained
with fewer or just one sensor (e.g. accelerometer). So, there is an inherent tradeoff
between accuracy and energy consumption with this approach. WiFisense [2] is an
example of such a technique.
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Movement tracking is primarily applicable to reducing the energy consumption of
Wi-Fi scanning. In principle, it could also be used with other technologies, like Blue-
tooth or BLE. An interesting future use case is where a smartphone opportunistically
discovers BLE sensors deployed in different environments to provide contextual infor-
mation. Such a scenario requires the smartphone to continuously scan for these BLE
sensors and, therefore, movement tracking could help save energy. However, the mar-
gin for saving energy is much tighter in this case because BLE scanning consumes less
energy than Wi-Fi does, which means that the movement tracking must be done using
very little power.

Using hints from other WNIs

The second set of techniques is closely related to the first one and the objective is
the same: to reduce the energy consumption of the Wi-Fi discovery process. However,
instead of tracking movement, the idea is to extract different hints from other WNIs that
either use less power than Wi-Fi or that are already powered on and, therefore, introduce
no extra energy overhead.

A solution called Zi-Fi [3] detects the presence of beacons from a Wi-Fi AP using a
ZigBee radio. The insight is that both radios operate on the same shared radio frequency
band-the ISM (Industrial, Scientific, and Medical)-which allows the ZigBee radio to
overhear the Wi-Fi communication, although it is unable to decode its contents. So,
through clever processing of the received signal, the presence of the periodic Wi-Fi
beacons can be detected. Hence, a smartphone that has both kinds of WNI can keep
only the ZigBee powered on and switch on the Wi-Fi radio only when an AP presence is
detected. Current smartphones do not typically include a ZigBee radio, which obviously
undermines the use of this scheme. It is unlikely that a similar method could be applied
with Bluetooth because of its frequency-hopping channel access.

Another approach is for the smartphone to learn the AP locations and the location
signature from Bluetooth contact patterns, as is done by Blue-Fi [4]. The idea is that
different kinds of Bluetooth devices and peripherals exist in the environments visited
by a person during a typical day, and that continuously scanning these devices con-
sumes overall less energy than Wi-Fi scanning would. So, the first time that a phone
visits a location where it discovers a Wi-Fi AP and some Bluetooth devices, it memo-
rizes the Bluetooth contact patterns. Next time it would only use these patterns to infer
that a Wi-Fi AP should be present and Wi-Fi scanning should be performed. In addi-
tion, cellular network base station IDs are used to provide some hints to augment the
usability of the scheme for situations where few or no Bluetooth devices are present.
The drawback of this approach is that it requires training during which the Bluetooth
fingerprint database is created. It also needs to be maintained afterwards. Another chal-
lenge is mobile Bluetooth devices that may give misleading information about Wi-Fi
AP locations. Finally, the Bluetooth discovery process is also far from being energy
free.
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Sleep and wake-ups to reduce idle power

The third way that multiple WNIs can be used to improve energy efficiency is to reduce
the idle power. The idea is to power off idle radios or the whole device if they are not
currently in use but in such a way that one radio is kept powered on so that the phone
can still receive notification messages that will trigger another radio or the whole device
to wake up when, for instance, an incoming call is received.

Wake on wireless [5] is already a decade-old solution that introduced this concept.
It keeps only a low-power radio on while the rest of the device sleeps. When there is
an incoming call, this radio reacts to a wakeup message by waking up the rest of the
device that otherwise sleeps. This solution is not used by smartphones today and it is
mostly interesting from conceptual point of view. The concept itself could be applied
with other sets of radios as well, so that only the lowest power radio is kept powered on
to wake up the other radios on demand.

One specific way to apply this concept is to simply power off the Wi-Fi interface
and receive a notification through the cellular network when it should be switched on.
Cell2Notify [6] does this and the target application is VoIP over Wi-Fi. Whenever there
is an incoming VoIP call, the phone receives a notification via the cellular network
interface to wake up the Wi-Fi interface. There is a high chance that this scheme will
become obsolete in the near future when smartphones and LTE networks begin to use
voice over LTE (VoLTE) together with optimized DRX profiles.

The downside of this wake-up radio approach in general is that it requires interme-
diate proxies that handle the notification of the smartphone when there is an incoming
data packets or call.

Energy-aware wireless network interface selection

The fourth set of techniques optimize the energy efficiency of data transmission. The
energy savings come from dynamically selecting the WNI that is estimated to consume
the least energy for a given transaction.

There are a couple of factors that a well-working energy-aware WNI selection policy
must capture. As we have discussed before, the different WNIs do not generally have the
same kind of power proportionality. Therefore, among the WNIs available in a smart-
phone, there may not be single one that has the highest energy utility while transmitting
or receiving a specific amount of data as a bulk transfer. Instead, the best choice depends
on the amount of currently available bandwidth. Similarly, applications that throttle the
transmission rate may consume more or less energy over different WNIs, depending on
the enforced data rate. For example, a relatively low-bit rate audio stream may be the
most energy efficient to receive using Bluetooth, whereas a high-quality video stream
would be best to receive using Wi-Fi. In addition, other factors such as signal strength
should be accounted for.

For the proposed solutions, CoolSpots [7] makes decisions dynamically between
using Bluetooth or Wi-Fi; Context-for-wireless [8] switches between cellular (3G) and
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Wi-Fi networks; and Wizi Cloud [9] considers Wi-Fi and ZigBee WNIs. The challenge
for CoolSpots and Wizi Cloud deployment is that they require Wi-Fi access points to
integrate a Bluetooth or a ZigBee radio. Context-for-wireless, on the other hand, relies
on historical data which means that some amount of training for the system is necessary.

Use case: Energy awareness in mobile traffic offloading

In this section, we continue the discussion on using different WNIs in smartphones
with a detailed treatment of a specific use case. We look at techniques and examples for
saving energy through mobile traffic offloading.

The primary purpose of traffic-offloading solutions is usually to alleviate traffic
load from one network by automatically rerouting it via another network. In mobile
communication, the most common scenario is to offload traffic from a cellular net-
work to a Wi-Fi network. However, since smartphone battery life is crucial to the
user experience, energy awareness of the traffic-offloading solutions plays an impor-
tant role in the successful adoption of offloading solutions, as acknowledged by recent
research [10, 11, 12, 13].

In this section, we first explain the basic concepts of mobile traffic offloading after
which we illustrate the core issues in mobile traffic offloading from the energy per-
spective and discuss feasible approaches for improving the energy awareness in mobile
traffic offloading.

Mobile traffic offloading

Cellular networks are suffering from the tremendous growth of mobile data traffic in
recent years [14, 15]. The pressure has driven operators to search for solutions that can
alleviate network congestion and fully use the existing network resources. Recent stud-
ies suggest that mobile traffic offloading is a feasible approach to alleviate this problem
by using complementary communication technologies, such as Wi-Fi and femtocells, to
deliver traffic originally targeted for cellular networks [16, 17, 18, 19].

The key enabler for mobile traffic offloading is the rapid evolution of wireless com-
munication technologies. As we have already discussed in earlier parts of the book,
smartphones now include a rich set of communication technologies, such as Wi-Fi,
HSPA, LTE, Bluetooth, and BLE. On the network side, mobile operators are upgrading
to LTE and LTE-advanced (4G), and Wi-Fi and femtocells are gaining popularity in
metropolitan areas to offer diverse and convenient wireless access.

Traffic offloading requires that there is a suitable match between availability and
demand for network capacity at the right time and the right place. Therefore, the
deployment and performance of different wireless networks, user mobility, and traffic
characteristics generated by application usage are key components in determining the
applicability of a given traffic-offloading scheme. The typical mobile traffic offloading
scenario consists of six main steps:
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1. Offloading Initiation: The offloading procedure can be initiated by the network side
(network-driven offloading), or the smartphone (user-driven offloading). Network-
driven offloading is often triggered by dedicated signaling protocols, such as router
advertisement, enabling operators to dynamically manage and balance their traf-
fic load. User-driven offloading is triggered by applications that need to access the
Internet for content, which is based on the demand of the user.

Network-driven offloading introduces overhead in terms of extra signaling and
potential energy cost, but it can offer timely and optimized offloading guidance based
on the comprehensive knowledge from the network side, that is the network structure
and condition. On the other hand, user-driven offloading avoids the extra signaling
cost but lacks the network context and is less efficient for users moving at high speed,
for example, driving or cycling.

2. Context Collection: The context information is essential for mobile traffic offloading,
especially as input for the offloading decision. Users can obtain context information
either from network operators or from the surrounding access environment. The key
information includes the user location, network access condition (e.g., SNR of Wi-Fi
access points, wireless fingerprint information [20]), potential offloading targets, and
connection detail (e.g., ESSID or MAC addresses)).

The collected context information will be fed to either remote/cloud controlling
servers or local management components. For the remote option that uses the cloud
support, a dedicated signaling channel is required, such as cellular data connection.
Therefore the proposals relying on remote support are limited by the channel condi-
tion, especially when such a channel is congested or the infrastructure suffers from
instability due to technical issues. This also affects the scalability due to the depen-
dence on a centralized entity. Compared to the first option, the local solution does not
depend on external entities. However, by relying solely on local resources, context
information can be incomplete or less accurate compared to the remote option.

3. Offloading Decision: The decision process involves computation according to the
pre-defined algorithm or operation logic, and delivering control messages to mobile
users to carry out offloading. By taking the context information as an input, an
offloading decision can be made either at the network side or using local resources
on the mobile device.

By offloading the computation to the network side, we can improve efficiency in
terms of energy and latency for using the powerful hardware. However, this approach
depends heavily on the infrastructure support. On the other hand, a local decision can
be more flexible and robust to network conditions, but at the cost of local resources
such as energy. The local operation also suffers from the limitation that there is no
external knowledge available to improve the accuracy of offloading decision.

4. Network Association: Based on the offloading decision, mobile devices need to
perform network association to enable traffic offloading. The association process
includes access/peer discovery via a pre-defined configuration protocol, such as
DHCP and DNS, to establish connectivity with the target offloading networks.

When users are moving at high speed, the connectivity period for offloading is
often short. This demands an efficient association at both hardware and software
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levels supported by optimized protocols to avoid an excessive cost of association,
which will decrease the time for data transmission.

5. Data Transmission: As the key part of mobile traffic offloading, data transmission
determines how much data can be offloaded from the congested cellular networks to
improve the overall service quality. Depending on the types of data traffic (e.g., real-
time streaming, delay-tolerant traffic, web surfing), the offloading design can use the
traffic characteristic for optimization.

In the short period of offloading, which is typical for mobile users, the bandwidth
and condition of networks can greatly affect the offloading efficiency, that is, the
amount of data offloaded against the data volume that would flow to the cellular
network otherwise [17]. At the same time, offloading design should also take into
account the hardware limitation on mobile devices, such as wireless antenna.

6. Offloading Termination: A successful offloading session must end with terminat-
ing the temporary offloading connection and smoothly switching to other available
networks to continue the data communications. It is important to keep the data flow
uninterrupted and hence deliver a satisfying user experience. The prior research work
on handover mechanisms have illustrated how to seamlessly migrate from one access
network to another [21, 22, 23, 24].

To enable efficient and smooth termination, guidance can be obtained from either
the network side or local heuristic prediction to spot potential connectivity [25, 26,
27]. The termination process is also one of the key factors affecting the adoption of
mobile traffic offloading.

Energy consumption in mobile traffic offloading

The impact of mobile traffic offloading can be evaluated from two aspects, the net-
work (operator) perspective and the user perspective, and the ultimate goal is that
both network operators and users benefit from it. The network operator is concerned
about the offloading efficiency, that is, to offload as much traffic as possible to allevi-
ate the pressure of cellular networks, whereas a key factor from the user perspective
is the smartphone battery life. While much of the earlier work in traffic offloading
focused on the network perspective, more recent studies have also considered the user
perspective [10, 11].

We break down the problem domain and analyze the energy cost in each step of
offloading. The major concerns are highlighted as follows:

1. In the initiation phase, if offloading is triggered by the network, signaling consumes
energy. If signaling messages are delivered too frequently with large volume of
data, such unintentionally recurrent interactions can promote the cellular network
interface state and lead to excessive draining of the battery [28]. The problem is
comparable to the case of background traffic. On the other hand, the user-driven ini-
tiation can not benefit from the proactive guidance but it does not consume extra
energy in this phase.
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Table 13.2. Measured energy consumption of 20 MB data transfer

Nexus S N900

Throughput  Energy  Throughput Energy

Cellular  1.99 Mbps 65.40J 1.89Mbps 109.41]
Wi-Fi 0.302Mbps  191.7]  0.422 Mbps 116.0J

Table 13.3. Average measured power (watt) for cellular Pge; and Wi-Fi Py, and energy consumption
(joule) related to mobile traffic offloading: Ey _on, and Ey. o for turning Wi-Fi on and off, E,ss, for network
association, Es, for Wi-Fi scanning, Egps for GPS positioning, measurements repeated ten times

Device PCell PWiFi EW.U}’L Easso EW_nﬁ‘ E.vcan EGPS

Nexus S 0.891+0.02 0.6584+0.16 0.27£0.02 0.25+0.05 0.29£0.02 0.27+0.02 10+£1.3
N900 1.10+0.02  0.645+0.02 0.184+0.03 0.28+0.13 0.13+0.02 0.53+0.08 4.0+1.3

2. The context-collection phase has to be done carefully too. As we discussed earlier,
frequent scanning of available networks consumes a significant amount of energy. If
GPS is used, a cold start may take around 20 seconds and consume ~6.30 joules [10].
If the context information is delivered to a remote server, it also costs energy.

3. In the decision-making phase, if the computation is done locally, the computational
complexity of the algorithm determines the energy consumption. If the computation
is offloaded to cloud, the data communication due to the exchange of context and
decision messages consumes energy. We discuss computation offloading in more
detail in Chapter 14.

4. In the association phase, the connection establishment that involves various hard-
ware and protocol operations can consume a non-negligible amount of energy. For
instance, DHCP alone can consume 4.8 joules [10]. Therefore, when the smartphone
user moves at a high speed, the frequent associations accelerate the smartphone
battery drain.

5. We learned earlier that wireless communication is not power proportional to the data
rate. Therefore, in the data-transmission phase of traffic offloading, the amount of
available bandwidth greatly affects the energy consumption. By taking Wi-Fi-based
offloading using the Nexus S as an example, as shown in Table 13.2, when Wi-Fi
throughput is lower than the cellular access, offloading cellular traffic to Wi-Fi can
double the energy consumption.

6. The termination phase should be handled in a timely manner. Otherwise, periods of
poor connectivity and low bandwidth may cause much more energy to be consumed
unnecessarily for data transmission.

To get a better understanding of the energy consumption in traffic offloading, we
show in Table 13.3 the typical energy expenditures in Wi-Fi-based offloading.



274

Figure 13.1

13.6.3

Exploiting multiple wireless network interfaces

(a) Amount of offloaded traffic (b) Offloaded duration
T 8000 ; : : : 30 ‘ ‘ ‘ ‘ ‘
= 7000 - Netbook — ] P 1
= Smartphone—— =
T
o 6000 - 1 o€
el o 20 + 4
2 5000 1 E3 0
© °c 2
‘4000 1 cc 15¢ B
g o8
:; 3000 / 1 £% 1wl i
€ 2000 ¢ 1 25 Netbook ~ ——
3 1000 [ 4 ° 5r Smartphone—— 7
S .. S
0 2 4 6 8 10 0 2 4 6 8 10
Experiment index Experiment index

Offloading performance at driving speed

In the practice of traffic offloading, the offloading solutions that focus on maximizing
the offloading efficiency may not always be able to reach their goal. One main reason
comes from the fact that many existing mechanisms are based on experiments on laptops
connected to a vehicle power supply. As shown in Figure 13.1(a), there is a clear gap
between netbooks and smartphone-alike devices in terms of network performance.

For wireless communications, it is well-known that the antenna plays an important
role. For example, a measurement study in the US [29] reported that a 12 dBi antenna
provides better connectivity than 5 and 7 dBi antennas. Eriksson et al. [30] also found
that mounting an external antenna on the roof of a car can significantly increase the
signal strength of received Wi-Fi frames to gain better performance. However, due
to the limited size of smartphones, it is very challenging to use external antennas.
Figure 13.1(b) demonstrates that smartphones clearly have a shorter window of connec-
tivity available for traffic offloading compared to netbooks, which suggests that traffic
offloading is more challenging with smartphones than with netbooks, especially when
moving at high speed.

Enabling energy awareness in mobile devices

We next look at different approaches to enabling energy awareness in mobile traffic
offloading, which would benefit users by extending the smartphone battery life while
still providing a desirable outcome from the network operator perspective. Because the
traffic-offloading process involves multiple entities, including cellular network opera-
tors, alternative wireless access network providers, and end users, it is necessary to
establish collaboration among these entities. We summarize the viable approaches to
enable energy awareness in mobile traffic offloading in Table 13.4.

For offloading initiation, it is crucial to avoid frequent network signaling with a large
payload that can lead to extra energy consumption due to the change of cellular radio
status [28]. To benefit from the network support and to support dynamic traffic manage-
ment, an adaptive scheme that combines the user-driven and network-driven initiation
is recommended. Such a scheme strikes a balance between the efficiency and energy
consumption [10, 13].

In the context-collection phase, constant scanning must be avoided if possible
because of its high energy consumption on mobile devices. Due to the relatively high
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Table 13.4. Approaches to enable energy-aware traffic offloading

Phase Recommendations

Offloading 1) Avoid frequent signalling from network side that
Initiation triggers cellular status change.
2) Combine the user-driven and network-driven in
a adaptive manner to improve efficiency.

Context 1) Avoid unnecessary scanning and frequent GPS operation.
collection 2) Use energy-efficient positioning mechanism such as
Wi-Fi fingerprinting.
3) Adapt the context management for both local and
remote processing to strike a balance.

Offloading 1) Use energy-aware algorithm to guide the decision.
decision 2) Adopt dynamic mechanism (e.g., machine learning) to
making update the logic according to the network condition.
3) Use the cloud support to offload the energy cost from
intensive computation.

Network 1) Avoid time-consuming association operation or protocol.
association ~ 2) Use guidance from the network side if possible to
assist authentication and access connectivity.

Data 1) Adopt optimization schemes for
transmission different types of traffic (e.g., delay-tolerant, streaming).
2) Avoid transmission over unstable or low throughput wireless
links by predicting the user mobility and network
condition.

Offloading 1) Use the hints if possible from either the networks or local
termination controller for switching between connections.
2) Avoid frequent termination that can shorten the
data transmission time.

energy consumption and the long latency to obtain a fix from the coldstart, the GPS use
in traffic offloading needs to be assisted by an energy-efficient design, such as using
techniques proposed in [31, 32]. To support energy-efficient positioning, Wi-Fi-based
positioning can also be used as an alternative. For context processing and management,
sharing the load between local devices and remote servers is recommended, as this fully
uses the knowledge of the access network and infrastructure, as well as the computing
resources of both sides.

Energy consumption must be a key factor in making traffic-offloading decisions. In
such decision-making, dedicated energy-aware algorithms can be used together with
other factors, such as offloading capacity and network performance. For example, when
the throughput over the cellular network increases, the energy savings achievable by
offloading traffic to other networks obviously decrease because of the increased energy
utility of the cellular network access. One such energy-aware algorithm is presented
in [10]. Due to the fast change of network conditions, the energy-aware offload-
ing decision needs to be adaptive. To save energy consumed in computational work,
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offloading intensive computation load, such as mobility predication, to the network side
is recommended.

To minimize the time spent in the association phase, using light-weight configuration
protocols and avoiding the ones that require complex message exchange is recom-
mended. To assist authentication, network support can be used to deliver configuration
information [25, 22].

For the data-transmission phase, the first recommendation is to adopt an optimization
technique tailored for the characteristics of different types of traffic and thus maxi-
mizing the transmission throughput during the offloading period. For instance, data
batching and energy-efficient scheduling of delay-tolerant traffic can effectively amor-
tize the penalty caused by tail energy, as we discussed earlier. Plenty of optimization
schemes have been proposed in the literature [16, 33, 18, 19, 10, 12, 34, 35]. The sec-
ond recommendation is to avoid using unstable or low throughput wireless links by
estimating the network condition and user mobility. Several techniques related to this
have been proposed in the literature [25, 26, 33, 36].

Since the offloading termination affects the data transmission and service quality,
we can achieve energy saving by using proactive approaches to plan the termination
and apply efficient handover schemes to ensure service continuity. Examples of such
approaches are presented in [16, 25, 21, 22, 23, 24]. To avoid the frequent unneces-
sary terminations that degrade the transmission performance, using the knowledge from
the network side (e.g., network setup and position of APs) combined with mobility
prediction techniques is recommended.

Conclusion and outlook

Mobile traffic offloading provides a promising way to alleviate the pressure on existing
cellular networks overloaded by data traffic and it is gaining support due to the rapid
growth of mobile data traffic. By making the offloading process energy aware, it is
possible to improve the user experience by extending the smartphone battery life.

Some open problems in traffic offloading remain and we believe they merit further
investigation. First, how to use available resources on mobile devices (e.g., sensors)
and particularly how to benefit from the support from the network side? Second, how
to enable effective collaboration between peer mobile users and mobile networks,
including cellular and, for instance, Wi-Fi providers? Third, how to extend the traffic-
offloading concept to also encompass OnLoading, opportunistic onloading of traffic to,
not from, cellular network, which has recently been shown to be beneficial in certain
scenarios [37, 38]?

Summary

In this chapter, we discussed the possibilities for using the multiple WNIs of the smart-
phone in a clever way increase the energy efficiency. We discovered that the following
sets of techniques can be applied to that end:
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o Assisted Wi-Fi AP discovery can help save a significant amount of energy by reducing
unnecessary scanning by the smartphone. We identified two kinds of technique which
both have the same objective: to trigger Wi-Fi scanning only when it is possible or
even likely that a new AP is in range. The trick is to use other wireless communication
technologies that consume less energy than Wi-Fi or that will be powered on anyway
(i.e., cellular network). The first approach is to track the movement of the smartphone
user, by monitoring the set of overheard cellular network base stations, for instance,
and to trigger a scan only if the user has moved to a new and significantly different
location. The second approach is to use other wireless communication technologies
integrated within the smartphone. For example, Bluetooth contact patterns can be
used to learn the locations of APs and to use that information afterwards to trigger the
scanning.

e Using wake-up radios is a concept where a low-power radio is kept powered on
and other high-power consuming radios are completely switched off during peri-
ods of no communication. Notifications are then received by the low-power radio
when higher-power radios should be turned on to receive a call or incoming data
traffic. The downside of these solutions is that a specific notification service, often
deployed in proxies, is necessary. In addition, the idle power drawn by the WNIs
is becoming increasingly optimized, which may render these kinds of solution
unnecessary.

o Energy-aware selection of WNI for data transmission has the potential to save energy
because of the differing characteristics, especially in terms of energy utility of data
transfer, of the wireless communication technologies deployed in smartphones. The
idea is simply to select the most energy-efficient technology available for transmitting
or receiving a given amount of data. One specific challenge in this selection process
is the contextual dependency of the energy efficiency of wireless data communica-
tion, which we discussed in the previous chapter. This dependency implies that the
selection policies cannot always be static but must measure or predict the context at
runtime and take that into account.
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14.1

Mobile cloud offloading

A seemingly straightforward way to conserve the battery life of a mobile device is to
migrate application execution partially to a cloud. This technique is called offloading
or sometimes cyber foraging. Offloading computationally-expensive processing from
smartphones onto more powerful servers has been widely discussed in the literature.
In this section, we introduce four frameworks (MAUI [1], ThinkAir [2], Cuckoo [3],
and CloneCloud [4]) that allow mobile applications to dynamically migrate part of their
execution from the smartphone to the cloud. These frameworks have been developed to
offload CPU-intensive tasks. We call it computation offloading. Note that most popu-
lar mobile applications also involve network communications, which in fact consume a
significant part of the overall battery life. Hence, it is justified to ask: Can offloading
techniques help save energy, if applied to such applications? To answer this ques-
tion, we also discuss communication offloading, a technique that focuses on reducing
communication costs through offloading.

Computation offloading

Offloading computationally-expensive processing (such as speech recognition, face
recognition, language translation, and 3D modeling) from smartphones onto more pow-
erful servers has proved to be useful for improving performance and energy efficiency.
Take face detection as an example, Simoens et al. [5] implemented a video-sharing
application in which faces detected from the video captured by mobile devices were
first blurred before the video was shared. The authors partitioned the program that face
detection, a compute-intensive function, was offloaded from mobile devices to a nearby
four-core server. According to their power measurement, processing one 1080p video
frame using the face detector provided by Android SDK takes on average 3.2 seconds
and costs 9.0 joules on a Samsung Galaxy Nexus 19250. This means a fully charged bat-
tery will be drained by continuous face detection within 3.5 hours. By offloading face
detection to the remote server, the throughput of face detection increases 10 times, with
the cost of face detection removed from the phone. Although uploading images from
a smartphone to the remote server causes an overhead, the overhead is much smaller
compared to the energy savings gained from offloading.

In the above example, the system was implemented following the client-server archi-
tecture. Developers manually divide the functionalities into two parts, one for local
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execution and the other for remote execution of compute-intensive function. The first
part is implemented in the application client, while the other part is implemented in the
application server. The client and server can be written in different programming lan-
guages and are not necessarily run on the same operating system. However, the client’s
code can only be executed locally and cannot be migrated to the server at runtime. In
other words, what to run remotely is predefined and hardcoded.

Because there are already thousands of mobile applications available in application
stores like Google Play, we ask the following questions. How to use the comput-
ing power in the cloud to improve the performance and energy efficiency of those
applications that are originally designed for single-machine execution? Instead of re-
implementing these applications as described in the above example, can we find a way
to enable computation offloading with minimum work? Due to the potential network
disconnection and communication overhead caused by data exchange between client
and server, offloading is not always feasible and profitable. What would be needed to
implement context-aware dynamic offloading?

In this section, we discuss the energy tradeoff of computation offloading, and intro-
duce four representative offloading frameworks, including MAUI [1], ThinkAir [2],
Cuckoo [3], and CloneCloud [4]. These frameworks enable fine-grained offloading
from a smartphone to its device clone in the cloud. A device clone can be a virtual
machine of a complete smartphone system, such as an Android emulator for an Android
phone. So far none of the existing frameworks can work across Windows, Android,
and i0S. MAUI supports only applications written for the Microsoft NET Common
Language Runtime (CLR), while ThinkAir, Cuckoo, and CloneCloud are designed for
Java Applications written for Android. Although these frameworks apply to different
application-level virtual machines, the work flow they follow to implement offloading
is still similar. Except CloneCloud, the other three frameworks require modification to
the source code of mobile applications. To make it easy to explain, we first describe
the workflow using MAUI-like frameworks as examples, and then give a description of
CloneCloud in a separate section.

Computation offloading energy considerations

To analyze the energy benefit of offloading, we need to determine the energy compo-
nents that comprise offloading. The offloading of a mobile computing task is a tradeoff
between the energy used for local processing and the energy required for offloading the
task, uploading its data, and downloading the result, if necessary. The offloading energy
tradeoff can be expressed by the formula

Etmde = Elocal - Edelegale > 07

where Ejy4 is the energy used for complete local execution and Egejeeare i the energy
used from the perspective of the mobile device if the task is offloaded. If E;, 44, is greater
than zero, then there is an energy benefit in delegating the task to the cloud. We can
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break down Ej,.; into the power used for local execution Py, and the time taken, 7:
Elocal = Px X Tx~

Egelegate, the cost of delegating the task to the cloud, combines the energy spent sending
the task and data to the cloud, Ej, idly waiting for the cloud to complete the task, E;,
and receiving the result of the task, E,:

Edelegute =E+E+E,.

Since E = P x T, each energy variable can be broken down to the corresponding average
power, P, and time duration, 7. This is shown below:

EdelegateZPsXTS"'PiXTi"'PrXTr-

In an optimal case, 7; could be minimized by spending the idle time performing other
scheduled tasks, but this may not always be the case. The energy spent for data transfers
could also be mitigated by scheduling offloading to coincide with other tasks that require
network connectivity, such as VoIP or SIP calls. Here we consider the unmitigated case.

Finally, when we take into account the amount of data to be sent and received, D, and
D,, and the sending and reception bandwidths, B, and B,, the trade-off formula becomes

D; D,
Eiage =Py X Ty —Pi x T; = Py— — P,— >0
B; B,
where P, x Ty, P; x T;, Pg, and P, depend on the local and cloud platforms. It can now be
seen that a higher local execution time and a larger gap between local execution power
and idle power increases the benefits of offloading the task, while a smaller bandwidth
and higher amount of data to be transferred result in offloading becoming less attractive.

Note that the network and data transfer latency and other delays are included in the
bandwidth in this formula. We do not consider such delays separately.

Notice that the tradeoff is positive when

Dy D,
P.xT,>P; x Ti+PSB—S +P,B—r

or

Dy
P,C><TX>P,'><T,<+B—‘PY (14.1)

if no data needs to be received by the mobile device, and
Dy
Px X Tx > B_Ps (142)

if we assume the idle time is negligible or that the cloud platform is fast compared to
the mobile device.
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In summary, when considering offloading a computing task, the main factors are the
time spent executing the task locally and the time taken sending the task and its data to
the cloud and receiving the result. The cloud platform is often hundreds of times faster
than the mobile device, which makes the time waiting for the result negligible. In good
network conditions, offloading is often preferable. Tasks with small data requirements
can be offloaded in worse network conditions as well.

Constraints for remote execution

The first step of code offloading is to identify the partitions that can be executed. There
are two types of constraints that prevent code from being executed remotely. We call
them hardware constraints and software constraints. Hardware constraints refer to the
code that require access to the hardware of the local device. It can be the code that reads
data from on-device sensors such as GPS receivers, accelerometers, and the compass,
or the code that implement the user interface, such as getting input from keyboards,
showing text messages on the display, and vibrating the phone. Saarinen et al. [6] went
through the Android system APIs and identified a set of 20 constrained subsystems. If
a method accesses one of the subsystems included in the set, the method is considered
to be non-offloadable.

Software constraints refer to the code partitions that cannot be migrated to the cloud
at all due to the requirement of the offloading framework in use, or the partitions that
cause unexpected behavior when executed remotely due to inconsistent states between
local and remote execution environments. The framework-specific requirement is usu-
ally related to serialization, callbacks, and stateless issues. Take ThinkAir as example,
if the encapsulating class of a method is not serializable using Java’s serialization APIs,
or if a method accesses a state outside the serialized context, the method in question
is considered to be non-offloadable. Similar constraint can be found in Cuckoo. Some
methods could be modified to be serializable with minor changes, but in practice not all
the code can be easily modified to implement the serializable interface.

Regarding unexpected behavior, Saarinen et al. [6] give an example scenario where
ThinkAir does not synchronize the file system between a smartphone and its device
clone in the cloud, and when the program tries to access files, unexpected behavior
may happen. A potential solution to the synchronization issue is a system which auto-
matically synchronizes all relevant states. This is notably a hard problem on its own.
Until efficient automatic solutions are presented, the developer must be assisted in
overcoming the problems manually.

At the moment most offloading frameworks, including MAUI, ThinkAir, and Cuckoo,
require developers to manually go through the source code and check if the methods or
classes are constrained from offloading. This procedure is non-trivial. It may include
many cycles of trial-and-error and the only way to know whether all issues have been
resolved is to test the application to see whether it works correctly or not. It is essential to
have tools that can automate this procedure and guide the programmers into developing
more remotable code. An example of such tools is SmartDiet [6], a static source-code
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//original interface //Iremote service interface

public interface IEnemy public interface IEnemyService

[remotable]bool SelectEnemy(int x, int y); MAUIMessage<Appstate, bool> SelectEnemy (AppState state,

[Remotable]void ShowHistory(); int x, int y);

void UpdateGUI(); MAUIMessage<AppState, MauiVoid> ShowHistory(AppState
state);

Example annotation of remotable methods using MAUI [1]

analyzer which identifies the methods that cannot be offloaded using ThinkAir. More-
over, SmartDiet can suggest minor changes that can be made to the code to allow more
methods to become remotable.

Program partitioning and execution runtime

The previous section explains how to work out whether the methods or classes are
offloadable or not. Offloading frameworks, including MAUI [1], ThinkAir [2], and
Cuckoo [3], require developers to manually annotate these remotable methods or
classes in the source code, following the framework-specific rules. The annotations
will be automatically identified by the framework during runtime. Take MAUI as an
example, it uses the custom attribute feature of the Microsoft .NET CLR for identifying
remotable methods. In practice, developers simply add the [Remoteable] attribute to
each method that can be executed remotely. An example can be found in Figure 14.1.

The MAUI framework automatically generates a wrapper for each method with the
remotable attribute. Compared with the original method, the wrapper adds an addi-
tional input parameter and an additional return value. These two values are used for
transferring the state between the mobile device and the cloud. At compile time, the
source code of the Microsoft .NET CLR applications is translated into Common Inter-
mediate Language (CIL) and assembled into an object code that is not platform or
processor-specific.! The object code is dynamically converted into native code by CLR’s
just-in-time compiler at runtime. Note that the executables that contains the object code
must be available on both the smartphone and the MAUI server before the application
starts.

As shown in Figure 14.2, when the remotable methods or classes are triggered to run
remotely, the framework can take care of the necessary code, data, and program state
migration between mobile devices and the cloud.

In summary, the offloading frameworks provide at least the following features:

¢ automatically identifying which methods or classes have been marked as remotable,
e supporting the execution of the same program on different CPU architectures, if the
smartphone uses a different CPU architecture to the remote surrogate, and

! CIL is a CPU-and platform-independent instruction set that can be executed in any environment supporting
the Common Language Infrastructure (CLI), such as the .NET runtime on Windows.
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¢ automatically transferring code, data, and the state of the running program between
smartphone and the cloud.

Similar to MAUI, ThinkAir [2] requires developers to annotate the remotable meth-
ods with @Remote. At compile time, the ThinkAir Remote Code Generator generates
wrappers for the remotable methods. As most mobile devices are ARM-based but not
x86-based, ThinkAir also provides a customized NDK to support the execution of native
methods on the cloud. At runtime, if the Execution Controller decides to offload the exe-
cution of a remotable method, the Java Reflection feature is used and the calling object
is sent to the device clone in the cloud. The smartphone waits for the execution results
and the modified local state to be returned. If the remote execution fails, the ThinkAir
framework falls back to local execution.

Cuckoo [3] uses the activity/service model in Android for identification. Develop-
ers define the compute-intensive parts to be offloaded as services, using an interface
definition language (AIDL). The interactive parts of the applications are implemented
as activities. For each local service implemented by the programmer, Cuckoo gener-
ates a dummy method implementation of the same interface for a remote service. After
that, developers must replace the dummy method implementation with a real method
implementation that will be executed remotely. At runtime, activities can communicate
with services through Inter Process Communication, using the predefined interface and
a stub/proxy pair generated by the Android Pre Compiler.

CloneCloud [4] takes this a step further by automating the application partition-
ing without modifying the application. For CloneCloud, developers do not need to
write code in a specific way and partitioning can be done directly for the application
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executable instead of the source code. More details of CloneCloud can be found in
Section 14.1.5.

Runtime context profiling and decision-making

After discovering what can be offloaded (see Section 14.1.2) and making the necessary
modifications to the source code following the requirement of the offloading framework
(see Section 14.1.3), the next step is to determine whether it is profitable in terms of
performance and energy efficiency to execute the offloading. Offloading can reduce the
computational cost on the mobile device. There is a caveat, though. The operations
of offloading cause extra communication between the mobile device and the remote
system, which also consumes energy. Only when the reduction in computational cost
overtakes the increase in communication cost can the offloading achieve energy savings.

The timing constraints and the complexity of offloading should also be taken into
account when deciding whether to offload. Taking timing constraints as an example, the
added delay caused by exchanging data should be less than the reduction in computation
duration (offloading to a more powerful machine). Otherwise, users might experience
the offloading as a slowdown of the application.

Some offloading frameworks, like MAUI, provide profilers for continuously mon-
itoring the runtime system and the environment. Based on the profiling information,
the frameworks can estimate the energy costs based on predefined power models. As
offloading can be implemented at various granularity levels, we can accordingly decom-
pose the software into functional units at the corresponding granularity level and then
apply appropriate models to estimate the energy cost of each functional unit. The com-
putational cost of each software functional unit can be modeled statistically based on
power measurement or be derived from usage-based power models. For example, the
profiler included in MAUI estimates the CPU cost based on a linear power model using
least-squares linear regression. The linear model predicts the power consumption as a
function of the number of CPU cycles required to execute the method in question.

The transmission cost can be estimated using the power models based on traffic statis-
tics, such as the number of bytes transferred and the network throughput. It is important
to understand that these models are dependent on the network conditions, which can be
described using metrics such as round-trip time, SNR, and the available network inter-
faces (e.g. 3G or Wi-Fi). Such metrics need to be continuously monitored and they may
have a heavy impact on whether offloading a given piece of code is profitable or not
from the perspective of energy consumption. For MAUI, for each method, the profiler
measures the runtime duration, the CPU cycles required, the size of data potentially ref-
erenced by the method, and the amount of traffic caused by state transfer. The last two
metrics are used for estimating the transmission overhead.

CloneCloud

To lower the burden on programmers, Chun et al. proposed a system called
CloneCloud [4] which enables automatic application partitioning without modifications
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to the source code. Given an application executable, a component of CloneCloud called
the static analyzer first identifies possible migrating points in the code according to a set
of constraints. For example, migration can only be triggered at the boundaries of appli-
cation methods. The migrated methods are allowed to invoke native methods, whereas
the migration of native methods and state is not allowed. To avoid nested migration,
the static analyzer builds a static control-flow graph which describes the caller—callee
method relation of the application. If a migrating point is placed at the entry point of a
method, no more migrating points can be placed before the re-integration point at the
exit of this method.

Which migrating points to choose is pre-computed by a standard integer linear pro-
gramming solver that tries to minimize the expected cost of the partitioned application.
The solver takes the execution conditions as input, and outputs a partition configuration
that shows the chosen migration and re-integration points in the code. It estimates the
cost of execution time and energy consumption based on predefined cost models. These
models are constructed from the data collected by the dynamic profiler while running
the application under different execution settings and conditions. For example, an exe-
cution is repeated on the smartphone and the device clone. For each run, a profile tree
is generated, with one node corresponding to a method and the edge between nodes
corresponding to the measured cost.

At runtime, the executing thread is suspended at a chosen migrating point and its
state, including the virtual state, program counter, registers, and stack, is packaged and
shipped to the device clone in the cloud. A new thread is then initiated with the state
in the clone. When the migrated thread is completed, its state is packaged and shipped
in the same way back to the original process running on the smartphone. In practice,
the operations related to suspending/resuming, packaging and state synchronization
are taken care of by a per-process migrator thread, while a per-node node manager
is responsible for the communication between the smartphone and the clone.

Communication offloading

In this section we introduce the concept of communication offloading. Similarly to com-
putation offloading, communication offloading tries to save energy by offloading part of
the program execution to the cloud. The frameworks used for computation offloading
can also be used for implementing communication offloading. In fact, the examples of
communication offloading we give in this section were implemented using ThinkAir [2].
Different to computation offloading, communication offloading focuses on reducing the
communication cost but not the computational cost on mobile devices.

Can communication offloading save energy?

There are two ways to save energy when offloading methods responsible for
communication-related tasks. The first way is to reduce the network traffic that needs
to be handled by the mobile device. This can be achieved, for instance, by offloading
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Table 14.1. AndTweet measurements for a single timeline refresh event

Metric Wi-Fi 3G

Original ~ Offloaded  Original  Offloaded

Energy(J) 2.67£0.59 2.00£0.3 3.92+1.97 4.63+£2.1
Execution time(s) 2.694+0.59 2.85+0.5 3.86%2.02 5.13£2.1
Traffic size(KB) 7.7£0.8  6.39£0.5 6.0+2.1  4.14+1.8

methods that handle communication with a server or other peers in a P2P system. Such
communication contains signaling traffic [7], part of which can be suppressed. The sec-
ond way is to optimize traffic patterns and improve overall latency and/or throughput.
Packet interval patterns and throughput, for instance, have a significant impact on com-
munication energy cost [8]. As a consequence, grouping packets into bursts is more
energy efficient. Bursting benefits can be achieved, for example, when a group of meth-
ods, where each method fetches data, is offloaded. In the resulting sequence, only the
end result is downloaded to the mobile device in one burst, instead of downloading the
data in several small bursts for each method.

We chose AndTweet?, an open-sourced Android twitter client, for a case study. The
aim of our study is to investigate the potential energy savings through communication
offloading. We first manually look for all places, which induce network traffic between
the mobile device and Twitter servers, and mark all these methods as “Remotable”
except the ones restricted by the hardware and software constraints described in Section
14.1.2. Our intention is to reduce the amount of traffic to/from the smartphone as much
as possible.

We then compare the energy consumption between the original and the offloadable
AndTweet, under two different network conditions. In the first setup the surrogate is in
the same Wi-Fi network as the phone. In the second scenario, the phone used 3G as
the access network. We use a Monsoon Power Monitor (www.msoon.com) to measure
the energy consumption of the phone, and exclude the one-time cost of transferring
the application image. The applications could be, for example, pre-installed to the
offloading infrastructure.

The results in Table 14.1 show the energy consumption of a single Twitter event
which checks and fetches new tweets, and then displays them. According to the
results, offloading saves one-fourth of the total energy consumed in the Wi-Fi setup.
As expected, the savings clearly come from having less network traffic. However, the
execution takes slightly longer when offloaded, which increases the energy consumed
by the display. The results are very different when switching to 3G. More energy is con-
sumed with the offloaded version even if less data is transmitted and received. Because
the RTT in 3G is an order of magnitude longer than with Wi-Fi, the remote invoca-
tion takes more time. Combined with long 3G inactivity timer values, this causes the

2 https://code.google.com/p/andtweet/ accessed January 6, 2014.
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network interface to be in the active high-power state during the whole invocation. Exe-
cution time also has a big variance, because 3G latencies vary depending on network
conditions and the radio connection state when starting the transmission.

From the results we can see that communication offloading can yield notable benefits
under certain network conditions. Both network conditions and traffic patterns play a
major role in the profitability of offloading. We must also point out that identifying
remotable methods that could bring notable benefits is non-trivial. The estimation of
potential benefits is difficult using mere intuition.

SmartDiet: Toolkit for constraint analysis and energy profiling

As mentioned in Section 14.1.2, SmartDiet provides constraint analysis based on static
source-code analysis. In addition to that, SmartDiet also implements a measuring and
modeling setup for profiling and visualizing the energy consumption of a given appli-
cation. It can show how much communication cost is consumed by each part of the
application. We first explain how this tool works and then show examples of the analysis
results provided by the tool.

SmartDiet collects data during the application execution and analyzes it afterwards. It
collects two kinds of information: the traffic trace and a trace of the program execution
flow to later produce class- and method-level statistics. A packet trace is collected by a
kernel module that captures and timestamps all traffic in the device using netfilter hooks
(www.netfilter.org). To track the program execution, the tool uses execution tracking
features in the Android Debug Monitor Server (DDMS), which produces a trace of all
classes and methods executed during the run. In addition, the tool can annotate the traces
with system-wide timestamps. These timestamps can be used for matching the program
execution traces with packet traces and power consumption readings.

SmartDiet provides method-level communication energy accounting based on prede-
fined power models. It first associates each collected packet with an individual method
in the program execution trace. In detail, the tool divides the execution trace into threads
and the packet trace into separate flows (TCP connection or UDP flow). Note that only
network-related method calls are filtered for each thread. After this step, two separate
time series are generated: the network-related method calls of each thread and the packet
arrival events of each flow. These series are compared by computing cross-correlations
to associate each flow with a particular thread which is generating that traffic. The idea
is that each network-related method is associated with the corresponding packets. In
practice, each packet of a flow is associated with the closest (in time) method call of
the corresponding thread. This way, the tool generates a method trace of the program
execution annotated with information about the methods that caused network traffic.

Figure 14.3 shows part of the traces of a simple Android test application that per-
forms an HTTP GET request when a button is clicked. The thread executing the HTTP
request correlates strongly with the packet trace. Another thread in the figure has a sin-
gle network-related call. This is the garbage collector thread running finalization for a
network-related object that is no longer used. Since it correlates weakly with the packet
trace, no packets are associated with it. Program execution in each thread can be viewed
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as a hierarchical call tree, where a method calls another method which calls another and
so on. SmartDiet reconstructs this tree, carrying along the information of the detected
network usage. It then aggregates the traffic of the nodes up in the tree, so that the root
method, where the execution starts, is associated with all packets that have been sent or
received within each thread.

Given a method and its associated packets, SmartDiet uses the deterministic power
models described in [8] to estimate the communication cost. After that, the tool recur-
sively sums up the energy consumed by these methods as the energy consumed by their
parent methods. In this way, we end up with a complete execution trace with the com-
munication energy consumed by each of the methods. Figure 14.4 is an example graph,
automatically produced by SmartDiet, for a simple test case requesting an HTML docu-
ment over HTTP. Traffic is cumulatively assigned to the MainActivity.onClick method
and from there on, divided between various library functions that open the connection,
send an HTTP request, receive the response, and finally close the connection. At each
step, the following metrics are updated: the total number of calls made, the number of
packets and the amount of data generated by each call, and the model-based energy con-
sumption estimates. Numbers show how many times methods have been invoked during
the whole procedure and how much energy they consumed.

The energy usage estimate for each method is shown as a range between two values.
In estimation, assumptions need to be made about the interdependencies of methods
within the program, which is why there are two numbers: a lower bound and an upper
bound. This is because communication energy consumption is heavily dependent on
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traffic patterns, meaning that the energy consumed is determined by the exact number
of bits transmitted and their timing (refer to [8], for instance). The lower bound corre-
sponds to the energy consumed by the packets associated with the method in question,
while the upper bound is computed so that it also includes the packets belonging to
other methods that arrive between the first and the last packet of this method.

Where to offload: Centralized cloud vs. distributed CLOUD

With smartphones evolving into cognitive phones, we can envision the emergence of
cognition-based applications that would entirely transform the ecosystem of comput-
ing, communications, and human interaction. Compared with popular applications like
Facebook and Twitter, the emerging applications would demand more computing and
networking resources. Moreover, most of these applications include human interaction
and therefore are latency-sensitive.

The public clouds of today have been mainly designed for enterprise applications,
without considering the needs of mobile applications. The cloud infrastructure has been
designed in such a way that the dispersed computing capacity is consolidated into a
few large data centers. The centralization exploits the economics of scale to lower the
marginal cost of system administration and operations. However, the centralization also
often implies a large distance between the mobile devices and the cloud, which poses
challenges to the end-to-end networking performance in mobile cloud computing. One
example of these challenges is the potentially high latencies caused by the multiple
networking hops between the mobile device and the cloud. Therefore, the current cloud
infrastructure may not satisfy the networking performance requirements of the emerging
mobile applications.

Much effort has been invested in optimizing the current cloud architecture for mobile
cloud applications. A change in the design of cloud infrastructure we can envision is
moving from centralization to ubiquitous so that much of the processing will take place
as close as possible to where the data is captured. In practice, the existing centralized
large data centers can be enhanced with distributed small data centers that are much
closer to mobile devices. A small data center can be a private cloud owned by a busi-
ness or community, or a small data center such as Myoonet’s Micro data center that is
deployed by a cloud operator. We refer to such small data centers as Cloudlets [9].

Mobile devices may access cloudlets via Wi-Fi, or any of the current or emerging
cellular technologies. In practice, it is suggested that cloudlets are deployed in wireless
access networks, with only one hop away from mobile devices. The computing model in
ubiquitous cloud computing is derived from the computation offloading model that was
originally proposed for saving energy. The most demanding computational tasks will
be the first to be offloaded from mobile devices to cloudlets. In case the computation
is too heavy to be carried out on a single cloudlet, the computing tasks may be further
partitioned between cloudlets and the public clouds.

Here we give an example scenario of cloudlet-based personalized cloud computing.
As shown in Figure 14.5, the first layer is composed of the mobile devices, whose roles
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are essentially reduced to that of (multi-input) sensors forwarding captured data to proxy
VM:s in the second layer. The second layer comprises distributed cloudlets.

Each proxy VM is associated with a single smartphone, and is kept physically close to
the user through VM migration to other cloudlets or public clouds. This ensures that the
network resources to transfer data from the mobile device is minimized. It is essentially
an extension of the mobile device into the cloud. It can be a clone of the smartphone
OS, or just a virtual machine that handles all the requests for sensor data on behalf of
the mobile device. Computation-intensive data preprocessing can be offloaded from the
smartphone to the proxy VM. From here, data is forwarded to one or more application
VM:s also running on the cloudlet infrastructure.

Each application VM hosts a single application, which is not customized to any par-
ticular mobile platform. Generally, one application VM is assigned to each participant,
making it easy to migrate a user’s proxy VM together with the associated application
VMs, preserving any hard state they may contain. If an application does not need to
maintain a hard state for each user, then a single application VM can be shared by all
the users on a particular cloudlet.

Summary

In this chapter we explained the concepts of computation offloading and communi-
cation offloading, and introduced the workflow of offloading frameworks including
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MAUI, ThinkAir, Cuckoo, and CloneCloud. Given an application, part of it cannot be
offloaded due to constraints such as access to local hardware devices and Java serializa-
tion issues. We introduced a toolkit called SmartDiet that can help developers identify
the constraints automatically.

For the part of application that can be executed remotely, whether to offload it
at runtime depends on the tradeoff between the potential energy savings and the
offloading-induced overhead (e.g. cost of transmitting code and data). Performance,
like latency, is also an important factor that should be taken into account while deciding
whether to offload and where to offload. In the last section, we showcased a scenario
where the clones of the smartphone are deployed on distributed cloud infrastructure
instead of a centralized one. Compared with a centralized cloud infrastructure, the
distributed cloud infrastructure that provides computing and storage at the edge can
provide lower latency and can save bandwidth between the access network and the core
network. However, the operational cost would increase and maintaining the QoS in
mobility scenarios would be more challenging.
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15.1

Example scenarios for energy
optimization

We now turn our attention from individual optimization techniques to applications. We
investigate a few different cases where the principles and techniques we have learned
earlier can be applied in mobile applications.

We first look at a specific application, namely video streaming which is one of the
most important Internet applications today, from the mobile Internet’s perspective. We
first study the way that video streaming consumes energy and illustrate that through
measurement results from real systems. We then cover different strategies that can be
used to save energy in video streaming. It turns out that there are a few things that need
to be taken into account when applying generic energy-saving techniques to mobile
video streaming.

The next two examples are not really specific applications but rather integral parts of
many applications and, therefore, they represent extremely important cross-application
scenarios. The first of those is sensing. Sensing is a hot research topic at the moment
and it is expected to become a very important part of smartphone applications. We
study ways to reduce energy consumption with applications that require different
kinds of sensing by exploring separately each category of sensors included in modern
smartphones. We focus on two well-established techniques: sensor selection and duty
cycling.

The second cross-application energy optimization scenario is security. We look at the
energy overhead caused by security protocols and algorithms, based on measurement
studies. Then, we discuss whether and when it is possible to find a tradeoff between the
level of security and energy consumption.

Video streaming

Multimedia streaming provides an interesting example from several perspectives. First
of all, these services, including YouTube, NetFlix, Spotify, and Pandora, have become
extremely popular among smartphone users. In particular, video streaming is currently
among the largest, if not the largest, mobile application in terms of traffic volumes
generated, and further growth is predicted [1]. Therefore, any major improvement in
the energy efficiency of streaming applications can have a very large impact.
Video-streaming applications also happen to be very power hungry, stressing
the most energy-consuming components of the smartphone. They consume wireless
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communication power through continuous downloading of the video content, CPU
power through decoding of video frames, and display power through video presen-
tation. Luckily, there are many possibilities for optimizing the energy efficiency of
these applications. Specifically, the energy spent in communication and computation
can be reduced through clever optimization techniques. We first look at how using
popular mobile video-streaming services consumes energy. Then, we discuss different
opportunities to optimize the energy consumption of the wireless communication, and
finally discuss what can be done about the computational energy efficiency of streaming
applications.

How mobile video streaming consumes energy

Streaming applications differ from traditional file transfers in an important way. To
provide a smooth user experience, the content needs only to be downloaded fast enough
so that it arrives just in time before it is scheduled to be viewed, that is, at least at the
encoding rate. Any faster downloading does not necessarily lead to any better quality of
experience. This observation can also be exploited to save energy.

Wireless communication is one of the main sources of energy consumption for
streaming applications. This energy consumption is influenced by the way that the video
service provider delivers the content. A number of different strategies are currently in
use by popular service providers. A detailed study is available in [2]. We illustrate their
differences in Figure 15.1, where the height of the bar corresponds to the rate at which
the client receives the content and the width to the time it takes to deliver it.

The first thing to notice is that typically all video-streaming services deliver a sizable
chunk of content as quickly as possible to the client at the beginning of the streaming
session. The goal is to rapidly fill up the client’s playback buffer so that playback can
start as soon as possible. Buffering is essential to cope with the jitter and fluctuations
in available bandwidth. We refer to this phase as fast start. After the start, the different
strategies continue differently. Encoding-rate streaming delivers, as the name suggests,
the content at the rate of consumption at the client. Alternatively, the server can deliver
content faster than that but still at a throttled rate, typically 1.5 to 2 times the encoding
rate. The client player can generate an on-off delivery pattern by reading from the TCP
socket only periodically. There are two variations: either the client player uses a per-
sistent TCP connection or it uses multiple consecutive non-persistent connections. In
the latter version, the player establishes a new TCP connection each time a new chunk
of content is to be downloaded and closes the connection right after the download is
complete. Dynamic adaptive streaming over HTTP (DASH) is a kind of special case
of on-off where the client explicitly requests each chunk. In fact, the main purpose of
DASH is to enable dynamic switching of video quality on the fly while streaming to
cope with bandwidth fluctuations [3]. Finally, the client may in some cases download
the entire video clip in one go using all the available bandwidth.

Each of these strategies is in use by one or more current video-streaming services,
but the selection of the strategy depends on the particular player being used, the selected
video quality, and the service provider. The interested reader is advised to look at [2]
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for further details on how this selection occur with the services and players used at the
time of writing. We now turn our attention to the energy consumption of these different
strategies.

To give concrete numbers, we show some results from measuring the current draw
of smartphones using the video-streaming applications in Figure 15.2. The total current
draw was measured using an external power monitor connected to the smartphones.
The aggregate current was then divided into current drawn by playback only and
current drawn by wireless communication only by looking manually at the current
draw in different phases of the streaming session. The figure shows only the wireless
communication part.

Downloading content just in time at the encoding rate is the worst possible choice
from the energy-consumption perspective. To understand why, we need to again revisit
the tail energy phenomenon (Section 7.3.4). When packets carrying the stream content
are received at regular intervals but at a rate which is far below the wireless link capac-
ity, tail energy is wasted at the reception of each packet. In the worst case, the packet
interval is just a bit shorter than the inactivity timer which is the source of the tail energy.
In that case the radio is continuously fully powered on. In other words, the diagrams in
Figure 15.1 can also be interpreted so that whenever the bar exists, energy is drained, in
the worst case, at a high rate, no matter how tall the bar is. In this way, we can imme-
diately notice that server throttling is also suboptimal from the energy-consumption
perspective. Server throttling may also occur in conjunction with the on-off behavior
caused by the client player, which is also illustrated in the figure.
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The two different cases of on-off deserve a closer look. Surprisingly, the persistent
on-off shows poor energy efficiency compared to the non-persistent one when using 3G
or LTE access even though their behavior is almost identical. The diagram in Figure 15.1
contains a hint for the underlying reason. When using a persistent TCP connection, in
between receiving bursts of traffic, the client stops reading from the TCP socket which
then becomes full. Consequently, TCP flow control activates and the client-side TCP
forbids the server-side TCP to send more packets by advertising a receiver window of
zero bytes. The server, having still more data to send, continues to poll the TCP receiver
by sending zero window probes to which the receiver answers with additional zero
window acknowledgments. The resulting periodic exchange of small control packets
keeps the WNI almost continuously powered on 3G and LTE because of the long inac-
tive timers. Hence, the non-persistent on-off is clearly a more energy-efficient strategy.
Note that DRX was not enabled in these LTE tests. Enabling DRX would considerably
improve the energy efficiency in this particular case. Finally, downloading the video all
at once leads overall to the smallest average current because the WNI is efficiently used
and tail energy is only suffered once.

Optimizing the energy consumed by wireless communication

To prefetch or not?

Let us now look at the possibilities for optimizing the energy consumed by the wireless
communication. We have already learned that downloading content at the encoding rate
is the worst choice from the energy-consumption perspective. So, what can be done
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to improve the situation? A straightforward answer is that the streaming client should
download content using all the available bandwidth to minimize the penalty caused by
the tail energy.

There is a caveat, though. Research has shown that for video streaming, users rarely
view the entire content. For example, the measurement study presented in [4] reports
that more than half of the videos are watched for less than 20% of their duration. The
quantitative part of the result may not be generalizable, but there are several equivalent
studies that corroborate the qualitative part, that is the fact that it is rare for users to view
entire video clips, especially for user-generated content. For this reason, downloading
the whole video clip in one shot is in many cases not an energy optimal strategy because
some energy will be spent downloading content that will never be consumed. The right-
most set of bars in Figure 15.2 showing the average current drawn when only 20% of
the entire content is viewed demonstrate this fact as well.

We further illustrate with Figure 15.3 how the choice of streaming strategy influences
the energy consumption when the user is likely to abandon the video-streaming session
before the end. We used simplified power models, similar to the ones used in Section
12.2, to compute the results shown by the figure. The plots should be interpreted as
follows: Pick an abandoning time on the x-axis (relative time) and the corresponding
value on the y-axis tells the resulting average current consumption. We observe that a
simple strategy that strikes a middle ground is to deliver the content to the client in
larger fixed-size chunks, that is using the non-persistent on-off. This strategy delivers a
good tradeoff between tail energy and the amount of unnecessarily downloaded content.
Tail energy is spent only once per chunk of content, which, while not optimal, is far
better than per packet. If the streaming server delivers a constant bit rate stream, the
resulting traffic can also be reshaped at a proxy to generate such a burst pattern (recall
our discussion of traffic shaping in Section 12.2). Interestingly, downloading the whole
video is almost never a good idea with Wi-Fi connectivity because of the small amount
of tail energy that allows prefetching the video energy efficiently in chunks. On the
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contrary, when using a 3G access, there is a cutoff point after which downloading the
whole video is more energy efficient and before which on-off is a better choice.

The optimal strategy would be to download only exactly the content that the user
will consume. However, the player or server obviously cannot know beforehand when
exactly the user will abandon the session. One way to deal with this uncertainty is to
make an educated guess. For example, if viewing statistics for particular video clips are
available, it is possible to predict when the user is more or less likely to abandon the
session. YouTube, for instance, collects such statistics and presents them in the form of
audience retention that the owner of a particular video clip can access. We suggest that
the reader who is interested to learn how such statistics could be used to compute an
energy optimal download schedule, takes a look at the work presented in [5].

Considering finite buffer space at the client
Another important practical issue to consider when the server or a proxy shapes the
traffic into bursts of content is the amount of buffer allocated by the smartphone appli-
cation. If the buffer size is smaller than the chunk of content being sent by the streaming
server or proxy, TCP flow control will again intervene once the buffer is full. The rest
of the content is then transmitted at the rate that the buffer is emptied, in other words,
at the encoding rate, which we know to be very energy inefficient. Fortunately, the zero
window acknowledgments generated by the TCP flow control can be identified by the
proxy/server and used as indicators of a too large chunk size. By probing with different
chunk sizes and tracking the acknowledgment stream, the proxy/server can determine
the optimal size for a particular client, which is precisely what EStreamer does [6].
Finally, as we cannot cover all the details in this book, we refer readers to a fairly
thorough survey of the energy efficiency of streaming applications with a focus on the
wireless communication which is available at [7].

Computational energy

Energy spent in computing while using streaming applications consists mainly of decod-
ing work and running the player application in general. Measurement results from video
playback using a specific smartphone are shown in Figure 15.4. The video quality refers
to the resolution so that 240 means 360 x 240 resolution. Figure 15.4(a) shows that there
is a correlation between video quality and playback energy, as expected, although the
results also indicate that high-resolution video can be played with quite a small amount
of extra energy compared to a low-resolution video. Somewhat surprisingly, the over-
all playback energy consumption differs significantly between different kinds of player
when viewing the same video of the same quality. The video container makes a dif-
ference, but also browser-based players (Flash and HTMLS5) seem to be currently less
optimized than players implemented as native applications. Figure 15.4(b) confirms that
the CPU usage of these players, especially the HTMLS5-based one, is at a higher level
than the CPU usage of the native application. HTMLYS5 is at the moment rapidly gaining
in popularity so we are likely to see more optimized players in the future.
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Video quality intuitively has an impact on the amount of work that the smartphone
needs to do to decode and present it. In addition, streaming higher-quality content
requires downloading more data. Although in light of the measurements we just looked
at, it seems that a significant increase in resolution does not necessarily lead to pro-
portionally as significant an increase in energy consumption. Nevertheless, given the
limitations of the current display technologies used in smartphones and the sizes of
the displays, it makes sense to adapt the video quality because beyond a certain point
it becomes difficult for the human eye to notice the quality improvement given by
increased resolution. An example system striving for such adaptation is presented in [8].

Race to sleep vs. dynamic scaling

If we think about the nature of the workload that video streaming generates on the
underlying hardware, we notice that it is typically a fairly stable one over a relatively
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long time. Furthermore, the load is such that it, at least in an ideal case, does not use
all the available resources for computation and wireless communications. This type of
workload naturally gives rise to two opposing strategies for achieving energy efficiency:
race to sleep and dynamic resource scaling.

We have discussed the race to sleep strategy already on several occasions. For wire-
less communication, shaping the constant bit rate video traffic into high-rate bursts is a
direct application of it. It allows the radio to be at least partially powered off in between
the bursts, while consuming full power during the reception of them. DPS, which can
virtually shut down the whole CPU, represents the equivalent mechanism in CPU power
management, as we discussed early on in Section 7.1. However, that is not really appli-
cable for CPU power management during video streaming because the video must play
continuously.

However, DVFS, which represents the dynamic resource scaling approach, is an ideal
approach for computational power management in video streaming. DVFS, as we have
learned, scales the processor frequency and voltage down to such a level that the com-
putational demands of the continuous decoding of video can still just be met. As for
wireless communication, equivalent mechanisms do exist. In Section 7.3, we explained
the basics of DMS in which the modulation scheme is varied according to the required
rate: the lower the symbol rate of the modulation scheme, the lower the transmission
rate and the power drawn by the RF processing. Therefore, this approach can be applied
in constant bit rate video streaming as well, to match the modulation rate according to
the video encoding rate after the initial buffering phase in which the data is received at
a faster rate. An example scheme where this principle is applied for video transmission
is presented in [9].

Energy-efficient sensing through sampling

The next application scenario that we study is sensing. We covered the basic principles
of the energy consumption of sensing with a smartphone in Section 7.4. In this section,
we focus on optimizing the energy consumption through sampling.

The two most important activities in energy-efficient sensor management are (i)
sensor selection and (ii) sensor duty cycling. Identifying the minimum set of neces-
sary sensors for a given task is an important step which can easily contribute half of
the overall conserved energy. The other half of energy efficiency comprises designing
an efficient sensor duty cycling strategy. We next outline some usable techniques for
both sensor selection and sensor duty cycling, going through the four sensor categories
presented in Section 7.4.1.

Motion sensors

For motion sensing, the accelerometer is typically the primary choice of sensors, aug-
mented with a magnetometer and/or gyroscope if the horizontal phone orientation is
required. The horizontal orientation provided by the magnetometer can give a course
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estimate, but is susceptible to magnetic inferences and errors due to tilt-compensation
from the accelerometer during periods of substantial physical movement. More accurate
phone orientation is obtainable from the gyroscope, which can be used in combination
with the accelerometer and magnetometer to create a fairly accurate, sensor fusion based
phone orientation tracking using quaternions [10].

Considering the energy consumption of motion sensing, the accelerometer alone con-
sumes only around 20 mW at the fastest sampling rate. Processing the accelerometer
measurements is also computationally light, as the data points typically number only in
a few hundred. For a thorough study on accelerometer preprocessing and the complexity
of the commonly used features, we refer to work by Figo et al. [11]. A magnetometer
consumes roughly twice the energy of an accelerometer, up to around 50 mW. Gyro-
scope consumption can be up to 140 mW, which already has a significant impact on
an application’s energy consumption, and should be used carefully in applications that
run for extended periods of time. The computation required to transfer the magnetome-
ter and/or gyroscope measurements into Euler-angles or quaternions is relatively light,
since the number of data-points is relatively few and the existing algorithms for the task
are well optimized.

In addition to the energy consumed by the motion sensors, background applications
have to consider the energy overhead from holding the device active for sensor sam-
pling. This energy overhead can be highly significant (e.g., 140 mW for Samsung Nexus
S phones), often surpassing the energy consumed by the sensor alone. Furthermore, con-
tinuous sampling of the inertial sensors prohibits efficient CPU duty cycling, as there are
only short idle periods between receiving the samples from the sensors. Consequently,
the most efficient strategy for energy-efficient motion sensing in the background is to
interleave bursts of sensor data with idle periods.

As an example of a sampling strategy, see Figure 15.5, which illustrates the energy
consumed by an application using an accelerometer, magnetometer, and gyroscope. In
the figure, the application periodically samples the accelerometer to decide whether to
put the device to sleep or to sample other sensors. Before sampling the more-consuming
sensors, the application performs a CPU-intensive double check to verify the requisite
of other sensors.

The application’s energy efficiency can be further increased by setting a balance
between the sensor-sampling frequency and the required accuracy. Modern phones
can sample sensors at frequencies well over 100 Hz. However, for typical activity-
recognition tasks (e.g., step counting, movement detection, or transportation-mode
detection) a lower accelerometer sampling rate, in the range of 32-64 Hz, is sufficient
and can conserve energy in both sensor sampling and data processing. To further opti-
mize the accelerometer sampling rate, the rate can be adapted in real-time in accordance
with the prevalent activity using existing methods [12]. For a magnetometer, a low (<5
Hz) sampling rate is theoretically sufficient to obtain a crude horizontal orientation. In
practice, however, a very low sampling rate makes the sensor more vulnerable to errors
due to magnetic inference, and a sampling rate close to 20 Hz should be preferred for
better robustness in the presence of magnetic inference. A gyroscope requires a higher
frequency, as the measurements are used for tracking a relative orientation rather than
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an absolute one. The sensor is typically required for applications that require accu-
rate and real-time phone orientation, for example, for games or gesture tracking, or for
situations where high magnetic inference renders the magnetometer unusable, for exam-
ple, inside a car, due to disturbances from its metallic frame, radio, and other electric
components. An example of the latter is detecting driving maneuvers [13], where accu-
rate horizontal-orientation tracking is required to capture characteristics from turning
maneuvers.

Wireless sensors

Energy-efficient sensor management for wireless sensors can be divided into sampling
strategies for positioning and for data communication. Here we focus on techniques
related to positioning.

GPS is an especially interesting case, as it is widely used in sensing applications
and capable of draining the phone’s battery rapidly. Moreover, planning an efficient
duty-cycling strategy for GPS is made challenging due to its inherent properties, such
as the inability to tell before-hand whether it can obtain a fix on the location at all,
dependence on an unobstructed view to the satellites and low accuracy when only one
or two satellites can be tracked, and a relatively long and variable time to achieve a fix
on the location.

As these issues with GPS have been well known for over a decade, several estab-
lished techniques and algorithms for positioning and trajectory tracking have been
developed [14], which are relatively easy to implement on mobile devices. The core
idea in the majority of the methods is to reduce the need for GPS sampling by using
information from other less energy-consuming sensors. For example, the user’s head-
ing and speed, and changes in them can be obtained from the motion sensors, which
can be used to estimate the current location by extrapolating from the previous GPS
location. Significant changes in heading or speed can then be used as hints to get a
new position from the GPS sensor [15]. Requesting other GPS-related information,
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such as indoor—outdoor detection or tracking the user’s traveling speed, require slightly
modified strategies. Nevertheless, the core idea is typically the same.

Another approach to reduce the energy consumption of positioning is to use one of
the other sensors, such as GSM or Wi-Fi, to obtain a coarse location of the user. GSM
can provide an almost energy-free solution for coarse-location estimation by using the
location of the phone’s primary cell tower and its RSSI value. Scanning the Wi-Fi signal
environment can be used to detect a familiar configuration of access points and RSSI
values, which can be used to pin the user to a location by using previously collected Wi-
Fi fingerprints. Besides being more energy efficient, another benefit of these techniques
is that they can provide the location estimation instantly, and can also function indoors.
However, these techniques require careful calibration involving significant human effort
and are susceptible to varying Wi-Fi access point density and GSM cell sizes between
different locations, thus, making them rather unreliable outside urban areas and hard to
generalize to new environments. Usually data communication is also required to map
the collected information to physical coordinates, which consumes some energy.

Considering the power consumption of scanning the wireless environment, the sen-
sors typically consume some energy when being switched on and off, which needs to be
accounted for when planning sensor-sampling strategies. Keeping the sensors always
active is a viable solution when the sampling rate is fairly high and the application
is actively used (i.e., not a background application). When the idle periods become
longer, the cost of keeping the sensors always active exceeds the energy cost from
switching the sensor on and off. To decide whether to keep the sensor active and when
to trigger the sensor off can be formulated as a function of the switching energy and
power drawn during the sensing and being idle.

Environmental sensors

When planning energy-efficient sampling for the audio and visual sensors, that is the
microphone and camera, a central concern is efficient handling of the large amount
of data the sensors output, as the CPU and hardware cost for processing large data
can quickly exceed the cost of sampling the sensor. Downsampling and dimensional-
ity reduction are suitable approaches when the full quality is not required. For audio
data, a popular method is to use a root mean square (RMS) to extract the energy of
audio frames, which can be used to detect the level and variation in volume of audio
data. For further methods for audio/visual data processing we refer to [16, 17]. The rest
of the environmental sensors consume relatively little energy and, as with motion sen-
sors, the main concern is the background energy of keeping the device active for sensor
sampling.

The environmental sensors are in fact cleverly used for energy conservation by the
current mobile operating systems. For example, when a proximity sensor reports high
proximity combined with an ongoing call, the screen is switched off. The real-world
analogy is to turn off the screen when the phone is held near the ear while speaking
on the phone. During these periods, the phone’s touch screen is usually also turned
off to avoid accidentally touching the screen while holding the phone near the head.
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The light sensor is used by the phone to adjust the screen brightness dynamically to
balance energy efficiency and screen visibility. In the more recent phones, the phone’s
front-facing camera is used for eye-tracking to deduce when the user is looking at the
screen.

In addition to the in-built functions, the various contexts provided by the environ-
mental sensors can be used to adapt the phone behavior, providing further opportunities
for energy efficiency. For example, the light and proximity sensors, along with roll
and tilt angles provided by the accelerometer can be used to detect smartphone place-
ment. For instance, low-levels of light combined with close proximity indicates that
the phone is in a pocket or a bag; while far proximity, normal to high levels of light,
and near zero roll and tilt indicate placement on a table or other surface. The phone’s
barometer can be used for weather forecasting or as an altimeter, but can detect var-
ious situations which momentarily effect air pressure, for example, indoor—outdoor
switches, and local high-pressure areas such as tunnels, subway entrances, or even
urban canyons between skyscrapers. Humidity and temperature sensors can be used in
conjunction with the barometer to obtain more accurate weather sensing and to detect
situations that display significant changes in these sensors, for example indoor—outdoor
or outdoor—underground switches.

Internal sensors

The phone’s internal sensors work to adjust and guide the sampling of the other sensors.
From the perspective of energy efficiency, the most important central sensors are those
measuring the state of the phone’s battery, that is, the battery charge, temperature, and
voltage. Rapid battery charge depletion or critically low energy can be used to prevent
the sampling of high energy-consuming sensors or the performing of non-critical tasks.
Another common practice is to schedule energy-heavy tasks, such as data transmission
or large I/O operations, to periods when the phone is connected to a power source.

Other internal sensors can be used for monitoring user interaction with the phone.
Screen and call states can help to recognize user interaction and phone calls, reduc-
ing the need for other sensors during these periods. The accuracy can be enhanced by
combining the in tilt and roll angles from the accelerometer to detect typical orientation
for these activities, or proximity and light sensors to filter out cases where the screen
is accidentally turned on inside a pocket or bag. In addition to providing information
about user interaction or calling activities, many activity-recognition applications that
rely on motion sensors can significantly benefit from detecting and suppressing periods
of extraneous user activities [18].

Security

Cryptographic algorithms and security protocols are essential for certain kinds of inter-
net usage. The algorithms are based on performing some kind of computational task
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which means that they necessarily cause some extra energy to be consumed. In addi-
tion, the protocols used to secure transactions and data communications therein are
in addition to the cryptographic operations based on some kind of exchange of mes-
sages between the communicating parties. Therefore, some energy is also consumed on
additional communication. In this section, we study the energy consumption of these
algorithms and protocols in detail.

Secured communications using cryptographic algorithms

Security protocols are a must for many mobile services. There are different kinds of
protocol that can be used to guarantee confidentiality, authentication, message integrity,
and nonrepudiation of message origin. Confidentiality ensures that no third party can
eavesdrop on communication between two parties. User authentication is required by
many services, but those protocols also allow users to make sure that they are using an
authentic banking service, for instance, and not a fake one set up for phishing. Message
integrity ensures that message tampering does not go unnoticed and nonrepudiation is
sometimes necessary to verify that a message has been sent by a specific party.

There are three basic families of cryptographic algorithm: asymmetric, symmetric,
and hash algorithms. When using symmetric algorithms, the same algorithm operations
are used for the encryption of plain text and the decryption of cipher text. Consequently,
both parties use the same shared secret key for encryption and decryption. Examples of
such algorithms are AES (Rijndael) and 3DES. In contrast, asymmetric cryptography
is based on a setup where each party possesses a pair of public and private keys, and
the public key can be used to decrypt messages encrypted with the private key and vice
versa. As the name suggests, the public key is shared to everyone and the private key is a
secret known only by the party associated with the keypair. Asymmetric algorithms are
based on intractable mathematical problems, such as integer factorization and discrete
logarithms. The difficulty of the problems ensures that given a public key and valid
plain and cipher texts, it is computationally infeasible to find the matching private key.
Examples of asymmetric algorithms are RSA, DSA, and those based on elliptic curves,
such as ECDSA. Hash algorithms take a variable size message as input and compute a
fixed, typically shorter length output that is also sometimes called a message digest.

Symmetric algorithms are typically used to provide confidentiality, that is to encrypt
data transfers between mobile devices and servers, while asymmetric algorithms are
very useful for authentication and nonrepudiation purposes through digital signatures.
Signing a message essentially means encrypting it, or some digest of it, using the private
key. The receiver can then verify that it was indeed produced using the private key
of the authentic user by decrypting the signature using the corresponding public key.
Combined with a cryptographic secret, for example a symmetric key or digital signature,
hash algorithms are often used to protect the integrity of messages.

These algorithms are usually combined together in a security protocol to provide
a completely secure transaction with the desired level of protection. Transport Layer
Security (TLS), previously known as the Secure Sockets Layer (SSL), is a widely used
example protocol. With TLS, the client and server negotiate a so-called cipher suite,
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which is simply the set of cryptographic algorithms to be used at the beginning of a
transaction. For a comprehensive coverage of the cryptographic algorithms and security
protocols, we suggest the reader looks at, for instance, the book by Stallings [19].

Energy overhead of security

It is obvious that the use of security protocols causes an energy consumption overhead
compared to unsecured communication and computation. The overhead comprises both
cryptographic and non-cryptographic components. We next discuss both in turn.

Energy spent on cryptographic operations

All cryptographic algorithms necessitate a certain amount of computation which con-
sumes energy, but the amount of computation depends on the particular algorithm being
used. Overall, asymmetric cryptography is the most computationally intensive followed
by symmetric cryptography. Computing message digests with hash functions usually
causes only negligible amount of computational work.

A measurement study of the energy consumption of cryptographic algorithms is pre-
sented in [20]. Although it is already a bit dated and embedded hardware has since
evolved quite a bit, it remains a good demonstration of the core differences between
the algorithms. We summarize some of the results from that study on the cryptographic
energy consumption overhead in Table 15.1. The key point is that the algorithms often
have different tradeoffs. For example, RSA verification is extremely efficient but gener-
ating a signature consumes a large amount of energy, while DSA energy consumption is
more balanced between the different operations. Therefore, depending on the particular
usage, one algorithm may be better than another one. Elliptic curve cryptography is in
general computationally efficient which also shows in the energy consumption. One of
the reasons is that a shorter key can be used with ECDSA to achieve a level of security
comparable to DSA. There are also clear differences between the different symmetric
algorithms in terms of the energy consumed per byte of data encrypted or decrypted.
The fact that DES consumes less energy than 3DES should be complemented by the
fact that it is clearly less secure than its triple version (3DES). On the other hand, AES
combines a high level of security with energy efficiency. The hash algorithms used in
the study are already becoming somewhat obsolete as newer versions of the protocols
have been developed (e.g., SHA-3 and MD6).

Non-cryptographic energy overhead

The non-cryptographic part refers to additional communication and computation due
to the actual security protocol. Running any security protocol involves a certain num-
ber of messages being exchanged between the two communicating parties prior to the
actual data communication during which information required by the cryptographic
algorithms, such as signatures and certificates for authentication, is exchanged and
parameters are negotiated. Some extra data is also piggybacked with data packets during
the data communication, such as message digests for integrity protection. The non-
cryptographic overhead caused by the protocol message exchange prior to the data
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Table 15.1. Energy consumption of example cryptographic algorithms

Operation Energy consumption
Asymmetric RSA DSA ECDSA
Key generation medium  medium medium
Sign high medium  low
Verify ultralow medium low
Symmetric DES 3DES AES
Encrypt/decrypt unit of data medium  high low
Hash MD5 SHAI

Compute digest medium  medium

communication can make up a major part of the total energy consumption for small
transactions but this overhead decreases rapidly when the transaction size increases.

The measurement results presented in [21] suggest that the extra energy spent in
symmetric cryptography, that is encryption and integrity protection, when using TLS is
mostly insignificant compared to the energy spent in the actual data transfer. However,
the message exchange and authentication part of the protocol, namely the handshake,
that is done before the data transfer can cause a significant overhead. It can even con-
tribute up to 90% of the total energy consumption of very small 1 KB transactions, but
this overhead reduces to a negligible amount with transactions of several megabytes. An
interesting observation is that this overhead differs significantly between different pop-
ular websites, such as Google and Facebook. The reason turned out to be the server’s
certificate length and the round-trip time of the network path from the client to the
server, both of which directly influence the duration that the WNI needs to be powered
on during the handshake.

Can we trade energy for security?

Many different kinds of algorithm exist for symmetric and asymmetric cryptographic
operations and hashing. Most can be used for the same purposes but the different
algorithms typically strike different tradeoffs between specific properties, such as the
amount of computation required and the level of protection offered against brute force
attacks, for example. Furthermore, a given algorithm can be used with different param-
eters. One of the most important parameters is the key length, which directly influences
the robustness of the scheme against brute force attacks but also the computational com-
plexity and, hence, the energy consumption. Table 15.2 gives some figures on the key
length vs. energy consumption tradeoff with different kinds of algorithm collected from
two studies [20, 22].

These results demonstrate that the energy consumption overhead can be to a certain
extent controlled by trading off some security. The impact of key length on energy con-
sumption in algorithms for asymmetric key cryptography (RSA in the table) is notably
large, whereas the effect is much smaller with symmetric key cryptographic algorithms
(AES in the table). However, as we noted earlier, the computational energy overhead is
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Table 15.2. Energy consumption of different cryptographic
protocols and key lengths

Algorithm Low security High security Energy cons,
keysize (bit)  keysize (bit)  difference

AES 128 256 + 20-40%
RSA 1024 2048 + 450-750%
EC 163 283 + 220%

often overshadowed by the energy spent in the actual data transmission during a transac-
tion, in which case trading off some security by reducing the cryptographic algorithm’s
key length, for example, may provide only small relative energy savings in the end.

Summary

In this chapter, we looked at a few cases of mobile application usage where the energy
efficiency plays an important role and optimization is important. We first looked at
the energy efficiency in mobile video streaming which is one of the most popular but
also most energy-consuming applications used today with smartphones. Fortunately,
there is much room to optimize the energy consumption in mobile video streaming. For
example, traffic shaping is highly effective with audio and video streaming. It is also
possible to optimize the pre-fetching behavior of the video player so that downloading
of unnecessary content, that is video that the user will never watch, is minimized.

The second case we studied was the use of the built-in sensors by smartphone appli-
cations. In such applications, it is useful to consider two kinds of optimization: sensor
selection and duty cycling. Selection means that a lower power sensor could be used
most of the time to check whether a higher power sensor should be activated. So, the
idea is similar to the concept of wake-up radios (Chapter 13). Duty cycling means that
the rate at which sensors output values is adjusted so that the accuracy and timeliness
required by the application is suitably balanced with the energy consumed by the sensor
sampling.

The third case focused on security. Security protocols and the cryptographic algo-
rithms used therein consume energy in the form of computation and wireless commu-
nication. Hence, secure mobile communications comes at a price of a certain energy
overhead. The different kinds of algorithm consume very different amounts of energy
and sometimes even the same level of security can be achieved with less energy
consumed through careful selection of the cipher suite being used.
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16.1

Future trends

Smartphones have evolved in leaps and bounds during the last decade and this evolution
is continuing with new software and hardware capabilities as well as new application
domains, such as augmented reality and the Internet of Things (IoT). In this chapter we
briefly examine future smartphone trends from the perspective of energy consumption.
We conclude that radical disruptions are not likely in the near future, keeping energy
a first-class resource for mobile devices and warranting new solutions to maintain and
improve device battery life

Future smartphone

Smartphones have become the essential instrument for our daily lives, supporting a
plethora of usage scenarios from the workplace to the home and leisure. Today’s smart-
phone is a small-factor, high-performance computer that can offer graphics resolution
and power on a par with the previous generation of game consoles. The communications
capabilities of smartphones have evolved tremendously over the past decade and now
high-speed, low-latency 4G and beyond networks, Wi-Fi, and local area networks are
ubiquitously supported. The sensing capabilities have improved dramatically with GPS,
acceleration, light, and temperature to give some examples of on-board sensors and the
sensing capabilities include complex gestures and voice.

In addition to the hardware capabilities, the mobile-application ecosystem has had a
stellar success in recent years since i0S, Android, and Windows Phone were launched.
Application developers have used the mobile platform APIs and the hardware capabil-
ities of smartphones to create new innovative applications that in many cases combine
sensors and communications capabilities in unexpected ways.

However, despite the improvements in hardware and the success of the mobile-
application sector, smartphone battery lives are seen to be limited, typically less than
one day of operating time with moderate to heavy use, and mobile software is still rid-
den with energy bugs and inefficiencies. These challenges are not likely to go away
in the near future, because radical improvements are not expected in the battery tech-
nology, and the applications and the way they use the hardware are becoming more
complex and more demanding, for example always-on sensing and high-quality audio
and video playback and recording. Smartphones will need new solutions to maintain the
three-watt limit with all these activities happening simultaneously.
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Near-future smartphone trends

To illustrate the battery challenge in the face of evolving hardware, we can examine
the specifications of iPad 2 and iPad 4. The latter has significantly more advanced com-
ponents, for example 4G, retina display, and improved processor; however, the expected
talk time for the two devices is the same, 9 hours. The latter is heavier being 662 grams
compared to 607 grams and has a significantly larger battery of 11 560 mAh compared
to the 6930 mAh of iPad 2. Even though the newer device has a significantly larger
battery the talk time is the same.

In this chapter, we briefly examine anticipated future smartphone features from the
energy consumption perspective. Figure 16.1 gives an overview of the key topics:

® Battery technology for which there are potential materials science breakthroughs
looming on the horizon; however, it will take many years for the new technologies
to mature.

e Future smartphone SoC for which the number of cores and co-processors is rapidly
increasing.

e Wireless connectivity that is becoming more heterogeneous with 5G, Bluetooth LE,
and the 802.11 family of protocols.

e Mobile OS and platform that is being extended to support heterogeneous multipro-
cessing and advanced offloading techniques.

* Emerging applications domains, such as context-aware applications, augmented
reality, and wearable computing.

Battery

Modern battery technology is fairly mature and there does not appear to be a viable
competitor to Li-lon and Li-Po batteries in the next five years. Battery technology
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improvement is limited by the amount of electrical energy that can be obtained from the
materials [1]. Carbon nanotubes and other nano materials are currently being researched
as anode materials, but these are still in the conceptual and experimental stage [2].
A nanowire battery replaces the traditional graphite anode of Li-Ion batteries with a
stainless steel anode that is covered with silicon nanowires [3]. This new form of Li-
Ion technology can potentially hold ten times more charge than the current technology
allows. This technology is currently being commercialized.

Alternative anode materials, for example clusters of silicon between the graphene
sheets, are showing promise in extending charge life up to ten times with ten times
faster charging [4]. A nanotube electrode as the positive electrode and lithium titanium
oxide as a negative electrode have been reported to achieve approximately five times the
amount of charge and ten times the power of conventional Li-Ion batteries [5]. High-
power Li-Ion microbatteries could potentially enable even smaller IoT devices with
a higher wireless transmission range [6]. As an alternative to Li-Ion, aluminum-ion
batteries have been proposed that would have significantly higher energy densities. A
wooden battery has been proposed for cheap and similar energy densities to current
Li-Ton technologies [7].

Metal-air batteries have been researched since the 1970s, but there are still challenges
relating to recharging and recycling. IBM started the Battery 500" initiative in 2009
to produce a battery that can power a car for 500 miles. The Li-Air battery uses the
oxidation of lithium at the anode and the reduction of oxygen at the cathode for moving
current [8]. Discharging IBM’s air breathing Li-Air battery involves oxygen reacting
with lithium that results in lithium peroxide and electrical energy. When charging, the
reverse process releases oxygen. The main benefit of Li-Air is the high energy density
of the battery that is comparable to gasoline. A Li-Air battery can have as much as 15
times greater energy density than a Li-Ion battery. A critical review of Li-Air batteries
predicts that the technology will remain a research topic for the next several years due
to remaining fundamental challenges [9].

Energy harvesting [10] is an interesting direction for very small devices, such as
wearables and sensors; however, it is not feasible for smartphones due to their power
requirements. A technique based on the reverse electrowetting phenomenon has been
proposed that can harness energy from walking. The technique could result in a small
generator that powers mobile devices, such as smartphones [11].

Heat output is a major challenge for the design of smartphones that limits the per-
formance and capabilities of the device. Today’s smartphones have been designed so
that they do not require active cooling such as fans; however, in certain heavy load cir-
cumstances they can become noticeably warm. To maintain the operating temperature
range, the SoC will throttle the performance of the device to reduce the heat output. This
throttling can have negative effects on the user experience. The basic thermal design
techniques relate to the placement of the components and the materials used. In addi-
tion, the SoC can tune the multicore system by choosing the cores, frequencies, and

! http://www.ibm.com/smarterplanet/ accessed January 6, 2014.
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voltages to minimize power draw and heat output. SoC components, such as the GPU,
can be switched to low-power modes.

Passive liquid cooling has recently been introduced for smartphones by the NEC
Medias X O6E phone that has a liquid-filled heatpipe that transfers heat from the pro-
cessor to a graphite radiator across the device. Liquid cooling is one potential solution
for alleviating smartphone heat output.

Future smartphone SoC

The near-future evolution of smartphones is likely to see a continued increase in the
number of cores and better tuning of the multicore system, high-performance GPUs,
more co-processors and cores for dedicated application activities such as sensing, and
more coordination of activities in hardware. The evolution appears to be following
Moore’s Law that states that the performance of electronics doubles every 18 months.

As discussed in Chapter 2, the static power leakage affect the feasibility of voltage
scaling. To address leakage, SoCs use power gating to allow portions of the system to
be switched off when necessary. Low power requirements are also driving the trend for
multicore systems with many voltage and frequency controlled cores.

Alternative CPU technologies are being investigated; however, these will still take
many years to reach the market. For example, graphene CPUs are expected to support
much higher frequencies than today’s technology. A prototype graphene CPU has been
developed, but it is too large for practical deployments [12].

The smartphone DSPs and GPUs are becoming powerful general purpose computa-
tion engines. OpenCL, CUDA, and advanced shader languages allow general algorithms
to be developed and offloaded to mobile GPUs [13].

The SoC designs will have to address always-on sensors and communications, while
at the same time minimizing the energy consumption of the system. This requires that
unnecessary cores and components can be shutdown in a coordinated manner. The
recent trend of coordinating activities, such as threads and tasks, data transfers, and sens-
ing operations, is expected to continue with more intelligence in the hardware, drivers,
and OS.

5th generation mobile networks (5G)

5G (5th generation mobile networks)? is the term generally used to describe the mobile
world next to come into existence [ 14]. It is used for all characteristics which are beyond
the current official standards 4G/IMT-Advanced. The use of the term is therefore not
formal and 5G does not cover any particular set of specifications and the standardization
authorities for telecommunication have not published or endorsed anything beyond 4G.

2 https://www.metis2020.com accessed January 6, 2014.
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Thus, the updates of 4G are not grouped under the 5G. Still, it is quite natural to use the
name 5G for the still open future.

What kind of network will 5G be? There is no clear consensus beyond the basic fact
that a new standard will be needed in the near future, possibly in the early 2020s. One
difficulty is the nature of frequency bands: they are a scarce resource and ensuring that
the new generation of telecommunication will have a markedly greater peak bit rate
is not easy or straightforward. So the throughput will probably not be the most criti-
cal technological development/marketing point of the emerging 5G. Other measurable
quantities and characteristics could be more important.

There are many limitations relating to the wireless communication of current mobile
devices. The new standards should address problems such as the increase in battery
usage due to the ever-growing set of services offered by mobile devices. Energy effi-
ciency is expected to be a key requirement for 5G network equipment and mobile
terminals. In addition, the latency should be lower than in current devices and the cellu-
lar network should support scalability, better coverage, and higher versatility. The costs
of network deployment should go down and requirements for data volume increase
per area unit are growing steadily. All these combined with higher bit rates present
formidable problems for the designers of the future cellular network.

Europe has traditionally been the leader in mobile communications technology and
the European Union has recognized the need for new standards, that is 5G. The discus-
sions of development beyond 4G have introduced many new concepts deemed important
and desirable. Notably among these are those traits which will support emerging IT
trends, such as the [oT. IoT means a new product/consumer world where most or all
products are automatically given IP addresses and connected with the Internet. This
is a profound revolution which sets new and demanding tasks and requirements to all
parts of digital technology, not least to the telecommunication sector. The number of
connected devices will grow astronomically, requiring better overall control of the sys-
tem, greater speeds, reduced latency, and, foremost, a new level of reliability. Also an
important factor in this would be the pervasiveness of the network, providing ubiquitous
computing. The need to be connected simultaneously and smoothly to several access
points with differing technologies is very important and in fact necessary for cloud
technologies. All this naturally requires the existence of IPv6 for assigning unimpeded
mobile IPs.

The network in its entirety must be changed and the starting points and targeting of
its design should reflect new aims and requirements. 5G should be user-centric instead
of operator-centric or bound to developers’ interests like the previous 1G—4G were. 5G
must be a comprehensive W4 (World Wide Wireless Web) tool supporting new and
much-needed characteristics of the mobile web, instead of catering for the W4 needs
only in passing, like now. Because the users are often moving, the system should support
the changing of location in and between the cells; higher bit rates are needed throughout
the cell boundaries. This can be achieved by using cellular repeaters and also group-
ing cooperative relays (macro-diversity), where users themselves are an active part of
the network through direct D2D (device-to-device) telecommunication capacity. These
would be major steps forwards in getting true multi-hop networks. The flexibility of
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resources will be greatly enhanced when each cell can act in both uplink and downlink
communication. Interference problems are bound to increase and they must be taken
care of.

Currently it is trendy to speak of massive data analysis, storage, and handling. These
also set new challenges which should be managed. Techniques like Massive Distributed
MIMO are helpful because they facilitate sending intensive message streams from trans-
mission points with large numbers of antennas. This maximizes the gain from a single
resource and minimizes interference. The emerging network greatly exceeds the den-
sity of the current one. In general the management of interference and mobility needs
advanced solutions where the transmission points at least cooperate with each other and
accept overlapping of the areas. Multiple concurrent paths for data are also a prerequisite
for massive telecommunication and computation.

The scarcity of available frequency spectrum requires new dynamic radio technolo-
gies. Smart radio is the name under which we collect technologies allowing efficient
sharing of the same spectral area by different wireless technologies. The sharing is
dynamic because unused spectrum is actively searched for and adaptive because the
transmission devices automatically adapt to the changing technological environment
sharing a spectral area. Management of this cognitive radio is necessarily distributed
and wireless parameters must be defined by software.

Requirements for massive data transfer necessitate, for instance, multiplicity in access
architecture, modified physical layers, AND new filter bank handling (non-orthogonal).
Furthermore, the solutions should be flexible and allow for reducing the end-to-end
latency. Ad hoc networking and smart antenna systems with flexible modulation could
critically enhance the efficiency of 5G. Nevertheless, the main problem with 5G is
probably not its technological complexity but the difficulty in achieving a truly global
and universally accepted standard. The targets of various interest groups differ, often
considerably, and thus the task of standardizing 5G will not be easy.

Mobile 0S and platform

Smartphones are already in many cases always-on and connected to the Internet. This
trend has resulted in the rise of mobile cloud computing, in which applications and ser-
vices are distributed between mobile devices and the fixed-network cloud computing
infrastructure that is provided by data centers. Mobile cloud allows the development of
computationally heavy applications that are distributed: the sensing and initial compu-
tation happens on the mobile devices after which the data is sent to the cloud for the
heavy processing. The cloud then provides results back to the mobile devices.

For example, voice and face recognition are classical examples of computation-
ally heavy processes that can be offloaded to the cloud. We investigated well-known
techniques in Chapter 14. In addition, mobile 3D graphics processing can be divided
between the device and its GPU and a cloud-based, high PERFORMANCE GPU
cluster [13].
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Virtualization is an emerging technique that is supported by modern mobile pro-
cessors, such as the Cortex-AlS5. Virtualization allows the execution of multiple OS
instances simultaneously over the same hardware. The isolation provided by vir-
tualization can keep the multiple work environments with their data separate. The
hypervisor can support multiple CPU clusters and migrate guest OSs across different
clusters.

Nowadays, it is very common for mobile devices to handle multiple tasks concur-
rently. This requires the power management at the system level to be able to handle more
complex situations. For example, it is possible for multiple application-level solutions
to be applied to the same system, with one solution for one running application. In that
situation, power-management software must extend its functionality from hardware-
resource management to the management of these solutions, for example scheduling the
context sharing among solutions and avoiding the conflicts in resource usage between
them. Despite the increased complexity in power management, we are also seeing
opportunities for coordinating these solutions to further improve the energy savings.
This coordination can happen not only in the smartphone but also between smartphones
and the surrounding devices and the cloud.

Energy savings that can be achieved from these solutions depend on the trade-
offs between power consumption and performance, and between computational cost
and transmission cost. Predicting the near-future values of context variables can help
in deciding whether executing the adaptations defined in the solutions would save
energy or not. Accurate prediction requires knowledge of the system and its power
consumption. A challenge comes from the complexity of wireless data transmission.
Compared to computation, the execution of wireless data transmission includes many
more uncertainties because it depends on the network protocols used for implementing
the transmission, the network devices carrying the data through the network, and the
network environment where the transmission happens. If these influential factors can be
described using context, it follows that the power-management software must be aware
of the context and be able to adapt to their changes.

Application domains

With the advent of wearable computing and augmented reality applications, always-on
sensing will become commonplace as well as local communication not only with other
smartphones but also with all kinds of active and passive auxiliary devices around the
smartphone. We examined energy-efficient sensing in Section 15.2. Indeed, the smart-
phone is rapidly becoming an important interface for the IoT. Wearable computing and
the IoT present unique challenges for energy-efficient operation, because they involve
wireless communications and typically the sensors have very small batteries. The smart-
phone as a hub, on the other hand, may need to interact with a large number of sensors
and connect them to the Internet thus posing challenges in terms of the scalability of
communications and networking and battery life. The Bluetooth Low Energy examined
in Section 7.3.2 is now becoming a key protocol for wearables and the IoT.
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As the demand for hardware resources comes from mobile applications, many
energy-efficient mobile applications have been proposed in accordance with the criteria
of trying to reduce as much processing and data transmission workload as possible.
For example, the power consumption of video playback depends on the quality of the
videos. Transcoding proxies were introduced into video-streaming systems for com-
pressing the videos into ones with lower quality before forwarding them to the mobile
devices [15]. Another recent example of ways to reduce the workload of the mobile
devices is offloading computation from mobile devices to the cloud [16, 17].

Mobile cloud computing promises to integrate mobile devices and scalable cloud
platforms into a unified distributed computing environment that can address the chal-
lenges of wearables, the 10T, and ubiquitous computing. We examined mobile cloud
related solutions, namely offloading, in Chapter 14.

Summary

Heterogeneity of the operating environment is an overall trend overarching the different
layers and systems. We are seeing heterogeneity in the SoC, platform, applications, and
the distributed environment. This heterogeneity creates many possibilities for innova-
tion; however, it also increases engineering complexity and makes it more difficult to
model, optimize, and debug these systems. Energy efficiency will be a key challenge
for smartphones and many of the emerging application domains, such as wearable com-
puting, augmented reality, and the IoT. This book has presented an overview of the
challenges of energy modeling and optimization for smartphones, but many of the tech-
niques are generic and applicable also to wearable devices and sensors. The smartphone
is expected to become an important interface for interacting with the emerging heteroge-
neous computing environment. Thus the energy optimization of smartphones and their
subsystems is a crucial challenge today and in the near future.
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Appendix A An energy profile application

The following is the source code for a simple Android application that estimates
energy use based on the screen brightness value and an energy profile, as discussed
in Section 4.4. The source code consists of several files:

¢ BrightnessEnergyProfile.java The main source code file

e res/values/integers.xml Definitions of numbers

e res/values/styles.xml Definitions of UI styles for all SDK versions

o res/values/strings.xml Definitions of text constants

® res/menu/activity_brightness_energy_profile.xml Definition of menu layout

e res/values-v11/styles.xml Visual styles for Android SDK version 11 and newer
e res/layout/activity _brightness_energy_profile.xml Definition of UI layout

o res/values-v14/styles.xml Visual styles for Android SDK version 14 and newer
® AndroidManifest.xml Application description file for Android packaging

Included files

BrightnessEnergyProfile.java

package edu. helsinki.cs.nodes.energy;

import android.os.Bundle;

import android.provider.Settings . SettingNotFoundException ;
import android.app.Activity;

import android.view.Menu;

import android.view.WindowManager ;

import android.widget. SeekBar;

import android.widget. SeekBar.OnSeekBarChangeListener ;
import android.widget. TextView;

public class BrightnessEnergyProfile extends Activity {

/% %

* Default

*/

@Override

protected void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState );
setContentView (R.layout.activity_brightness_energy_profile);
SeekBar bright = (SeekBar) findViewByld(R.id.brightnessSeek );
bright.setOnSeekBarChangeListener (new OnSeekBarChangeListener () {
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@Override
public void onProgressChanged(SeekBar seekBar, int progress,
boolean fromUser) {
// Get text field reference
SeekBar bright = (SeekBar) findViewBylId(R.id.brightnessSeek );

// Brightness, 0 to 255
int brightnessLevel = bright. getProgress():

// Save brightness in phone settings

android. provider . Settings . System. putlnt(getContentResolver (),
android. provider . Settings . System . SCREEN.BRIGHTNESS,
brightnessLevel);

// Apply brightness to our app

WindowManager . LayoutParams 1lp = getWindow (). getAttributes ();

float brightness = 1.0f / 255 % brightnessLevel;

if (brightness == 0)

brightness = 0.01f;

Ip.screenBrightness = brightness;

getWindow (). setAttributes (1p);

updateEstimate (brightnessLevel);

TextView brn = (TextView) findViewByld(R.id.brightnessValue ):

brn.setText (brightnessLevel+"");

@Override
public void onStartTrackingTouch(SeekBar seekBar) {
// Unused

@Override
public void onStopTrackingTouch (SeekBar seekBar) {
// Unused

/% %

% Default

*/

@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenulnflater (). inflate (R.menu. activity_brightness_energy_profile ,

menu ) ;

return true;

/% %

% Show the current brightness in the text field

*/

public void showBrightness () {
SeekBar bright = (SeekBar) findViewByld(R.id.brightnessSeek );
int b = getScreenBrightness();
bright.setProgress(b);
TextView brn = (TextView) findViewByld(R.id.brightnessValue );
brn.setText (b+"");

VEX]
% Get current screen brightness.
*/
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An energy profile application

public int getScreenBrightness() {

int screenBrightnessValue = 0;
try {
screenBrightnessValue = android. provider . Settings.System. getInt(

getContentResolver (),
android. provider . Settings . System . SCREEN.BRIGHTNESS) ;
} catch (SettingNotFoundException e) {
// TODO Auto—generated catch block
e.printStackTrace ();
}

return screenBrightnessValue ;

% Update estimated energy use based on brightness.

* @param brightness
* a number from —I to 255.
*/
public void updateEstimate(int brightness) {
// TODO: Use actual model here
double s4_max = 933.48;
double s4_150 = 766.77;
double s4_min = 632.21;

double estimate = 0.0;
// Take exact values
switch (brightness) {
case 255:
estimate = s4_max;
break ;
case 150:
estimate = s4_150;
break ;
case 0:
estimate = s4_min;
break ;
default:
break ;
}
// Rough estimate for non—exact values
if (estimate == 0) {
if (brightness < 255 && brightness > 150) {
double multiplier = (brightness — 150.0) / (255 — 150.0);
estimate = multiplier % (s4_max — s4_150) + s4_.150;
} else if (brightness < 150 && brightness > 0) {
double multiplier = brightness / 150.0;
estimate = multiplier % (s4_.150 — s4_min) + s4_min;

}

// Update field on screen

if (estimate != 0) {
TextView est = (TextView) findViewBylId(R.id.estimate);
est.setText (estimate + " mW");

/%

% Checks for brightness change on resume and updates the text field.
*

% @see android.app.Activity#onResume ()

*/

@Override
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protected void onResume () {
super .onResume ();
showBrightness ();

}

res/values/integers.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<integer name="maxBrightness ">255</integer>
</resources>

res/values/styles.xml

<resources>

<!—
Base application theme, dependent on APl level. This theme is replaced
by AppBaseTheme from res/values—vXX/styles.xml on newer devices .

—

<style name="AppBaseTheme " parent="android:Theme .Light">

<!—
Theme customizations available in newer API levels can go in
res/values —vXX/styles.xml, while customizations related to
backward—compatibility can go here.
—
</style>
<!— Application theme. —>
<style name="AppTheme" parent="AppBaseTheme ">
<!— All customizations that are NOT specific to a particular API-level can go here.
</style>

</resources>

res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name ">BrightnessEnergyProfile</string>
<string name="menu_settings ">Settings</string>

<string name="brn">Set Brightness Level:</string>
<string name="mw">632.21 mW</string>

<string name="max">255</string>

<string name="est">Estimated power used:</string>

</resources>

res/menu/activity_brightness_energy_profile.xml

<menu xmlns:android="http://schemas .android.com/apk/res/android" >

<item
android:id="@+id/menu_settings "
android:orderInCategory="100"
android:showAsAction="never"
android:title="@string/menu_settings"/>

</menu>

g
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res/values-v11/styles.xml

<resources>

<!—
Base application theme for API 11+. This theme completely replaces
AppBaseTheme from res/values/styles.xml on API 11+ devices.

—

<style name="AppBaseTheme " parent="android:Theme .Holo.Light">
<!— API 11 theme customizations can go here. —>

</style>

</resources>

res/layout/activity_brightness_energy_profile.xml

<RelativeLayout xmlns:android="http://schemas .android.com/apk/res/android"

xmlns:tools="http: //schemas .android.com/tools"
android:layout_width="match_parent "
android:layout_height="match_parent"
tools:context=".BrightnessEnergyProfile" >

<TextView
android:id="@+id/brightnessLevel"
android:layout_width="wrap_content "
android:layout_height="wrap_content "
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:layout_margin="10dp"
android:text="Qstring/brn"
android:textAppearance ="7android:attr /textAppearancelarge" />

<TextView
android:id="0+id/estimateLegend"
android:layout_width="wrap_content "
android:layout_height="wrap_content "
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:layout_margin="10dp"
android:text="Qstring/est"
android:textAppearance="7android:attr /textAppearancelarge" />

<TextView
android:id="0+id/estimate "
android:layout_width="wrap_content "
android:layout_height="wrap_content "
android:layout_below="0id/estimatelLegend"
android:layout_centerHorizontal="true"
android:text="Qstring /mw"
android:textAppearance ="7android:attr /textAppearancelarge" />

<LinearLayout
android:id="0@+id/progressLayout"
android:layout_width="match_parent "
android:layout_height="wrap_content "
android:layout_below="0id/brightnessLevel"
android:layout_margin="10dp" >

<SeekBar
android:id="@+id/brightnessSeek"
android:layout_width="0dip"
android:layout_height="wrap_content "
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android:layout_marginRight="10dp"
android:layout_weight="1.0"
android:indeterminate="false"
android:max="@integer /maxBrightness"
android:progress="@integer /maxBrightness" />

<TextView
android:id="@+id/brightnessValue"
android:layout_width="wrap_content "
android:layout_height="wrap_content "
android:text="Qstring/max"
android:textAppearance ="7android:attr /textAppearancelarge" />
</LinearLayout>

</RelativeLayout>

res/values-v14/styles.xml

<resources>

<!—
Base application theme for API 14+. This theme completely replaces
AppBaseTheme from BOTH res/values/styles.xml and
res/values—vIl/styles.xml on APl 14+ devices .

—

<style name="AppBaseTheme " parent="android:Theme .Holo.Light.DarkActionBar ">
<!— API 14 theme customizations can go here. —>

</style>

</resources>

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"7>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="edu.helsinki .cs.nodes.energy"
android:versionCode="1"
android:versionName="1.0" >

<uses —sdk
android:minSdkVersion="8"
android:targetSdkVersion="17" />
<uses—permission android:name="android.permission .WRITE_SETTINGS"/>

<application
android:allowBackup="true"
android:label="@string/app_name"
android:theme="0@style/AppTheme " >
<activity
android:name=".BrightnessEnergyProfile"
android:label="@string/app_name" >
<intent—filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category .LAUNCHER" />
</intent—filter>
</activity>
</application>

</manifest>
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power proportionality, 228, 229
power-saving mode, 137
power state, 162
power timing, 228
PowerBooter, 55, 196, 204
PowerProf, 196, 209
PowerScope, 195, 199
PowerTutor, 55, 196, 205
prediction, 255
Wi-Fi, 255
Principal Component Analysis, 210
proximity sensing, 307

Qi, 46

race to sleep, 234
radio power, 28
Radio Resource Control protocol, 118
CELL_DCH, 118
CELL_FACH, 118
CELL_PCH, 118
monitoring, 120
RRC_CONNECTED, 119
RRC_DLE, 119
rate capacity effect, 47
Received Signal Strength Indicator, see RSSI
recovery effect, 47
resistance, 24
RILAnalyzer, 120, 196
Rint model, 52, 204, 222
RISC, 93
RRC, 15, see Radio Resource Control protocol
RRC_CONNECTED, 119
RRC_IDLE, 119
RSSI, 28
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Samsung Galaxy S III, 66, 70
Samsung Galaxy S4, 9, 70
Scheduled PSM, 259
scheduling, 229
context-aware, 230, 253
inter-AP contention, 260
multiple devices, 259
NAPMan, 260
Scheduled PSM, 259
SleepWell, 261
Wi-Fi contention, 259, 262
screen brightness, 78
energy profile, 70
level, 70
security, 308
energy, 310
energy tradeoff, 311
protocol energy overhead, 310
Transport Layer Security (TLS), 309
self-discharge rate, 38
sense resistor, 42
sensing, 125
energy efficiency, 304
sensor fusion, 304
sensor hub, 127
sensor selection, 304
sensors, 9, 125, 304
activity recognition, 305
audio visual, 307
co-processors, 127
continuous sensing, 127, 321
environmental sensing, 307
GPS, 306
light, 308
motion sensors, 304
power modeling, 126
proximity, 307
sampling frequency, 305
sensor hub, 127
Sesame, 196, 210
shelf-life, 38
signal strength, 250
power consumption, 250
signal-to-noise ratio, 28, 234
sleep mode, 137
SleepWell, 261
smart battery, 41, 63
information, 42
SmartDiet, 290
smartphone, 7
future, 315, 322
hardware, 7, 59, 92
mobile OS, 137
SoC, 16, 94
software, 7, 137
stakeholders, 6
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SMBus, 41
SNR, see signal-to-noise ratio
SOC, see State of Charge
SoC, 16, 94
future, 318
smartphone, 94
virtualization, 320
SOD, see State of Discharge
SOH, see State of Health
State of Charge, 39, 41, 49, 63, 194
State of Discharge, 39, 41, 49
State of Health, 39, 41
static battery parameters, 38
statistical significance, 30
switching power, 25
System on Chip, see SoC

tablet devices, 9
tail energy, 121, 230
TCP
buffer management, 302
power modeling, 172, 245
MAC layer retransmission, 175
simplified models, 174
short transfer, 245
TDMA, 13
terminal voltage, 39
TFT, 109
theoretical voltage, 38
thermal limits, 19
Thevenin model, 52, 212, 222
ThinkAir, 286
Time Division Multiple Access, see TDMA
Tizen, 138
TLS, see Transport Layer Security
traffic burstiness, 169
traffic offloading, 270
energy awareness, 274
energy consumption, 272
steps, 270
traffic scheduling, see scheduling
traffic shaping, 235, 261
BitTorrent, 243
Catnap, 243
energy savings, 240
EStreamer, 243
transistor, 25, 93
Transport Layer Security, 309

USB, 45
USB charging, 45
USB charging specifications, 44
user behavior
change, 75

V-Edge, 56, 196, 212

video streaming, 297
DMS, 303
dynamic resource scaling, 303
energy consumption, 298
playback energy, 302
prefetching optimization, 300
race to sleep, 303
TCP buffer management, 302

virtualization, 320

Voice over LTE, 125

volt, 23

voltage, 63, 194

VOLTE, see Voice over LTE

‘Wake on wireless, 269
wake-up radio, 269, 277
watt-hour, 24
wearable computing, 18, 316, 321
Wi-Fi, 14, 15, 78, 111, 180, 235, 255, 315
802.11ac, 113
802.11n, 113
discovery, 111
energy consumption, 112
power modeling, 167
downlink, 170
Internet flow, 172
MAC layer retransmission, 175
uplink, 170
power saving, 112
power state machine, 112
scanning, 264, 307
Wi-Fi Alliance, 11
Wi-Fi contention
inter-AP contention, 260
NAPMan, 260
Scheduled PSM, 259
WiFisense, 267
Windows 8, 146
Windows Phone 8, 156
Windows Phone OS, 144, 156
CLR, 145
wireless charging, 46
Wireless local area network, 111
Wireless Network Interface, see WNI
wireless network interface, 110
Wireless Power Consortium, 46
Wizi Cloud, 269
WLAN, see Wireless local area network
WNI, 231, 234, 264
energy consumption, 264
‘WNI selection, 231, 269, 277
CoolSpots, 269
Wizi Cloud, 269

Zi-Fi, 268
ZigBee, 268
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