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Energy efficiency of wireless and mobile 
networking 
•  In short: Resulting battery life when using smartphone to 

access the Internet 
•  Two concepts 

–  Wireless communication: use radio(s) to communicate 
–  Mobile networking: move while communicating 

•  Using radio requires a certain amount of power 
–  How much depends on the type of wireless technology 

•  Basically the PHY and MAC layers 

•  Being mobile means that this power is not constant 
–  We’ll come to the causes and consequences later on… 



Questions, questions… 

•  Q: Which one is more energy efficient? 
–  3G, WLAN, or LTE? 
–  Lumia 920 or iPhone 5? 
–  P2P or C/S? 
–  ... 

•  A: It depends... 
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A glance at power consumption… 
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Energy efficiency of wireless and mobile 
networking 
•  Energy efficiency: Spend as few Joules over a period of 

time as possible 
–  Minimal average power consumption 

•  How to improve the efficiency by means of software? 
–  Switch off unnecessary hardware 

•  Some of the radio circuitry 
–  Increase the number of bits transmitted/received per Joule spent 
–  Reduce the number of bits to transmit/receive 
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Standard power management techniques 
 
•  Operation defined in a standard document 
•  Usually 

–  implemented by each and every device 
–  requires cooperation between mobile device and the network 

•  Wi-Fi: IEEE 802.11 standard 
•  Cellular networks: 3GPP releases 

–  UMTS (3G, Rel-99) 
–  LTE (4G, Rel-8) 



WNI states and transitions 

•  Management of wireless network interface happens through 
different states 
–  Set of states are technology specific 

•  WNI transitions from state to another according to some rules 
–  Promotions based on traffic demand 
–  Demotions usually timer specified 

•  What states? 
–  E.g. receive, idle, and sleep in WiFi 
–  Correspond to specific modes of the hardware 
–  CELL_DCH, CELL_PCH etc. for 3g 

•  Correspond to different kind of resource allocation (i.e. channel type) 
•  States have different power characteristics 

–  Part of circuitry can be powered off at run time (sleep) 



Wi-Fi, 3G, LTE: different power states 
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CHAPTER 2. LTE 13

For real-time streaming applications such as voice calls, the data sent
during every transmission and the bandwidth utilized are very small. For
applications transmitting small amount of data for many times semi persis-
tent scheduling is more adaptable in which the UE does not need to request
for a Grant each time for transmission of data. Instead, the UE is provided
with a transmission pattern which it follows and transmits the data during
that particular time slot. For example, during a voice call the UE sends an
initial SR and gets the transmission pattern from the scheduler after which
the data is sent on the allocated time. This reduces the complexities and
overhead of the scheduler and the UE.

There are many di↵erent types of scheduling algorithms which are de-
signed based on the need of vendors. Commonly used algorithms include
Round Robin [42], Proportional Fair [47], Maximum Channel Quality Index
(CQI) [43], Channel aware scheduling algorithm [42].

2.3 LTE UE and RRC States

In LTE, a UE can shift between three states namely, RRC DISCONNECTED,
RRC CONNECTED and RRC IDLE.

Figure 2.4: States of LTE UE

Initially, when the UE is in the OFF state, it does not hold any ac-
tive connection with the eNodeB. The state at which the UE is turned on
and is searching for a possible base station for registration or the phase
when the UE is in Airplane mode could be termed as RRC DETACHED
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Wi-Fi (802.11) power consumption 

•  Power consumption depends on operating mode 
Energy = Power(operating mode)* Duration(operating mode) 
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Wi-Fi operating modes and power 

•  Order of magnitude less power drawn in sleep state 

WNI operating mode Average Power (W) 

Nokia N810 HTC G1 Nokia N95 

IDLE  0.884 0.650 1.038 

SLEEP  0.042 0.068 0.088 

TRANSMIT  1.258 1.097 1.687 

RECEIVE  1.181 0.900 1.585 



Wi-Fi power saving 

•  Allows (part of) Rx/Tx circuitry to be temporarily shut 
down 

•  Coordinated with the AP 
1.  Node-to-AP: “I am going to sleep until next beacon frame” 
2.  AP knows not to transmit frames to this node, buffers them 
3.  Node wakes up before next beacon frame 
4.  Beacon frame: contains list of mobiles with AP-to-mobile 

frames waiting to be sent 
•  Traffic Indication Map (TIM) 

5.  Any frames buffered for the node? 
•  Yes à request for them from AP and stay awake until received 
•  No à go back to sleep until next beacon frame 

14 



Wi-Fi power saving (cont.) 

•  Standard PSM is poison for interactive applications 
–  Frequent transitions to and from sleep mode adds lot of delay 

•  “Adaptive” version used in practice 
–  Use timer: if no frames for 100-200ms, then sleep 
–  Timer value is device specific 

15 
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Saving Energy in Mobile Devices Through TCP Receive Bu↵er Aware Multimedia Streaming • 1:3
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Fig. 1: 3G state transitions and power consumption in di↵erent states.
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Fig. 2: RRC State machines using Fast Dormancy.

energy savings. For 3G, the best choice is to use shorter inactivity timers with tra�c shaping. However,
when discontinuous reception mechanisms are available, such as DRX in LTE, those mechanisms together
with long inactivity timers are the best choice.

2. ENERGY EFFICIENCY OF WIRELESS MULTIMEDIA STREAMING OVER TCP

In this work, we focus on the energy consumption of wireless network interfaces for TCP-based multimedia
streaming. We first describe the power consumption characteristics of Wi-Fi and cellular network interfaces
in smartphones. Then we explain how burst shaped multimedia delivery can save energy.

2.1 Energy Consumption of Wireless Network Interfaces

The energy consumption of di↵erent types of wireless communication are controlled by some inactivity
timers. Because of these timers, there is residual time spent by any interface in active state after each
transmission or reception which leads to some energy spent doing nothing useful. We refer to this energy as
tail energy [Balasubramanian et al. 2009]. We discuss below the three most commonly used WNIs that are
present in smartphones, namely Wi-Fi, 3G, and LTE.

2.1.1 Wi-Fi. 802.11 standard includes a Power Saving Mechanism (PSM). Commercial mobile phones
typically implement a slightly modified version of it which is sometimes referred to as PSM-Adaptive (PSM-
A) [Tan et al. 2007]. This version di↵ers from the original one proposed by the standard in that it keeps the
interface in the idle state for a certain fixed period of time (e.g. 200 ms) instead of switching to the sleep
state immediately after the transmission or reception of tra�c [Hoque et al. 2012], which determines also
the amount of tail energy in Wi-Fi communication. Usually, the power draw in sleep state is an order of
magnitude lower than in idle state. Receive and transmit states both may consume up to 50% more power
than the idle state.

2.1.2 HSPA/3G. In WCDMA cellular network, the usage of radio resources and power consumption of a
mobile phone is controlled by the Radio Resource Control (RRC) protocol. This protocol has four di↵erent
states [HSPA 1999]. Figure 1 illustrates the RRC state machine and the inactivity timers which control
the transitions among these states. These timer values are in the order of several seconds and controlled
by the network operators. The mobile phone is disconnected from the RRC state machine when it changes
CELL PCH!IDLE upon T3 expires. Some operators may not enable CELL PCH in their network and in
that case the device would be disconnected from RRC when T2 expires. The figure also shows that operating
in di↵erent states draws di↵erent amount of power. Fast Dormancy (FD) tries to reduce the tail energy
e↵ect as the mobile phone can request the network to transition directly CELL DCH!CELL PCH (FD

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. 3, Article 1, Publication date: May 2013.

3G power management 
•  Radio resources (channel usage) 

controlled by the Radio Resource 
Control (RRC) protocol 
–  Consequently, power consumption of a 

mobile phone too 
•  Four states and three inactivity timers 

–  States correspond to transport channels 
•  Dedicated channel (DCH), Forward access 

channel (FACH), Paging channel (PCH) 
–  In practice, timers are not just single 

parameter 
•  e.g. track average nb of bytes over time 

window and use thresholds 
•  typically at least a few seconds long 

–  Operator controlled, phone cannot change 
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LTE power management 

•  Same concept than in 3G 
•  Simplified RRC protocol 

–  Only two states: RRC_CONNECTED and RRC_IDLE 
–  Inactivity timer to switch to RRC_IDLE 

•  typical value: 10s Traffic 
burst  

RRC Inactivity 
timer running 

RRC_CONNECTED 

RRC_IDLE 

current drawn by 
LTE smartphone 
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Tail energy 

•  All wireless network interfaces exhibit tail energy 
–  Energy spent being idle with radio on à wasted energy 

•  Due to inactivity timers 
–  Mandate how long radio remains in active state (rx on) before state 

transition to inactive state (rx (partly) off) 
•  Timers are necessary 

–  Sporadic communication patterns might lead to very frequent transitions 
–  State changes require signaling between phone and base station 

•  Transmitted on shared channel with limited capacity 
•  Signaling traffic volumes must be limited 

–  Also switching between hardware modes adds some delay 
•  Timer values vary between technology 

–  Wifi≈100-200ms 
–  3G and LTE: in the  order of seconds (varies between ISPs) 



How to minimize tail energy? 

•  Wi-Fi tail is already short  
–  No need for specific mechanisms 

•  Fast Dormancy for 3G 
–  Cuts tail duration down to 3-5s 

•  DRX/DTX for LTE 
–  Especially cDRX/cDTX: connected mode discontinuous reception/

transmission 
–  Typically cuts tail duration down to a few hundred milliseconds 

•  3G has also CPC 
–  Continuous packet connectivity 
–  Similar to LTE’s cDRX/DTX 
–  Introduced in Rel-7 but often not (yet?) fully supported by deployed 

networks and devices 



Fast Dormancy (3G) 

•  Two flavors: legacy and standard 
•  Legacy came first and is phasing out 

–  Phone transmits SIGNALING CONNECTION RELEASE 
INDICATION msg à tears down PS signaling connection 

•  Normally phone uses to communicate some error conditions  
–  Good: Results in immediate transition to low power IDLE 
–  Bad: new communication requires re-establishing of signaling 

connection à frequent use causes signaling storms 
•  Standard FD in Rel-8 is network controlled 

–  Phone requests network to transition it into an appropriate state 
(e.g. CELL_PCH)  

–  Network either allows or denies and decides appropriate state 
•  E.g. too frequent requests are rejected 



Connected mode DRX/DTX (LTE) 
•  DRX works in LTE’s connected state 

–  Hence, also called cDRX (connected 
mode DRX) 

•  DRX operates in cycles 
–  Check periodically if new data is waiting 
–  Very similar to PSM in 802.11 

2

RRC IDLE.

Fig. 1. States of LTE UE

Initially, when the UE is in the OFF state, it does not hold
any active connection with the eNodeB. The state at which the
UE is turned on and is searching for a possible base station
for registration or the phase when the UE is in Airplane mode
could be termed as RRC DISCONNECTED state. Once the
UE finds base station coverage, it registers to the Mobility
Management Entity (MME) through the LTE Attach proce-
dure. After the registration is successful, the UE moves to the
RRC CONNECTED state. In the RRC CONNECTED state the
UE has a Radio Resource Control (RRC) connection with the
eNodeB and maintains an active connection through various
signaling messages. Once the UE sleeps for a longer duration
without any data transmission, it moves to the RRC IDLE
state after the expiry of inactivity timer (Inactivity). When
the UE is out of coverage area, or during the process of
area update it de-registers with the eNodeB and moves to
RRC DISCONNECTED state.

DRX is the power saving mechanism in LTE, that was
introduced in order to reduce the power consumption by
making the UE to move to sleep and idle states when there
is no data transmission to and from the UE based on specific
timers.

In order to obtain information about scheduling, the User
Equipment (UE) monitors the physical down-link control
channel (PDCCH) information every TTI. Performing this
every TTI consumes lot of energy as the UE wakes up very
frequently even though there is no scheduled data for it to
receive. Hence in order to have a solution for overcoming this
issue, Discontinuous Reception (DRX) was introduced. DRX
is a proprietary power saving mechanism for LTE, through
which the User Equipment (UE) is made to sleep for a longer
duration by shutting its wireless RF modem off for a maximum
possible time without compromising the Quality of Service
(QoS), latency and user experience. The explanation for DRX
in LTE 3GPP was first released with T.36.300, Release 8.

DRX is configured on the UE by Radio Resource Control
(RRC) [?], i.e. the eNodeB, which provides the information
on various parameters and its timer values based on which the
UE wakes and listens to the PDCCH control information. The
most important part is that, a LTE device can move to DRX
state in both RRC CONNECTED mode and in RRC IDLE
mode.

When DRX is deactivated in the network, the UE listens to
every sub frame in the RRC CONNECTED mode. On expiry
of inactivity timer, the UE moves to RRC IDLE mode. With

DRX being activated, the transmission and reception of data
happens in the RRC CONNECTED mode. When the UE does
not receive any data for a certain time, it enters the DRX cycle
phase and activates the Short DRX cycle with Short DRX
timer (Ts). In the Short DRX cycle state, the UE monitors the
PDCCH during the DRX OnTimer period.

Fig. 2. RRC State transition of LTE UE

The Short DRX timer is active for a time period called as
the Short DRX timer period (TS)after which the UE activates
the Long DRX timer (Tl). In Long DRX cycle, the wakeup
duration of the UE for monitoring the PDCCH is less frequent
than the Short DRX cycle. Once the UE enters the Long DRX
cycle, it shifts from the RRC CONNECTED to RRC IDLE
mode if the Inactivity timer expires. When the UE gets an
intimation about data to be received through the PDCCH, or
when it needs to transmit data, it moves from RRC IDLE
mode to RRC CONNECTED mode. Once all the data is
transmitted, the UE again activates the DRX cycle in the
RRC CONNECTED mode and then moves to the RRC IDLE
mode after inactivity timer expiry.

Fig. 3. LTE DRX

A. OnDuration Timer

On Duration, is the time period an UE is awake for listening
to the PDCCH frame that specifies whether it has any down-
link data transfer to happen. It happens during the start of a
DRX Long cycle, DRX Short cycle and spans the duration
specified for the timer. After the end of OnDuration, the UE
goes to the sleep mode if there is no DL data assignment or
triggers the inactivity timer if it has a DL data assignment in
the near future.
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Is there room for optimization? 

25 

•  Typical application consumes a lot more energy than is 
strictly necessary 
–  Even with standard power saving mechanisms 

•  Three reasons: 
1.  Radio hardware is not perfectly power proportional to the 

offered load 
2.  Energy utility of wireless communication is context dependent  
3.  The underlying hardware power management mechanisms are 

rarely optimal for the applications being used 



Power (dis)proportionality 

•  Power draw does not scale linearly with amount of work 
done 
–  Bits transmitted/received per Joules spent typically increases 

with data rate 

•  Idle power consumed by hardware just being powered 
on 
–  That constant power added regardless of transmission rate 

•  Idle power takes a larger share of slower transmission 
–  Over-the-air (OTA) data rate of wireless channel != throughput 
–  Each packet may be transmitted continuously at OTA rate but 

idle time in between packets spent as tail energy 



Energy efficiency is context dependent 

•  Moving user experiences varying signal quality 
–  Dynamic switching of modulation based on SNR à data rate changes 
–  Poor SNR à link layer retransmissions 
–  Worse SNR requires more transmit power 

•  Affects also reception (cont. tx of signaling msgs) 
•  Static user may experience varying network load 

–  Other users take up air time 

Context 

Quality of wireless 
network access 

Type of WNI 
used 

Network load Signal quality energy utility of 
data transmission 

energy spent by 
connectivity mgmt throughput data rate 

(modulation) 
tx power 



Limits of underlying hardware power 
management mechanisms 
•  Hardware power management mechanisms 

implemented at PHY/MAC layers 
–  The protocol stack layers that interface the hardware 

•  Separation of concerns in the layered protocol design 
–  Layer is concerned only about its own responsibilities and 

functionalities 
–  Cross-layer protocols are not so common 

•  At least not those that cross the stack up to application layer 

•  à power management mechanisms are completely 
unaware of application behavior 
–  Same mechanism regardless of the type of application 



How can we do better? 

•  Traffic scheduling 
–  Shape traffic to improve energy utility (bits per joules) 
–  Reduce energy spent due to contention 
–  Take context dependency into account 
–  Handling background traffic energy efficiently 

•  Smart use of wireless network interfaces 
–  Smartphones have many 
–  Use always the most energy efficient one 
–  Often requires ability to predict connectivity 

•  Application specific optimizations 
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Energy utility 

•  Energy utility improves with data rate 
   à should always transmit as fast as possible 
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Fig. 5. Energy utility of TCP download with single flow at rate between 16KBps and 256KBps.
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Fig. 6. Energy utility of TCP upload with single flow at data rate from 16KBps to 256KBps.
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Fig. 7. Energy utility of TCP download/upload on Nexus S. The X-axis represents the aggregated data rate of all the
TCP flows. The biggest value on the X-axis is the maximum throughput achieved without any rate limit. Each data
point shows the mean and the standard deviation of the measured or the estimated Power.

TABLE 9
MAPE of power models for Nexus S

No. No. MAPE No. No. MAPE
downlink uplink (%) downlink uplink (%)

1 0 3.4±2.0⋆ 0 1 2.6±1.5⋆
4.2±1.7 4.1±4.4

2 0 3.3±1.7⋆ 0 2 2.9±2.0⋆
2.4±1.1 0 2 5.1±4.0

4 0 2.9±2.0 0 4 5.1±1.5
8 0 2.2±1.4 0 8 5.9±1.8
1 1 2.1±1.8⋆ 1 1 2.7±1.9
2 2 5.0±2.8 4 4 4.8±2.1

⋆ The display was turned off. The data rate was between 16 and
256KBps.

As shown in Fig. 7, the standard deviation is very small
compared to the value of the mean. As the processing
overhead for maintaining more TCP flows is included
in the measured Power, the small standard deviation of
the measured Power shows that the processing overhead
can be safely ignored. Fig. 7 also shows that the power
models presented in Section 3 can provide generally ac-
curate energy estimation of TCP transmission, regardless

of the number of TCP flows.

5.4 TCP Download/Upload in Congested Network
We connected the Nexus S to a public AP in our cam-
pus and measured the power consumption during TCP
download and upload. The phone tried to send/receive
data as fast as possible without any data rate limit or
traffic shaping. Due to the interference caused by the
neighbouring APs, MAC layer retransmissions could
not be left ignored. Based on the collected MAC layer
traffic traces, we calculated the retransmission ratio Rr

and the expected value of retransmitted packet interval
E(Tir). The samples of retransmitted packet intervals
used for calculating E(Tir) seem to follow the Inverse
Gaussian distribution. The overhead of retransmitting
packets was computed following (22). Because the CPU
frequency was always 400MHz during the measurement,
no extra cost was caused by DVFS. The final results
are shown in Table 10. In upload cases, taking into
account the retransmission overhead can improve the
power estimation accuracy by almost 50%.

Wi-Fi download (PSM) Measurements 
using Samsung 

Nexus S 



Energy consumed by mobile streaming 
•  Mobile media streaming drains battery quickly 

–  Constant bit rate multimedia traffic is not energy friendly 
–  Forces the network interface to be active all the time 

 

•  Idea: Shape traffic into bursts so that it is more energy efficient 
to receive 
–  Bursts sent at high data rate 
–  “Race to sleep” 

Datarate 
(kBps) 

Start-up 
Time (s) 

WLAN power (W) 3G power (W) 

PSM CAM 48kBps 2Mbps 

8 18 0.53 1.06 1.30 1.30 
16 10 0.99 1.07 1.30 1.30 
24 10 1.04 1.07 1.27 1.35 

Mobile Internet Radio 
power draw on E-71 
(TCP-based streaming) 



Multimedia Traffic Shaping with Proxy 

•  Client sends request to proxy 
•  Proxy 

–  forwards request to radio server 
–  receives and buffers media stream 
–  repeatedly sends in a single burst to client 

•  802.11 
–  PSM is enabled 
–  WNI wakes up to receive a burst at a time 
–  Waste only one timeout per burst 

•  3G & LTE 
–  Long enough burst interval 
à inactivity timers expire 
à switch to lower power state or activate DRX in 

between bursts 

33 

Fast Start phase to quickly 
fill up playback buffer 



Where is the free lunch? 

•  Typical multimedia traffic leaves lots of network capacity 
unused 

•  Several vantage points possible for traffic shaper proxy 
placement 

Internet 

Wi-Fi 

HSPA/LTE 

wireless 
wired 

8-350 Mbps 

video 
server 

Web 
server 

> 100 Mbps 



What is the right burst size? 

•  Intuition: Use as large as burst size 
as possible 
–  Maximize sleep time in between bursts 

•  Problem: TCP receive buffer is of 
limited size 
–  Too large burst will not fit entirely à 

TCP flow control kicks in 
–  Buffer is drained at stream encoding rate 
à Excess content will be received at 
that rate 

•  Lower energy utility 

Saving Energy in Mobile Devices Through TCP Receive Bu↵er Aware Multimedia Streaming • 1:5
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Fig. 6: Power consumption of Nokia E-71
at di↵erent burst intervals via Wi-Fi.
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to being present with each packet in slow constant bitrate streaming. The bar chart in Figure 6 shows that
power consumption of Nokia E-71 decreases as the burst interval T or burst size increases. In Nokia E-71,
the duration of the Wi-Fi inactivity timer is 200 ms and thus tail energy is very small. Nevertheless, the
tail energy phenomenon can hurt much more if the idle period between two consecutive bursts is short and
the size of the bursts are small, especially when streaming via cellular networks where the typical inactivity
timer values are many seconds. These inactivity timers would never expire during the short burst intervals
and there would be high energy consumption. Therefore, longer burst intervals, T , can ensure the timeout
of the inactivity timers and thus less energy consumption.

There is a caveat. Multimedia players maintain a playback bu↵er of some fixed bytes. This size can depend
on the implementation of the player or can be restricted by the operating system of the smartphone. If the
size of a burst is larger than the available space in the playback and TCP receive bu↵er together then TCP
flow control becomes active at the client. Since the player decodes the content at the encoding rate, TCP
flow control and this player behavior together ensure that the excess bytes are received by the client at the
encoding rate of the stream. Figure 6 shows that E-71 consumes the least power when T = 6 s for streaming a
128 kbps radio. In this case, the burst size is of ⇡ 96 kB. When the burst size is increased enough, the average
power consumption increases again as the remaining content is received at the encoding rate because of the
resulting TCP flow control. Figure 7 demonstrates how TCP flow control at the client controls the receiving
of a over sized burst when burst interval is of 10 s. ‘z’ in the figure indicates zero window advertisement from
the client.

3. POWER MODELING AND ANALYSIS OF BURSTY STREAMING

Based on the bursty streaming behaviour and energy consumption characteristics described in the previous
section, we now develop power consumption models for delivering streaming content in bursts. We use the
models to study the power consumption of di↵erent burst sizes in di↵erent scenarios. We identify the optimal
burst size and quantify the potential energy savings and losses using the optimal and a non-optimal size,
respectively.

3.1 Parameters

The parameters used in the following equations are described in Table I. We consider the power consumption
to be fixed when actively receiving data at a given rate [Xiao et al. 2010], and we assume that the average
stream encoding rate (r

s

) is always lower than TCP bulk transfer capacity (r
btc

), i.e. there is some spare
bandwidth to exploit. Since we model the power consumption of bursty TCP tra�c, the size of a burst is
determined by the amount of audio or video data (encoding rate r

s

) collected over a period T . Therefore, the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. 3, Article 1, Publication date: May 2013.

too large burst 
! TCP flow 

ctrl active 

streaming 
server 

application 

streaming 
client 

application 

TCP TCP 

Server Phone 

= buffer 



What is the right burst size? 

•  Burst size that offer maximal energy 
savings exists 
–  Option 1: Make burst size match exactly 

receive buffer size 
•  Max burst size = playback buffer size

+TCP receive buffer size 
–  Option 2: Max burst interval & size limited 

by amount of initially buffered content 
•  Cannot let the playback buffer run dry 

•  Optimality of such burst size is easy to 
prove 
–  Check: M. Hoque et al. Saving Energy in 

Mobile Devices for On-Demand 
Multimedia Streaming - A cross-layer 
Approach. ACM TOMCCAP. 2014. 
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to being present with each packet in slow constant bitrate streaming. The bar chart in Figure 6 shows that
power consumption of Nokia E-71 decreases as the burst interval T or burst size increases. In Nokia E-71,
the duration of the Wi-Fi inactivity timer is 200 ms and thus tail energy is very small. Nevertheless, the
tail energy phenomenon can hurt much more if the idle period between two consecutive bursts is short and
the size of the bursts are small, especially when streaming via cellular networks where the typical inactivity
timer values are many seconds. These inactivity timers would never expire during the short burst intervals
and there would be high energy consumption. Therefore, longer burst intervals, T , can ensure the timeout
of the inactivity timers and thus less energy consumption.

There is a caveat. Multimedia players maintain a playback bu↵er of some fixed bytes. This size can depend
on the implementation of the player or can be restricted by the operating system of the smartphone. If the
size of a burst is larger than the available space in the playback and TCP receive bu↵er together then TCP
flow control becomes active at the client. Since the player decodes the content at the encoding rate, TCP
flow control and this player behavior together ensure that the excess bytes are received by the client at the
encoding rate of the stream. Figure 6 shows that E-71 consumes the least power when T = 6 s for streaming a
128 kbps radio. In this case, the burst size is of ⇡ 96 kB. When the burst size is increased enough, the average
power consumption increases again as the remaining content is received at the encoding rate because of the
resulting TCP flow control. Figure 7 demonstrates how TCP flow control at the client controls the receiving
of a over sized burst when burst interval is of 10 s. ‘z’ in the figure indicates zero window advertisement from
the client.

3. POWER MODELING AND ANALYSIS OF BURSTY STREAMING

Based on the bursty streaming behaviour and energy consumption characteristics described in the previous
section, we now develop power consumption models for delivering streaming content in bursts. We use the
models to study the power consumption of di↵erent burst sizes in di↵erent scenarios. We identify the optimal
burst size and quantify the potential energy savings and losses using the optimal and a non-optimal size,
respectively.

3.1 Parameters

The parameters used in the following equations are described in Table I. We consider the power consumption
to be fixed when actively receiving data at a given rate [Xiao et al. 2010], and we assume that the average
stream encoding rate (r

s

) is always lower than TCP bulk transfer capacity (r
btc

), i.e. there is some spare
bandwidth to exploit. Since we model the power consumption of bursty TCP tra�c, the size of a burst is
determined by the amount of audio or video data (encoding rate r

s

) collected over a period T . Therefore, the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. V, No. 3, Article 1, Publication date: May 2013.



How to find the optimal burst size? 

•  Proxy does not know client’s TCP receive buffer size 
•  Could design a protocol where client informs proxy 

server 
–  Need custom streaming client software à bad idea 

•  Insight: TCP flow control messages indicate too large 
burst size 
–  Proxy receives TCP zero window advertisements from client 
–  Provides transparent way of identifying too large burst size 

•  How to probe for right size? 
–  Linearly increasing burst size can take a long time 
–  Use binary search instead 



How to find the optimal burst size? 

•  Initially 
–  Set max burst size according to 

initially buffered data 
•  Proxy calculates it during the Fast 

Start period 
–  Start from min=0 

•  For each burst 
–  Set new burst size to (max-min)/2 
–  Check whether received any ZWAs 

•  No à set min=current burst size 
•  Yes à set max=current burst size and 

revert back to previous burst size 
•  Stop search when max-min equals 

minimum increment 
–  E.g. 1s worth of content 

Applications HTC Nexus One Nokia N900 Nokia E-71 HTC Velocity

Access Network (Android-2.3.6) (Maemo) (Symbian V 3.0) (Android 2.3.7)

Sav%–kbps–T
opt

Sav%–kbps–T
opt

Sav%–kbps–T
opt

Sav%–kbps–T
opt

Internet Radio/Wi-Fi 23%–128–14 s 62%–128–14 s 65%–128–6 s –

Internet Radio/3G/LTE 38%–128–14 s 24%–128–14 s 2%–128–4 s 60%–128–18 s

YouTube Bro/Wi-Fi 14%–912–36 s 20%–328–39 s 18%–280–4 s

YouTube Bro/3G/LTE 16%–328–38 s 14%–328–39 s 4%–280–3 s 50%-2000-31 s

YouTube App/ Wi-Fi 13%–458–38 s – – –

YouTube App/3G/LTE 27%–458–38 s – – 54%–2000–39 s

Dailymotion/Wi-Fi 15%–452–33 s – – –

Dailymotion/3G/LTE 30%–452–33 s – – 55%–452–33 s

Table 2: Maximum power savings at T
opt

for di↵erent mobile devices using EStreamer, while playing di↵erent audio and video streaming
applications over Wi-Fi, 3G and LTE. The LTE measurement results are only with HTC Velocity phone.
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Figure 1: Streaming 128 kbps Internet Ra-
dio to Nokia E-71 over Wi-Fi.
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Figure 2: Streaming 128 kbps Internet Ra-
dio to Nokia E-71 over 3G.

0 2 4 6 8 10
500

750

1000

1250

1500

P
ow

er
 C

on
su

m
pt

io
n 

m
W

0 2 4 6 8 10
0

10

20

30

40

B
ur

st
 In

te
rv

al

Round
 

 

Burst Interval
Power Consumption

zwa=4

Figure 3: Streaming 452 kbps Dailymotion
video to Nexus One over 3G.

EStreamer sends a burst. We name this burst sending event
as round.

We used three popular audio/video services with con-
stant bit rate streaming in the experiments: Internet Ra-
dio, YouTube, and Dailymotion. The encoding rates of the
streams were between 128 kbps and 2 Mbps.

We present results for the two di↵erent cases: (i) Burst
size exceeds TCP receive bu↵er size and (ii) Burst size never
exceeds total bu↵er. Besides these, we also compare the
performance of EStreamer with the existing energy aware
streaming applications. A summary of the achieved energy
savings is shown in Table 2.

4.1 Burst Size Exceeds TCP Receive Buffer
In order to find the optimal burst interval, EStreamer be-

gins tra�c shaping with a value of T = T
max

/2 seconds
and makes further changes until it finds a maximum burst
interval for which there would be no ZWAs.

Figure 1 and 2 show the power consumption of Nokia E-
71 and also the tuning of burst interval while streaming a
128kbps Radio over Wi-Fi and 3G respectively. In the for-
mer case EStreamer starts tra�c shaping with T = 7 s.
Then it finds ZWAs during the next burst with T = 11 s.
In order to reduce the energy consumption because of the
extra data, EStreamer reduces the next burst interval and
then at the 7th round it finds T

opt

= 6 s. In the case of
3G, EStreamer also begins with the same value and finds
T
opt

= 4 s. Here two noticeable things are: i) The opti-
mal burst interval is almost equal to the value of the 3G
inactivity timer T1 and therefore power consumption does
not reduce significantly. ii) E-71 uses a smaller TCP receive
bu↵er for 3G as compared with the Wi-Fi scenario and this
clarifies the rate control behavior that we observed in our

previous work [5]. Power savings for these two experiments
are presented in Table 2.
EStreamer also shows similar tra�c shaping pattern for

streaming 452 kbps Dailymotion video to the Nexus One
phone via 3G (see Figure 3). For the T of 34 seconds, ES-
treamer finds ZWAs from the smartphone. Subsequently
burst interval is reduced for the immediate next round and
then increased again. One scenario for a very high bit rate
YouTube video streaming with the Nexus One is illustrated
in Figure 4. We notice that power consumption increases at
the 5th round as the EStreamer sends burst higher than the
client TCP receive bu↵er and then decreases again as the
EStreamer moves toward the optimal bu↵ering period of 36
s. In this case, there are only few rounds as the streaming
lasts for around 300 seconds. However, power consumption
is reduced by 14%.

4.2 Total Playback Buffer is Sufficiently
Large

When T
max

is smaller than the client’s bu↵er size, ES-
treamer will reach that burst interval. The reason is that
the client can accommodate the whole burst into applica-
tion bu↵er and TCP receive bu↵er completely. Therefore,
EStreamer will never detect ZWAs for any T and will find
the optimal burst interval at T

max

, as a result, achieve more
energy savings.
For some YouTube video streaming sessions, EStreamer

finds T
opt

also at T
max

, regardless of the wireless interface
used. An example of such a case is shown in Figure 5. While
streaming a 458 kbps video to the Nexus One, EStreamer
begins tra�c shaping with T = 19 s and ends up with T

opt

=
T
max

= 38 s. In Figure 6 we illustrate another scenarios for
streaming high definition video (720p) to HTC Velocity via

452 kbps Dailymotion video 
stream to Nexus One over 3G 



How much energy can be saved? 

•  Overall large savings possible 
–  audio: 36%-65%, video: 20%-55% 

•  Savings depend largely on network type and parameters 
–  3G/LTE have longer inactivity timers than Wi-Fi 
–  Parameters (timers and DRX) determine the tail energy that can 

be saved 

•  Stream rate matters as well 
–  Bursting lower rate stream yields larger savings 

•  Smaller savings with video streaming compared to audio 
–  Display draws significant amount of power 
–  Video decoding is more work than audio decoding 



Outline 

•  Intro 
•  Standard power management techniques 
•  Beyond standard techniques 
•  Example optimizations 

–  Traffic shaping in multimedia streaming 
–  Optimized prefetching of video streaming 
–  Context-aware scheduling of transfers 

•  Conclusions 

 
 



On-demand mobile video stream delivery 

•  Different strategies to deliver video stream content to client 
–  Caused by client software+streaming service combinations 
–  Leads to very different energy consumption 
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Figure: Avg. current consumed by Wi-Fi, 3G and LTE interfaces of
Galaxy SIII 4G using different streaming techniques.

I Wi-Fi interface is managed using PSM-A, HSPA using Fast
Dormancy, LTE without DRX.

I Playback current consumption is around 200-230 mA.
I Wireless interfaces can deplete battery at equal rate.
I Fast Caching is the least energy consuming technique only

if the complete video is watched.

Energy consumption of different 
strategies 
•  Several sources of energy 

inefficiency 
–  Underutilization of the capacity 
–  Auxiliary TCP control traffic (ON-

OFF-S) 
–  Tail energy in non-continuous 

content reception 
•  Fast Caching seems best 

–  But users typically abandon viewing! 
–  No longer best when aborting after 

20% 
–  Too aggressive prefetching à 

download content that will never be 
watched 

Wi-Fi with PSM-A 
3G (HSPA) with FD 
LTE without DRX 



Optimizing content delivery strategy 

•  Must strike a balance between two sources of energy 
waste: 
–  Prefetch content in large chunks in order to minimize the tail 

energy 
–  Limit chunk size in order to reduce the amount of downloaded 

content that will never be viewed 

•  Need an estimate of when a user will abandon viewing 
the video 

 à use viewing statistics 



Video viewer retention 

•  Video clip specific statistics give insights about how a 
new user would view the video 
–  E.g.: poor content à likely to abandon early 

•  YouTube collects such statistics 
–  Available only to “video owner” 

MobiCom’2013
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Figure: Audience retention graphs from YouTube videos.

I Each curve shows the fraction of the audience that is still
watching at a given point of time.

I Some retain clear majority of audience until the end while
others lose most of the audience at the very beginning.

I Video clip specific statistics give useful insights about how
a new user will watch the video.



eSchedule algorithm 

•  Algorithm that calculates optimal download schedule 
•  Input: 

–  Viewer retention data for the video clip 
•  Ri: “Which fraction of users viewed until time step i” 

–  Power consumption characteristics of WNI used (Prx, Etail) 
–  Video stream rate (renc) and bulk transfer capacity (rdl) 

•  Output: dl schedule S that minimizes expected value of 
energy waste 
–  Exp amount of energy spent by downloading content that won’t 

be viewed 
–  Estimate of total tail energy expenditure 
–  S is a concatenation of chunk sizes (n-tuple): S=(T1, T2, …, Tn) 



eSchedule algorithm: problem formulation 

4

Computing the tail energy is straightforward given
that the algorithm knows the power states and inactivity
timer values for each specific radio interface. This tail
energy depends on the chunk size because the inactivity
timer values corresponding to a specific radio interface
can exceed T . The tail energy is added for a chunk
even if the user abandons viewing in the middle of
downloading it. When downloading a chunk containing
T seconds worth of content, the expected value of the
unnecessarily downloaded content is calculated using
(2). This equation consists of two parts: the first one
corresponds to the phase during which the chunk is
being simultaneously downloaded and consumed, and
the second one to the phase during which it is only being
consumed.

E[B
waste

(i, T )] =

l
T⇥renc

rdl

m

X

k=1

p
abd

(i+ k)
⇥
k ⇥ r
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⇤
+
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l
T⇥renc

rdl

m
+1

p
abd

(i+ k)
⇥
T ⇥ r

enc

� k ⇥ r
enc

⇤
(2)

In the above equation, r
enc

is the encoding rate of
the streaming. We also need the probability of the user
abandoning viewing (p

abd

). This probability needs to be
re-evaluated each time the next chunk size is chosen
by the scheduler during the streaming session. It is a
conditional probability that can be directly computed
from the audience retention. The probability for a user to
abandon during a discrete time step j measured from the
beginning of the video viewing is computed as follows:

p
abd

(j) = p(“abandon at j”) = R
j�1pj(X = 0)

= R
j�1(1� p

j

(X = 1)) = R
j�1 �R

j

(3)

The download schedule consists of a concatenation of
video chunks that can be of different sizes. We denote a
download schedule as an n-tuple S = (T1, T2, T3, . . . , Tn

)
which consists of n chunks having durations T

i

. The ex-
pected value of the energy waste of an entire download
schedule S can be calculated using Eq (4).
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The energy optimal schedule is the one that minimizes
the energy waste as calculated with (4).

3.3 Scheduler Using Dynamic Programming
Each chunk can be of any size ranging from a de-
fined minimum to the remaining video duration. Con-
sequently, the number of all possible schedules grows

Algorithm 1 eSchedule using dynamic programming
define: E

min

(0) = 0;
input: T

min

, D;
for i = T

min

to D step T
min

do

for j = T
min

to i step T
min

do

E
current

= E
min

(i� j) + E[E
waste

(i� j, j)];
if E

current

< E
min

(i) then

E
min

(i) = E
current

;
lastchange(i) = j;

end = D
while end > 0 do

S = (end� lastchange(end), S);
end = lastchange(end);

output S;

exponentially as the video length grows. Even if we
limit the granularity of chunk sizes, e.g. multiples of
five second, it is infeasible to use a brute force search
approach by comparing the energy waste all the possible
schedules, even for a video lasting only a few minutes
(e.g., one minute video has more than two million pos-
sible schedules).

However, we can use an algorithm that relies on
dynamic programming which is an iterative approach
based on solving subproblems and storing those results
for reuse in later iterations. In this way, the optimal
schedule is computed piece by piece and the compu-
tational complexity grows much slower as a function
of video length. Specifically, we adapt the algorithm
presented in [13] to our problem. The algorithm has
computational complexity of O(n2) where n in our case
is the number of smallest possible size chunks that the
video can be divided into (i.e., video duration D divided
by the minimum chunk size T

min

).
We outline the computation of the optimal schedule

in Algorithm 1. The first part iteratively determines the
optimal partitioning points of the video that minimize
the energy waste. The algorithm starts from the begin-
ning of the video with a smallest possible chunk size
and adds in each iteration a minimum increment to
the considered piece of video. During each iteration,
the optimal schedule for that piece of video is deter-
mined. Redundant calculations are avoided by storing
the optimal schedule (E

min

(i) for the piece of video from
beginning until time step i) and using the stored value
in the subsequent iterations. The second part backtracks
the identified partitioning points in order to output
the schedule consisting of the sequence of optimal size
chunks to download.

3.4 eSchedule-h: Heuristic-Based Scheduler
We also designed a heuristic-based algorithm eSchedule-
h that can be used iteratively to computes a subpart
of the schedule. The heuristic is the expected value of
energy waste per content to download in Joules per
second (Eq. (5)). The expected value is calculated using
(4). The algorithm effectively performs a brute force
search considering only a specific number of chunks

Probability that user interrupts during a discrete time step j: 

4

Computing the tail energy is straightforward given
that the algorithm knows the power states and inactivity
timer values for each specific radio interface. This tail
energy depends on the chunk size because the inactivity
timer values corresponding to a specific radio interface
can exceed T . The tail energy is added for a chunk
even if the user abandons viewing in the middle of
downloading it. When downloading a chunk containing
T seconds worth of content, the expected value of the
unnecessarily downloaded content is calculated using
(2). This equation consists of two parts: the first one
corresponds to the phase during which the chunk is
being simultaneously downloaded and consumed, and
the second one to the phase during which it is only being
consumed.
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In the above equation, r
enc

is the encoding rate of
the streaming. We also need the probability of the user
abandoning viewing (p

abd

). This probability needs to be
re-evaluated each time the next chunk size is chosen
by the scheduler during the streaming session. It is a
conditional probability that can be directly computed
from the audience retention. The probability for a user to
abandon during a discrete time step j measured from the
beginning of the video viewing is computed as follows:

p
abd

(j) = p(“abandon at j”) = R
j�1pj(X = 0)

= R
j�1(1� p

j

(X = 1)) = R
j�1 �R

j

(3)

The download schedule consists of a concatenation of
video chunks that can be of different sizes. We denote a
download schedule as an n-tuple S = (T1, T2, T3, . . . , Tn

)
which consists of n chunks having durations T

i

. The ex-
pected value of the energy waste of an entire download
schedule S can be calculated using Eq (4).
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The energy optimal schedule is the one that minimizes
the energy waste as calculated with (4).

3.3 Scheduler Using Dynamic Programming
Each chunk can be of any size ranging from a de-
fined minimum to the remaining video duration. Con-
sequently, the number of all possible schedules grows

Algorithm 1 eSchedule using dynamic programming
define: E

min

(0) = 0;
input: T

min

, D;
for i = T

min

to D step T
min

do

for j = T
min

to i step T
min

do

E
current

= E
min

(i� j) + E[E
waste

(i� j, j)];
if E

current

< E
min

(i) then

E
min

(i) = E
current

;
lastchange(i) = j;

end = D
while end > 0 do

S = (end� lastchange(end), S);
end = lastchange(end);

output S;

exponentially as the video length grows. Even if we
limit the granularity of chunk sizes, e.g. multiples of
five second, it is infeasible to use a brute force search
approach by comparing the energy waste all the possible
schedules, even for a video lasting only a few minutes
(e.g., one minute video has more than two million pos-
sible schedules).

However, we can use an algorithm that relies on
dynamic programming which is an iterative approach
based on solving subproblems and storing those results
for reuse in later iterations. In this way, the optimal
schedule is computed piece by piece and the compu-
tational complexity grows much slower as a function
of video length. Specifically, we adapt the algorithm
presented in [13] to our problem. The algorithm has
computational complexity of O(n2) where n in our case
is the number of smallest possible size chunks that the
video can be divided into (i.e., video duration D divided
by the minimum chunk size T

min

).
We outline the computation of the optimal schedule

in Algorithm 1. The first part iteratively determines the
optimal partitioning points of the video that minimize
the energy waste. The algorithm starts from the begin-
ning of the video with a smallest possible chunk size
and adds in each iteration a minimum increment to
the considered piece of video. During each iteration,
the optimal schedule for that piece of video is deter-
mined. Redundant calculations are avoided by storing
the optimal schedule (E

min

(i) for the piece of video from
beginning until time step i) and using the stored value
in the subsequent iterations. The second part backtracks
the identified partitioning points in order to output
the schedule consisting of the sequence of optimal size
chunks to download.

3.4 eSchedule-h: Heuristic-Based Scheduler
We also designed a heuristic-based algorithm eSchedule-
h that can be used iteratively to computes a subpart
of the schedule. The heuristic is the expected value of
energy waste per content to download in Joules per
second (Eq. (5)). The expected value is calculated using
(4). The algorithm effectively performs a brute force
search considering only a specific number of chunks

Exp. value of unnecessarily downloaded content for a given chunk (starts at i, dur T): 
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Fig. 3. Audience retention graphs from YouTube videos.

tory: By downloading larger chunks to reduce the total
amount of tail energy, the probability of downloading
unnecessary content increases. We examine this tradeoff
in the next section and propose an algorithm which
optimally balances this tradeoff.

3 OPTIMIZED PREFETCHING WITH ESCHED-
ULE

3.1 Using Crowd-Sourced Viewing Statistics
The fact that users do not always watch entire video
clip transforms finding an energy optimal download
schedule from using the trivial Fast Caching strategy
into an optimization problem. The solution must strike
a balance between two sources of energy waste: 1)
prefetching content in large chunks in order to minimize
the (more or less) fixed energy cost associated with each
chunk, namely tail (and possibly head) energy, and 2)
limiting that chunk size in order to reduce the amount
of downloaded content that will never be viewed.

A key question in devising a solution is to estimate
at what point a user will abandon watching the video.
We propose to leverage crowd-sourced video viewing
statistics. The underlying idea is that video clip specific
statistics collected from all the previous viewing sessions
give useful insights about how a new user will watch the
video. It is natural that the viewing behaviour depends
on how interesting and “capturing” or engaging the
video clip is and the content type. We study the potential
of using such statistics in download scheduling to save
energy. We show that it helps to save significant amount
of energy compared to strategies that do not leverage
crowd-sourced statistics.

One source of such statistics is YouTube, which main-
tains audience retention data for each video clip [11]. These
statistics are computed based on continuous feedback
sent by the YouTube client applications during video
streaming sessions [12]. Figure 3 shows examples of
audience retention curves for some videos which we
extracted from YouTube. Each curve always starts from
one and shows, for a particular video clip, the fraction
of the audience that is still watching at a given point of

time. These examples highlight the fact that retention
highly depends on the video clips: some retain clear
majority of audience until the end while others lose most
of the audience at the very beginning of the video.

3.2 Energy-Optimal Prefetching
We designed a download scheduler that takes viewing
statistics presented in the form of viewer retention,
such as those plotted in Figure 3, as input. We name
it eSchedule. We assume that a mobile device is able
to tell the scheduler at each moment the type of the
network that it uses for data communication. In addition,
it includes parameterized power models of communica-
tion using each different technology (i.e., Wi-Fi, 3G, and
LTE including variants with and without DRX). Using
the abandon probabilities computed from the crowed-
sourced viewing statistics, the scheduler computes the
optimal download schedule, which is a sequence of vari-
able size chunks that is estimated to minimize the energy
consumption. Intuitively, if the amount of tail energy
is large, e.g. when using 3G, and the viewing statistics
suggest that many users watched a large fraction of the
video, the scheduler will choose to download the large
chunk of content. Conversely, if the amount of tail energy
is small, e.g. when using Wi-Fi, and the statistics indicate
that the retention has been poor, the scheduler chooses
small chunk sizes. Next, we model this approach as a
stochastic optimization problem.

We divide the video viewing time into n discrete time
steps. Then, we consider the video viewing as a discrete
time stochastic process p

i

(X), where X takes value one
or zero and describes whether the user watches the
video segment corresponding to the ith time step, where
i 2 [1, 2, 3 . . . n]. The viewer retention R

i

(also defined
in discrete time steps) describes the joint probability of
watching all the segments from the beginning till the ith
time step, i.e. R

i

=
Q

i

k=1 pk(X = 1).
The algorithm computes for each schedule an expected

value of energy waste. We define the energy waste as
the total tail energy and energy spent downloading data
which is not watched. We obtain Eq. (1) for calculating
the expected value of energy waste when downloading
a video chunk corresponding to T seconds of content
starting from discrete time step i. In this case, T rep-
resents an integer value. In the equation, r

dl

is the
rate at which content is downloaded (i.e., TCP bulk
transfer capacity), P

rx

(r
dl

) is the power consumption
while receiving data at the download rate, E

tail

(T ) is the
amount of tail energy spent after downloading a chunk
carrying T seconds worth of content, and E[B

waste

(i, T )]
is the expected value of content of the T seconds long
chunk starting from time step i that is downloaded and
never watched because the user abandons the session.

E[E
waste

(i, T )] = E
tail

(T ) +
E[B

waste

(i, T )]
r
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⇥ P
rx

(r
dl

) (1)

Exp. value of energy waste for a single chunk: 

computed from viewer 
retention data (Ri) 

Exp. value of energy waste for entire dl schedule: 
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can exceed T . The tail energy is added for a chunk
even if the user abandons viewing in the middle of
downloading it. When downloading a chunk containing
T seconds worth of content, the expected value of the
unnecessarily downloaded content is calculated using
(2). This equation consists of two parts: the first one
corresponds to the phase during which the chunk is
being simultaneously downloaded and consumed, and
the second one to the phase during which it is only being
consumed.
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In the above equation, r
enc

is the encoding rate of
the streaming. We also need the probability of the user
abandoning viewing (p

abd

). This probability needs to be
re-evaluated each time the next chunk size is chosen
by the scheduler during the streaming session. It is a
conditional probability that can be directly computed
from the audience retention. The probability for a user to
abandon during a discrete time step j measured from the
beginning of the video viewing is computed as follows:

p
abd

(j) = p(“abandon at j”) = R
j�1pj(X = 0)

= R
j�1(1� p

j

(X = 1)) = R
j�1 �R

j

(3)

The download schedule consists of a concatenation of
video chunks that can be of different sizes. We denote a
download schedule as an n-tuple S = (T1, T2, T3, . . . , Tn

)
which consists of n chunks having durations T

i

. The ex-
pected value of the energy waste of an entire download
schedule S can be calculated using Eq (4).
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The energy optimal schedule is the one that minimizes
the energy waste as calculated with (4).

3.3 Scheduler Using Dynamic Programming
Each chunk can be of any size ranging from a de-
fined minimum to the remaining video duration. Con-
sequently, the number of all possible schedules grows
exponentially as the video length grows. Even if we
limit the granularity of chunk sizes, e.g. multiples of
five second, it is infeasible to use a brute force search
approach by comparing the energy waste all the possible

Algorithm 1 eSchedule using dynamic programming
define: E

min

(0) = 0;
input: T

min

, D;
for i = T

min

to D step T
min

do

for j = T
min

to i step T
min

do

E
current

= E
min

(i� j) + E[E
waste

(i� j, j)];
if E

current

< E
min

(i) then

E
min

(i) = E
current

;
lastchange(i) = j;

end = D
while end > 0 do

S = (end� lastchange(end), S);
end = lastchange(end);

output S;

schedules, even for a video lasting only a few minutes
(e.g., one minute video has more than two million pos-
sible schedules).

However, we can use an algorithm that relies on
dynamic programming which is an iterative approach
based on solving subproblems and storing those results
for reuse in later iterations. In this way, the optimal
schedule is computed piece by piece and the compu-
tational complexity grows much slower as a function
of video length. Specifically, we adapt the algorithm
presented in [13] to our problem. The algorithm has
computational complexity of O(n2) where n in our case
is the number of smallest possible size chunks that the
video can be divided into (i.e., video duration D divided
by the minimum chunk size T

min

).
We outline the computation of the optimal schedule

in Algorithm 1. The first part iteratively determines the
optimal partitioning points of the video that minimize
the energy waste. The algorithm starts from the begin-
ning of the video with a smallest possible chunk size
and adds in each iteration a minimum increment to
the considered piece of video. During each iteration,
the optimal schedule for that piece of video is deter-
mined. Redundant calculations are avoided by storing
the optimal schedule (E

min

(i) for the piece of video from
beginning until time step i) and using the stored value
in the subsequent iterations. The second part backtracks
the identified partitioning points in order to output
the schedule consisting of the sequence of optimal size
chunks to download.

3.4 eSchedule-h: Heuristic-Based Scheduler

We also designed a heuristic-based algorithm eSchedule-
h that can be used iteratively to computes a subpart
of the schedule. The heuristic is the expected value of
energy waste per content to download in Joules per
second (Eq. (5)). The expected value is calculated using
(4). The algorithm effectively performs a brute force
search considering only a specific number of chunks
which is limited by the look-ahead parameter (la). In
this way, the algorithm finds a locally optimal schedule,
i.e. it minimizes energy waste for the next chunks to be

tail energy + 
unnecessary dl energy 

discount future tail energy 
that may not happen 

amount of content in buffer 
at given time instance 



eSchedule algorithm: solving optimum 

•  How to find schedule S that minimizes                   ? 
•  Brute force search does not scale 

–  Number of possible solutions grows exponentially with video 
length (1 min video à over 2 M possibilities) 

•  Use dynamic programming 
–  Iterative algorithm 
–  Compute and store solutions to subproblems 

•  Optimal schedule for a part of the video 
–  Use stored solutions in subsequent iterations 

•  Avoid redundant calculations 
–  Feasible complexity: O(n2) where n is video length in min size 

chunks 

4

Computing the tail energy is straightforward given
that the algorithm knows the power states and inactivity
timer values for each specific radio interface. This tail
energy depends on the chunk size because the inactivity
timer values corresponding to a specific radio interface
can exceed T . The tail energy is added for a chunk
even if the user abandons viewing in the middle of
downloading it. When downloading a chunk containing
T seconds worth of content, the expected value of the
unnecessarily downloaded content is calculated using
(2). This equation consists of two parts: the first one
corresponds to the phase during which the chunk is
being simultaneously downloaded and consumed, and
the second one to the phase during which it is only being
consumed.
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In the above equation, r
enc

is the encoding rate of
the streaming. We also need the probability of the user
abandoning viewing (p

abd

). This probability needs to be
re-evaluated each time the next chunk size is chosen
by the scheduler during the streaming session. It is a
conditional probability that can be directly computed
from the audience retention. The probability for a user to
abandon during a discrete time step j measured from the
beginning of the video viewing is computed as follows:

p
abd

(j) = p(“abandon at j”) = R
j�1pj(X = 0)

= R
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(X = 1)) = R
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The download schedule consists of a concatenation of
video chunks that can be of different sizes. We denote a
download schedule as an n-tuple S = (T1, T2, T3, . . . , Tn

)
which consists of n chunks having durations T

i

. The ex-
pected value of the energy waste of an entire download
schedule S can be calculated using Eq (4).
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The energy optimal schedule is the one that minimizes
the energy waste as calculated with (4).

3.3 Scheduler Using Dynamic Programming
Each chunk can be of any size ranging from a de-
fined minimum to the remaining video duration. Con-
sequently, the number of all possible schedules grows

Algorithm 1 eSchedule using dynamic programming
define: E

min

(0) = 0;
input: T

min

, D;
for i = T

min

to D step T
min

do

for j = T
min

to i step T
min

do

E
current

= E
min

(i� j) + E[E
waste

(i� j, j)];
if E

current

< E
min

(i) then

E
min

(i) = E
current

;
lastchange(i) = j;

end = D
while end > 0 do

S = (end� lastchange(end), S);
end = lastchange(end);

output S;

exponentially as the video length grows. Even if we
limit the granularity of chunk sizes, e.g. multiples of
five second, it is infeasible to use a brute force search
approach by comparing the energy waste all the possible
schedules, even for a video lasting only a few minutes
(e.g., one minute video has more than two million pos-
sible schedules).

However, we can use an algorithm that relies on
dynamic programming which is an iterative approach
based on solving subproblems and storing those results
for reuse in later iterations. In this way, the optimal
schedule is computed piece by piece and the compu-
tational complexity grows much slower as a function
of video length. Specifically, we adapt the algorithm
presented in [13] to our problem. The algorithm has
computational complexity of O(n2) where n in our case
is the number of smallest possible size chunks that the
video can be divided into (i.e., video duration D divided
by the minimum chunk size T

min

).
We outline the computation of the optimal schedule

in Algorithm 1. The first part iteratively determines the
optimal partitioning points of the video that minimize
the energy waste. The algorithm starts from the begin-
ning of the video with a smallest possible chunk size
and adds in each iteration a minimum increment to
the considered piece of video. During each iteration,
the optimal schedule for that piece of video is deter-
mined. Redundant calculations are avoided by storing
the optimal schedule (E

min

(i) for the piece of video from
beginning until time step i) and using the stored value
in the subsequent iterations. The second part backtracks
the identified partitioning points in order to output
the schedule consisting of the sequence of optimal size
chunks to download.

3.4 eSchedule-h: Heuristic-Based Scheduler
We also designed a heuristic-based algorithm eSchedule-
h that can be used iteratively to computes a subpart
of the schedule. The heuristic is the expected value of
energy waste per content to download in Joules per
second (Eq. (5)). The expected value is calculated using
(4). The algorithm effectively performs a brute force
search considering only a specific number of chunks

B. Jackson et al., “An algorithm for optimal partitioning 
of data on an interval,” Signal Processing Letters, IEEE, 

vol. 12, no. 2, pp. 105–108, Feb 2005. 



Performance evaluation 

•  Simulations using Matlab 
•  Short and long videos 

–  5 min threshold 
–  16 videos in total 

•  Retention and other data from real YouTube videos 
•  Abandoning time randomly drawn from the probability 

distribution given by retention 
•  Power models based on measurements with Samsung 

Galaxy S3 LTE 
•  Video download schedule computed using eSchedule and 

total energy consumed was calculated for each session 
–  Compare to ON-OFF and whole video download 



Performance evaluation 

•  ON-OFF strategy is fairly 
good when tail energy is 
small 
–  Wi-Fi and LTE with DRX 

•  Whole video dl pretty good 
with short videos and large 
tail energy 

•  eSchedule roughly halves 
the energy overhead 

short 
videos 

long 
videos 

compared to oracle (always downloads 
the right amount in one shot) 



Android app 

•  Implemented also a prototype app for Android 

MobiCom’2013
September 30, 2013
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Android App : StreamThrottler
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(b) 3G
Figure: Estimated energy waste compared to Oracle while streaming
a 399s video using Galaxy SIII 4G.
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Outline 

•  Intro 
•  Standard power management techniques 
•  Beyond standard techniques 
•  Example optimizations 

–  Traffic shaping in multimedia streaming 
–  Optimized prefetching of video streaming 
–  Context-aware scheduling of transfers 

•  Conclusions 

 
 



Context-aware scheduling 

•  We’ll look at Bartendr as an example 
–  Aaron Schulman et al. Bartendr: a practical approach to energy-

aware cellular data scheduling. In ACM MobiCom 2010. 
–  Learning to schedule transfers in suitable times 



How signal strength impacts energy? 

•  Two-way impact: throughput and transmit power 
272 Tra�c Scheduling
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(a) Signal strength vs. power for one
LTE/HSPA and one HSPA only smartphone
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(b) Box plots of signal strength vs. throughput
for two di↵erent HSPA phones

Figure 12.9 Impact of signal strength on power draw and throughput

more when the signal quality degrades. Interestingly, LTE phone seems to hit a
power ceiling at approximately 45 dB attenuation after which the power draw no
longer increases. Indeed, 3.5 W is already critically high power. It also seems that
the LTE phone is able to operate in smaller SNR regime than the HSPA phones.
The underlying reasons can be many: The power controls of the amplifiers may
di↵er. Also the fact that the tested HSPA uses WCDMA while LTE uses OFDMA
as the multiple access protocol likely has some impact.

The Figure 12.9(b) similarly confirms that throughput of the TCP transfers is
seriously degraded when the signal is attenuated. The figure only shows HSPA
results but LTE behavior is comparable. Ten consecutive TCP transfers were
measured in each case and the box plots reveal that there is a notable amount
of variation in the results. TCP throughput is severely influenced by IP-level
packet loss (radio layer first tries to retransmit data a certain number of times)
which do not occur similarly for each transfer.
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(a) Wi-Fi Signal-to-Noise ratio trace collected
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adaptation.

Figure 12.10 Impact of signal strength and noise level on throughput in Wi-Fi network

Similar phenomenon can be observed from Wi-Fi networks. We collected the



Bartendr: basic idea 

•  Moving phone experiences varying signal strength 
•  Idea: Schedule transfers to happen at times of good 

signal strength 
–  Save energy by holding those transfers that are not time critical 

•  Example applications 
–  Background sync: 5 min interval sync could be more efficient if 

done sometime between 4 to 6 min  
–  Streaming media: Consume buffer when the signal is weak, 

prefetch when the signal is strong  
•  Challenge: How to know when to transmit and when to 

hold? 
–  Need prediction 



Bartendr: signal tracks 

•  People tend to move along same paths in their day-to-
day life 

•  Bartendr predicts signal strength for a phone moving 
along a path 
–  Use previous signal measurements captured while traveling 

along the same path 
–  Signal strength measurements are basically energy free 

•  phone needs to do it anyway for handoffs 

•  Assumptions: 
–  Phones can store several such signal tracks (frequently traveled 

paths) 
–  Phone can infer currently traveled track using mobility prediction 



Bartendr: signal strength prediction 

•  Step 1: find the current position of the phone on the 
current track 
–  GPS draws too much power 
–  Find position in track with closest measurement to current one 
–  May have many similar strength positions à use also neighbor 

base station list 

•  Step 2: predict signal in the future starting from current 
position  
–  Look ahead in previous measurements 
–  Speed may differ à continuous update of current position on 

track 



Bartendr: scheduling bg sync 

•  Schedule next sync based on predicted signal strength 
•  Sleep in between schedule and sync events à may make 

errors 
•  Two threshold-based schemes: 

–  First above threshold 
•  Comes soon à error small 

–  Widest above threshold 
•  Comes later but has 
    larger margin for error 

•  Simulations suggest 10% energy savings for email sync 
–  Widest outperforms first 

Scheduling when to sync
Wake-up,  sync,  schedule,  sleep

Uses threshold for efficient sync

Schedules for either first or widest signal
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Bartendr: scheduling stream transfers 

•  Differs from syncing because continuously awake à can 
compensate for speed variations in real time 

•  Results into rather similar optimization problem than we 
looked at with eSchedule 
–  Chunked downloading 
–  Energy spending is function of tail energy and energy spent for dl 

•  dl energy varies with signal strength 
–  Can be solved using dynamic programming too 

•  Simulations suggest 60% energy savings 



LoadSense 

•  LoadSense is kind of follow-up work to Bartendr 
–  Abhijnan Chakraborty et al. Coordinating cellular background 

transfers using loadsense. In ACM MobiCom 2013. 

•  Solution for scheduling background transfers 
•  Takes explicitly into account load in the cell 

–  Link quality alone is insufficient 
–  Load can be passively inferred through power ratio 

•  Sense total power in the cellular channel and compare it with the 
power of the pilot signal transmitted by base station 

•  Schedule bg transfers when sensed load is small 
–  Improve energy efficiency by transmitting with higher throughput 



Outline 

•  Intro 
•  Standard power management techniques 
•  Beyond standard techniques 
•  Example optimizations 
•  Conclusions 

 
 



What else can be done? 

•  Smarter (cooperative) scheduling to reduce contention 
–  Random access channels (Wi-Fi) can cause energy waste by 

idle waiting 
–  Multiple clients of same AP or multiple APs in range (same ch) 

•  Leverage alternative low-power radios 
–  E.g. Zigbee or Bluetooth in conjunction with Wi-Fi 
–  Idea is to always use lowest power radio for the job 
–  Discovery of Wi-Fi access points using Bluetooth contact 

patterns 
•  Saves energy spent by Wi-Fi scanning 

–  Data transmission with highest possible energy utility 
•  Synchronize background transfers by different apps 

–  Amortize tail energy by batching bg transfers 
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Summary 

•  Energy efficiency of wireless networking 
–  Depends on wireless access network technology used 
–  Depends on context à signal quality and network load 

•  Standard power management techniques 
–  Wi-Fi has PSM 
–  Cellular network technologies have RRC 
–  Tail energy can be mitigated in cellular nws by using 

•  Fast Dormancy (3G) 
•  Discontinuous reception (LTE and 3G) 

•  Optimizing energy efficiency further 
–  Traffic scheduling 

•  Traffic shaping 
•  Context-aware scheduling 

–  Smart use of wireless network interfaces 
•  Use always the most energy efficient one 

–  Application specific optimizations 
•  Mitigate mismatch between power mgmt and application behavior 

 
 


