
Overview of CPU Power
Consumption and Management in

Smartphones

Prof. Sasu Tarkoma

University of Helsinki, Aalto University,
Helsinki Institute for Information Technology

Contents

• Modern smartphone SoC and CPUs
–  The CPU: power states
–  Power management basics

• Smartphone solutions
–  Linux CPU Frequency subsystem
–  Power models

• Intra-device task offloading
–  Sensor hub
–  Heterogeneous multiprocessing

• Computation offloading

• Smartphones have become hubs for applications and
connecting with the Internet

• Cloud has emerged as a backend for mobile applications
• Mobile data and WiFi are the dominant protocols for

connecting with Internet resources
• The next generation solutions are addressing limitations of

the current smartphones
–  Coordination of resource usage
–  Offloading in its many forms
–  Heterogeneous environment and the emergence of

 IoT / M2M / wearables

Smartphones

Observations

• Smartphone and mobile device hardware and software evolve
rapidly

• Multiple wireless protocols
• Heterogeneous computing over multiple cores

–  Dedicated subsystems (sensor hubs)
–  Increasing number of sensing subsystems
–  Always-on sensing

• Battery technology has not kept pace with the development
• Software is not, in many cases, optimized
• Difficult to balance between local versus distributed processing
• Difficult to control traffic across interfaces

1995 2000 2005 2010 2015

Processor Single Single Single Dual-core Quad-core and
beyond, auxiliary
processors, sensor
hubs

Cellular
generation

2G 2.5-3G 3.5G Transition
toward 4G

4G

Standard GSM GPRS HSPA HSPA, LTE LTE, LTE-A

Downlink (Mb/
s)

0.01 0.1 1 10 100

Display pixels
(x1000)

4 16 64 256 1024

Communicatio
ns modules

- - WiFi,
Bluetooth

WiFi,
Bluetooth

WiFi, Bluetooth LE,
RFID

Battery
capacity (Wh)

1 2 3 4 5

Software (MB) 0.1 1 10 100 1000

Mobile Evolution

KRAIT CPU

 L1 Cache

LTE
World

Modem
KRAIT CPU

 L1 Cache

GPS,Wi-Fi,
BT,FM

Adreno
GPU

Audio,
Video HW,
Accelerator

s

DSP L2 Cache
Multim.
Proc.

DSP

DSP

Dual channel memory

Snapdragon Adaptive Power Technologies

Modem Subsystem Multicore Subsystem Multimedia Subsystem

Example Smartphone SoC

0
100
200
300
400
500
600
700
800

Android Smartphone Power Profile (mW)

CPU Total Power

• The total power of CMOS logic circuits are determined
by the clock rate, the supply voltage, and the
capacitances of the transistors

–  Switching power and static power:

• Dynamic switching loss is given by:

• By varying clock rate and supply voltage, it is possible

to obtain linear and quadratic improvements

28 Energy and Power Primer

2.3 Power Computation

Energy can be saved on multiple levels in the hardware and software architecture.
On circuit and transistor levels energy can be saved by changing the voltage and
frequency of the circuit. The total power of CMOS logic circuits are determined
by the clock rate, the supply voltage, and the capacitances of the transistors.
The larger the capacitance, the more the transistors need to work to change the
output charge. The higher the source voltage, the more the output has to change.
The higher the clock frequency, the more power is wasted during switching. The
capacitances are determined during chip design; however, the clock rate and
voltage can be varied at runtime. By varying clock rate and supply voltage, it is
possible to obtain linear and quadratic improvements, respectively.

The overall power consumption is given by

P = Pswitch + Pstatic, (2.6)

where Pswitch is the dynamic switching power and Pstatic is the static leakage
power. The formula does not include the lost power due to short circuit due to
a transistor switching that is a relatively small term in the dynamic switching
power [4].

The CPU consists of transistors that can switch states every clock cycle. Each
switch of states between a complementary pair of transistors results in wasted
power. Typically, most of the gates in the CPU switch states every clock cycle.
Thus the higher the clock rate, the higher the amount of wasted energy. In
addition to the clock rate, also the voltage a↵ects the power consumption of the
CPU.

The dynamic switching loss is the power used by switching of the state of the
transistors. This loss can be determined by using the formula

Pswitch = ↵⇥ C ⇥ V 2 ⇥ f, (2.7)

where ↵ denote the switching activity, C is the average capacitance of the tran-
sistors, V is the supply voltage and f is the clock frequency [5]. The power
consumption is proportional to the product of the square of the supply voltage
and the frequency. The power consumption decreases quadratically with the re-
duction of the voltage. The formula is not exact for modern chips, because also
memory circuits and static leakage current need to be taken into account.

The clock rate and the supply voltage are parameters for the energy optimiza-
tion of the CPU [6, 7]. Major energy savings can be gained by adjusting the
supply voltage and the clock rate either one or both of them at the same time.
Indeed, dynamic voltage scaling is widely used to improve power consumption
of battery powered devices. Both low voltage and lowered clock frequencies are
used to minimize power consumption of components such as CPUs and DSPs.

Operating frequency has an approximately linear relationship with the oper-

28 Energy and Power Primer

2.3 Power Computation

Energy can be saved on multiple levels in the hardware and software architecture.
On circuit and transistor levels energy can be saved by changing the voltage and
frequency of the circuit. The total power of CMOS logic circuits are determined
by the clock rate, the supply voltage, and the capacitances of the transistors.
The larger the capacitance, the more the transistors need to work to change the
output charge. The higher the source voltage, the more the output has to change.
The higher the clock frequency, the more power is wasted during switching. The
capacitances are determined during chip design; however, the clock rate and
voltage can be varied at runtime. By varying clock rate and supply voltage, it is
possible to obtain linear and quadratic improvements, respectively.

The overall power consumption is given by

P = Pswitch + Pstatic, (2.6)

where Pswitch is the dynamic switching power and Pstatic is the static leakage
power. The formula does not include the lost power due to short circuit due to
a transistor switching that is a relatively small term in the dynamic switching
power [4].

The CPU consists of transistors that can switch states every clock cycle. Each
switch of states between a complementary pair of transistors results in wasted
power. Typically, most of the gates in the CPU switch states every clock cycle.
Thus the higher the clock rate, the higher the amount of wasted energy. In
addition to the clock rate, also the voltage a↵ects the power consumption of the
CPU.

The dynamic switching loss is the power used by switching of the state of the
transistors. This loss can be determined by using the formula

Pswitch = ↵⇥ C ⇥ V 2 ⇥ f, (2.7)

where ↵ denote the switching activity, C is the average capacitance of the tran-
sistors, V is the supply voltage and f is the clock frequency [5]. The power
consumption is proportional to the product of the square of the supply voltage
and the frequency. The power consumption decreases quadratically with the re-
duction of the voltage. The formula is not exact for modern chips, because also
memory circuits and static leakage current need to be taken into account.

The clock rate and the supply voltage are parameters for the energy optimiza-
tion of the CPU [6, 7]. Major energy savings can be gained by adjusting the
supply voltage and the clock rate either one or both of them at the same time.
Indeed, dynamic voltage scaling is widely used to improve power consumption
of battery powered devices. Both low voltage and lowered clock frequencies are
used to minimize power consumption of components such as CPUs and DSPs.

Operating frequency has an approximately linear relationship with the oper-

CPU Power Saving

• Running a task at a slower speed saves energy;
however, it will lake longer to execute the task thus
affecting the performance

• Dynamic voltage and frequency scaling favor
parallelism and having multiple voltage/frequency
scaled cores executing tasks.

Process with running frequency f/2

Time

Power (W)

Process running
with frequency f

2.3 Power Computation 29

Process#with#running#frequency#f/2#

Time#

Power#(W)#

Process#running#with#
frequency#f#

Figure 2.2 Example of frequency, time and energy consumption

ating voltage given by the following equation [4]:

Vnorm = �1 + �2 ⇥ fnorm, (2.8)

where �1 = Vth/Vmax and �2 = 1 � �1. Vth is the threshold voltage at which a
transistor conducts and begins to switch.
Figure 2.2 illustrates the relationships of the operating frequency, process com-

pletion time, and energy consumption. The process is executed on two di↵erent
systems at di↵erent voltage and frequency levels. The top process runs at high
frequency and is completed fast. The lower process runs at a halved processor
frequency and supply voltage and takes much longer to complete. The lower fre-
quency and supply voltage lead to smaller energy consumption [7]. Suppose that
the new frequency is f/2, then from Equation 2.7 we obtain the new switching
power

P 0
switch = ↵⇥ C ⇥ (

V

2
)2 ⇥ f

2
=

1

8
Pswitch. (2.9)

Now, the completion time T of the process is doubled for the lower frequency:

E0
switch = P 0

switch ⇥ T ⇥ 2 =
1

8
Pswitch ⇥ T ⇥ 2 =

1

4
Pswitch ⇥ T, (2.10)

giving an improvement of 1/4 with the lower frequency while significantly in-
creasing the execution time of the task. To compensate for the performance loss,
we can divide the task into two subtasks and run these in parallel using two
cores. The dynamic power can decrease by a factor two compared to the original
case.

2.3 Power Computation 29

Process#with#running#frequency#f/2#

Time#

Power#(W)#

Process#running#with#
frequency#f#

Figure 2.2 Example of frequency, time and energy consumption

ating voltage given by the following equation [4]:

Vnorm = �1 + �2 ⇥ fnorm, (2.8)

where �1 = Vth/Vmax and �2 = 1 � �1. Vth is the threshold voltage at which a
transistor conducts and begins to switch.
Figure 2.2 illustrates the relationships of the operating frequency, process com-

pletion time, and energy consumption. The process is executed on two di↵erent
systems at di↵erent voltage and frequency levels. The top process runs at high
frequency and is completed fast. The lower process runs at a halved processor
frequency and supply voltage and takes much longer to complete. The lower fre-
quency and supply voltage lead to smaller energy consumption [7]. Suppose that
the new frequency is f/2, then from Equation 2.7 we obtain the new switching
power

P 0
switch = ↵⇥ C ⇥ (

V

2
)2 ⇥ f

2
=

1

8
Pswitch. (2.9)

Now, the completion time T of the process is doubled for the lower frequency:

E0
switch = P 0

switch ⇥ T ⇥ 2 =
1

8
Pswitch ⇥ T ⇥ 2 =

1

4
Pswitch ⇥ T, (2.10)

giving an improvement of 1/4 with the lower frequency while significantly in-
creasing the execution time of the task. To compensate for the performance loss,
we can divide the task into two subtasks and run these in parallel using two
cores. The dynamic power can decrease by a factor two compared to the original
case.

¼ energy savings with the
doubling of the execution time

Scaling SoCs
• Static power leakage is affecting the feasibility of

voltage scaling.
–  A linear decrease of voltage will result in a

quadratic decrease of the switching loss; however,
it will only result in a linear decrease of the static
leakage.

–  Static leakage can become dominant with low
voltage integrated circuits with high density of
transistors

• To address leakage, SoCs use power gating to allow
portions of the system to be switched off when
necessary.

• Low power requirements are also driving the trend for
multicore systems with many voltage and frequency
controlled cores.

• Dynamic voltage and frequency scaling favor
parallelism and having multiple voltage/frequency
scaled cores executing tasks.

CPU Frequency and Relative Power
Consumption

Clock frequency
(MHz

Core voltage
(V)

Relative power
consumption

250 1.075 100%

500 1.2 249%

550 1.275 309%

600 1.35 378%

Source: J. Kurtto, “Mapping and improving the energy efficiency of the Nokia
N900”. M.Sc. Thesis. University of Helsinki, Department of Computer Science.

Power Optimization Levels

• Smartphone and mobile device power optimization
happens on multiple levels:

–  Silicon-level, in which the transistor capacitance
and the chip design affect the energy efficiency

–  SoC-level, in which multiple power/voltage/clock
domains can be used to support granular power
management with the help of software and DVFS

–  Software-level, in which various power managers
monitor and control the energy and power settings.

• A high-level framework is needed to perform system-
wide tuning and optimization.

APM and ACPI

• Advanced Power Management (APM)
–  Firmware and BIOS level
–  Apps and drivers -> APM Driver-> BIOS APM ->

hardware
–  Power management via device all and automatic

based on device activity
–  Power management events

• Advanced Configuration and Power Interface (ACPI)
–  APM is replaced by ACPI
–  OS has the control
–  Power states: global, device, processor,

performance

Smartphone CPU and SoC
• The five popular SoCs used by smartphones today are:

–  Qualcomm’s Snapdragon consists of four versions from
S1 to S4.

–  Texas Instrument’s OMAP (Open Media Applications
Platform).

–  Samsung’s Exynos SoCs used in their smartphones
and tablets. The latest version of Exynos is 5 Octa and it
features a quad-core Cortex-A15 and a quad-core
Cortex-A7, ARM Mali GPU, and auxiliary processors.

–  Nvidia’s Tegra SoCs are multi-core and based on ARM
cores with an ulta low- power (ULP) GeForce GPU. The
latest version, Tegra 4, supports ARM- A15 cores in
quad- or octa-core configurations.

–  Apple’s CPUs and SoCs are designed by Apple based
on the ARM architecture.

Mobile CPU Performance
7.1 CPU and SoC 107

0#

500#

1000#

1500#

2000#

2500#

3000#

3500#

4000#

4500#

5000#

Tegra#3#(Nexus#

7)#1.3GHz#

A6X#(4th#iPad)#

1.4#GHz#

APQ8064#1.5#

GHz#(Nexus#4)#

Exynos5250#

1.7GHz#(Nexus#

10)#

Tegra#4#1.9#GHz# CoreKi5#1.7GHz#

(Ivy#Bridge)#

Ge
ek
be

nc
h2

%p
er
fo
rm

an
ce
%

Figure 7.2 Comparison of mobile CPU and SoC performance

to reduce the number of o↵-chip memory accesses. Caches store most frequently
used data in on-chip memory supporting fast access. Typically, each core has its
own instruction and data caches (L1 cache). The cores can also share a common
larger cache (L2 cache).

In addition to multiple CPU cores, an additional low power CPU core has
been proposed to address low-intensity background tasks [5]. Nvidias Tegra 4
features such a Battery Saver core that is optimized for low power. When the
quad-core main CPU is not needed, the system switches to the Battery Saver
core and completely switches o↵ the main CPU. The Battery Saver core has its
own L2 cache and the L2 cache used by the other cores can be power gated.

The ARM based SoCs use dedicated controllers for realizing di↵erent func-
tions making them very di↵erent from the desktop PCs that rely on the a
single CPU for most of the work. The benefit of dedicated controllers is their
e�ciency compared to software based implementations. The dedicated chips
and circuits can carry out the tasks more e�ciently and with fewer cycles than
a software implementation. Indeed, it is not uncommon to first have software
based implementation of a process or algorithm, such as audio processing
or graphics generation, that is then implemented in hardware for increasing
e�ciency.

Dynamic Power Management

• Dynamic Power Management (DPM) is a design
methodology for energy and power management of
dynamically reconfiguring systems. The goal for a DPM
system is to provide the requested services and
performance with a minimum power consumption.

• DVFS (Dynamic Voltage and Frequency Scaling)
–  Minimizes power needs by trying to reduce the

operating frequency and the core voltage to levels
sufficient to execute current tasks but with no
excess resources left.

• DPS (Dynamic Power Switching)
–  DPS detects the true need of resource utilization in

a CPU and, if there are no current computational
tasks, forces the CPU into minimal power state.

Work Idle Work Idle Work

DVFS DVFS DVFS DPS DPS

Time

Example of Dynamic Power
Management

P and C States

• At processor level we can manage power consumption
with two different strategies:

–  Control of the CPU performance states using
frequency and core voltage (P-states).

–  Use of processor operating states (C-states).
• The Advanced Configuration and Power Interface

(ACPI) specification is the industry standard solution for
power management used by the desktop and laptop
industry.

–  Current smartphones use these states as well, but
they are not based on ACPI.

Overview of P and C States

Higher
voltage/

frequency

Lower voltage/
frequency

C0
C1
C2
C3
C4
…

P states

C states

System is active mode

System is in idle mode

Highest power mode

Lowest power mode

Power Management Components

• A subsystem for connecting the low-level technologies
and policies at higher level.

• A system of in-kernel policy governors. They are
essentially pre-configured power schemes with the
ability to modify the clock frequency according to
required needs. Typically these governors use the P-
states to to change frequencies for lower power
consumption. They will switch between clock
frequencies, on the basis of current CPU utilization level
trying to save power while not unduly losing
performance. The governors are tunable allowing some
customizing of the frequency scaling.

• Drivers implementing the technology in a CPU-specific
way.

P and C States: Example

• The difference between C-states and P-states is one of
operational level and can be summarized as follows:

–  In C-states starting from C1 the processor is idle
but partially in use. P-state is an operational
concept and defined solely by the clock frequency
and core voltage.

State Idle Power (mW)	
C0 433	

C1 390	

C2 330	

C3 200	

Without idle states 1060	

The Nexus 4 smartphone power
states. Nexus 4 is based on the
Snapdragon S4 SoC.

Linux CPU Frequency Subsystem

• The Linux CPU frequency subsystem that has
supported dynamic processor frequencies since the 2.6.0
Linux kernel.

• The CPUfreq subsystem uses governors and daemons for
implementing a static or dynamic power management
policy.

powersaved cpuspeed cpufreqd

User space governors and daemons

LINUX KERNEL (in-kernel governors)

performance

Cpufreq module (/proc and /sys interface)

userspace powersave ondemand

Governors

• Performance governor that gives the highest CPU
frequency and performance. This governor statically sets the
highest frequency value and allows the tuning of this highest
value.

• Powersave governor that sets the lowest CPU frequency
and system speed.

• Userspace governor that allows the CPU frequency to be
set manually. The component can be used to implement
custom power policies.

• Ondemand governor is an in-kernel governor to
dynamically set the CPU frequency based on CPU
utilization.

• Conservative governor is similar to the on demand governor, but
allows a more gradual increase of the power consumption.

Lowest frequency

Highest frequency

Frequency

Time

Ondemand governor

Performance governor

Powersave governor

Example: Governors

Time resolution

• The default governors use millisecond resolution for
decisions, the thresholds are specified in microseconds

• Userspace governor can be implemented with finer-
grained granularity (microseconds)

• Intel Speedstep Technology can switch frequency with
latency of 10 microseconds

• Faster sampling results in quicker response time for
changes in the workload

Ondemand Governor
• For each CPU:

–  Every X milliseconds:
•  Get Utilization since last check
•  If utilization > UP_THRESHOLD

–  Increase frequency to MAX

–  Every Y milliseconds:
•  Get utilization
•  If utilization < DOWN_THRESHOLD

–  Decrease frequency 20%

• Conservative is similar but more gradual increase
• Used on many Android devices, for example Samsung

S4
• V. Pallipadi and A. Starikovskiy, “The Ondemand

Governor,” The Linux Symposium, 2006.

Linux cpufreq
• cpufreq-info

–  Info on the current governor and settings
• cpufreq-set allows setting of:

–  d minimum frequency,
–  u maximum frequency,
–  f specific frequency (userspace governor must be

set first) and
–  g governor on a
–  c specific CPU

• Cpufreq allows activating governors on every available
CPU (and core)

• Can access /sys/devices/system/cpu/cpu0/cpufreq
and /proc/cpuinfo on Android (as root)

Energy-aware scheduling

• Traditional schedulers do not take the multicore
topology or energy issues into account

• Energy-aware aware schedulers
–  Distribute tasks across CPUs and cores to save

energy
–  Underlying topology affects the strategy
–  For example: cluster tasks on a high performance

CPU, then remaining CPUs can enter idle states

• Examples: ARM’s big.LITTLE, NVIDIA battery saver
core, …

ARM big.LITTLE

• The ARM big.LITTLE is a
computing architecture that
combines slow and low-
power processor cores with
faster and more power
demanding cores

• This architecture is used, for
example, by Samsung
Galaxy Note 3 and S4
smartphones (Exynos 5
Octa).

• Extends DVFS with CPU
migration.

Interconnect

Cortex-A15

Cortex-A7

CPU CPU

L2 Cache

CP
U

CP
U

L2 Cache

Interrupt Control

Low performance tasks,
always-on always
connected High performance tasks

Seamless migration

big.LITTLE Models

• Clustered model, in which the OS scheduler observes
one of the two processor clusters, and the scheduler
transitions between the clusters based on the observed
load.

• In-kernel switcher pairs a more powerful core with a
less powerful core with the option of having many
identical pairs on a chip. The active core is selected
based on the load.

• Heterogeneous multi-processing (MP) enables the
use of all physical cores simultaneously. High priority or
computationally demanding threads are run by the
powerful cores whereas low priority or less demanding
threads are are run on the less powerful cores.

Big.LITTLE Experiments

• The framework allows seamless migration of tasks
across the processor cores. The Cortex- A15-Cortex-A7
system is designed to migrate tasks between the
processor clusters in less than 20 microseconds with
1GHz processors.

• ARM’s energy efficiency comparison of Cortex-A15 and
Cortex-A7 indicates significant power savings with a
variety of benchmarks.

• For example, the Dhrystone benchmark gives energy
efficiency benefit of 3.5x for A7 with performance
benefit of 1.9x for A15. This motivates the use of the
slower processor for lightweight tasks.

GPUs
• In modern smartphone designs graphics processing is typically

offloaded to the GPU that has a high performance graphics
processing pipeline.

• The four well-known mobile GPUs are:
–  Adreno GPU in the Qualcomm’s Snapdragon line of SoCs.
–  PowerVR GPU used in TI’s OMAP line of SoCs.
–  Mali in the ARM architecture.
–  GeForce ULP (ultra low-power) in the Tegra line of SoCs

from Nvidia.
• GPU can be used for generic processing. For example, a Gabor

face feature extraction algorithm was implemented with the Tegra
GPU and OpenGL ES and the shader language.

–  The resulting GPU based algorithm achieved a 4.25 times
speedup compared to the CPU based version

Modelling the CPU

• We outline the development of simple power models for
the smartphone SoC and CPU based on utilization and
linear regression. The development of our simple model
proceeds in the following phases:

–  Design of training phase with different CPU loads.
The loads should be realistic and reflect the real-life
workloads on the device.

–  Power measurement of the training loads on the
smartphone. An external power monitor tool is
typically used for high accuracy measurements.

–  Creation of a power model for the CPU energy
consumption.

• The training can model construction can happen offline,
online or online with offline support.

Processor Power Model based on
Counters

• Isci and Martanosi have proposed a power model for
CPUs based on performance counters.

–  They correlate hardware performance counters and
system log with total power measurements with an
external power monitor to obtain a fine-grained view
of energy consumption of the CPU. A similar
approach can be used to model GPUs

120 Smartphone Subsystems

with total power measurements with an external power monitor to obtain a fine-
grained view of energy consumption of the CPU. A similar approach can be used
to model GPUs [20]. The monitored CPU components include the bus control, L1
and L2 caches, bu↵ers, integer execution, floating point execution, and queues.
The performance counter metrics were mapped to the CPU components.
The model collects architectural statistics such as cycles per instruction, mem-

ory references, cache misses, and on-chip communication details together with
the application-level details to optimize performance and meet the desired energy
and temperature goals. Given a CPU with N components, the ith component
denoted by Ci, the model is based on component access rates given by a perfor-
mance counter or a combination of performance counters. For CPU component
Ci, the maximum power, MaxPower(Ci) and ArchitecturalScaling(Ci) are heuris-
tics and estimated empirically.

P (Ci) = AccessRate(Ci)⇥ ArchitecturalScaling(Ci)⇥MaxPower(Ci) + (7.2)

NonGatedClockPower(Ci).(7.3)

The total power of the CPU is given by the following equation:

Ptotal =
NX

i=1

P (Ci) + Idle power. (7.4)

7.1.12 Single Core Regression Model

Assuming a linear relationship between power consumption and CPU load, the
linear regression model would be the following:

Pcpu = a⇥ Ucpu + b, (7.5)

where a and b are constants, and Ucpu is CPU utilization. The latter term indi-
cates the power consumption of the CPU. This simple model does not take the
DVFS into account, but it can be extended to take the voltage and frequency
scaling into account.
The power model can then be used in power estimation in predicting the

power consumption without power measurements. Following our example, given
that CPU utilization is 20 % for a give duration T , we can determine the energy
consumption with Etotal = (a20+b)T . The energy consumption of an application
that uses the CPU in a dynamic manner can be determined with

Etotal =
X

i

P i
cpu ⇥�T, (7.6)

where P i
cpu is the i-th measurement of CPU utilization and �T is the time

interval of the measurement.

120 Smartphone Subsystems

with total power measurements with an external power monitor to obtain a fine-
grained view of energy consumption of the CPU. A similar approach can be used
to model GPUs [20]. The monitored CPU components include the bus control, L1
and L2 caches, bu↵ers, integer execution, floating point execution, and queues.
The performance counter metrics were mapped to the CPU components.
The model collects architectural statistics such as cycles per instruction, mem-

ory references, cache misses, and on-chip communication details together with
the application-level details to optimize performance and meet the desired energy
and temperature goals. Given a CPU with N components, the ith component
denoted by Ci, the model is based on component access rates given by a perfor-
mance counter or a combination of performance counters. For CPU component
Ci, the maximum power, MaxPower(Ci) and ArchitecturalScaling(Ci) are heuris-
tics and estimated empirically.

P (Ci) = AccessRate(Ci)⇥ ArchitecturalScaling(Ci)⇥MaxPower(Ci) + (7.2)

NonGatedClockPower(Ci).(7.3)

The total power of the CPU is given by the following equation:

Ptotal =
NX

i=1

P (Ci) + Idle power. (7.4)

7.1.12 Single Core Regression Model

Assuming a linear relationship between power consumption and CPU load, the
linear regression model would be the following:

Pcpu = a⇥ Ucpu + b, (7.5)

where a and b are constants, and Ucpu is CPU utilization. The latter term indi-
cates the power consumption of the CPU. This simple model does not take the
DVFS into account, but it can be extended to take the voltage and frequency
scaling into account.
The power model can then be used in power estimation in predicting the

power consumption without power measurements. Following our example, given
that CPU utilization is 20 % for a give duration T , we can determine the energy
consumption with Etotal = (a20+b)T . The energy consumption of an application
that uses the CPU in a dynamic manner can be determined with

Etotal =
X

i

P i
cpu ⇥�T, (7.6)

where P i
cpu is the i-th measurement of CPU utilization and �T is the time

interval of the measurement.

C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology and empirical data,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003.

Single Core Regression Model

• Assuming a linear relationship between power
consumption and CPU load, the linear regression model
would be the following:

• Constants a and b are determined with regression
• The energy consumption of an application that uses the

CPU in a dynamic manner can be determined with

• Given that CPU utilization is 20 % for a give duration T ,
we can determine the energy consumption with Etotal =
(a20 + b)T.

120 Smartphone Subsystems

with total power measurements with an external power monitor to obtain a fine-
grained view of energy consumption of the CPU. A similar approach can be used
to model GPUs [20]. The monitored CPU components include the bus control, L1
and L2 caches, bu↵ers, integer execution, floating point execution, and queues.
The performance counter metrics were mapped to the CPU components.
The model collects architectural statistics such as cycles per instruction, mem-

ory references, cache misses, and on-chip communication details together with
the application-level details to optimize performance and meet the desired energy
and temperature goals. Given a CPU with N components, the ith component
denoted by Ci, the model is based on component access rates given by a perfor-
mance counter or a combination of performance counters. For CPU component
Ci, the maximum power, MaxPower(Ci) and ArchitecturalScaling(Ci) are heuris-
tics and estimated empirically.

P (Ci) = AccessRate(Ci)⇥ ArchitecturalScaling(Ci)⇥MaxPower(Ci) + (7.2)

NonGatedClockPower(Ci).(7.3)

The total power of the CPU is given by the following equation:

Ptotal =
NX

i=1

P (Ci) + Idle power. (7.4)

7.1.12 Single Core Regression Model

Assuming a linear relationship between power consumption and CPU load, the
linear regression model would be the following:

Pcpu = a⇥ Ucpu + b, (7.5)

where a and b are constants, and Ucpu is CPU utilization. The latter term indi-
cates the power consumption of the CPU. This simple model does not take the
DVFS into account, but it can be extended to take the voltage and frequency
scaling into account.
The power model can then be used in power estimation in predicting the

power consumption without power measurements. Following our example, given
that CPU utilization is 20 % for a give duration T , we can determine the energy
consumption with Etotal = (a20+b)T . The energy consumption of an application
that uses the CPU in a dynamic manner can be determined with

Etotal =
X

i

P i
cpu ⇥�T, (7.6)

where P i
cpu is the i-th measurement of CPU utilization and �T is the time

interval of the measurement.

120 Smartphone Subsystems

with total power measurements with an external power monitor to obtain a fine-
grained view of energy consumption of the CPU. A similar approach can be used
to model GPUs [20]. The monitored CPU components include the bus control, L1
and L2 caches, bu↵ers, integer execution, floating point execution, and queues.
The performance counter metrics were mapped to the CPU components.
The model collects architectural statistics such as cycles per instruction, mem-

ory references, cache misses, and on-chip communication details together with
the application-level details to optimize performance and meet the desired energy
and temperature goals. Given a CPU with N components, the ith component
denoted by Ci, the model is based on component access rates given by a perfor-
mance counter or a combination of performance counters. For CPU component
Ci, the maximum power, MaxPower(Ci) and ArchitecturalScaling(Ci) are heuris-
tics and estimated empirically.

P (Ci) = AccessRate(Ci)⇥ ArchitecturalScaling(Ci)⇥MaxPower(Ci) + (7.2)

NonGatedClockPower(Ci).(7.3)

The total power of the CPU is given by the following equation:

Ptotal =
NX

i=1

P (Ci) + Idle power. (7.4)

7.1.12 Single Core Regression Model

Assuming a linear relationship between power consumption and CPU load, the
linear regression model would be the following:

Pcpu = a⇥ Ucpu + b, (7.5)

where a and b are constants, and Ucpu is CPU utilization. The latter term indi-
cates the power consumption of the CPU. This simple model does not take the
DVFS into account, but it can be extended to take the voltage and frequency
scaling into account.
The power model can then be used in power estimation in predicting the

power consumption without power measurements. Following our example, given
that CPU utilization is 20 % for a give duration T , we can determine the energy
consumption with Etotal = (a20+b)T . The energy consumption of an application
that uses the CPU in a dynamic manner can be determined with

Etotal =
X

i

P i
cpu ⇥�T, (7.6)

where P i
cpu is the i-th measurement of CPU utilization and �T is the time

interval of the measurement.

Single Core Regression Model with
DVFS

• DVFS can significantly improve energy efficiency.
• The effect of DVFS can be examined with the following

simple equation:

• where E gives the total energy of the workload, P is the
average power over the workload, t is the execution
time of the workload, Pidle is the idle power of the CPU,
and tmax is the maximum running time of the workload
over all frequencies.

7.2 Display 121

7.1.13 Single Core Regression Model with DVFS

DVFS can significantly improve energy e�ciency of the CPU. The obtained
benefit depends on the idle power consumption of the CPU and the execution
time of the tasks with di↵erent CPU voltages and frequency levels. The e↵ect of
DVFS can be examined with the following simple equation [23]:

E = P ⇥ t+ Pidle ⇥ (tmax � t), (7.7)

where E gives the total energy of the workload, P is the average power over
the workload, t is the execution time of the workload, Pidle is the idle power
of the CPU, and tmax is the maximum running time of the workload over all
frequencies.

7.1.14 Multicore Regression Model

Yifan Zhang et al. studied the power modeling of multicore smartphone CPUs
and they have identified that the traditional frequency and utilization based
regression techniques are prone to errors in the multicore setting [15]. Based on
this observation they developed a new regression based power model for multicore
CPUs based on the time spent in C states. This model builds on a model of a
single core working at frequency f that is the given by the following equation
[15]:

Pcore =
X

i

�C
i

⇥WEDC
i

+ �U ⇥ U + c, (7.8)

where WEDC
i

is the weighted average entry duration for idle state Ci, �C
i

and
�U are coe�cients of WEDC

i

, U is the utilization rate, and c is a constant. A
power model is created by obtaining the coe�cients by linear regression on the
training data with WEDC

i

and U , and the associated Pcore.
The multicore model extends the above single core model and it is given by

[15]:

PCPU = PBL,N
C

+
N

CX

i

P�,core,U
i

,f
i

, (7.9)

where NC is the number of cores, PBL,N
C

is the baseline CPU power with NC

cores, and P�,core,U
i

,f
i

is the power increment due to core i when running at
frequency fi with utilization of Ui. The term P�,core,U

i

,f
i

can be predicted using
the single core model (NC = 1) and with the measurement of the constant
PBL,N

C

.

7.2 Display

Display is definitely one of the most energy-consuming components in a mod-
ern mobile phone, especially now, when smartphones have started using touch-

A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in Proceedings of the 2010
USENIX conference.

Multicore Regression Model

• Yifan Zhang et al. studied the power modeling of
multicore smartphone CPUs and they have identified
that the traditional frequency and utilization based
regression techniques are prone to errors in the
multicore setting.

• Based on this observation they developed a new
regression based power model for multicore CPUs
based on the time spent in C states.

Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao, “Towards better cpu power management on
multicore smartphones,” in Proceedings of the Workshop on Power-Aware Computing and Systems, ser.
HotPower ’13. New York, NY, USA: ACM, 2013.

Balancing Between Cores
• Given that we have a high performance core and a

lower performance core for sensing tasks, it is clear that
computationally heavy operations should be run on the
high performance core.

• The low performance core, on the other hand, would be
suitable for reading sensors and then handing over the
data to the high performance core for intensive
processing, such as speech recognition.

• Assuming that the low-cost processor is the most
suitable for a specific computation stage i, we have the
following bound for the slow-down of the stage:

7.4 Sensors 143

Sensor#hub#coKprocessor#

Sensing#applicaAons#

Sensor#interface#(OS#and#
middleware)#

#Bus#

#AcceleraAon# #GPS#

#Temperature# Other#sensors#

Host#CPU#(maximize#sleep)## Sensor#hub#(alwaysKon)#

Figure 7.19 Overview of a sensor hub

Assuming that an application consists of N stages and that we have more than
one processor for running the stages, the central question is how to place the
stages across the processors. The placement decision needs to take into account
the energy characteristics of the processors as well as the processor wakeup and
stage/task scheduling cost [50].
Given that we have a high performance core and a lower performance core for

sensing tasks, it is clear that computationally heavy operations should be run
on the high performance core. The low performance core, on the other hand,
would be suitable for reading sensors and then handing over the data to the high
performance core for intensive processing, such as speech recognition.
Assuming that the low-cost processor is the most suitable for a specific com-

putation stage i, we have the following bound for the slow-down of the stage
[50]:

si <
PM
active � PM

sleep

PL
active

+
Etrans/PL

active

TM
i

, (7.10)

where PM
active and PM

sleep are the power consumptions of the high performance
main core when in active and sleep states, respectively. In a similar fashion,
PL
active is the power consumption of the low performance core, Etrans is the

transition cost for stage placement on the main core, and TM
i is the execution

time of the stage on the main core.
The slow-down factor is dependent on the hardware and on the computation.

For example, memory size of the processor, data parallel instruction sets, floating

M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu, “Improving energy efficiency personal sensing applications with
heterogeneous multi-processors,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing.

Supporting Continuous Sensing

• Continuous sensing involves the constant monitoring
of onboard sensors, such as acceleration,
microphone or camera. Thus continuous sensing
burdens the processor and uses a lot of energy.

• Galaxy S4 smartphone that has a hardware chip for
aggregating and optimizing sensor data gathering
and processing.

Sensorhub

Sensor hub co-
processor

Sensing applications

Sensor interface (OS and
middleware)

 Bus

 Acceleration GPS

 Temperature Other
sensors

Host CPU
(maximize sleep)

Sensor hub (always-
on)

Smartphone Platform Overview

Android
Linux

iOS Windows Phone 8 Firefox OS Symbian
Series 60

Low-level
power
management

Linux Power Management iOS kernel Windows NT Linux Power
Management (Gonk)

Kernel-side
framework with power
API (Power Manager),
peripheral power on/
off

High-level
power
management

Java class PowerManager,
JNI binding to OS. Key
methods: goToSleep(long),
newWakeLock(…),
userActivity(long…)

BatteryStats monitors
energy consumption and
uses device specific
subsystem models.

I/O
Framework

Run-time power
management
framework

Gaia (OS Shell)
Gecko runtime:
Power Management
Web API is non-
standard and
reserved for pre-
installed applications

Applications use
domain manager that
follows system-wide
power-state policies.

Nokia Energy Profiler
API

Energy
conservation
patterns

Wake lock (partial, full) is
used to ensure that device
stays on.
Methods: Create, acquire,
release, sensor batching

Coding
patterns,
multitasking
API (since
iOS 4), push
API,
coalesced
updates
(since iOS7)

Multitasking API
(tasks and push
notification),
asynchronous
events

Asynchronous events
(system messages)

Resource lock in
Power Management
API

Active object, wakeup
events, resource and
domain manager

Policies Wake lock specific flags
and policies, system-wide
power setting

Internal,
multitasking
API (since
iOS4)

Internal Gonk and Gecko
level

Domain manager for
system-wide and
domain-wide policy.
Domain-specific
policies are possible

Battery
information

The BatteryManager class
contains strings and
constants for different
battery related notifications
that applications can
subscribe to, includes:
battery level, temperature,
voltage

iOS 3 and
later:
UIDevice
Class allows
to query/
subscribe
battery info

Battery class
provides the battery
level, remaining
operating time, and
an event when
battery is below 1%.

W3C Battery Status
API

Battery API (charge
level, external power).
Nokia Energy Profiler

Name / Authors Year Purpose

PowerScope 1999 Energy profiling of device and processes

Joule Watcher 2000 Fine-grained thread-level profiling

Nokia Energy
Profiler

2006-2007 On-device standalone profiler

Shye et al. 2009 Energy profiling of device and components with a logger application

PowerTutor 2009 Hybrid profiler based on PowerBooter

PowerBooter 2009-2010 Short-term power model for components

BattOr 2011 Portable power monitor

Sesame 2011 Self-constructive on-device power model for device and components

PowerProf 2011 Self-constructive API-level power profiler

MobiBug 2011 Automatic diagnosis of application crashes

Carat 2012-2013 Application energy profiling and debugging

eProf 2012 Fine-grained power model for device, components and applications

DevScope 2012 Self-constructive power model for device and components

AppScope 2012 Fine-grained energy profiler for applications based on DevScope

eDoctor 2012 Automatic diagnosis of battery drain problems

V-Edge 2013 Self-constructive power model for device and components

Power Profilers

PowerTutor

Computation Offloading

• Based on material contributed by Matti Siekkinen, Eemil
Lagerspetz and Juhani Toivonen

Environment

!"#$%&'

(#)*"+'!"#$%'
#,#-%*./'

&0
1+
%$
"*.
/'

&1
-2
*.
/'

2+3"*0-4#.'

0-01*./'

Access network

Web services

What is offloading?

• Consider apps designed and implemented to be run on
standalone mobile OS

• Execute part of the application code in a remote
machine

Smartphone

Offloading
framework

app	

app	
app	

app	

app	

app	

Remote server (Cloud)

Offloading
framework

app	

app	
app	

Mobile OS
Mobile OS

Virtualization

callMethod()

return result

Offloading work to save energy
• Main objective is to save energy

–  Tradeoff: less computing with some extra communication
–  Transfer state back and forth between smartphone and

cloud

• Often involves dynamic decision making because the tradeoff

is not constant
• May also improve other performance metrics (response time)

–  High performance computing in cloud

Energy for
communication

Energy for
computation

• The offloading of a mobile computing task is a trade-off
between the energy used for local processing and the
energy required for offloading the task, uploading its
data, and downloading the result, if necessary.

• One can express the offloading energy trade-off as
follows:

–  Etrade = Elocal − Edelegate > 0, where Elocal is
the energy used for complete local execution, and
Edelegate is the energy used if the task is
offloaded from the perspective of the mobile
device.

• If Etrade is greater than zero, then there is an energy
benefit for delegating the task to the cloud.

Offloading

Offloading frameworks
• Most rely on having source code available

–  MAUI at Mobisys’10
•  Cuervo et al. from Duke, UMass, UCLA, MSR

–  Cuckoo at MobiCASE’10
•  Kemp et al. from Vrije Universiteit

–  ThinkAir at Infocom’12
•  Kosta et al. from DT Labs, Cambridge, Nottingham, Huawei

• One modifies the underlying system (VM)
–  CloneCloud at EuroSys’11

•  Chun et al. from Intel Labs, Princeton
• Testing with computationally intensive apps delivers impressive

results
–  45% energy savings for chess AI [MAUI]
–  20x speedup and energy savings for a large image search

[CloneCloud]

• Content processing and transformations
–  Example: Javascript processing in OperaMini

• Completion notification and mobile push
• Application execution

–  Google docs, Windows Office
• Connection management

–  BitTorrent!
–  Large downloads

• Speech recognition
–  Siri

• Positioning (A-GPS)
• NVIDIA cloud enhanced 3D graphics

What can be offloaded?

• Implemented with Dessy: mobile desktop search
• To offload indexing

–  Transmit entire file to the cloud service
–  Wait for response
–  Receive file summary

• High energy savings can be obtained when offloading
CPU-intensive tasks

• With N900 and WLAN 700kB/s: 96.5% savings!
–  200 000 words, 1 MB file
–  With WLAN 100kB/s this is reduced to 83.7%

Example of Offloading: Indexing

Fig. 1. The offloading destinations from the point of view of the mobile
device.

scheme. This includes offloading to the Dessy Cloud service
via UMTS/GPRS mobile Internet or via IEE 802.11 WLAN, as
well as using Scavenger to offload computation to surrogates
present in the WLAN. In the absence of Internet connectivity
in the local WLAN, represented by a dotted line in the Figure,
the local surrogates may still be used for Scavenger-based
offloading.

In the absence of any surrogates, if the WLAN is connected
to the Internet, cloud offloading is possible. As we will
see below, the choice of the optimal offloading method and
communication technology depends mostly on the upload rate
of the N900 and the energy cost of transmitting.

From the mobile device’s perspective, offloading indexing
consists of uploading a document for indexing, waiting for
the result to become ready, and downloading the result. In the
experiments, the energy consumed by the entire transaction is
measured.

In the experimental setup, we used the Nokia N900 mobile
device, with Bluetooth and FM radio disabled. The energy use
was measured using a Monsoon Power Monitor device2. The
Power Monitor allows recording of (time, current, voltage)-
tuples at a sample rate of 5 kHz. Internally, the device is able
to measure at 50 kHz, and the recorded samples are averages
of 10 measurements each.

The N900 device was powered through the Power Mon-
itor using a fake battery. No USB cable was connected to
the N900 during the experiments. Figure 2 shows the Monsoon
Power Monitor and the N900 along with the fake battery. The
input voltage was set to 4 V. The formula to obtain mWh
values from the current, voltage and time tuples is

E = I ⇥ U ⇥ t/3600, (1)

where E is the energy in mWh, I is the current in mA, U
is the voltage in V , and t is the time in seconds. The Power
Monitor gave a steady voltage of 4V in all of the experiments.
We will therefore use mAh values in the rest of this paper,

2http://msoon.com/LabEquipment/PowerMonitor/

Fig. 2. The Power Monitor, powering the N900 through a fake battery.

omitting U from the formula above. To obtain mWh values,
one can just multiply the mAh value by 4. Note that the Power
Monitor records current in mA.

Every experiment run proceeded in the following manner:

1) The experiment script was started and the N900 screen
is turned off

2) Measurement was started in Monsoon PowerTool
3) Several seconds of idle time elapsed
4) The N900 started an upload of the chosen file to the

target server using the chosen communication method
5) The N900 finished the upload and started waiting for

the result to be ready
6) The N900 downloaded the result
7) The experiment script finished
8) Several seconds of idle time elapsed
9) Measurement was stopped in Monsoon PowerTool

The idle time was used to find the beginning and end
of the active experiment time in the measured data. When

53

Dessy Offloading

Cloudlets on a network

Constructed from clip art from pixabay.com

Cloudlets

Cloudlet architecture from CMU
consists of customized ephemeral
virtual machines with soft state, and a
platform for running them

Deploy applications near the users to
avoid latency and bandwidth problems

Facilitates elastic and mobile
execution of network components in
base stations

Network support for computation
offloading?

