Overview of CPU Power
Consumption and Management in
Smartphones

Prof. Sasu Tarkoma

University of Helsinki, Aalto University,
Helsinki Institute for Information Technology



Contents

® Modern smartphone SoC and CPUs
— The CPU: power states
— Power management basics
® Smartphone solutions
— Linux CPU Frequency subsystem
— Power models
® Intra-device task offloading
— Sensor hub
— Heterogeneous multiprocessing
® Computation offloading



Smartphones

® Smartphones have become hubs for applications and
connecting with the Internet

®Cloud has emerged as a backend for mobile applications

® Mobile data and WiFi are the dominant protocols for
connecting with Internet resources

®The next generation solutions are addressing limitations of
the current smartphones

— Coordination of resource usage
— Offloading in its many forms

— Heterogeneous environment and the emergence of
loT / M2M / wearables



Observations

® Smartphone and mobile device hardware and software evolve
rapidly

® Multiple wireless protocols
® Heterogeneous computing over multiple cores
— Dedicated subsystems (sensor hubs)
— Increasing number of sensing subsystems
— Always-on sensing
® Battery technology has not kept pace with the development
® Software is not, in many cases, optimized
® Difficult to balance between local versus distributed processing
® Difficult to control traffic across interfaces



Mobile Evolution

1995 2000 2005 2010 2015

Processor Single Single Single Dual-core Quad-core and
beyond, auxiliary
processors, sensor

hubs
Cellular 2G 2.5-3G 3.5G Transition 4G
generation toward 4G
Standard GSM GPRS HSPA HSPA, LTE LTE, LTE-A
Downlink (Mb/  0.01 0.1 1 10 100
s)
Display pixels 4 16 64 256 1024
(x1000)
Communicatio - - WiFi, WiFi, WiFi, Bluetooth LE,
ns modules Bluetooth Bluetooth RFID
Battery 1 2 3 4 5

capacity (Wh)
Software (MB) 0.1 1 10 100 1000




Example Smartphone SoC
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Android Smartphone Power Profile (mW)
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CPU Total Power

®The total power of CMOS logic circuits are determined
by the clock rate, the supply voltage, and the
capacitances of the transistors

— Switching power and static power:
P = Pswiteh + Pstatic
® Dynamic switching loss is given by:
Popiteh =ax CxV2x f

®By varying clock rate and supply voltage, it is possible
to obtain linear and quadratic improvements



CPU Power Saving

®Running a task at a slower speed saves energy;
however, it will lake longer to execute the task thus
affecting the performance

® Dynamic voltage and frequency scaling favor
parallelism and having multiple voltage/frequency
scaled cores executing tasks.
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Scaling SoCs

® Static power leakage is affecting the feasibility of
voltage scaling.

— Alinear decrease of voltage will result in a
quadratic decrease of the switching loss; however,
it will only result in a linear decrease of the static
leakage.

— Static leakage can become dominant with low
voltage integrated circuits with high density of
transistors

®To address leakage, SoCs use power gating to allow
portions of the system to be switched off when
necessary.

®Low power requirements are also driving the trend for
multicore systems with many voltage and frequency
controlled cores.



CPU Frequency and Relative Power
Consumption

Clock frequency Core voltage Relative power

(MHz \")) consumption
250 1.075 100%
500 1.2 249%
550 1.275 309%
600 1.35 378%

Source: J. Kurtto, “Mapping and improving the energy efficiency of the Nokia
N900”. M.Sc. Thesis. University of Helsinki, Department of Computer Science.



Power Optimization Levels

® Smartphone and mobile device power optimization
happens on multiple levels:

— Silicon-level, in which the transistor capacitance
and the chip design affect the energy efficiency

— SoC-level, in which multiple power/voltage/clock
domains can be used to support granular power
management with the help of software and DVFS

— Software-level, in which various power managers
monitor and control the energy and power settings.

® A high-level framework is needed to perform system-
wide tuning and optimization.



APM and ACPI

® Advanced Power Management (APM)
— Firmware and BIOS level

— Apps and drivers -> APM Driver-> BIOS APM ->
hardware

— Power management via device all and automatic
based on device activity

— Power management events

® Advanced Configuration and Power Interface (ACPI)
— APM is replaced by ACPI
— OS has the control

— Power states: global, device, processor,
performance



Smartphone CPU and SoC

® The five popular SoCs used by smartphones today are:

— Qualcomm’s Snapdragon consists of four versions from
S1to S4.

— Texas Instrument’'s OMAP (Open Media Applications
Platform).

— Samsung’'s Exynos SoCs used in their smartphones
and tablets. The latest version of Exynos is 5 Octa and it
features a quad-core Cortex-A15 and a quad-core
Cortex-A7, ARM Mali GPU, and auxiliary processors.

— Nvidia’s Tegra SoCs are multi-core and based on ARM
cores with an ulta low- power (ULP) GeForce GPU. The
latest version, Tegra 4, supports ARM- A15 cores in
quad- or octa-core configurations.

— Apple’s CPUs and SoCs are designed by Apple based
on the ARM architecture.
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Dynamic Power Management

°*Dynamic Power Management (DPM) is a design
methodology for energy and power management of
dynamically reconfiguring systems. The goal for a DPM
system is to provide the requested services and
performance with a minimum power consumption.

°*DVFS (Dynamic Voltage and Frequency Scaling)

— Minimizes power needs by trying to reduce the
operating frequency and the core voltage to levels
sufficient to execute current tasks but with no
excess resources left.

°*DPS (Dynamic Power Switching)

— DPS detects the true need of resource utilization in
a CPU and, if there are no current computational
tasks, forces the CPU into minimal power state.



Example of Dynamic Power
Management

DVEFS DPS DVFS DPS DVEFS

Time




P and C States

® At processor level we can manage power consumption
with two different strategies:

— Control of the CPU performance states using
frequency and core voltage (P-states).

— Use of processor operating states (C-states).

°The Advanced Configuration and Power Interface
(ACPI) specification is the industry standard solution for
power management used by the desktop and laptop
Industry.

— Current smartphones use these states as well, but
they are not based on ACPI.



Overview of P and C States

P states

C states

Higher
voltage/
frequency

Lower voltage/
frequency

CO
C1
C2
C3
C4

Highest power mode

System is active mode

System is in idle mode

Lowest power mode



Power Management Components

® A subsystem for connecting the low-level technologies
and policies at higher level.

® A system of in-kernel policy governors. They are
essentially pre-configured power schemes with the
ability to modify the clock frequency according to
required needs. Typically these governors use the P-
states to to change frequencies for lower power
consumption. They will switch between clock
frequencies, on the basis of current CPU utilization level
trying to save power while not unduly losing
performance. The governors are tunable allowing some
customizing of the frequency scaling.

®Drivers implementing the technology in a CPU-specific
way.



P and C States: Example

®The difference between C-states and P-states is one of
operational level and can be summarized as follows:

— In C-states starting from C1 the processor is idle
but partially in use. P-state is an operational
concept and defined solely by the clock frequency
and core voltage.

Idle Power (mW)

Co 433 The Nexus 4 smartphone power
C1 390 states. Nexus 4 is based on the
C2 330 Snapdragon S4 SoC.

C3 200

Without idle states 1060




Linux CPU Frequency Subsystem

°The Linux CPU frequency subsystem that has
supported dynamic processor frequencies since the 2.6.0
Linux kernel.

®*The CPUfreq subsystem uses governors and daemons for
Implementing a static or dynamic power management

policy.

User space governors and daemons

[powersaved] [cpuspeed ] [ cpufreqd ]

LINUX KERNEL (in-kernel governors)

[performance ] [ userspace ] [ powersave ] [ ondemand ]

[ Cpufreq module (/proc and /sys interface) ]




Governors

® Performance governor that gives the highest CPU
frequency and performance. This governor statically sets the
highest frequency value and allows the tuning of this highest
value.

® Powersave governor that sets the lowest CPU frequency
and system speed.

® Userspace governor that allows the CPU frequency to be
set manually. The component can be used to implement
custom power policies.

® Ondemand governor is an in-kernel governor to
dynamically set the CPU frequency based on CPU
utilization.

® Conservative governor is similar to the on demand governor, but
allows a more gradual increase of the power consumption.



Example: Governors

Frequency
Performance governor Highest frequency
Ondemand governor /\
Powersave governor Lowest frequency

Time



Time resolution

®The default governors use millisecond resolution for
decisions, the thresholds are specified in microseconds

® Userspace governor can be implemented with finer-
grained granularity (microseconds)

®Intel Speedstep Technology can switch frequency with
latency of 10 microseconds

® Faster sampling results in quicker response time for
changes in the workload



Ondemand Governor

®For each CPU:
— Every X milliseconds:
* Get Utilization since last check

e |f utilization > UP_THRESHOLD
— Increase frequency to MAX

— Every Y milliseconds:
 Get utilization
* |If utilization < DOWN_THRESHOLD

— Decrease frequency 20%
® Conservative is similar but more gradual increase

®Used on many Android devices, for example Samsung
S4

* V. Pallipadi and A. Starikovskiy, “The Ondemand
Governor,” The Linux Symposium, 2006.



Linux cpufreq

® cpufreg-info

— Info on the current governor and settings
® cpufreg-set allows setting of:

— d minimum frequency,

— u maximum frequency,

— f specific frequency (userspace governor must be
set first) and

— g governor on a
— ¢ specific CPU

® Cpufreq allows activating governors on every available
CPU (and core)

®Can access /sys/devices/system/cpu/cpuO/cpufreq
and /proc/cpuinfo on Android (as root)



Energy-aware scheduling

®Traditional schedulers do not take the multicore
topology or energy issues into account

® Energy-aware aware schedulers

— Distribute tasks across CPUs and cores to save
energy

— Underlying topology affects the strategy

— For example: cluster tasks on a high performance
CPU, then remaining CPUs can enter idle states

®Examples: ARM’s big.LITTLE, NVIDIA battery saver
core, ...



ARM big.LITTLE

®The ARM big.LITTLE is a

computing architecture that

_ Interrupt Control
combines slow and low-

power processor cores with
faster and more power
demanding cores

®This architecture is used, for
’ _Cac e
example, by Samsung —

L2 Cache

Low performance tasks,
always-on always

Galaxy Note 3 and S4 SERPREOAREE (K8 comneced
smartphones (Exynos 5 Seamless migration
OCta)' Interconnect

® Extends DVFS with CPU

migration.



big.LITTLE Models

®Clustered model, in which the OS scheduler observes
one of the two processor clusters, and the scheduler
transitions between the clusters based on the observed
load.

®In-kernel switcher pairs a more powerful core with a
less powerful core with the option of having many
iIdentical pairs on a chip. The active core is selected
based on the load.

®Heterogeneous multi-processing (MP) enables the
use of all physical cores simultaneously. High priority or
computationally demanding threads are run by the
powerful cores whereas low priority or less demanding
threads are are run on the less powerful cores.



Big.LITTLE Experiments

®*The framework allows seamless migration of tasks
across the processor cores. The Cortex- A15-Cortex-A7
system is designed to migrate tasks between the
processor clusters in less than 20 microseconds with
1GHz processors.

® ARM’s energy efficiency comparison of Cortex-A15 and
Cortex-A7 indicates significant power savings with a
variety of benchmarks.

®For example, the Dhrystone benchmark gives energy
efficiency benefit of 3.5x for A7 with performance
benefit of 1.9x for A15. This motivates the use of the
slower processor for lightweight tasks.



GPUs

®In modern smartphone designs graphics processing is typically
offloaded to the GPU that has a high performance graphics

processing pipeline.
® The four well-known mobile GPUs are:
— Adreno GPU in the Qualcomm’s Snapdragon line of SoCs.
— PowerVR GPU used in TI's OMAP line of SoCs.
— Mali in the ARM architecture.

— GeForce ULP (ultra low-power) in the Tegra line of SoCs
from Nvidia.

® GPU can be used for generic processing. For example, a Gabor
face feature extraction algorithm was implemented with the Tegra
GPU and OpenGL ES and the shader language.

— The resulting GPU based algorithm achieved a 4.25 times
speedup compared to the CPU based version



Modelling the CPU

®*We outline the development of simple power models for
the smartphone SoC and CPU based on utilization and
linear regression. The development of our simple model
proceeds in the following phases:

— Design of training phase with different CPU loads.
The loads should be realistic and reflect the real-life
workloads on the device.

— Power measurement of the training loads on the
smartphone. An external power monitor tool is
typically used for high accuracy measurements.

— Creation of a power model for the CPU energy
consumption.

®The training can model construction can happen offline,
online or online with offline support.



Processor Power Model based on
Counters

®Isci and Martanosi have proposed a power model for
CPUs based on performance counters.

— They correlate hardware performance counters and
system log with total power measurements with an
external power monitor to obtain a fine-grained view
of energy consumption of the CPU. A similar
approach can be used to model GPUs

P(C;) = AccessRate(C;) x ArchitecturalScaling(C;) x MaxPower(C;) +
NonGatedClockPower(C}).

N
I —— Z P(C;) + Idle power.
il

C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology and empirical data,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003.



Single Core Regression Model

® Assuming a linear relationship between power
consumption and CPU load, the linear regression model
would be the following: P.,, = a X Uepy + b

® Constants a and b are determined with regression

®The energy consumption of an application that uses the
CPU in a dynamic manner can be determined with

Etotal = Z Pczpu X AT

®Given that CPU utilization is 20 % for a give duration T ,
we can determine the energy consumption with Etotal =
(a20 + b)T.



Single Core Regression Model with
DVFS

*DVES can significantly improve energy efficiency.
®The effect of DVFS can be examined with the following
simple equation:
EFE=Pxt+ Pg. X (tmax —t)

®where E gives the total energy of the workload, P is the
average power over the workload, t is the execution
time of the workload, P, is the idle power of the CPU,
and t_ ., is the maximum running time of the workload
over all frequencies.

A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” in Proceedings of the 2010
USENIX conference.



Multicore Regression Model

®Yifan Zhang et al. studied the power modeling of
multicore smartphone CPUs and they have identified
that the traditional frequency and utilization based
regression techniques are prone to errors in the
multicore setting.

®Based on this observation they developed a new
regression based power model for multicore CPUs
based on the time spent in C states.

Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao, “Towards better cpu power management on
multicore smartphones,” in Proceedings of the Workshop on Power-Aware Computing and Systems, ser.
HotPower ’13. New York, NY, USA: ACM, 2013.



Balancing Between Cores

®Given that we have a high performance core and a
lower performance core for sensing tasks, it is clear that
computationally heavy operations should be run on the
high performance core.

®*The low performance core, on the other hand, would be
suitable for reading sensors and then handing over the
data to the high performance core for intensive
processing, such as speech recognition.

® Assuming that the low-cost processor is the most
suitable for a specific computation stage i, we have the
following bound for the slow-down of the stage:
PM — PM Etrans/PL

active sleep 4 active
L T M

active 7

S; <

M.-R. Ra, B. Priyantha, A. Kansal, and J. Liu, “Improving energy efficiency personal sensing applications with
heterogeneous multi-processors,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing.



Supporting Continuous Sensing

® Continuous sensing involves the constant monitoring
of onboard sensors, such as acceleration,
microphone or camera. Thus continuous sensing
burdens the processor and uses a lot of energy.

® Galaxy S4 smartphone that has a hardware chip for
aggregating and optimizing sensor data gathering
and processing.



Sensorhub

Other
Temperature ——
: L. Acceleration GPS
Sensing applications
Bus
Sensor interface (OS and Sensor hub co-
middleware) processor
Host CPU Sensor hub (always-

(maximize sleep) on)






Android
Linux

Windows Phone 8

Firefox OS

Symbian
Series 60

Low-level
power
management

High-level
power
management

Energy
conservation
patterns

Policies

Battery
information

Linux Power Management

Java class PowerManager,
JNI binding to OS. Key
methods: goToSleep(long),
newWakeLock(...),
userActivity(long...)

BatteryStats monitors
energy consumption and
uses device specific
subsystem models.

Wake lock (partial, full) is
used to ensure that device
stays on.

Methods: Create, acquire,
release, sensor batching

Wake lock specific flags
and policies, system-wide
power setting

The BatteryManager class
contains strings and
constants for different
battery related notifications
that applications can
subscribe to, includes:
battery level, temperature,
voltage

iOS kernel

/O
Framework

Coding
patterns,
multitasking
API (since
iOS 4), push
API,
coalesced
updates
(since i0S7)

Internal,
multitasking
API (since
i0S4)

iOS 3 and
later:
UlDevice
Class allows
to query/
subscribe

battery info

Windows NT

Run-time power
management
framework

Multitasking API
(tasks and push
notification),
asynchronous
events

Internal

Battery class
provides the battery
level, remaining
operating time, and
an event when
battery is below 1%.

Linux Power
Management (Gonk)

Gaia (OS Shell)
Gecko runtime:
Power Management
Web APl is non-
standard and
reserved for pre-
installed applications

Asynchronous events
(system messages)

Resource lock in
Power Management
API

Gonk and Gecko
level

W3C Battery Status
API

Kernel-side
framework with power
API (Power Manager),
peripheral power on/
off

Applications use
domain manager that
follows system-wide
power-state policies.

Nokia Energy Profiler
API

Active object, wakeup
events, resource and
domain manager

Domain manager for
system-wide and
domain-wide policy.
Domain-specific
policies are possible

Battery API (charge
level, external power).
Nokia Energy Profiler



Power Profilers

Name / Authors Purpose

PowerScope 1999 Energy profiling of device and processes

Joule Watcher 2000 Fine-grained thread-level profiling

Nokia Energy 2006-2007 On-device standalone profiler

Profiler

Shye et al. 2009 Energy profiling of device and components with a logger application
PowerTutor 2009 Hybrid profiler based on PowerBooter

PowerBooter 2009-2010 Short-term power model for components

BattOr 2011 Portable power monitor

Sesame 2011 Self-constructive on-device power model for device and components
PowerProf 2011 Self-constructive API-level power profiler

MobiBug 2011 Automatic diagnosis of application crashes

Carat 2012-2013 Application energy profiling and debugging

eProf 2012 Fine-grained power model for device, components and applications
DevScope 2012 Self-constructive power model for device and components
AppScope 2012 Fine-grained energy profiler for applications based on DevScope
eDoctor 2012 Automatic diagnosis of battery drain problems

V-Edge 2013 Self-constructive power model for device and components
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Computation Offloading

®Based on material contributed by Matti Siekkinen, Eemil
Lagerspetz and Juhani Toivonen



Environment




What is offloading?

®Consider apps designed and implemented to be run on
standalone mobile OS

® Execute part of the application code in a remote
machine

—————————————————————————————————

K Offioading '/ p Offloading :

Iy framework | . | framework
i o return resili—__ L
: m . IMetHod o

: i - . Mobile OS

_____________ 1

Mobile OS :\\ Virtualization ,f:

Smartphone Remote server (Cloud)



Offloading work to save energy

® Main objective is to save energy
— Tradeoff: less computing with some extra communication

— Transfer state back and forth between smartphone and
cloud

Energy for
communication

Energy for
computation

® Often involves dynamic decision making because the tradeoff
IS not constant

® May also improve other performance metrics (response time)
— High performance computing in cloud



Offloading

® The offloading of a mobile computing task is a trade-off
between the energy used for local processing and the

energy required for offloading the task, uploading its
data, and downloading the result, if necessary.

® One can express the offloading energy trade-off as

follows:

— Etrade = Elocal — Edelegate > 0, where Elocal is
the energy used for complete local execution, and
Edelegate is the energy used if the task is
offloaded from the perspective of the mobile

device.

® If Etrade is greater than zero, then there is an energy
benefit for delegating the task to the cloud.



Offloading frameworks

® Most rely on having source code available
— MAUI at Mobisys’10
« Cuervo et al. from Duke, UMass, UCLA, MSR
— Cuckoo at MobiCASE’10
« Kemp et al. from Vrije Universiteit
— ThinkAir at Infocom’12
» Kosta et al. from DT Labs, Cambridge, Nottingham, Huawei
® One modifies the underlying system (VM)
— CloneCloud at EuroSys’11
* Chun et al. from Intel Labs, Princeton

® Testing with computationally intensive apps delivers impressive
results

— 45% energy savings for chess Al [MAUI]

— 20x speedup and energy savings for a large image search
[CloneCloud]



What can be offloaded?

® Content processing and transformations
— Example: Javascript processing in OperaMini
® Completion notification and mobile push
® Application execution
— Google docs, Windows Office
® Connection management
— BitTorrent!
— Large downloads
® Speech recognition
— Siri
®Positioning (A-GPS)
*NVIDIA cloud enhanced 3D graphics



Example of Offloading: Indexing

® Implemented with Dessy: mobile desktop search
®To offload indexing

— Transmit entire file to the cloud service

— Wait for response

— Receive file summary

®High energy savings can be obtained when offloading
CPU-intensive tasks

*With N900 and WLAN 700kB/s: 96.5% savings!
— 200 000 words, 1 MB file
— With WLAN 100kB/s this is reduced to 83.7%



Dessy Offloading

Scavenger
Surrogates The
Internet




Cloudilets

Cloudlet architecture from CMU
consists of customized ephemeral
virtual machines with soft state, and a
platform for running them

Internet

Deploy applications near the users to il
avoid latency and bandwidth problems |~y 4/

network

Cloud ﬂ
Facilitates elastic and mobile - ﬂ i
execution of network components in Mobile devices
base stations

Network support for computation
offloading?



