

# Wireless Sensor Networks

School of Computer Science and Technology

Beijing University of Posts and Telecommunications

Luo, Hong

Luoh@bupt.edu.cn



### Content

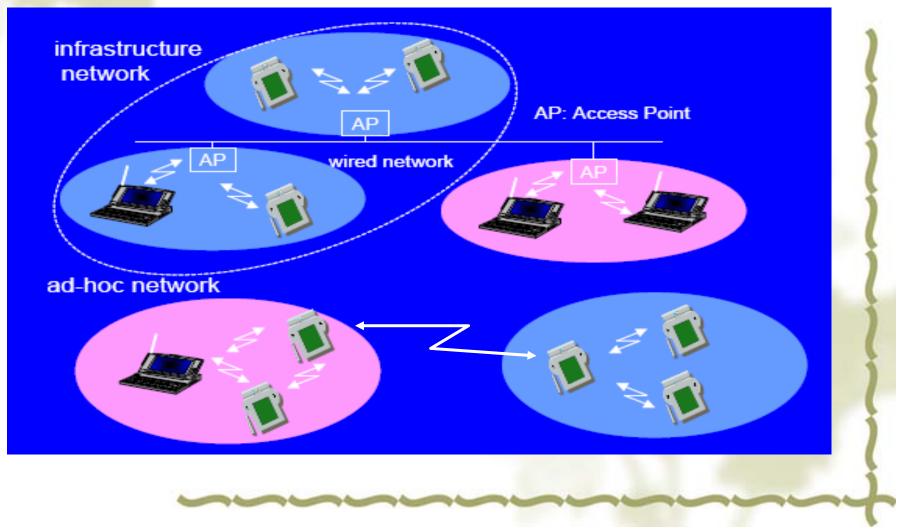
- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- Deployment and Management
- In-network processing
- QoS and Security



### Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- Deployment and Management
- In-network processing
- QoS and Security




### Architecture of wireless networks

- Architecture of wireless networks
   infrastructure-based networks;
   non-infrastructure networks
- Infrastructure-based networks :
  - Scellular mobile communication system (need BSS,MSC etc.)
  - « WLAN (need AP).
- non-infrastructure networks:
  - «Ad hoc networks

**Wireless Sensor networks** 



# The comparison of two types of wireless networks



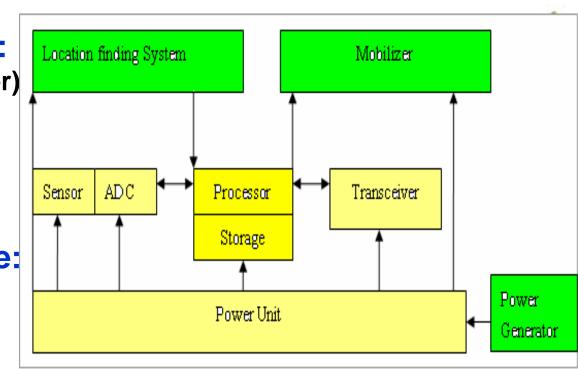


# **Overview of WSNs**

- WSN is a wireless network of a group of sensor nodes, connected with Ad-Hoc method.
- It is consisted of a large number of nodes, densely deployed within or near the detected region.
- The location of each sensor nodes is uncertainty in advance, usually randomly deployed in harsh and inhospitable physical environments.
- Sensor node
  - s Sensor
  - **Solution Processor**
  - **Sommunicator**






### Architecture of Sensor Node Low cost, low-power, multi-functional device

Data collection module: (Sensors and A/D Convertor) Data processing and Control module: (CPU 、 Memory and embedded OS) Communication module: (Wireless Communication

System)

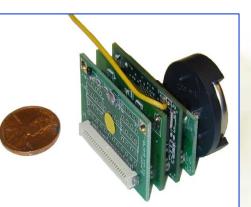
#### **Power supply module:**

(Power Unit)



Location Finding System, Mobilizer, Power Generator;

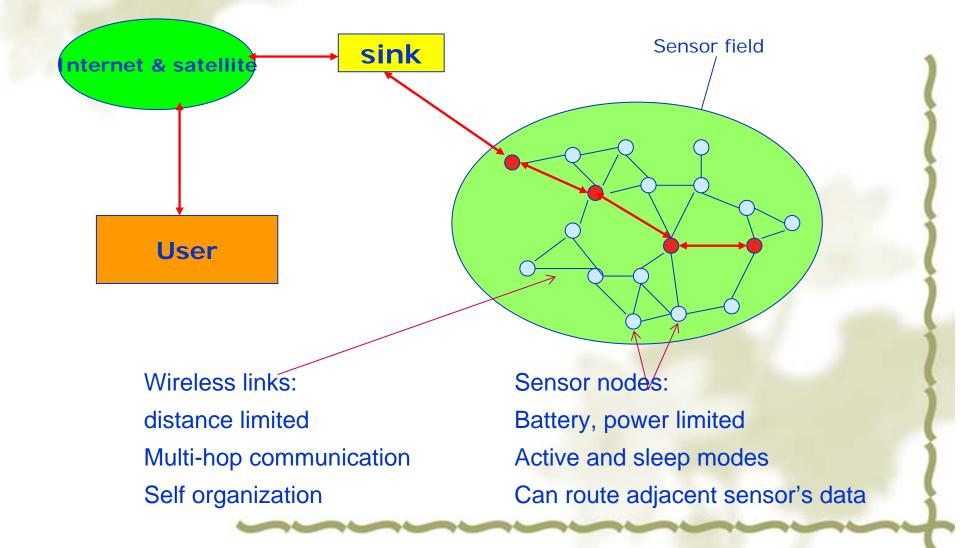



### **Examples**



LWIM III UCLA, 1996 Geophone, RFM radio, PIC, star network




UCB Mote, 2000 4 Mhz, 4K Ram 512K EEProm, 128K code, CSMA half-duplex RFM radio



WINS NG 2.0 Sensoria, 2001 Node development platform; multisensor, dual radio, Linux on SH4,



## **Architecture of WSNs**





# **WSN Applications (1)**

- Military
  - Characteristics of WSNs:
     rapid deployment, self-organization, fault tolerance
     Battlefield command system
     Intruder detection,
     Battlefield Surveillance
     Target (enemy) tracking,
     Equipments safeguarding,
     Forces monitoring



# **WSN Applications (2)**

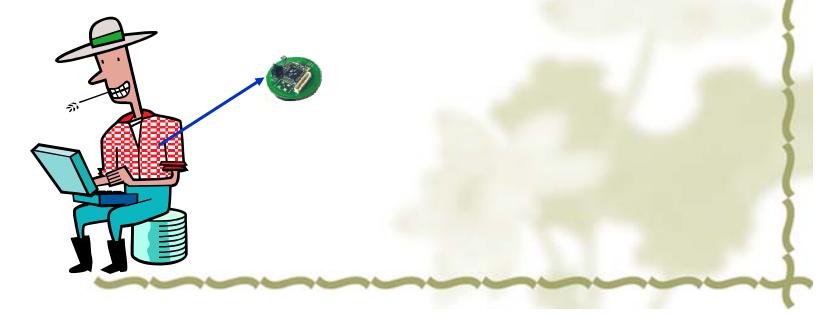
#### Environmental monitoring



**Flood detection** 



#### Forest fire detection






# **WSN Applications (3)**

Health Care

Detect abnormity (behavior of patients: fall)
 Identify potential health risks (heart rate, blood pressure)
 Automatically remind doctors and assistants
 Monitor health trends (long term and short term)

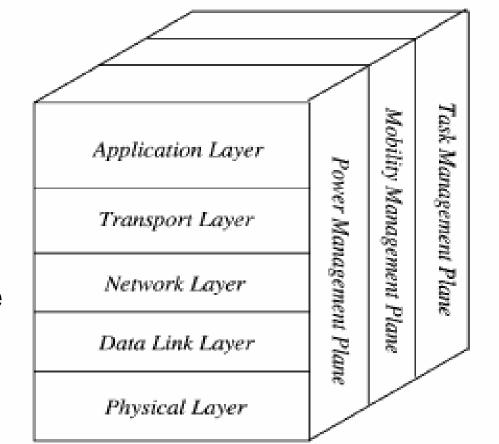




# **WSN Applications (4)**

- ◆ Civilian construction
   ◆ SHM
  - Servironmental control








# **WSNs Protocol Stack**

Application Layer Transport Layer Network layer Data Link Layer Physical Layer

Power Management Plane Mobility Management Plane Task Management Plane





# **WSNs vs. Other networks**

#### Target

**WSN** is data-centric, not communication-oriented.

#### Communication pattern

Traditional networks put all the processing functions into terminals, the Intermediate nodes are just in charge of relaying data packages; while for the WSNs, all sensor nodes have to sense events; transmit, receive and relay information; and process information.

#### Diversity of applications

Solution in WSNs

#### Energy

Impossible to change battery (lifetime is critical)

#### Reliability

**Solution** Solution WSN nodes are more prone to failure



### Performance

#### Energy efficiency

Solution Network lifetime

Tradeoff for energy, coverage, delay, accuracy.

#### Robustness

Subscription of the second second

#### Reliability

Measurement accuracy, transmission reliability

#### Scalability

Centralized vs. Distributed

& QoS

Response time, probability of event detection, security

-The first objective is Energy Conservation



# **Key Technologies**

- Energy aware and application aware algorithms and protocols
- Data aggregation (fusion) for accuracy & redundancy control
- Oynamic topology management and localization
   A
- Oynamic routing discovery and maintenance
- Gathering, processing and analyzing massive sensory data in real time for prompt event detection and response
- \* Reliability and fault tolerance in data transmission
- Security, privacy, trust



### Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- Deployment and Management
- In-network processing
- QoS and Security



## Medium Access Control Strategy

#### Techniques

Schedule-based TDMA access strategy
 Contention-based CSMA access strategy
 FDMA/CDMA-based access strategy

#### Design Considerations

Energy conservation:
 First Objective

«Scalability:

Scalability:

Adaptive to the change of network size, node density and topology

Network utility:

Throughput, fairness, latency and bandwidth utilization



# **Schedule-based (TDMA)**

Allocate a time slot for each node to send and receive data, and node sleeps when not in an active period

#### Features

sleep

s Collision free

Tx/R>

Solution Low idle listening and overhearing overheads

- Heavily dependent on time sync and not robust to topology changes
- Low throughput and high latency even during low contention

#### Typical Algorithm--Bluetooth IEEE 802.15.1

sleep

Tx/Rx

sleep

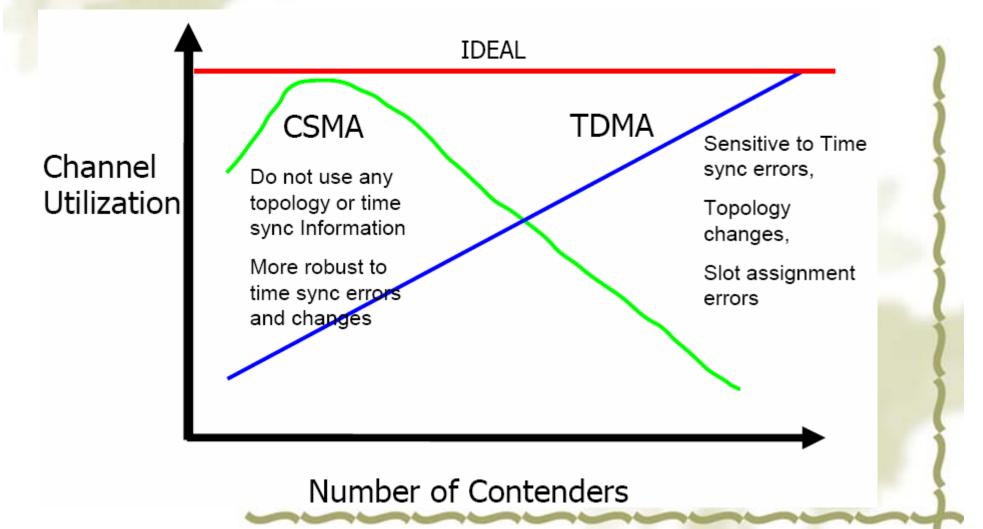
Γx/R



# **Contention-based (CSMA)**

When a node needs to send data, it uses wireless channel through competition. If collision happens, nodes retransmit data by some algorithm till sending data successfully or giving up sending.

#### Features


Algorithms to avoid collisions or reduce probability
 Random back-off and carrier-sensing
 High idle listening and overhearing overheads
 High control overhead

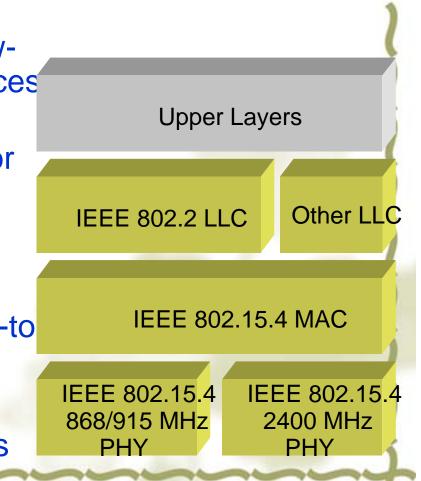
#### Typical Algorithm: IEEE 802.11

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)



# **CSMA / TDMA Comparison**

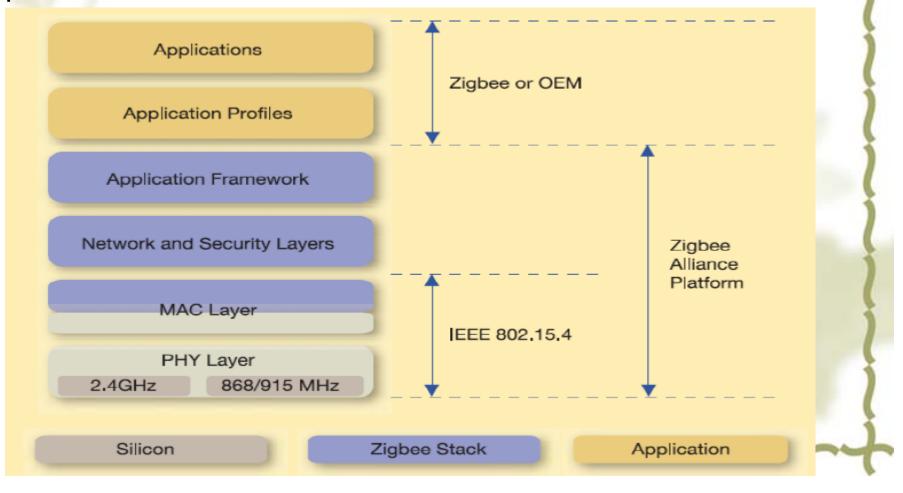





# IEEE 802.15.4 Personal wireless network LR-WPAN standard

- Provide connection among lowpower, low-rate, low-cost devices in short distance
- Can be used in wireless sensor networks.

#### Features


- Speed: 250, 40, and 20 kb/s
   network topology: star or point-to point.
- SMA / CA access
- solow-power, low latency devices





### **ZigBee Union**

Based on an open global standard, make the stable, lowcost, low-power, wireless networking systems or products possible





### Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- **\* Routing Protocols**
- Deployment and Management
- In-network processing
- QoS and Security



### **Routing Protocols in WSNs**

#### Features

- Series Energy priority
- Depending on local information of topology
   Data-centric



### The Classification of Routing Protocols

#### Data-centric

- **Solution Setermine routes according to the data content**
- Data transmission process goes with data aggregation
- SPIN Directed Diffusion
- Location-based
  - Solution of the second seco
  - s GPSR、 GEAR

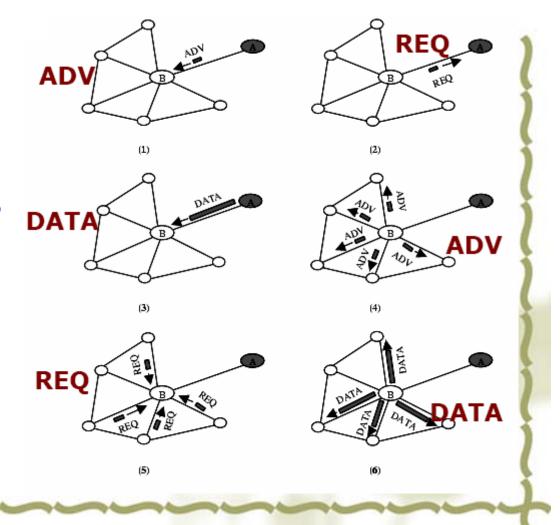
#### Hierarchical

- Applied to the large networks
- Subserve of the second seco
- LEACH、TTDD、TEEN、PEGASIS



### **Negotiation-based Routing—SPIN**

#### Sensor Protocol for Information via Negotiation


- Applied to active data dissemination system
- Using metadata for negotiation before data transmission
- \* Metadata

Data description of data
 Shorter than raw data
 Avoid redundant data transmission



# **SPIN**—3-stage handshake

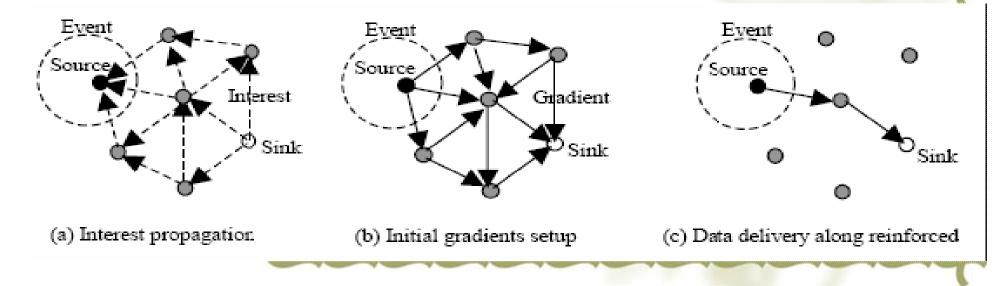
- Data source A sends ADV (Meta data)
- B sends REQ for data
- A sends DATA
- B could aggregate AB data, relay/ transmits ADV (Meta data of A/AB)
- Other nodes request data
- B directly responses the request of A data





### Request-based Routing — Directed Diffusion

#### **Applied to system where sink sends interests for request**

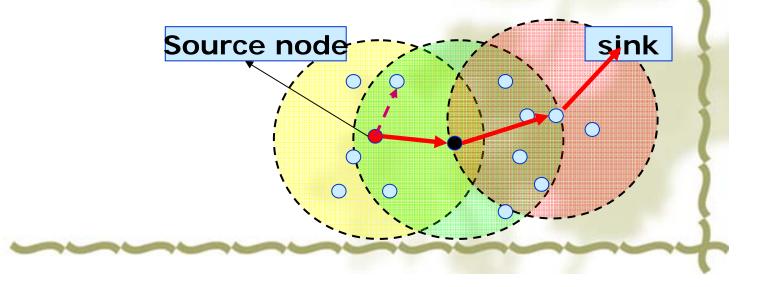

type = four-legged animal // detect animal location interval = 20 ms // send back events every 20 ms duration = 10 seconds // .. for the next 10 seconds rect = [-100, i00, 200, 400] // from sensors within rectangle

- Data generated by sensor nodes is named by attributevalue pairs
- Sink publishes interests message
- Nodes satisfied interest send data back



### **Directed Diffusion**

- Sink sends interests message in flooding way
- Build initiate gradients when sending request message
- Source nodes transmit data back to the sink along with the gradients.
- During data sending back, data with same interest can be aggregated






### Location-based Routing——GPSR

Applied to networks with constantly changing topology

- Exchange location info and remaining energy info through "Hello" message
- Greedy forwarding: taking the neighbor nearest to the sink as the next hop





### **Cluster-based routing**——LEACH

- Low Energy Adaptive Clustering Hierarchy protocol
- Divide sensor nodes into clusters, every node sends data to its cluster-head, the cluster-head sends data to the sink after data aggregation.
- Adjacent nodes automatically form clusters sink
   Some nodes become clusterneads
  - Solution of the other series of the other s
- Randomization election is used to balance energy load

Cluster-head



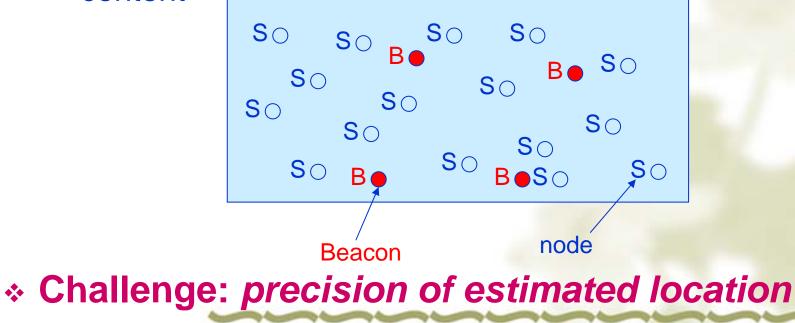
### Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- **\* Deployment and Management** 
  - solocalization
  - stopology control
  - s coverage
  - **Synchronization**
- In-network processing
- QoS and Security



### Localization

#### Importance:


- Iocating the monitored events in target tracking
- Foundation of location-based routing
- Solution Network management, use location information to construct network topology
- Traditional localization
  - **Global Positioning System GPS** 
    - High precision, strong anti-interference capability
    - Suitable for outdoor environment,
    - high energy consumption



### Localization

#### Localize each node with the beacon location

 Range-based: using ranging techniques for distance estimate or angle estimate in location calculation
 Range-free: depending only on the received message content





# **Topology Control**

### Targets:

- Minimize the energy consumption of each sensor node while ensuring network connectivity
- Restrict the neighbor set of a given node to reduce the channel interference

### Methods:

#### Node power control:

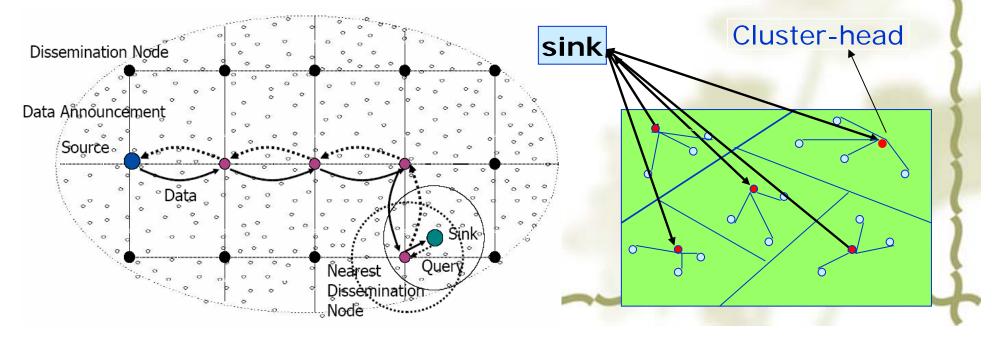
- \* adjust transmission power
   \* sleep/wake-up mechanism
   Hierarchical topology:
  - clustering mechanism
  - coordination mechanism



## **Power Control**

# Each node in the network uses the best transmission power

depending on the node degree algorithm
 All the nodes in the network use the same transmission power


### 



## **Hierarchical topology**

Nodes are divided into backbone nodes and ordinary nodes. Backbone nodes construct a connected network responsible for routing of data.

- Two-tier topology TTDD





# **Coverage and Sensing Model**

Ensure that any point or any sub-region in the network can be monitored by sensors.

### K-coverage

Search location is at least covered (monitoring) by k nodes, so as to guarantee the reliability of sensing.

### Boolean sensing model

Sevents within sensing range are detected reliably and events outsides cannot be detected at all

### General sensing model

Sensing capability degrades as distance increases



# **Time Synchronization**

#### Importance

Sensure the cooperative work between nodes
 Complete TDMA schedule mechanism
 Complete the data aggregation of multiple sensors
 Assist localization process

### Synchronization technology

In-network exchange and adjustment
 RBS (Reference Broadcast Synchronization)
 hierarchical synchronization structure
 TPSN (Timing-sync Protocol for Sensor Networks)



## Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- Deployment and Management
- In-network processing
- QoS and Security



- Need for Data Fusion/Aggregation
   Data-centric
- Individual sensor readings are of little use
- The collection of readings from different sensors produce the big picture
  - Coverage of sensor nodes is overlapped
     Sensory data is highly correlated
- Common data analysis operation
- Forwarding raw information is expensive
  - Scarce energy and bandwidth
- In-network processing
   Data fusion/aggregation



## **Data aggregation routing structure**

- How can the aggregation tree be formed?
- Where should aggregation point be placed?

t (sink)

G

Sensing field

 $\bigcirc$ 

 $\bigcirc$ 

Ο

How long should a node wait for data from its children?



## Content

- Introduction to Wireless Sensor networks (WSNs)
- Medium Access Control (MAC)
- Routing Protocols
- Deployment and Management
- In-network processing
- & QoS and Security

  - security
  - Sealt-tolerance



## Reliability

### Reliability

Sink to source nodes:

«query, task planning, and other command.

«need 100% reliable data transmission.

#### Source nodes to the sink:

s Sensory data.

reliable collection of information --- data from nearby nodes are highly relevant, instead of guaranteeing single sensed data, network should provide effective information that users care.

### Reliability technology

Single data -- reliable routing mechanism

Collection of information -- redundant transmission



# **Reliable Routing Protocol**

## **Multi-path** routing technique

### Main/backup multi-path

- First, build a main path from source node to the sink, then build multiple backup paths.
- The main path transmits data, backup paths transmit maintenance data.
- If the main path fails, choose a new one from backup paths.

### Simultaneous multi-path

- Build paths from source to sink according to some metric
   Send data on all paths simultaneously
- Challenge: How many paths are needed?
   ReInForM



## **Real-time in WSNs**

- Real-time applications
  - Intrusion monitoring
  - s disaster alarm,....
- Delay in WSNs
  - SCSMA-based MAC will bring random delay, TDMAbased MAC has constant delay.
  - Active/sleep mode can save energy, but bring in delay of monitoring and transmission
  - Solution of the data aggregation, aggregating node needs to wait for the data from children to complete the aggregation, further intensifies the delay.





# **Real-time in WSNs**

### **Consider real-time in each layer**

**MAC layer:** 

Choose suitable MAC mechanism, reduce retransmission.

I state to the state of the

#### Network layer:

Choose small delay links to construct routes

Proactive routing vs. reactive routing—reactive routing needs time to build routes.

**«** Transmission layer:

Multi-path vs. retransmission mechanism

\* multi-path routing: switch between main/backup multi-path vs. simultaneous multi-path

Application layer: Aggregation? No aggregation?



# **Security Goals in WSNs**

Confidentiality (privacy)

—accessible to only authorized parties

Integrity

——only authorized parties can modify the data

Availability

-----reliable delivery of data against denial of service

Authentication

-----data is really sent by the claimed sender

Freshness

—data is current and fresh (not replayed by adversary)

Security management

—key distribution and management mechanism



## **Security Challenges in WSNs**

- Limited storage capability and computing capability
   Impractical to use public key cryptosystems
- Limited bandwidth and communication capability
  - Solution Need light-weight and distributed security protocols

#### No centralized control

- Solution → Solutio
- Physical security of the region can not be guaranteed
   Operation of the region can no

Compromised nodes may lead to high security risks

In-network processing

sintegrity and confidentiality



## **Fault Tolerance**

### Causes of errors

Measurement errors of sensor
 Transmission errors
 Loss of information since lossy compression
 Interference brought in by compromised nodes
 Attacks



## **Fault Tolerance**

### Fault-tolerant request

Network can identify, filter the wrong message
 Ensure the end-user to make the correct decision

### Fault-tolerant strategy

For data errors at nodes—Improving the accuracy of measurement, dense deployment, data aggregation
 For transmission problems—reliable transmission
 Against various attacks —establishing a security framework to resist all kinds of attacks



## Summary

- Wireless sensor network is a brand new kind of network, the demand for the applications accelerates its research.
- Researchers have done a lot of studies in deployment, networking, data querying, and routing. Many experimental systems have been applied now.
- There are still many challenges in WSNs, such as power supplies, security, fault-tolerance, cross layer design, and standardization. Breakthrough of these issues can significantly promote the practicability of WSNs.



## References

M. Ilyas and I. Mahgoub, "Handbook of Sensor Networks: Compact of wireless and wired sensing systems", CCR Press LLC, 2005.

### Main related work teams:

- IPSN (information processing in sensor networks);
  SenSys;
- Section Sec

SNPA (sensor network protocols and applications);
 WSNA (wireless sensor networks and applications)

Related international conferences: ICC, Globecom, INFOCOM, MobiCom, MobiHoc







Q&A