Network Security: WLAN Security

Tuomas Aura
T-110.5241 Network security
Aalto University, Nov-Dec 2014
Wireless LAN technology
Threats against WLANs
(Weak security mechanisms and historical WEP)
Real WLAN security: WPA2
Password-based user authentication
WLAN mobility
Eduroam case study
Wireless LAN technology
Wireless LAN (WLAN) standards

- **IEEE 802.11** standard defines physical and link layers for wireless Ethernet LANs
- **Wi-Fi** is an industry alliance to promote 802.11 interoperability
- Original 802.11-1997, latest **802.11-2012**, amendments e.g. 802.11ac

Physical layer:
- Uses unlicensed bands at 2.4 GHz (microwave ovens, Bluetooth) and 5 GHz
- Up to 14 radio channels in the 2.4 GHz band, but only about 3 non-overlapping ones

Link layer
- Looks like Ethernet (802.3) to layers above
- MAC protocol differs from 802.3 because one antenna cannot detect collisions while transmitting
 → explicit ACKs needed
Small-business LAN

- In small networks, the switch, router, firewall and NAT are often one device.
- In larger networks, the functions may be in separate boxes.
Small-business WLAN

- Gateway router + Firewall + NAT
- Hub or Switch
- Workstations
- Servers
- APs
- Wireless stations
- Internet
- Server in DMZ
- Security perimeter
Main WLAN security threat

- Workstations
- Gateway router + Firewall + NAT
- Hub or Switch
- Wireless stations
- Servers
- APs
- Server in DMZ
- Security perimeter
- Internet
- Wireless stations
Wireless LAN components

- **Access point (AP)** = bridge between wireless (802.11) and wired (802.3) networks
- **Wireless station (STA)** = PC or other device with a wireless network interface card (NIC)
 - To be precise, AP is also a STA
- **Stations are identified by globally unique 48-bit MAC address**
 - MAC = Medium Access Control, don’t confuse with message authentication code
 - MAC address is assigned to each network interface card (NIC) by the manufacturer, which gets them from IEEE
- **Infrastructure mode** = wireless stations communicate only with AP
- **Ad-hoc mode** = no AP; wireless stations communicate directly with each other
- We will focus on infrastructure-mode WLANs
Wireless LAN structure

- Basic service set (BSS) = one WLAN cell (one AP + other wireless stations)
- The basic service set is identified by basic service set identifier (BSSID) = AP MAC address
- Extended service set (ESS) = multiple cells where the APs have the same service set identifier (SSID)
- The wired network is called distribution network in the standard; typically it is wired Ethernet
- APs in the same ESS can belong to the same IP network segment, or to different ones
Joining a wireless LAN

- AP sends **beacons**, usually every 50 ms
- Beacons usually include the SSID but the **SSID broadcast** can be turned off
- STA must specify SSID to the AP in association request

Open system authentication = no authentication, empty authentication messages
Leaving a wireless LAN

Both STA and AP can send a Disassociation Notification or Deauthentication Notification
802.11 association state machine

Authentication

State 1: unauthenticated, unassociated

Association or reassociation

State 2: authenticated, unassociated

- Deauthentication notification
- Disassociation notification

State 3: authenticated, associated

STA can send only control and management frames through AP

Remember: these are just empty messages for backward compatibility, not real authentication

STA can also send data frames
Threats against WLANs
Exercise: WLAN threat analysis

List as many threats against wireless LANs as you can think of. What kind of unwanted things can happen?

- Consider home, small-business, corporate and university networks, Internet cafes and commercial hotspot operators

Prioritize the threats roughly by how serious they are. Which threats can be ignored and which not?
Wireless LAN threats

- Signal interception — sniffing
- Unauthorized network access — access to intranet or Internet access without authorization or payment
- Access-point misconfiguration
- Unauthorized APs — unauthorized ingress routes to intranet may bypass firewall
- Denial of service — logical attacks with spoofed signaling, signal jamming
- AP spoofing — stronger signal attracts STAs
- MitM attack by AP — especially free open AP
Signal interception

The radio signal is not confined to a physical building → Attacker can sniff traffic outside the building, e.g. in the parking lot

Directional high-gain antenna can intercept WLAN signal from hundreds of meters away
Unauthorized network access

Discussion:

- Would you mind your neighbors accessing your home AP?
- Would a university, a company or a commercial WLAN operator want to control access?

Using unprotected WLAN for Internet access is now legal in Finland

Wardriving:

- Hobbyists drive around the city looking for open hotspots and create maps of open WLANs that can be used for Internet access

Tools: http://www.wardrive.net/wardriving/tools/
Many different ways to configure access points:

- Web page (home routers)
- SNMP (professional access points)
- serial cable
- Telnet

Default passwords — hackers can change the configuration or replace firmware
Unauthorized access points

Unauthorized access points installed by employees are often badly administered:
- No access control enabled; anyone can connect
- Direct access to the intranet behind firewall

→ Attacker can use unauthorized APs to access the intranet

Solutions:
- **AP sweeps**: walk or drive around premises and look for AP beacons
- Scan for SNMP and web admin interfaces in the intranet
- Some high-end APs have built-in feature for unauthorized AP detection

Similar to unauthorized modems in the old days
Denial of service

Logical attacks:
- Spoofed deauthentication or disassociation message causes the AP or STA to lose state

AP capacity exhaustion:
- Typical AP handles data fast but association and authentication slower → flood AP with false authentications to prevent honest nodes from associating

Radio jamming:
- Either jam the who radio channel or selectively break some frames
AP spoofing

Clients are configured to associate automatically with APs that advertise specific SSIDs

Attack: fake AP broadcasts cyclically all known hotspot, hotel, airport and company SSIDs
→ clients will associate with it automatically thinking they are at the hotspot
→ easy MitM attack on all IP packets
WLAN security goals

Wireless LAN security protocols have following goals:

- **Data confidentiality and integrity** — prevent sniffing and spoofing of data on the wireless link
- **Access control** — allow access only for authorized wireless stations
- **Accounting** — hotspot operators may want to meter network usage
- **Authentication** — access control and accounting usually depend on knowing the identity of the wireless station or user
- **Availability** — do not make denial-of-service attacks easy (radio jamming is always possible)

Not all problems have been solved
Weak security mechanisms and historical WEP

Good to know

WEP is a historical protocol, not for use in modern times!
The following security measures are often recommended to WLAN administrators:

- Disable the SSID broadcast
- Maintain a list of **authorized MAC addresses** and block unauthorized ones from the network
- Select AP locations in the middle of the building (not close to windows), use directional antennas and line walls and windows with metal foil to minimize the signal leakage to the outside of the building

How much security do these measures bring?
How expensive are they?
Weak WLAN security mechanisms

- Disabling the SSID broadcast — attacker can sniff the SSID when other clients associate
- ACL of authorized MAC addresses — attacker can sniff and spoof another client's MAC address
- AP locations, directional antennas and metal foil to keep signal inside a building — hard to build a Faraday cage, and attacker can use a directional antenna with high gain

→ Weak security mechanisms are rarely worth the trouble
Historical WEP encryption

- In original 802.11-1997 standard, no longer is use
- WEP = Wired Equivalent Privacy; goal was security equivalent to a wired LAN
- Encryption and integrity check for data frames; management frames unprotected
- RC4 stream cipher with a static 40-bit pre-shared key and 24-bit initialization vector
 (128-bit WAP = 104-bit key + 24-bit IV)
- Integrity check value (ICV) = CRC checksum encrypted with RC4
- Multiple cryptographic weaknesses make WEP vulnerable to attacks; today gives no security
802.11 shared-key authentication

- Alternative to open-system authentication in 802.11-1997, never really used
- AP authenticates STA: STA encrypts a challenge with the WEP algorithm and preshared key

Unidirectional entity authentication only; no connection to message authentication

AP could require WEP encryption and authentication, or only one of them
WEP keys are configured manually; no other mechanism specified in 802.11

STA can store 4 keys simultaneously; every frame header contains a 2-bit key id

AP and all stations may share the same key, or AP may have a different key for each client STA (per-station keys)

- No effect on client STA implementation
- AP implementation much more complex with per-station keys → rarely implemented before WPA
WEP security weaknesses

- **40-bit keys** → brute-force cracking
- **Static keys** → cannot change keys often
- **24-bit IV** → IV reuse; dictionary attack; all IV values exhausted in 5 hours or less on a busy AP
- **IV generation not specified** → reuse possible even earlier
- **CRC+RC4 for ICV** → possible to modify data
- **No protection for management frames** → disassociation and deauthentication attacks
- **Authentication not bound to the session** → man-in-the-middle and replay attacks
- **Authentication based on RC4** → attacker learns key stream and can spoof responses
- **Weak IV attacker against RC4** → cracking of 104-bit WEP keys
Is link-layer security needed?

Wireless LAN security protocols provide link-layer security only; not end-to-end protection
→ Good for corporate APs: access control to LAN
→ Good for commercial WLAN operators: access control for paying customers
→ Irrelevant for road warriors at wireless hotspots and at other untrusted networks

Alternative: treat WLAN as insecure and use end-to-end security, such as IPSec or VPN
e.g. Aalto vs. Aalto Open
Alternative architecture

Workstations

Hub or Switch

Gateway router + Firewall + NAT

Security perimeter

Server in DMZ

APs

Servers

Wireless stations
Is WLAN access control needed?

Arguments for controlling access:
- Open WLAN allows hackers to access the corporate or home LAN; firewall protection bypassed; "like having an Ethernet socket in the parking lot"
- Unauthorized users consume network resources without paying
- Contract with ISP may not allow providing public service
- Liability issues if the unauthorized users send spam or uploading illegal content

Arguments for open access:
- Good service for customers and visitors
- End-to-end security needed anyway
- Little lost by giving away excess bandwidth; authorized users can be given better QoS

High-end access points and virtual LANs (VLAN) make it possible to configure two SSIDs on the same physical AP, one for authenticated intranet access and one for open Internet access
Real WLAN security: WPA2

The most important part of this lecture
Real WLAN security mechanisms

Wireless Protected Access 2 (WPA2)
- WPA2 is the Wi-Fi alliance name for the [802.11i](https://en.wikipedia.org/wiki/802.11i) amendment to the IEEE standard, now part of 802.11-2012
- Robust security network (RSN)= name of WPA2 in the standard
- 802.1X for access control
- EAP authentication and key exchange, eg. EAP-TLS
- New confidentiality and integrity protocol AES-CCMP

Historical: Wireless Protected Access (WPA)
- Used in the transition period before the 11i standard and before AES hardware support in NICs
- TKIP encryption = RC4 with frequently changing keys and other enhancements
- Security of TKIP and WPA is now considered broken, disable them in your AP!
RSN key hierarchy

Two alternative ways to obtain keys:

- **Preshared key (PSK)**
 - authentication= WPA2-PSK = WPA2-Personal

- **802.1X**
 - authentication= WPA2-EAP = WPA2-Enterprise
RSN key hierarchy

- **Pairwise keys** between AP and STA:
 - Pairwise master key (PMK)
 - Temporal keys derived from PMK
 - data encryption and integrity keys
 - EAPOL-Key encryption and integrity keys
 - 4-message protocol of EAPOL-Key messages is used to refresh temporal keys
 - Key computed as a hash of PMK, new nonces, and AP and STA MAC addresses
- **Group keys** for group and broadcast communication
WPA2-Personal, 4-way handshake

PMK = key derived from Passphrase
counter = replay prevention, reset for new PMK
PRF = pseudo-random function
PTK = PRF(PMK,MACaddr_AP,MACaddr_STA,N_AP,N_STA)
KCK, KEK = parts of PTK
MIC = message integrity check, a MAC
GTK = Group Temporal Key

4-way handshake takes PMK as input and produces session keys
IEEE 802.1X

- **Port-based access control** — originally intended for enabling and disabling physical ports on switches and modem banks
- **Conceptual controlled port at AP**
- **Uses Extensible Authentication Protocol (EAP) to support many authentication methods**; usually EAP-TLS
- **Starting to be used in Ethernet switches, as well**
802.11/802.1X architecture

- **Suppliant** wants to access the wired network via the AP
- **Authentication Server (AS)** authenticates the supplicant
- **Authenticator** enables network access for the supplicant after successful authentication
EAP

- **Extensible authentication protocol (EAP)** defines generic authentication message formats: Request, Response, Success, Failure.
- Originally designed for authenticating dial-up users with multiple methods.
- Security is provided by the authentication protocol carried in EAP, not by EAP itself.
- EAP supports many authentication protocols: EAP-TLS, PEAP, EAP-SIM, ...
- Used in 802.1X between supplicant and authentication server.
- EAP term for supplicant is peer, reflecting the original idea that EAP could be used for mutual authentication between equal entities.
EAP protocol

- Request-response pairs
- User identified by **network access identifier (NAI)**: username@realm
- Allows multiple rounds of request–response, e.g. for mistyped passwords
EAP-TLS Protocol

Peer

EAP-Request / Identity

EAP-Response / Identity

EAP-TLS-Request (start)

EAP-TLS-Response:
 ClientHello

EAP-TLS-Request:
 ServerHello, Certificate, ServerKeyExchange, CertificateRequest, ServerHelloDone

EAP-TLS-Response:
 Certificate, ClientKeyExchange, CertificateVerify, ChangeCipherSpec, Finished

EAP-TLS-Request:
 ChangeCipherSpec, Finished

EAP-TLS-Response (empty)

EAP-Success

EAP Server
EAP encapsulation in 802.1X and WLAN

- On the wire network, EAP is encapsulated in RADIUS attributes
- On the 802.11 link, EAP is encapsulated in EAP over LAN (EAPOL)
- In 802.1X, AP is a pass-through device: it copies most EAP messages without reading them
Remote access dial-in user service (RADIUS)
- Originally for centralized authentication of dial-in users in distributed modem pools

Defines messages between the network access server (NAS) and authentication server:
- NAS sends Access-Request
- Authentication server responds with Access-Challenge, Access-Accept or Access-Reject

In WLAN, AP is the NAS

EAP is encapsulated in RADIUS Access-Request and Access-Challenge; as many rounds as necessary

RADIUS has its own security protocols based on shared keys between servers, and server and authenticator
RADIUS security

- AP and authentication server share a secret
- Responses from authentication server contain an authenticator; requests from authenticator (AP) are not authenticated
- Authenticator = MD5 hash of the message, AP's nonce and the shared secret
- Per-station key material is sent to the AP encrypted with the shared secret
- Radius uses a non-standard encryption algorithms but no problems found so far (surprising!)
 - Important to use a long (≥16 characters) random shared secret to prevent offline cracking; no need to memorize it
EAP protocol in context

Wireless Station (STA) → Access Point (AP) → Authentication Server (RADIUS Server)

[Probe-Request]
- Beacon or Probe-Response
- Authentication-Request
- Authentication-Response
- Association-Request
- Association-Response
- EAP Request / Identity
- EAP Response / Identity
- EAP-TLS Request (start)
- EAP-TLS Response
- ...
- ...
- EAP Success
- EAPOL-Key (4-way handshake)
- EAPOL-Key (4-way handshake)
- EAPOL-Key (4-way handshake)
- EAPOL-Key (4-way handshake)
- RADIUS-Access-Request
- RADIUS-Access-Challenge
- RADIUS-Access-Request
- RADIUS-Access-Accept
- Access to wired network enabled
- PMK delivered to AP
- Temporal keys created from PMK, cell-broadcast key GTK delivered to STA
- EAP encapsulated in EAPOL
- EAP encapsulated in RADIUS
- Open System authentication
- Access enabled only to RADIUS server
- TLS mutual authentication and key exchange inside EAP

Authentication Server (RADIUS Server) → Access Point (AP) → Wireless Station (STA)
802.1X stack and specifications

<table>
<thead>
<tr>
<th>Technology</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS (RFC5246)</td>
<td></td>
</tr>
<tr>
<td>EAP-TLS (RFC5216)</td>
<td></td>
</tr>
<tr>
<td>EAP (RFC3748, 5247)</td>
<td></td>
</tr>
<tr>
<td>EAP over RADIUS (RFC3579)</td>
<td></td>
</tr>
<tr>
<td>RADIUS (RFC2865)</td>
<td></td>
</tr>
<tr>
<td>TCP/IP</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.3 or other</td>
<td></td>
</tr>
</tbody>
</table>

Excessive layering?

- EAPOL (IEEE 802.1X)
- IEEE 802.11
- AP
- STA
- Authentication Server
Terminology

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Client</th>
<th>Authenticator</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS</td>
<td>Client</td>
<td></td>
<td>Server</td>
</tr>
<tr>
<td>EAP/AAA</td>
<td>Peer</td>
<td>Authenticator</td>
<td>EAP server / Backend authentication server</td>
</tr>
<tr>
<td>802.1X</td>
<td>Supplicant</td>
<td>Authenticator</td>
<td>Authentication server (AS)</td>
</tr>
<tr>
<td>RADIUS</td>
<td></td>
<td>Network access server (NAS)</td>
<td>RADIUS server</td>
</tr>
<tr>
<td>802.11</td>
<td>STA</td>
<td>Access point (AP)</td>
<td></td>
</tr>
</tbody>
</table>
Authentication Latency

~7 round trips between AP and STA for EAP-TLS
- One less when TLS session reused (cf. 4 with PSK)
- Probe-Request / Probe-Response alternative to Beacon → 1 more round trip
- Messages with many long certificates may need to be fragmented → more round trips

4 round trips between AP and authentication server
- One less when TLS session reused

Typical authentication latency >1 second every time STA roams between APs → optimizations needed!
Session protocol: AES-CCMP

- Session protocol = how the data is protected after the authenticated key exchange
- **AES Counter Mode-CBC MAC Protocol** is used for payload encryption and integrity in RSN
- Advanced Encryption Standard (AES)

CCMP = Counter Mode + CBC MAC
- → AES counter mode encryption
- → CBC MAC for integrity protection

Requires AES hardware support
Temporal Key Integrity Protocol (TKIP)

Designed for transition period when pre-WPA network cards were used with firmware update

Still using RC4 but WEP vulnerabilities fixed:
- New message integrity algorithm — Michael
- New encryption key for each frame
- 48-bit IV constructed to avoid RC4 weak keys
- IV used as sequence counter to prevent replays

Ok for the transition period, but now outdated:
- Cryptographic attacks against TKIP make it insecure! Use only WPA2 with AES
What does WPA2 achieve?

- Authentication and access control prevents unauthorized network access
- Mutual authentication prevents association with rogue access points
- CCMP encryption prevents data interception on wireless link
- Strong integrity check prevents data spoofing on wireless link

802.11w: management frame authentication

- New key IKGTK sent by STA in the four-way handshake (msg 3), management frames after that authenticated with MIC
- Prevents deauthentication and disassociation spoofing after the four-way handshake
Password authentication for WLAN
Captive portal

- Web-based authentication for network access; also called universal access method (UAM)
 - Used in hotels and wireless hotspots for credit-card payment or password authentication
- New users are directed to an authentication web page ("captive portal") when they open a web browser
 - Redirection usually based on spoofed HTTP redirection; sometimes DNS spoofing or IP-layer interception
- Authenticated users’ MAC addresses are added to a whitelist to allow Internet access
PEAP, EAP-TTLS

- General idea: authenticate the server with TLS, then the client inside the encrypted tunnel
- **Protected EAP (PEAP)** by Microsoft
 - Round 1: EAP-TLS with server-only authentication
 - Instead of EAP-Success, start encryption and move to round 2
 - Round 2: any EAP authentication method with mutual authentication
- **EAP-PEAP-MSCHAPv2** (also called PEAPv0 or just PEAP): in practice, the authentication in round 2 is MSCHAPv2

- What does PEAP achieve:
 - Password authentication takes place inside an encrypted tunnel → prevents offline password cracking from MSCHAPv2 messages
 - EAP-Response-Identity sent twice, both in inner and outer EAP layer; outer layer may use the string “anonymous” for identity protection

- Similar protocols: **LEAP** by Cisco (insecure and no longer used) and **EAP-TTLS** by Funk Software/Juniper
Link-layer mobility in WLAN

Additional reading
Reassociation and IAPP

When STA moves between APs, it sends
Reassociation Request

- Association Request includes the old AP address
- New AP may contact the old AP over the wire network to delete the old association there
- Old AP may forward to the new AP any packets that still arrive there

Inter-access point protocol (IAPP)

- Protocol for communication between APs over the wire network
- Draft specification 802.11f in 2003, never standardized
Wireless LAN roaming

Moving between APs is slow: may require full association and WPA2-Enterprise authentication

- Many roundtrips to a remote authentication server
- Many messages between STA and AP, channel acquisition time for each message can be long on a busy WLAN
- Complex protocol layering leads to unnecessary messages

How to speed up the handover?
PMK caching

- AP and STA may cache previous pair-wise master keys (PMK) and reuse them if the same client returns to the same AP.
- Only a 4-way handshake between STA and AP needed after (re)association to create new session keys from the PMK.
- Key identifiers to identify PMK.
- STA may send a list of key identifiers in (re)association request; AP selects one in Message 1 of the 4-way handshake.
- Standardized in 802.11i, now in WPA2.
Wireless switch

- Proprietary roaming solution from network equipment manufacturers
- Authenticator moved partly to a switch
- Switch pushes PMK to all or selected APs, or AP pulls key on demand
- Client STA assumes AP has cached PMK even if it has never authenticated to that AP
 - called ”opportunistic PMK caching”
802.1X preauthentication

1. Association & open port at AP
2. Scan for potential new APs
3. Preauthentication over the LAN with the other APs
802.1X preauthentication

- Client STA scans for potential new APs and authenticates to them before deassociation from the old AP
 - AP advertises the preauthentication capability in its beacon
- STA communicates with the new AP over the wire LAN, via the old AP
 - STA uses the BSSID (= MAC address) of the new AP as the destination address of the frames it sends to the new AP → new AP must be on the same IP segment
- AP caches the PMK, just as if the STA had associated with it previously
- Finally, STA reauthenticates to the new AP
Even local handoffs require connection to the AS, which may be far away.
802.11r fast BSS transition

Amendment 802.11r adds mechanisms for fast handover

- With PSK or cached MSK, piggyback the 4-way handshake on 802.11 authentication and association messages → only 2 roundtrips between STA and AP
- Mobility domain = group of APs close to each other + local “server” that helps in local handoffs
- AP advertises capability for fast BSS transition, and a mobility domain identifier
- Key hierarchy within the mobility domain: local server (R0KH) holds first-level key (PMK-R0), which is used to derive second-level keys (PMK-R1) for APs (R1KH) in the same domain → avoid contacting a remote authentication server
- In practice:
 R0KH = wireless switch, R1KH = AP
- Also, pre-reservation of resources for QoS (see 802.11e) done in parallel with the 4-way handshake
802.11r key hierarchy

- **Passphrase**

 - Pre-Shared Key PSK = PBKDF2(Passphrase)

- **Master Session Key MSK**

 - 802.1X authentication

 - Pairwise Master Key, first level PMK-R0 = R0-Key-Data = KDF(PSK/MSK, "FT-R0", SSID, MDID, R0KH-ID, MACsta)

 - Pairwise Master Key, second level PMK-R1 = PMK-R1 = KDF(PMK-R0, “FT-R1”, BSSID, MACsta)

- **Pairwise Temporal Key PTK**

 - PTK = KDF(PMK-R1, "FT-PTK", Nsta, Nap, BSSID, MACsta)

- **Key Confirmation Key KCK**

- **Key Encryption Key KEK**

- **Temporal Key TK**

 (key material for session keys)

PMK-R0 = key shared by STA and the mobility domain (wireless switch); derived from PSK or EAP MSK

PMK-R1 = key shared by STA and AP; derived locally from PMK-R0

AP only knows PMK-R1, STA knows PMK-R0 and can compute PMK-R1 for each new AP
802.11 mobility domains

- Handoff within a mobility domain is supported by the local R0KH EAP with AS only when moving between mobility domains.
- 802.11r specifies the key hierarchy and communication between STA and AP; the protocol between APs and the R0KH is not standardized.
AAA

Authentication, authorization and accounting (AAA)
- Architecture and protocols for managing network access
- Standard protocols: DIAMETER (newer), RADIUS (old, still widely used)

Roaming support:
- Visited AAA (VAAA) acts as a proxy for home AAA (HAAA)
- AAA brokers can be used to create roaming federations
Eduroam case study
Eduroam uses WPA2 with AES encryption

Aalto RADIUS server is radius.org.aalto.fi

Aalto user’s NAI looks like the email address, e.g. tuomas.aura@aalto.fi

Aalto users are authenticated with EAP-PEAP — Microsoft’s proprietary EAP method with TLS for the server authentication and password for the client

Roaming between universities enabled by federation between RADIUS servers
Eduroam is a federation for wireless roaming between educational institutions

- User is registered at the home university, which as a RADIUS server (AAAH)
- National educational and research network (NREN), e.g. Funet, operates a national roaming broker
- National brokers are connected to a regional broker for international roaming

EAP authentication: user’s home institution determines the EAP authentication method

- Aalto uses PEAP

Users identified by NAI: username@realm

- NAI for Aalto users: firstname.lastname@aalto.fi (earlier also username@aalto.fi, seems to be no longer in use)
- In PEAP, the outer NAI only needs to have only correct realm, but Aalto seems to require the username to be correct as well
Network authentication?

IN EAP-TLS and PEAP, the client authenticates the RADIUS server based on a certificate.

To verify the certificate, the client needs to know:
- trusted CAs
- name of the RADIUS server

On many clients, any commercial CA and any name in the certificate is accepted → anyone with any commercial certificate can set up a fake AP and pretend to be the RADIUS server.

Have you configured network authentication for Eduroam correctly on your clients?
Related reading

- Gollmann, Computer security, 3rd ed., chapters 19.5–19.6
- Stallings, Network security essentials, 4th ed. chapter 6.1–6.2
Exercises

Is WLAN security alternative or complementary to end-to-end security such as TLS?

Why is WPA-Enterprise not widely used in home wireless networks, wireless hotspots or Internet cafes?

Why are password-based methods needed for authorizing WLAN access?

UAM intercepts the first web request made by the user. What reliability issues might this cause?

Can the UAM access control be circumvented? How secure can it be made? Can the password be leaked?

If a cellular network operator wants to offer wireless hotspot access to its customers, how could the SIM card be used for authorizing WLAN access from the phones?

How could the network attachment and access control protocols be further optimized to reduce latency? Which standards bodies would need to be involved?