
Network Security:
Email Security, PKI

Tuomas Aura

2

Outline

1. First security protocols: email security

2. Pretty Good Privacy (PGP)

3. Crypto Wars — some history

4. Certificates

5. PGP web of trust

6. X.509 public-key infrastructure

Email security

4

First question

What kind of security is needed for email?
Confidentiality?

Authentication?

Non-repudiation?

Mandatory access control / DRM?

Spam control?

Phishing prevention?

Anonymity?

We use email security as the first example because
it is a fairly straightforward application of crypto and
allows us to introduce many basic concepts

Crypto does not solve all email security problems

PGP, S/MIME

5

Internet email architecture

Alice sends mail to bob@contoso.com

Server

exchange.example.com
Server

mail.contoso.com

Internet

Receiver

bob@contoso.com

Sender

alice@example.com

SMTP or

proprietary

protocol

IMAP,

POP3, or

proprietary

protocol
SMTP

DNS

Query for

MX record of

contoso.com /

Response:

mail.contoso.com

6

Observations about email
Email is sent between human users (e.g. Alice and Bob)
Users send and receive email using a software agent
Sender agent connects to an SMTP server (TCP port 25),
often without much security (may use TLS/SSL)
Email delivered over the Internet with SMTP without
any security
Receiver connects to an IMAP or POP3 server, usually
with reasonable user authentication (TLS/SSL)
Local email within one domain may be secure, global
email is not

 Best to secure email end-to-end rather than try to
secure each step

 Need user-to-user authentication and encryption

7

Email security

Application-level network security protocols for
encrypting and signing email

Email software uses public-key encryption and/or
signatures to protect email

User must have the other end’s authentic public key
for sending encrypted mail or verifying signed mail

Authentication and encryption in each direction
independent of the other

Key distribution is a an issue, but let’s first look at
encryption and integrity

8

Order of signing, compression
and encryption

Opinions?
Observations:

Signing without seeing content is dangerous → sign the plaintext
Attacker could change the signature on signed messages → sign the
plaintext
Encryption only protects secrecy; thus, ciphertext might decrypt to
multiple different plaintexts → sign the plaintext
Signature or MAC might reveal something about message contents →
encrypt also the signature or MAC
Ciphertext does not compress → compress before encryption
Decompression might not guarantee unambiguous output in the
presence of a malicious influence → sign the uncompressed plaintext
Forwarding email → encrypt outside signing
Receiver might decompress or recompress the signed data for storage;
authentication of compressed messages prevents that → compress email
after authentication

Typical order: sign, compress, encrypt
Exceptions common but need a good justification

9

Sign, encrypt

ESK(M, SignA(M)), EB(SK)

Hash

Message

M

Alice’s

private

key PK
-1

A

Insecure

network

Sender Alice Receiver Bob

Sign

ESK(M, SignA(M)),

EB(SK)
Encrypt

(symm.)

Encrypt

(asymm.)

Bob’s

public

Key PKB

h(M)

SignA(M) EB(SK)

Fresh

random

session

key SK

Authentication Encryption

Hash

Alice’s

public

key PKA

Verify

Decrypt

(symm.)

Decrypt

(asymm.)

Bob’s

private

Key PK
-1

B

SK

AuthenticationDecryption

EB(SK)

h(M)

M

SignA(M)

|| || split split
Message

M

Ok?

10

Sign, compress, encrypt

Sender and receiver need to know each other’s public keys

Options to encrypt only or to sign only:
Possible to sign without knowing receiver’s public key, or when
sending to a mailing list

Possible to encrypt without identifying sender

Hash

M

Alice’s

private

key PK
-1

A

Insecure

network

Sender Alice Receiver Bob

Sign

ESK(Z(M, SignA(M))),

EB(SK)
Encrypt

(symm.)

Encrypt

(asymm.)

Bob’s

public

Key PKB

h(M)

SignA(M) EB(SK)

Fresh

random

session

key SK

Authentication Encryption

Hash

Alice’s

public

key PKA

Verify

Decrypt

(symm.)

Decrypt

(asymm.)

Bob’s

private

Key PK
-1

B

SK

AuthenticationDecryption

EB(SK)

h(M)

M

SignA(M)

|| || split split MCompress
De-

compress

Ok?

11

Email integrity problem
Email servers modify messages:

Each server adds headers
Old email systems were not 8-bit safe
Servers perform character-set conversions
Firewalls remove or replace suspicious attachments
Proxies compress text and images for mobile clients

→ Bits change, authentication fails
Solution: encode the signed part of the message in
“safe” characters that are not modified in transit

Around 64 safe ASCII characters give 6 bits per character
Base64, Radix64 etc.

Remaining problems:
Signed message not human-readable text
33% expansion in message size

Pretty Good Privacy (PGP)

12

13

Pretty Good Privacy (PGP)

Zimmermann 1991–

The sign-compress-encrypt process shown earlier,
instantiated with the best available algorithms of the
time:

IDEA (128-bit keys) in CBC mode (later 3DES, AES in CFB)

SHA-1 hash function

RSA public-key signatures

RSA and ElGamal Public-key encryption

Timestamp

Radix-64 conversion and headers (called “ASCII armor”)

The first strong encryption product available to the
public

OpenPGP [RFC 4880]

14

Example: PGP-encrypted message

“Meet me in the park at 6 PM.”

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.8

Comment: Encrypted secret message.

hQEOA1e+1x6YuUMCEAQAoST1l/obnXOB6fhIhmLnGVLhuxmsksKD+Efyk7ja9gOx

U5X98/25ZVDQz0EiOkRjW2LChuZt9Kesh1DSIRwB/llXCm3pbNX/V+ajkL4Fzxlw

jWCCedv527SUNTUP70lhLbh4O2kHHxMdEn41zVo9TPUgtQ1BIo32k/xP2RYtPCEE

AJDhcyp+COLaI4idibfSrDDtYcT+hVVFVveIteTIcznoUoS1yVyipE4mBwa380c6

TiwImq63hOhs62c9BOQv7G9cnaqEZNg0nLiVZD+K/JeN00zILm+TzdWZxrW019nA

+tsMwznUZ2V/kQZjS9xkPWjn7ZzPTyW6gLhjWQNlr93S0lcBT0CJy285ixFz9UrJ

qjK2azsBdXRcVuXFdh84LW1E/8/8DwdLgSK9X/jPNv3/WGLA4Ez2xTFIUorVi5Xe

M9dpriEQ0Jg2msnz2bjqRGZliXXo6m8ye/A=

=YWDi

-----END PGP MESSAGE-----

Random block (IV)
+ 2 repeating bytes

Signing time

15

Typical PGP message

Recipient key id

Session key SK

2 bytes of hash

Data

PK-encrypted

session key EB(SK)
(may repeat for

multiple recipients)

ESK

Zip

EB

Radix-64

=ojUK

-----END PGP MESSAGE-----

-----BEGIN PGP MESSAGE-----

Version: GnuPG v1.4.8

Encrypted

Message

ESK(…)

Signature type

Signer key id

RSA/DSA signature

For quick check

of the hash

For quick check of

successful decryption

Hash
&SignA

ASCII armor headers

for sending in text email

ASCII armor checksum

Unix time (seconds

since 1 Jan 1970 UTC)

16

Public-key distribution

PGP public keys are usually distributed manually

Download from a web page or take from a received email
→ key distribution often insecure

Users can endorse keys of others by signing them

Sign: key, name, level of trust, signing, expiry time

Mark friends and well-known people as trusted, derive
trust to others from endorsements

→ PGP web of trust

17

Radix-64 encoding

Use safe ASCII characters to represent values 0..63:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuv

xyz0123456789+/

Encode each 3 bytes as 4 characters:
+--first octet--+-second octet--+--third octet--+

|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|

+-----------+---+-------+-------+---+-----------+

|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|

+--1.char---+--2.char---+--3.cahr---+--4.char---+

If the data length is not divisible by 3, pad with one
or two = characters to indicate actual length

18

S/MIME

PGP is mainly used by private persons and academia

S/MIME is a similar standard used primarily by
enterprises, e.g. Outlook

Message structure based on the MIME standards
 Envelopes and signatures are new MIME types

→ Base64 encoding

19

Non-repudiation

Proof of authenticity to third parties
Email sender should not be able to later deny sending it
(i.e. repudiate the message)

Third party, such as a judge, is needed to make the decision

The public key must be somehow registered to bind it to the
person signing

Uses:
Accountability for sent emails

Contract signing

Questions:
Does the sender of normal emails want to go to extra lengths to
be accountable for the emails you sent?
→ Incentives poorly aligned

Are business contracts signed using secure email?

20

How good is email security?

Is it secure?

PGP public keys are rarely distributed through secure
channels. Certificates don’t necessarily mean that much

Absolute security not necessary for privacy or to prevent
large-scale monitoring by governments

Is it useful?

Many people sign email when sending. Few verify the
signatures or take action if a signature is invalid

Email users rarely want non-repudiation

For most users, email security is more trouble than benefit

Spam filtering may require email authentication

Crypto Wars — some
history

21

22

Crypto Wars – some history (1)

Military origins:
Until ‘70s, encryption was military technology. In ‘70s and
‘80s, there was limited commercial use

American export restrictions and active discouragement
prevented wide commercial and private use

Arguments against strong encryption:
Intelligence agencies (NSA) cannot spy on encrypted
international communications

Criminals, terrorists and immoral people use encryption

US policies delayed availability of strong crypto
(both encryption and authentication) for private
and commercial use by up to 20 years

23

Crypto Wars – some history (2)

In the ‘90s, demand and availability exploded:
Encryption was needed to secure Internet commerce during
the Internet boom

Activist advocated encryption for privacy and security

Anyone could download strong encryption products like
PGP, SSH and SSL from the Internet

PGP source code printed as a book, taken abroad, scanned in
and distributed freely outside the USA

SSH distributed from TKK, Finland from 1995

SSL on Netscape web browser from 1995

Around 2000, most US restrictions were lifted
Strong encryption is now included in off-the-shelf products,
such as web browsers and operating systems

24

Crypto Wars – some history (3)

Did encryption cause or solve problems?

Systems that use strong encryption have other security
flaws

Serious fraud is committed by the end users and
computers, not by sniffers on the network

Police and intelligence agencies found other ways to get
information, e.g. rubber-hose cryptanalysis

→ Encryption and authentication is just one building block in
trustworthy systems, not the complete solution

25

Exercises

How to prevent SMTP spoofing without end-to-end
cryptography? What can be filtered at SMTP servers
and what cannot?

Does signing of emails help spam control?

Certificates

26

27

Public-key certificates

Signature verifier must know the signer’s public key.
For example, how to verify TA, M, SA(TA, M) ?

Identity certificate is a signed message issued by a
trusted entity, which binds a name and a public key
to each other:

CertA = A, PKA, Texpiry, Sissuer(A, PKA, Texpiry)

To verify message TA, M, SA(TA, M), CertA :
Verify signature SA with PKA

Check freshness of the timestamp TA

Verify the certificate, and check TA < Texpiry

Security protocols often assume that the protocol
participants have certificates, but who issues them?

PGP web of trust

29

About trust

The word “trust” has many definitions:

Belief that an entity follows certain rules, does not behave
maliciously, and is reasonably competent
(belief that someone is honest, not an attacker)

Out-of-band information, which is taken as a fact and cannot be
verified by other means
(you must trust something that you cannot verify)

Infrastructure and protocols used to bootstrap authentication
or authorization (shared key, PKI, trusted online server)

Fuzzy value that arises from human social interaction and
feelings, or its imitation by machines

Either define what you mean by “trust” when you use
the word, or avoid using it altogether

30

PGP key distribution
PGP users need to know each other’s public keys. But how to
verify they are authentic?

Need to verify only the key fingerprint (hash value)
Personal verification: ask the person, print on business cards, etc.
PGP key ring signed by someone you trust

PGP key ring contains public key, trust level, user id or name and
one or more signatures. Each signature includes assurance level

Meaning: signers say that the public key belongs to the user

Trust levels: none, partial trust, complete trust
Meaning: level of belief that entity tells the truth when it signs key rings
Signer can use this parameter to recommend the key owner as a person
of high integrity to sign keys for others

Assurance levels: unspecified, no, casual, heavy-duty
Meaning: how carefully did signer check that the key belongs to the user

Idea: assurance of key-person binding and trusting that person to
tell the truth (sign keys of others) are separate issues

31

PGP web of trust

Which keys should I use for sending confidential mail, for
authenticating received mail, for contract signing?

Me,

PKme

Alice,

PKA

Gab,

PKG

David,

PKD

Bob,

PKB

Eve,

PKE

Foo,

PKF

Henry,

PKH

Iris, PKI

Strong assurance,

complete trust

Strong assurance,

parial trust

Strong assurance,

no trust

32

Subkeys

User’s top-level PGP key is a signature key, which
can sign key rings

If RSA, the same key can be used for both signature
and encryption

Otherwise, the signature key can sign a separate
subkey (in a key ring) for encryption

33

Revocation
Certificate revocation:

Anyone who signed a certificate can revoke it
Similar to a certificate but assurance level “revocation”

Key revocation:
Key can revoke itself (private key needed for this)
Used when private key compromised
Recommendation: sign a key revocation message for your key and
store it in a safe place just in case

PGP key servers are email and ftp-based repositories for key
rings, including revocations
Certificates may have a validity period, after which
revocation certificates no longer need to be revoked

Unfortunately, infinite validity is common PGP practice → need to
store revocations forever
Common practice to revoke PGP keys when they are replaced with a
new ones → many unnecessary revocations

34

Issues with the web of trust
Names can be arbitrary strings → how to tell apart two John
Smiths?

Same issue in Facebook

Two dimensions (trust and assurance) create complexity that is
difficult to understand
Rules for evaluating evidence is are not fully defined → human
judgment required at every step
Even if the rules were fully defined, would they be an accurate
model of human behavior and trust?
Design suggests transitive trust: “I trust Alice, Alice trusts Foo, Foo
trust Henry. Thus, I also trust Foo and Henry.”

In general, trust and assurance are not transitive

Many pieces of weak evidence may accumulate to strong
assurance → potential for misuse
Goal was a completely distributed system, but key servers
maintain a global revocation list

35

PGP web of trust used in practice

Accept certificates signed those you trust
completely

Use keys of which you have direct strong assurance

Me,

PKme

Alice,

PKA

Bob,

PKB

Eve,

PKE

No recursive trust, no accumulating weak evidence

Me,

PKme

Alice,

PKA

Gab,

PKG

Foo,

PKF

Eve,

PKE

X.509 public-key
infrastructure (PKI)

37

X.500 names
ISO X.500 standard defines hierarchical directory

More advanced than DNS but not widely used
Hierarchical names used in X.509 certificates

X.500 names:
C = country, S = state, L = locality, O = organization, OU = organization
unit, CN = common name

Names used in practice:
CN = Tuomas Aura, O = Microsoft Corporation,
L = Redmond, S = Washington, C = US

CN = Tuomas Aura, OU = UserAccounts, DC = europe,
DC = microsoft, DC = com

CN = www.bankofamerica.com, OU = DMZUNIXAPPS,
O = Bank of America Corporation, L = Charlotte,
S = North Carolina, C = US

Hierarchical naming should ensure a 1-to-1 mapping
between names and principals (unlike in PGP web of trust).
Such names are called distinguished names

38

ASN.1, OID
ASN.1 standard for defining protocol messages

Abstract notation for data structures, protocol messages
BER/DER encoding rules → standardized binary encoding with
recursive TLV (type tag, length, value) structure
Unambiguous parsing of binary messages
ASN.1 specification of protocol messages is directly compiled
into C-code for encoding and decoding them
Encoded data unreadable to humans
Most Internet standards defined in RFCs use more light-weight
bit-field or text-based syntax and manually encoded parsers

X.509 certificates are encoded in ANS.1 DER
One ASN.1 type is object identifier (OID)

Globally unique identifiers (similar to const or enum but on
global scale)
Variable length, each organization can get its own prefix

39

ASN.1 example

ASN.1 (from RFC 3280)
PersonalName ::= SET {

surname [0] IMPLICIT PrintableString

(SIZE (1..ub-surname-length)),

given-name [1] IMPLICIT PrintableString

(SIZE (1..ub-given-name-length)) OPTIONAL,

initials [2] IMPLICIT PrintableString

(SIZE (1..ub-initials-length)) OPTIONAL,

generation-qualifier [3] IMPLICIT PrintableString

(SIZE (1..ub-generation-qualifier-length))

OPTIONAL }

Compare with RFC-style packet diagrams:
+-+

|ST | 0 | TYPE | Reserved | n |

+-+

| Router ID |

+-+

| PrefixLength | Prefix byte 1 | Prefix byte 2 | ... |

+-+

| ... | PrefixLength | Prefix byte 1 | Prefix byte 2 |

+-+

| ... |

+-+

40

X.509 certificate exampleCertificate:

Data:

Version: 1 (0x0)

Serial Number: 7829 (0x1e95)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,

CN=Thawte Server CA/emailAddress=server-certs@thawte.com

Validity

Not Before: Jul 9 16:04:02 1998 GMT

Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,

OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:

66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:

70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:

16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:

c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:

8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:

d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:

e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:

92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:

ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:

d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:

0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:

5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:

8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:

68:9f

[Wikipedia]

41

X.509 certificate fields (1)

Mandatory fields:

Version

Serial number — together with Issuer, uniquely identifiers
the certificate

Signature algorithm — for the signature on this certificate;
usually sha1RSA; includes any parameters

Issuer — name (e.g. CN = Microsoft Corp Enterprise CA 2)

Valid from — usually the time when issued

Valid to — expiry time

Subject — distinguished name of the subject

Public key — public key of the subject

Standard notation for a certificate: CA<<Alice>>

42

X.509 certificate fields (2)
Common extension fields:

Key usage — bit field indicating usages for the subject key
(digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment,
keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly)
Subject alternative name — email address, DNS name, IP address, etc.
Issuer alternative name
Basic constraints — (1) is the subject a CA or an end entity, (2) maximum
length of delegation to sub-CAs after the subject
Name constraints — limit the authority of the CA
Certificate policies — list of OIDs to indicate policies for the certificate
Policy constraints — certificate policies
Extended key usage — list of OIDs for new usages, e.g. server
authentication, client authentication, code signing, email protection, EFS
key, etc.
CRL distribution point — where to get the CRL for this certificate, and
who issues CRLs
Authority info access — where to find information about the CA and its
policies

43

X.509 PKI

ISO: X.509 standard;
IETF: PKIX certificate profile [RFC3280]

Certification authority (CA) issues certificates
Root CA (= trust root, trust anchor)

CA can delegate its authority to other CA → CA hierarchy

Identity certificates bind a principal name to a
public key

Little-used attribute certificates bind attributes to a name

Users, computers and services are end entities

CAs and end entities are principals
Each principal has a key pair

44

CA hierarchy
One root CA
Each CA can delegate its
authority to sub-CAs
All end-entities trust all
CAs to be honest and
competent
Original hope:

One global hierarchy

Reality:
One hierarchy per
organization
Commercial root CAs
without hierarchy, e.g.
Verisign

Contoso

Root CA

PKCA

Bob,

PKB

Charlie,

PKC

Contoso

Sales CA

PKSales

Contoso

Sales

Asia CA,

PKUS

Contoso

Sales

Euro CA

PKEuro

Contoso

Dev CA

PKDev

CA certificate

End-entity

certificate

Alice,

PKA

David,

PKD

45

Certificate path (1)

How can Bob check Alice’s PK?

Original idea:
En-entities (like Bob) know their
nearest CA

Each sub-CA certifies its parent
CA in reverse direction

CA path from root to Alice meets
reverse path from Bob’s nearest
CA to root at some point → path
from Bob to Alice

Practice:
End-entities (Bob) know the root
CA

Root CA’s PK stored as a self-
signed certificate

Contoso

Root CA

PKCA

Alice,

PKA

Bob,

PKB

Charlie,

PKC

Contoso

Sales CA

PKSales

Contoso

Sales

Asia CA,

PKUS

Contoso

Sales

Euro CA

PKEuro

Contoso

Dev CA

PKDev

David,

PKD

CA certificate

End-entity

certificate

Self-certificate

46

Certificate path (2)

To verify Alice’s
signature:

Bob needs the entire
certificate path from
root CA to Alice (self-
signed root certificate +
2 CA certificates +
end-entity certificate)

The root CA must be
configured as Bob’s
trust root

Contoso

Root CA

PKCA

Alice,

PKA

Bob,

PKB

Charlie,

PKC

Contoso

Sales CA

PKSales

Contoso

Sales

Asia CA,

PKUS

Contoso

Sales

Euro CA

PKEuro

Contoso

Dev CA

PKDev

David,

PKD

CA certificate

End-entity

certificate

Self-certificate

47

Commercial CAs and web sites
Web browsers and OSs have a
pre-configured list of root CAs

Multiple roots!
Being on the list enables business of
selling certificates

Some commercial CAs certify
customers’ CAs, some only end
entities

Business reasons
Security issues of unconstrained
delegation

Wildcard names allow multiple
servers to share one certificate

E.g. *.contoso.com for
www.contoso.com, mail.contoso.com
Compromise for cost reasons
Not standard, supported by browsers

VeriSign Class 3

Public Primary CA

 VeriSign International

Server CA - Class 3

www.bankofameric

a.com PKA

 GTE CyberTrust

Global Root

Microsoft Internet

Authority

 www.update.

microsoft.com

Microsoft Secure

Server Authority

48

Constrained delegation
Important concept but not widely used
Name constraints:

Constrain the authority of a sub-CA to specific
subtrees of the name hierarchy
Examples: “.microsoft.com” = all MS hosts,
“microsoft.com” = one host or all email addresses
on that host
Permitted and excluded subtrees

DNS name constraints apply to Subject and
SubjectAltName
Path length constraints limit the depth of the
CA hierarchy
Policy constraints control policies of sub-CAs
Important idea but different sets of
implemented features in different web
browsers and OSs make using constraints
impractical

 GTE CyberTrust

Global Root

Microsoft Internet

Authority

 www.update.

microsoft.com

Microsoft Secure

Server Authority

49

Trust vs. authority

When the same authority allocates names (e.g. host
names or email addresses) and maintains the CA, it
cannot really be wrong

It owns (a part of) the namespace and simply makes
decisions about naming subjects

When the CA merely certifies names given by
someone else, as e.g. Verisign often does, it is not
really an authority → certificate verifier must trust
the CA to be honest and competent

The commonly used term “trusted authority” makes
little sense

50

Cross certification

How to connect the PKIs of two organizations?
In practice, it is rarely done

Merge into one hierarchy by creating (or hiring) a
new root CA to certify both organizational root CAs

Merge into one hierarchy by making one CA the
root and the other a sub-CA

Root CAs can cross-certify each other
Name constrains prevent leaking of authority

In effect, both become sub-CAs for each other

Cross-certification can also be done at a lower level
in the hierarchies

51

Certificate revocation

CA may need to revoke certificates

If the conditions for issuing the certificate no longer hold

If originally issued in error

If the subject key has been compromised

Certificate revocation list (CRL) = signed list of certificate
serial numbers

Who issues the CRL? How to find it?

By default, CRL is signed by the CA that issued the certificate

CRL distribution point and issuer can be specified in each
certificate

Unlike PGP, X.509 doesn’t support key revocation →
no mechanism for revoking the root key

52

X.509 CRL fields

Signature algorithm

Issuer — name

This update — time

Next update — time

For each revoked certificate:

Serial number

Revocation date — (how would you use this information?)

Extensions — reason code etc.

Signature

53

Revocation delay and CRL size
Usually, CA issues the CRL and verifiers download it periodically
→ revocation delay: certificate may be accepted after it has been
revoked
CRL size grows over time until it reaches a stable level

Expired certificates can be removed from the CRL after some time
(expiration time + maximum clock sync error)
Most revocations happen early in the certificate’s lifetime

Delta CRL = download only changes to the previous CRL
Optimal frequency of CRL distribution depends on the risk caused
by revocation delay and cost of CRL distribution
Online revocation servers now common
Realtime online validity checking would enable (almost)
immediate revocation, but does it make sense?

The main advantage of certificates is that they can be used offline, or
without frequent real-time access to a server

54

Setting up a PKI

Potential root CAs:

Commercial CA such as Verisign, Thawte, etc. usually
charges per certificate

Windows root domain controller can act as an
organizational CA

Anyone can set up their own CA using Windows server or
OpenSSL

The real costs:

Distributing the root key (self-signed certificate)

Certificate enrolment — need to issue certificates for each
user, computer, mobile device etc.

Administering a secure CA and CRL server

55

PKI and e-commerce
In the 90’s, PKI was seen as the philosopher’s stone of
Internet commerce

PKI → security → e-commerce → money

What was successful?
Verisign and competitors enabled authentication of web sites →
SSL encryption → sniffing of passwords and credit card numbers
prevented

What failed?
No global PKI for consumers
Internet crosses all organizational and authority boundaries
Even if the global PKI existed, what good would it do?
Binding contracts are possible without digital signatures
Sniffing and spoofing on the network are not the main problems in
Internet commerce. Fraud by the store and customer are
Risk management and insurance, provided by credit cards, is more
important than technical security measures

56

Alternatives to PKI

Not all authentication is based on a PKI. Other
“trust roots”:

Manual key distribution, e.g. for permanent IPsec tunnel
or RADIUS

Password authentication of human users

Online authentication servers e.g. Kerberos

Pseudonymity — create new id created for each service
and authenticate returning users

Leap of faith -– assume there is no attacker on the first
time e.g. SSH

Self-certifying identifiers — public key as identifier (e.g.
SPKI, HIP, CGA)

57

Exercises
Install an OpenPGP implementation (e.g. GPG). How do
you check that the binary or source code has not been
tampered with? Would you use PGP to verify the
signature or fingerprint of the installation package?
Could there be other compromised software (spyware)
on your machine?
Set up your own CA e.g. using OpenSSL and issue
certificates to your own web server or some other
service that uses TLS/SSL authentication. What
decisions did you have to make on the way? What open
questions do you have after the experience?
Consider setting up a PKI in a place where you have
worked/studied. How would you distribute the root key
and organize certificate enrolment?

