
T-110.5140 Network Application
Frameworks and XML

Middleware

02.03.2009

Prof. Sasu Tarkoma

Contents

� Middleware

� Motivation

� Examples

� Summary

Middleware

� Widely used and popular term

� Fuzzy term

� One definition

� “A set of service elements above the
operating system and the communications
stack”

� Second definition

� “Software that provides a programming model
above the basic building blocks of processes
and message passing” (Colouris, Dollimore,
Kindberg, 2001)

Why Middleware?

� Application development is complex and

time-consuming

� Should every developer code their own
protocols for directories, transactions, ..?

� How to cope with heterogeneous
environments?

� Networks, operating systems, hardware,

programming languages

� Middleware is needed

� To cut down development time

� Rapid application development

� Simplify the development of applications

� Support heterogeneous environments and
mask differences in OS/languages/hardware

Middleware cont.

� Middleware services include

� directory, trading, brokering

� remote invocation (RPC) facilities

� transactions

� persistent repositories

� location and failure transparency

� messaging

� Security

� Network stack (transport and below) is not part of
middleware

MiddlewareMiddleware

Networking Layer (IP)Networking Layer (IP)

Transport Layer (TCP/UDP)Transport Layer (TCP/UDP)

Underlying network (link layer, physical)Underlying network (link layer, physical)

ApplicationsApplications

APIs for: RPC, messaging,

transactions, session management,

storage, directories, trading, etc.

Middleware provides various

transparencies (HW, OS, location, fault, ..)

for apps.

Examples

� Remote Procedure Call (RPC)

� call of a remote procedure as it were local

� marshalling / unmarshalling

� Remote Method Invocation (RMI)

� call of a remote method as it were local

� marshalling / unmarshalling

� Event-based computing

� entities receive asynchronous notifications

� a notification causes a state change

� Overlays and P2P content delivery

Web applications

� Recent trend has been to develop web applications

� Traditional applications on Internet (office suites,..)

� Search (Google, Yahoo, ..)

� Instant communications and presence

� Social collaboration and networking sites

� Data sharing sites and video sharing

� Data storage services

� Blogging

� Another recent trend is to simplify signing to services

� Single Sign-On, federated identity, OpenID

� And creating mashups

� Combining services in new ways

� Custom experience and personalization

AJAX

Web Service Architecture

� Motivation
� Machine readable content on the Web

� Programming API for the Web

� Access independent of the computing environment

� The three major roles in web services
� Service provider

� Provider of the WS

� Service Requestor
� Any consumer / client

� Service Registry
� logically centralized directory of services

� A protocol stack is needed to support these roles

Transparencies

� Location transparency

� RPC and RMI used without knowledge of the
location of the invoked procedure / object

� transport protocol transparency

� RPC may be implemented using any
transport protocol

� transparency of OS and hardware

� RPC/RMI uses external data representation

� Presentation is important

� XML is becoming increasingly important

� transparency of programming languages

� language independent definition of
procedures: CORBA IDL, WSDL

Network Application
Framework

� Network Application Framework is
middleware

� Contains services for distributed
applications

� Middleware as a term is fuzzier and

larger

� In this course, we focus on network

application frameworks and XML

� objects (discovery, representation)

� directories (overlays,..)

� network

� security

Object Model

� Components: object references,
interfaces, actions (methods),

exceptions, garbage collection

� Distributed object model

� client-server model

� usually implemented using request-reply

� marshalling, unmarshalling

� Example: Java RMI

� Invocation Semantics

� Exactly-once cannot be guaranteed

� Typical semantics: at-least-once, at-most-once

� At-least-once is good for idempotent

operations

� CORBA and RMI use at-most-once

NAF

XML

Security

Objects

Middleware

Assignment:

Apache Axis

Web

Services

SOAP

with

security

J2EE

CORBA

Middleware is a fuzzy term.

This is one way to look

at things..

SIP

Assignment:

Schema

Examples

� CORBA

� Message-oriented Middleware

� Event Systems & tuple spaces

� Java Message Service

� Java 2 Enterprise Edition (J2EE)

� .NET

CORBA I

� Common Object Request Broker
Architecture (CORBA)

� Standardized by Object Management Group
(OMG)

� OMG est. 1989, currently over 800 members

� Distributed object-oriented middleware

� Network abstraction of object location

� Support for heterogeneous environments

� hardware, networks, OS, languages

Interface Definition Language
(IDL)

� IDL is language independent

� Used to define object interfaces

� Hides underlying object implementation

� Language mappings for C, Java, C++,
Cobol, ..

� IDL compiler generates language
specific stubs and skeletons from an IDL
definition

� Stubs and skeletons marshal and
unmarshal request/response data to
packets

CORBA II

� Object Request Broker (ORB)

� Broker pattern, transparent object invocation

� object location, activation, communication

� CORBA works for both OO and non-OO

languages

� Interoperable Object Reference (IOR)

� Uniquely identifies each object

� Shareable reference

� Support for dynamic and static method
invocation

� Many commercial and non-commercial
implementations

Client Object Implementation

IDL stub IDL Skeleton

Object Request Broker (ORB)

I. REQUEST

II. Invocation returns

Implementation layer
- Dynamic Invocation Interface

- Alternative to static stub/skeleton calls

- Generic runtime invocation, generic interface

defined in IDL, first search and locate interface,

then do the invocation

Interceptors useful for monitoring and security

- generate and interpret object references

- demultiplex requests

- Handle method invocations via skeletons

- activation policies, thread models

- object life cycle

- pre/post invocation capabilities

CORBA communications

� GIOP (General Inter-ORB Protocol)
� Abstract protocol for ORBs

� Common Data Representation

� On-the-wire presentation of OMG IDL data
types

� Interoperable Object Reference (IOR(

� Format for describing remote reference

� Protocol, server address, object key

� The defined message formats

� Request,reply,fragment, ..

� IIOP (Internet Inter-ORB Protocol)
� GIOP implementation for TCP/IP

CORBA Services

� Services specified by OMG to help using
distributed objects

� Naming Service

� Event and Notification Service

� Security Service

� authentication, access control, non-
repudiation

� Persistent Object Service

� persistent objects (activation / deactivation)

� Trading Service

� directory service, objects are identified by
attributes

� Transaction and Concurrency Control

Service

� database transactions

OMG Distributed Data
Service I

� The Data Distribution Service for Real-Time
Systems (DDS)

� The specification defines an API for data-centric
publish/subscribe communication for distributed
real-time systems.

� DDS is a middleware service that provides a
global data space that is accessible to all
interested applications.

� DDS uses the combination of a Topic object and
a key to uniquely identify instances of data-
objects.

� Content filtering and QoS negotiation are
supported

� DDS is suitable for signal, data, and event
propagation.

DDS II

Publisher

DataWriter

Subscriber

DataReader

Subscriber

DataReader

Data-Object

Identified by means

of the Topic Identified by means

of the Topic

Dissemination

Data values

Data values

Data values

Message-oriented Middleware

� Transfers messages between
applications

� Does not consider the content of messages

� Asynchronous communication

� Direct or queued

� Queued (buffered) communication supports
wireless clients

� Examples

� Sun Microsystems JMS

� Microsoft: MSMQ

� IBM: Websphere MQ

Event Systems I

� Traditional MoM systems are message
queue based (one-to-one)

� Event systems and publish/subscribe are
one-to-many or many-to-many

� One object monitors another object

� Reacts to changes in the object

� Multiple objects can be notified about
changes

� Events address problems with
synchronous operation and polling

� In distributed environments a logically
centralized services mediates events

� anonymous communication

� expressive semantics using filtering

Event Systems II

� Push versus Pull

� May be implemented using RPC,

unicast, multicast, broadcast,..

� Three main patterns

� Observer design pattern

� Used in Java / Jini

� Notifier architectural pattern

� Used by many research systems

� Event channel

� Used in CORBA Event/Notification Service

� Filtering improves scalability / accuracy

� Research topic: content-based routing

Tuple Spaces

� Tuple-based model of coordination

� The shared tuple space is global and persistent

� Communication is

� decoupled in space and time

� implicit and content-based

� Primitives

� In, atomically read and removes a tuple

� Rd, non-destructive read

� Out, produce a tuple

� Eval, creates a process to evaluate tuples

� Examples: Linda, Lime, JavaSpaces, TSpaces

Java Message Service (JMS)

� Asynchronous messaging support for
Java

� Point-to-point messaging

� One-to-one

� Topic-based publish/subscribe

� SQL for filtering messages at the topic event
queue

� One-to-many

� Message types:

� Map, Object, Stream, Text, and Bytes

� Durable subscribers

� Event stored at server if not deliverable

� Transactions with rollback

Source: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

Source: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

JMS messaging

� JMS messaging proceeds in the
following fashion:

� Client obtains a Connection from a
ConnectionFactory

� Client uses the Connection to create a
Session object

� The Session is used to create
MessageProducer and MessageConsumer
objects, which are based on Destinations.

� MessageProducers are used to produce
messages that are delivered to destinations.

� MessageConsumers are used to either poll or
asynchronously consume (using
MessageListeners) messages from
producers.

Java 2 Platform Enterprise
Edition (J2EE)

� Specifications and practices for
developing, deploying, and managing

multi-tier server-centric applications

� Builds on J2SE

� Web Services support

� Containers - separation of business logic
from resource and lifecycle management

� Enterprise JavaBeans (EJB)

� Servlets

� Java Message Service (JMS)

� async. communication supports decoupling

Source: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

J2EE
Technologies

Java API for XML-Based RPC (JAX-RPC)

JavaServer Pages
Java Servlets

Enterprise JavaBeans components
J2EE Connector Architecture

J2EE Management Model
J2EE Deployment API

Java Management Extensions (JMX)
J2EE Authorization Contract for Containers

Java API for XML Registries (JAXR)

Java Message Service (JMS)
Java Naming and Directory Interface (JNDI)

Java Transaction API (JTA)
CORBA

JDBC data access API.

.NET

� The .NET Framework is Microsoft's the

next generation application platform

� applications, services, web services, ..

� Protocol stack and computing model for
TCP/IP based distributed computing

� Based on the CLR (Common Language
Runtime)

� JIT compiles and executes .NET code

� Components

� .NET architecture, .NET Integrated
Programming, Common Language Runtime
(CLR), .NET System Class Libraries, Data
and XML, Web Services / ASP+

.NET Architecture

Source: MSDN

Windows Communication
Foundation

� Single technology platform that unifies a number
of different techniques

� ASP.NET Web Services (ASMX), Web Service
Enhancements (WSE) extensions, the Microsoft
Message Queue (MSMQ), Enterprise
Services/COM+ runtime environment, .NET
Remoting

� Address, Binding, Contract

� Service oriented programming model with a
single API for comms

� Unifies Web services, .NET remoting, Distributed
Transactions, Message Queues

� Based on SOAP and XML

WCF Service

� Three parts

� Service class

� Service contract

• Data contract

� Host environment

� Endpoints

� Contract for accessing endpoints

� Endpoints use proxy objects to communicate
RPC style (abstract service as an object)

Summary

� Middleware

� for application development and deployment

� for supporting heterogeneous environments

� Main communication paradigms: RPC/RMI,
asynchronous events (publish/subscribe)

� Standardization needed

� J2EE, CORBA, ..

� J2EE/JMS Java specific

� Current trends

� Flexibility, decoupled nature

� Convergence / unification

