symbio

SERTOUS ABOUT SOFTWARE

Qt Quick — From bottom to top

Timo Strommer, Feb 11, 2011

symbio

Qt core features

e Shared data objects

e (Object model, signals and slots, properties
Hybrid programming

QML fluid user interfaces

e Animations, states and transitions

Adding data to GUI

e Models, views and delegates

<symbio-

Shared data objects

CORE FEATURES

symbio

A shared data object doesn’t store the
object data by itself

e Instead, data is implicitly shared

With copy-on-write semantics

e Easier to use that just pointers

The object can be thought as simple value type

Examples:

e Strings, images, collections

symbio

In normal C++ an object is allocated and a

pointer to it is passed around

Care must be taken that object is not deleted

while it’s still being pointed to

char *ptr

char *ptr

H

-

char *ptr

symbio

In implicit sharing, a reference counter is
associated with the data

e Data pointer is wrapped into a container object,
which takes care of deleting the data when
reference count reaches 0

QString str
Data *
QString str Data
- intref=2 |H |e |I I o |! \0

Data *

Implicit sharing

symbio

* Implicitly shared objects can be treated as

simple values

e Only the pointer is passed around

QString str

Data *

QString str

Data *

Data

intref=1 ! \O
Data

intref=1 e |\0

symbio

Copy-on-write
e Make a shallow copy until something is changed

Shallow copy

e Copy just the pointer, not actual data

Deep copy

e (Create a copy of the data

symbio

Two types of string

e UNICODE strings (QString)

e Byte arrays (QByteArray)

In general, QString should be used

e UNICODE, so can be localized to anything

e (Conversion between the two types is easy, but
might have unexpected performance issues

symbio

Strings are implicitly shared, so in general,
should be treated as a value

e Returned from functions like value
e Stored into objects as values

e Function parameters should use constant
reference, not value

const QString &

QString HelloWorld::hello () cons=t
{ vold HelloWorld: ::setDescription(const Q5tring &desc)
QS5tring =str = "Hello World™: {

return str; description = desc;

10

symbio

In Qt, a string can be changed

e Thus, differs from java immutable strings

e Modifying a string in-place is more efficient
(especially with reserve() function)

However, some care must be taken to avoid changes in
unexpected places

vold HelloWorld: :changeString (Q5tring &str)
{

=tr += " changed”:;

P

R5tring HelloWorld: :createNewString (const Q5tring &str)
{

return str + " changed®:

11

symbio

QString supports various operators

r 15 7 r rr 75 _r r 7 r 7 7 7 4
o 47 '4=" 5" < I<=" I>=" T==" Tl=

4 4

e Also work with literals JString strl T TRellon
. if (=trl == "hello™ && =str2 '= "wolrd™) {
e (Character access with [] _ aDebug ("True");

12

symbio

List containers

e QList, QLinkedList, QVector, QStack, QQueue

Usually QList is best for ordinary tasks

e (StringlList for strings

Associative containers

e (QSet, QMap, QHash, QMultiMap, QMultiHash

e (QMap for sorted, QHash for unsorted items

13

symbio

Lists are index-based, starting from O

e Fast access if index is known, slow to search

Adding and removing items

4

e append, insert, '+=', '<<

Accessing items

strings.append ("1") ;

strings << "2" £« "3I" Lo 4T
[] at, ’[]’ strings.insertc (2, "2"):

strings.removelCne ("2") ;

gDebug ("%3", gPrintable (string=[2])): /) 3

14

symbio

Can be used to iterate over lists

Takes a shallow copy of the container

e If original container is modified while in loop,
the one used in the loop remains unchanged

Q5tring hello = "Hello World !'11!7;
p5tringlist strlist = hello.splitc (™ "):
foreach (Q5tring str, strlList) {

ghebug ("Parc: %=", gPrintable (str)):

15

symbio

Associative containers are used to map
keys to values

e In QSet, key and value are the same
QSet<String>

e (Other containers have separate keys and values
QHash<QString,QString>

e Normal versions have one-to-one mapping,
multi-versions accept multiple values for single
key

QMultiMap<QString, QObject *>

16

<symbio-

Object model

CORE FEATURES

symbio

Usual Qt program is based around a tree-
based hierarchy of objects

e Helps with C++ memory management
e Based on QObject class

e Do not confuse with class inheritance

18

Object model

® A QObject may have a
parent object and number
of child objects

® Object without parent is
called a root object

® When an object is deleted,
it will also delete all it’s
children

<symbio-

symbio

All GUI components inherit from QWidget,
which in turn inherits from QObject

e Thus, GUI widgets are also arranged into tree

hierarchy H
Hello
e The root widget is a window World

e Enabling / disabling or showing / hiding a widget
will also affect its children

20

<symbio-

Signals & slots

CORE FEATURES

symbio

Qt way of making callback functions simple

e Example cases

What happens when user presses a GUI button

What happens when data arrives from network

e Similar semantics as with Java listeners

A signal is emitted, which results in a
function call to all slots that have been
connected to the signal

e j.e.onSignal: slot() in QML code

22

symbio

Code to support signal-slot connections is
generated by the moc tool when project is
compiled

Special keywords are used, which are
interpreted by moc

e (Q_OBIECT, signals, slots, emit

23

symbio

Q_OBJECT keyword must be added to
every class that inherits from QObject base
class

e Tells moc to parse the class contents

e QtCreator complains if missing

class Emitter : public QObject {
.-.-Tgin doSomething() { emit changed(): }

R ﬂfiﬁ changed () ;
}; you forgot the Q_OBJECT macro

24

symbio

signals keyword is used to start a block of
signal definitions

e Signal functions are not implemented. Instead,
the code for them is generated by moc

e Signals can have parameters as any normal
function

A slot that is connected to signal must have matching
parameter count and types

7 void helloSignal();
vold signalWithParams(const QString &data, gqint32 value):

.;:;-Héiiutl;

25

symbio

slots keyword starts a block of slot

deflnltlons public 5'_:‘.5:.
void publicSlot():
e Each slot is a normal C++ function ~ oid protectedslot0;
) :j;::‘i-r;;;r:"nalslntl[]l;

Can be called directly from code

e Normal visibility rules apply when called directly
from code

However, signal-slot connections will ignore visibility
and thus it's possible to connect to private slot from
anywhere

26

symbio

emit keyword is used to send a notification
to all slots that have been connected to the
signal

e Object framework code loops over the slots that
have been connected to the signal and makes a
regular function call to each

27

symbio

Connections are made with
QObject: :connect static functions

e No access control, anyone can connect anything

e C(lass headers are not needed if signal and slot
function signatures are known

Component-based approach

e Components provide services

e Controller makes the connections between
components

28

Signals and slots <symbio-

® Comparing Qt and Java fmport

interface ChangeEventListener {
void notifyChange();

class Emitter : public QObject {

0_OBJECT
public: class Emitter {

void doSomething() { emit changed(); } private ArraylList<ChangeEventlListener> listeners =
signals: new ArrayList<ChangeEventListener>();

void changed(); void addChangeListener{ChangeEventListener listener) {
h listeners.add(listener);

}

class Observer : public QObject { void doSomething() { changed(); }

Q_0BJECT private void changed() {
public slots: for (int i = 0; i < listeners.size(); i++) {

void notifyChange() {

} listeners.get(i).notifyChange();

}: ¥

class Manager : public QObject { }

publgE?BJECT class Db§erver implgments ChangeEventListener {
Manager() : emitter(new Emitter(this)), public void notifyChange() {
observer(new Observer(this)) { } }
}
vold connectObjects() { .
Q0bject::connect(emitter, SIGNAL(changed()), P“bllC‘C1355 Manager {
observer, SLOT(notifyChange())); private Emitter emitter = new Emitter();
emitter->doSomething(); private Observer observer = new Observer();
} vpid connectObjects() {
private: emitter.addChangelistener(observer);
Emitter *emitter; emitter.doSomething();
Observer *observer; }
b }

<symbio-

Object properties

CORE FEATURES

symbio

All QObject-based classes support
properties

e A property is QVariant type, which is stored in a
dictionary that uses C-style zero-terminated
character arrays as keys

i.e. name-value pair

e Properties can be dynamic or static

Dynamic properties are assigned at run-time

Static properties are defined at compile time and
processed by the meta-object compiler

31

symbio

Static properties are declared into class
header using Q_PROPERTY macro

clasz AnimatedPixmap @ public QObject, public QGraphicsPixmapltem

mOOR TR T
b UL

::PRCPER?Yineal rotation READ rotation WRITE =setRotation NOTIFY rotationChanged)

The above statement defines a property

e Type is greal, name is rotation
e When read, rotation function is called
e When modified, setRotation function is called

e Changes are notified via rotationChanged signal

32

<symbio-

QML / C++ integration

HYBRID PROGRAMMING

symbio

Objects are registered with
gmlRegisterType template function

e (Object class as template parameter

e Function parameters:

Module name
Object version number (major, minor)

Name that is registered to QML runtime

Details about modules from:

gnlBEegisterType<lLocationNotifier> ("LocationExample™, 1, 0, "LocationMNotifier™);

34

http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html

Using exported classes <5Ymb|0>

® The exported classes can be used as any
other QML component

e The module needs to be imported

import Qt 4.7
% import LocationExample 1.0

Rectangle {

|

gqnlRegisterType<LocationNotifiers> ("LocationExanple™, 1, 0, "LocationMotifier™): width: 200
\hEight: 200
LocationbMotifier {
id: notifier

¥

cla=ss LocationMotifier : pubklic QObject Text {
{ x: B&; y: 93
Q OBJECT

/ text: notifier.text
¥
{ PROPERTY (QString text READ text WRITE setText HOTIFY textChanged) ¥

" 2 s s g s B L N a @ 35

symbio

Visibility at QML side

e (QObject properties become element properties

on<Property>Changed hook works if the NOTIFY signal
is specified at C++ side

- Also note that C++ signal name doesn’t matter

e (QObject signals can be hooked with on<Signal>

e (QObject slots can be called as functions

36

symbio

Qt graphics items

e (QGraphicslitem base class

Not based on QObject for performance reasons

e Jtems are added to graphics scene

A QML Item is based on QDeclarativeltem

e Inherits QGraphicsObject from Qt graphics
framework

e (Custom painting can be done on C++ side

37

http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html

symbio

Multiple inheritance hierarchies

QObject QGraphicsltem
QGraphicsObject QAbstractGraphicsShapeltem
QDeclarativeltem QGraphicsPolygonltem
QML integration Painting
MyCustomQMLPolygon

(==

Hello World

Example in HelloQMLApp directory

38

<symbio-

Overview of QML animations

BUILDING FLUID GUI

symbio

Animation changes a property gradually
over a time period

e Brings the "fluidness” into the Ul

Different types for different scenarios

Supports grouping and nesting

40

symbio

All animations inherit from Animation base
component

e Basic properties (just like Item for GUI)

Properties for declarative use:

e running, paused, loops, alwaysRunToEnd

Can also be used imperatively:

e start, stop, pause, resume, restart, complete

41

Property value sources
Behavioral

Standalone

Signal handlers

State transitions

symbio

42

symbio

Property value source animation is run as
soon as the target object is created

e Animation provides the property value

e Animation on Property syntax

Rectangle {

width: 200
Starts at from or current value height: 200
Text {
¥ bo
EndS at tO text: "Hello World"®
PropertyvAnimation on v {
Lasts duration milliseconds i;f‘“;;

duration: 2000

symbio

Behavioral animation

Default animation that is run when property
changes

Behavior on Property syntax

Eectangle {
id: redERect

color: "red"

width: 25

height: 25

Behavior on y { HumberAnimation { duration: 1000 } 1}

No from or to needed, since old and new values
come from the property change

44

symbio

Standalone animations are created as any
other QML object

e Attached to target object

Humberfnimation {
id: standalone
target: redRect

Affects a property or properties property: "x"

from optional, to mandatory

HMouseArea {

anchor=s.fill: parent
e Need to be explicitly started T amtaione. o = mousex:

standalone.running = true;

45

symbio

Signal handler animation is quite similar to
standalone animation

e Startis triggered by the signal

HMousefrea {

o OtherWISE Same I"UleS anchors.fill: parent
onClicked: Propertyinimation
target: someText
Needs to be bound to target and property property: "x"

to: redBect.x

from optional, to mandatory

More about state transitions in later slides

{

46

symbio

Example code in AnimationExamples
directory

e Uses NumberAnimation for various scenarios

Hello Warld

47

symbio

The actual animation is built from
animation objects

e PropertyAnimation and it’s derivatives

NumberAnimation, SmoothedAnimation,
ColorAnimation, RotationAnimation, SpringAnimation

e Grouping and nesting

SequentialAnimation, ParallelAnimation,
PauseAnimation

e GUI layout changes

AnchorAnimation, ParentAnimation

48

symbio

Animations can be grouped to build more
complex scenarios

e SequentialAnimation is a list of animations that
IS run one at a time

e ParallelAnimation is a list of animations that is
run simultaneously

e PauseAnimation is used to insert delays into
sequential animations

49

symbio

Sequential and parallel animations can be
nested

e For example, a parallel animation may contain
multiple sequential animations

Example in AnimationGrouping directory

e Also uses ColorAnimation

1

50

<symbio-

GUI states and animated state transitions

BUILDING FLUID GUI

UI states

® A state represents a

: 74 Qt Cr

Getting Started

Tutorials Explore Qt C++

Click on
"Edit” o,

Welcome

» The QtCreator User Interface |
» Building and Running an Example
» Creating a Qt C++ Application
>

i ?
Creating a Mobile Application Did You Know?

You can use Qt Qi
Subversion, Perft

4 o AnchorsCoordinates
@ AnchorsCoordinates.gmlproject
@ AnchorsCoordinates.qml

4 o Anipeati

snExamples

ationExamples.gml

F] . AnimatinnGraoninn

Mouse on
file name

snapshot of a GUI

> .

s AnchorsCoordinates
@ AnchorsCoordinates.qmlprojet
@ AnchorsCooerdinates.qml

an AnimationExamples
@ AnimationExamples.qmliprojec
@ AnimationExamples.qml

aw AnimationGreuping
@ AnimationGrouping.gmlprojec

AnimationGrouping.gml
@ RedRect.qml
@ RedRectAnimation.gml

o DaylQuizz

@ DaylQuizz.qmlproject

@ Dayl Quizz.qml
a StateExample

Projects

when: ticks % 3 ==
PropertyChanges {
PropertyChanges {
{
{

PropertyChanges
PropertyChanges
T
State {

name: "statelZ"

when: ticks % 3 ==
PropertyChanges {
PropertyChanges {
PropertyChanges {
PropertyChanges {

o AnchorsCoordinates

@ AnchorsCoordinates.gmlproject
@ AnchorsCoordinates.gml

am AnimationExamples

@ AnimationExamples.gmlproject
@ AnimatinnFramnles.aml

am Animati

C\Projekteja\AnimationExamples\AnimationExamples.gmlproject }

[l A mivm bimmTemiimime s lneniaet

9 @

<symbio-

52

symbio

States are usually applicable at many
levels, regardless of problem complexity

e j.e. whole program vs. small trinket

Transitions between states

e Response to user interaction or other events
e Many transitions may be run parallel

e May be animated with QML

53

symbio

State framework built into QML:

e Every GUI Item has a state property, default _ i Sos
state and a list of states "~

States are identified by name, default has no name

e FEach State object inherits properties from name: "shorter®
. PropertyChanges {
default state and declares the differences target: rect;
height: 100

PropertyChanges element

e A state may inherit properties from another scac= ¢

state instead of the default e
ta:éeg:";éct
width: 100

"shorter"

extend property

54

symbio

Only one state is active at a time

e S0, only properties from default and changes
from active state are in use

e State can be activated via script or with the help
of when binding crare

name : "upsidedown™
when: mouselrea.pressed
PropertyChanges {

Example in SimpleState directory

rotation: 180

55

symbio

The transitions between states are declared
separately from the states

e List of transitions under the Item

e Quite similar to ParallelAnimation

Although, doesn’t inherit Animation

Example in SimpleStateTransition directory

56

symbio

All transitions are applied by default

e (Can be scoped with from and to

Both are bound to state name

e Transition overrides Behavior on <property>

Transition animations are run in parallel

e (Can be wrapped into SequentialAnimation

e Transition reversible flag might be needed

Runs sequential animations in reverse order

57

symbio

SequentialTransition directory

Mapping the AnimationGrouping example
into state framework

e StateExample directory

58

<symbio-

Models, views and delegates

DISPLAYING DATA

symbio

Data elements are divided into three parts

e Model contains the data

Each data element has a role

e View defines the layout for the data elements

Pre-defined views: ListView, GridView and PathView

e Delegate displays a single model element

Any Item-based component works

60

symbio

ListModel for list of data elements

e Define ListElement objects in QML code

ListElement consists of roles, not properties
Syntax is similar to QML properties (name: value)

But, cannot have scripts or bindings as value

e Add JavaScript objects dynamically

Any dictionary-based (name: value) object will work

Works also with nested data structures

61

symbio

ListModel is manipulated via script code

e append, insert, move, remove, clear
e get, set, setProperty

e Changes to model are automatically reflected in
the view(s) which display the model

qml1

qml2

Although, changes via WorkerScript need sync [z
QOML-defined element 3

gml4

Example in SimpleDataModel directory [o=:

timer2
Element added dynamically 2

timer 3

timer4

62

symbio

Other model types

e XmlListModel for mapping XML-data (for
example from web services) into QML view

Uses XPath queries within list elements (Xm/Role)
e FolderListModel from QtLabs experimental
Displays local file system contents

e VisualltemModel for GUI Items

e VisualDataModel

Can visualize Qt/C++ tree models

May share GUI delegates across views

63

symbio

QML has three views

e [jstView displays it's contents in a list

Each element gets a row or column of its own

Compare to Row or Column positioners
e GridView is two-dimensional representation
Compare with Grid positioner

e PathView can be used to build 2-dimensional
paths where elements travel

64

symbio

The PathView component declares a path
on which the model elements travel

e Path consists of path segments
PathLine, PathQuad, PathCubic (10,10) (1120,10)

Start and end point + control points

e Each segment may have path attributes

(60,80)
Interpolated values forwarded to delegate

Example in PhotoExample directory

65

symbio

Interaction with views

e List and grid views inherint from Flickable

Content can be scrolled (no scrollbars though)

e Path view uses drag and flick to move the items
around the path

e Delegates may implement mouse handlers

Same rules as with Flickable nested mouse areas

66

symbio

A delegate component maps a model entry
into a GUI Item

e In VisualltemModel each entry is GUI item

Delegate objects are created and destroyed
by the view as needed

e Saves resources with lots of items

e (Cannot be used to store any state

Thus, state must be stored in the model

67

symbio

The delegate may access the list model
roles by name

e If role name is ambiguous, use model attached
property

e Special index role also available

See delegate code examples from

Column {

. Text {
SimpleDataModel and PhotoExample | vexeg anie
Text {
Li=ztModel { ‘ text: description
id: model
:;stE%iF:?t";H_f"
zésgriptia;; "OML-defined element 1"

68

symbio

Each view has currentindex property

o [jstView and GridView also have currentlitem

Element 1

e Represents the selected element [ement 2

Element 3

Element 4

View has highlight delegate

e Draws something under the current item

e Highlight moves with SmoothedAnimation

Can be customized with highlightFollowsCurrentitem

Example in ViewHighlight directory

69

<symbio-

Adding states and transitions

FLUID GUI EXERCISES

States and transitions symbio

® Replace one of the original colors with a
button, which flips the color list over and
reveals more colors

Wiliams, Joshua

Davis, Charlie

[Wilson, Charlie

llllllllll

Davis, Charlie Davis, Charlie
Wiliams, Oliver Wiliams, Oliver
Wilson, Thomas Wilson, Thomas

Williams, Joshua

Robinsan, James Robinson, James
Wright, Harry Wright, Harry
Davis, Charlie

Wilson, Charlie

Wright, Daniel Wright, Daniel
Smith, Thomas Smith, Thomas
Davis, Thomas Davis, Thomas
Wilson, Harry e

nnnnnnnnnn

71

States and transitions symbio

® Add an area to left side, which slides in
when mouse is clicked on it

e Slides back when clicked again

[J[zem) [[

BBBBBBBBBBB

Wilson, Charlie

Tnhnznn Thamas

72

<symbio-

Implementing a model and view

DATA MODEL EXERCISE

Data model exercise

® Add a ListModel to the central
area of day 1 exercise

Fill with random names

* Generator example in
CourseDay2/ListArea.gml

Add selection support to model

When a color on right side is
clicked, tag the name with that
color

e Fade-in / fade-out the tag rectangle

symbio

. -
oy

Submit

—

Robinson, Harry

Johnson, Alfie
B smith, James

Wiliams, Harry
B cniith, Daniiel

Smith, Daniel

[B viiliams, Charlie

Robinson, Alfie

Wiliams, Daniel

Brown, Joshua
B oavis, Alfie

Johnsaon, Daniel

. -

74

<symbio-

ABOUT SOFTWARE

