
1 

SERIOUS ABOUT SOFTWARE 

Qt Quick – From bottom to top 

Timo Strömmer, Feb 11, 2011 



Contents – Day 2 

• Qt core features 

• Shared data objects 

• Object model, signals and slots, properties 

• Hybrid programming 

• QML fluid user interfaces 

• Animations, states and transitions 

• Adding data to GUI 

• Models, views and delegates 



CORE FEATURES 

Shared data objects 

3 



Shared data objects 

• A shared data object doesn’t store the 

object data by itself 

• Instead, data is implicitly shared 

• With copy-on-write semantics 

• Easier to use that just pointers 

• The object can be thought as simple value type 

• Examples: 

• Strings, images, collections 

 

4 



Implicit sharing 

• In normal C++ an object is allocated and a 

pointer to it is passed around 

• Care must be taken that object is not deleted 

while it’s still being pointed to 

 

5 

H e l l o ! \0 

char *ptr 

char *ptr 

char *ptr 



Implicit sharing 

• In implicit sharing, a reference counter is 

associated with the data 

• Data pointer is wrapped into a container object, 

which takes care of deleting the data when 

reference count reaches 0 

6 

QString str 

 

 

Data * 
H e l l o ! \0 int ref = 2 

Data 

QString str 

 

 

Data * 



Implicit sharing 

• Implicitly shared objects can be treated as 

simple values 

• Only the pointer is passed around 

7 

QString str 

 

 

Data * C h a n g e \0 int ref = 1 

Data 

QString str 

 

 

Data * 

H e l l o ! \0 int ref = 1 

Data 



Terminology 

• Copy-on-write 

• Make a shallow copy until something is changed 

• Shallow copy 

• Copy just the pointer, not actual data 

• Deep copy 

• Create a copy of the data 

8 



Strings 

• Two types of string 

• UNICODE strings (QString) 

• Byte arrays (QByteArray) 

• In general, QString should be used 

• UNICODE, so can be localized to anything 

• Conversion between the two types is easy, but 

might have unexpected performance issues 

 

 

9 



Strings and implicit sharing 

• Strings are implicitly shared, so in general, 

should be treated as a value 

• Returned from functions like value 

• Stored into objects as values 

• Function parameters should use constant 

reference, not value 

• const QString & 

 

10 



String operations 

• In Qt, a string can be changed 

• Thus, differs from java immutable strings 

• Modifying a string in-place is more efficient 

(especially with reserve() function) 

• However, some care must be taken to avoid changes in 

unexpected places 

 

11 



String operations 

• QString supports various operators 

• ’+’, ’+=’, ’>’, ’<’, ’<=’, ’>=’, ’==’, ’!=’ 

• Also work with literals 

• Character access with [] 

 

12 



Generic containers 

• List containers 

• QList, QLinkedList, QVector, QStack, QQueue 

• Usually QList is best for ordinary tasks 

• QStringList for strings 

• Associative containers 

• QSet, QMap, QHash, QMultiMap, QMultiHash 

• QMap for sorted, QHash for unsorted items 

 

 

 

13 



List containers 

• Lists are index-based, starting from 0 

• Fast access if index is known, slow to search 

• Adding and removing items 

• append, insert, ’+=’, ’<<’ 

• Accessing items 

• at, ’[]’ 

 

 
14 



Foreach statement 

• Can be used to iterate over lists 

• Takes a shallow copy of the container 

• If original container is modified while in loop, 

the one used in the loop remains unchanged 

 

15 



Associative containers 

• Associative containers are used to map 

keys to values 

• In QSet, key and value are the same 

• QSet<String> 

• Other containers have separate keys and values 

• QHash<QString,QString> 

• Normal versions have one-to-one mapping, 

multi-versions accept multiple values for single 

key 

• QMultiMap<QString, QObject *> 

16 



CORE FEATURES 

Object model 

17 



Object model 

• Usual Qt program is based around a tree-

based hierarchy of objects 

• Helps with C++ memory management 

• Based on QObject class 

• Do not confuse with class inheritance 

 

18 



Object model 

• A QObject may have a 

parent object and number 

of child objects 

• Object without parent is 

called a root object 

• When an object is deleted, 

it will also delete all it’s 

children 

19 

QObject 

QObject 

QObject 

QObject 

QObject 



Object model and GUI 

• All GUI components inherit from QWidget, 

which in turn inherits from QObject 

• Thus, GUI widgets are also arranged into tree 

hierarchy 

• The root widget is a window 

• Enabling / disabling or showing / hiding a widget 

will also affect its children 

 

20 



CORE FEATURES 

Signals & slots 

21 



Signals and slots 

• Qt way of making callback functions simple 

• Example cases 

• What happens when user presses a GUI button 

• What happens when data arrives from network 

• Similar semantics as with Java listeners 

• A signal is emitted, which results in a 

function call to all slots that have been 

connected to the signal 

• i.e. onSignal: slot() in QML code 

 
22 



Signals and slots 

• Code to support signal-slot connections is 

generated by the moc tool when project is 

compiled 

• Special keywords are used, which are 

interpreted by moc 

• Q_OBJECT, signals, slots, emit 

 

23 



Special keywords 

• Q_OBJECT keyword must be added to 

every class that inherits from QObject base 

class 

• Tells moc to parse the class contents 

• QtCreator complains if missing 

24 



Special keywords 

• signals keyword is used to start a block of 

signal definitions 

• Signal functions are not implemented. Instead, 

the code for them is generated by moc 

• Signals can have parameters as any normal 

function 

• A slot that is connected to signal must have matching 

parameter count and types 

25 



Special keywords 

• slots keyword starts a block of slot 

definitions 

• Each slot is a normal C++ function 

• Can be called directly from code 

• Normal visibility rules apply when called directly 

from code 

• However, signal-slot connections will ignore visibility 

and thus it’s possible to connect to private slot from 

anywhere 

 

26 



Special keywords 

• emit keyword is used to send a notification 

to all slots that have been connected to the 

signal 

• Object framework code loops over the slots that 

have been connected to the signal and makes a 

regular function call to each 

 

27 



Connecting signals to slots 

• Connections are made with 

QObject::connect static functions 

• No access control, anyone can connect anything 

• Class headers are not needed if signal and slot 

function signatures are known 

• Component-based approach 

• Components provide services 

• Controller makes the connections between 

components 

28 



Signals and slots 

• Comparing Qt and Java 

29 



CORE FEATURES 

Object properties 

30 



Object properties 

• All QObject-based classes support 

properties 

• A property is QVariant type, which is stored in a 

dictionary that uses C-style zero-terminated 

character arrays as keys 

• i.e. name-value pair 

• Properties can be dynamic or static 

• Dynamic properties are assigned at run-time 

• Static properties are defined at compile time and 

processed by the meta-object compiler 

 

31 



Object properties 

• Static properties are declared into class 

header using Q_PROPERTY macro 

 

• The above statement defines a property 

• Type is qreal, name is rotation 

• When read, rotation function is called 

• When modified, setRotation function is called 

• Changes are notified via rotationChanged signal 

32 



HYBRID PROGRAMMING 

QML / C++ integration 

33 



Exporting objects to QML 

• Objects are registered with 

qmlRegisterType template function 

• Object class as template parameter 

• Function parameters: 

• Module name 

• Object version number (major, minor) 

• Name that is registered to QML runtime 

34 

Details about modules from: 
http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html 

http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativemodules.html


• The exported classes can be used as any 

other QML component 

• The module needs to be imported 

 

 

 

Using exported classes 

35 



Qt objects in QML 

• Visibility at QML side 

• QObject properties become element properties 

• on<Property>Changed hook works if the NOTIFY signal 

is specified at C++ side 

- Also note that C++ signal name doesn’t matter 

• QObject signals can be hooked with on<Signal> 

• QObject slots can be called as functions 

 

 

36 



Graphics items 

• Qt graphics items 

• QGraphicsItem base class 

• Not based on QObject for performance reasons 

• Items are added to graphics scene 

• A QML Item is based on QDeclarativeItem 

• Inherits QGraphicsObject from Qt graphics 

framework 

• Custom painting can be done on C++ side 

 

 

 

37 

http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html 

http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html
http://doc.trolltech.com/4.7-snapshot/qdeclarativeitem.html


Graphics items 

• Multiple inheritance hierarchies 

 

 

 

 

• Example in HelloQMLApp directory 

 

38 

QGraphicsItem 

QDeclarativeItem 

QObject 

QGraphicsObject 

MyCustomQMLPolygon 

QAbstractGraphicsShapeItem 

QGraphicsPolygonItem 

Painting QML integration 



BUILDING FLUID GUI 

Overview of QML animations 

39 



Animations overview 

• Animation changes a property gradually 

over a time period 

• Brings the ”fluidness” into the UI 

• Different types for different scenarios 

• Supports grouping and nesting 

40 



Animation basics 

• All animations inherit from Animation base 

component 

• Basic properties (just like Item for GUI) 

• Properties for declarative use: 

• running, paused, loops, alwaysRunToEnd 

• Can also be used imperatively: 

• start, stop, pause, resume, restart, complete 

41 



Animation types 

• Property value sources 

• Behavioral 

• Standalone 

• Signal handlers 

• State transitions 

 

42 



Animation types 

• Property value source animation is run as 

soon as the target object is created 

• Animation provides the property value 

• Animation on Property syntax 

• Starts at from or current value 

• Ends at to 

• Lasts duration milliseconds 

43 



Animation types 

• Behavioral animation  

• Default animation that is run when property 

changes 

• Behavior on Property syntax 

 

 

 

• No from or to needed, since old and new values 

come from the property change 

 

44 



Animation types 

• Standalone animations are created as any 

other QML object 

• Attached to target object 

• Affects a property or properties 

• from optional, to mandatory 

• Need to be explicitly started 

 

45 



Animation types 

• Signal handler animation is quite similar to 

standalone animation 

• Start is triggered by the signal 

• Otherwise same rules 

• Needs to be bound to target and property 

• from optional, to mandatory 

 

• More about state transitions in later slides 

 

 

46 



Animation types 

• Example code in AnimationExamples 

directory 

• Uses NumberAnimation for various scenarios 

 

47 



Animation objects 

• The actual animation is built from 

animation objects 

• PropertyAnimation and it’s derivatives 

• NumberAnimation, SmoothedAnimation, 

ColorAnimation, RotationAnimation, SpringAnimation 

• Grouping and nesting 

• SequentialAnimation, ParallelAnimation, 

PauseAnimation 

• GUI layout changes 

• AnchorAnimation, ParentAnimation 

48 



Animation grouping 

• Animations can be grouped to build more 

complex scenarios 

• SequentialAnimation is a list of animations that 

is run one at a time 

• ParallelAnimation is a list of animations that is 

run simultaneously 

• PauseAnimation is used to insert delays into 

sequential animations 

49 



Animation grouping 

• Sequential and parallel animations can be 

nested 

• For example, a parallel animation may contain 

multiple sequential animations 

• Example in AnimationGrouping directory 

• Also uses ColorAnimation 

 

50 



BUILDING FLUID GUI 

GUI states and animated state transitions 

51 



GUI states 

• A state represents a snapshot of a GUI 

52 

Click on  
”Edit” 

Mouse on 
file name 



GUI states 

• States are usually applicable at many 

levels, regardless of problem complexity 

• i.e. whole program vs. small trinket 

• Transitions between states 

• Response to user interaction or other events 

• Many transitions may be run parallel 

• May be animated with QML 

53 



GUI states in QML 

• State framework built into QML: 

• Every GUI Item has a state property, default 

state and a list of states 

• States are identified by name, default has no name 

• Each State object inherits properties from 

default state and declares the differences 

• PropertyChanges element 

• A state may inherit properties from another 

state instead of the default 

• extend property 

 

 

54 



GUI states 

• Only one state is active at a time 

• So, only properties from default and changes 

from active state are in use 

• State can be activated via script or with the help 

of when binding 

• Example in SimpleState directory 

55 



State transitions 

• The transitions between states are declared 

separately from the states 

• List of transitions under the Item 

• Quite similar to ParallelAnimation 

• Although, doesn’t inherit Animation 

• Example in SimpleStateTransition directory 

56 



State transitions 

• All transitions are applied by default 

• Can be scoped with from and to 

• Both are bound to state name 

• Transition overrides Behavior on <property> 

• Transition animations are run in parallel 

• Can be wrapped into SequentialAnimation 

• Transition reversible flag might be needed 

• Runs sequential animations in reverse order 

57 



State examples 

• SequentialTransition directory 

• Mapping the AnimationGrouping example 

into state framework 

• StateExample directory 

58 



DISPLAYING DATA 

Models, views and delegates 

59 



Data elements 

• Data elements are divided into three parts 

• Model contains the data 

• Each data element has a role 

• View defines the layout for the data elements 

• Pre-defined views: ListView, GridView and PathView 

• Delegate displays a single model element 

• Any Item-based component works 

 

60 



Data models 

• ListModel for list of data elements 

• Define ListElement objects in QML code 

• ListElement consists of roles, not properties 

• Syntax is similar to QML properties (name: value) 

• But, cannot have scripts or bindings as value 

• Add JavaScript objects dynamically 

• Any dictionary-based (name: value) object will work 

• Works also with nested data structures 

 

61 



Data models 

• ListModel is manipulated via script code 

• append, insert, move, remove, clear 

• get, set, setProperty 

• Changes to model are automatically reflected in 

the view(s) which display the model 

• Although, changes via WorkerScript need sync 

• Example in SimpleDataModel directory 

62 



Data models 

• Other model types 

• XmlListModel for mapping XML-data (for 

example from web services) into QML view 

• Uses XPath queries within list elements (XmlRole) 

• FolderListModel from QtLabs experimental 

• Displays local file system contents 

• VisualItemModel for GUI Items 

• VisualDataModel  

• Can visualize Qt/C++ tree models 

• May share GUI delegates across views 

63 



Data views 

• QML has three views 

• ListView displays it’s contents in a list 

• Each element gets a row or column of its own 

• Compare to Row or Column positioners 

• GridView is two-dimensional representation 

• Compare with Grid positioner 

• PathView can be used to build 2-dimensional 

paths where elements travel 

64 



Path view 

• The PathView component declares a path 

on which the model elements travel 

• Path consists of path segments 

• PathLine, PathQuad, PathCubic 

• Start and end point + control points 

• Each segment may have path attributes 

• Interpolated values forwarded to delegate 

• Example in PhotoExample directory 

65 

(10,10) (110,10) 

(60,80) 



Data views 

• Interaction with views 

• List and grid views inherint from Flickable 

• Content can be scrolled (no scrollbars though) 

• Path view uses drag and flick to move the items 

around the path 

• Delegates may implement mouse handlers 

• Same rules as with Flickable nested mouse areas 

 

66 



GUI delegates 

• A delegate component maps a model entry 

into a GUI Item 

• In VisualItemModel each entry is GUI item 

• Delegate objects are created and destroyed 

by the view as needed 

• Saves resources with lots of items 

• Cannot be used to store any state 

• Thus, state must be stored in the model 

 

67 



GUI delegates 

• The delegate may access the list model 

roles by name 

• If role name is ambiguous, use model attached 

property 

• Special index role also available 

• See delegate code examples from 

SimpleDataModel and PhotoExample 

 

68 



View selection 

• Each view has currentIndex property 

• ListView and GridView also have currentItem 

• Represents the selected element 

• View has highlight delegate 

• Draws something under the current item 

• Highlight moves with SmoothedAnimation 

• Can be customized with highlightFollowsCurrentItem 

• Example in ViewHighlight directory 

69 



FLUID GUI EXERCISES 

Adding states and transitions 

70 



States and transitions 

• Replace one of the original colors with a 

button, which flips the color list over and 

reveals more colors 

71 



States and transitions 

• Add an area to left side, which slides in 

when mouse is clicked on it 

• Slides back when clicked again 

72 



DATA MODEL EXERCISE 

Implementing a model and view 

73 



Data model exercise 

• Add a ListModel to the central 

area of day 1 exercise 

• Fill with random names 

• Generator example in 

CourseDay2/ListArea.qml 

• Add selection support to model 

• When a color on right side is 

clicked, tag the name with that 

color 

• Fade-in / fade-out the tag rectangle 

 

74 



75 


