
40 IEEE SoftwarE | publIShEd by thE IEEE computEr SocIEt y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

The sofTware indusTry is cur-
rently experiencing a paradigm shift
toward Web-based software. Applica-
tions that used to be written for spe-
cific computer architectures, CPUs, op-
erating systems, and devices are now
increasingly written for the Web, to be
executed inside a browser or a compat-
ible runtime environment. In the fu-
ture, most end-user software, includ-
ing applications for both personal and
business use, will be Web based. For
the average computer user, the Web
browser will be the primary software
environment for most purposes, effec-
tively displacing conventional operat-
ing systems from the central role that
they had in the past.

We believe that the transition to-
ward Web-based end-user software
will have a significant effect not only
on desktop computing but on mobile

devices as well. As of this writing,
there’s considerable momentum behind
native, Web-connected mobile apps
written for specific devices or operat-
ing systems; however, it’s clear that
Web-based software will also play a
critical role in the mobile device space.
In fact, we anticipate the battle of the
decade to be between native apps and
pure HTML5 Open Web applications.1

In this article, we introduce Cloud-
berry, a novel HTML5-based cloud
phone software platform developed
at Nokia Research Center. One of the
central benefits of a cloud phone is that
nearly any customer-facing applica-
tion or feature in such a device can be
changed from the server side almost in-
stantly to potentially millions of devices
all over the world. This will shorten ap-
plication and service deployments, up-
date life cycles, and make it easier to

customize devices to different users and
purposes. Another key benefit is multi-
ple device ownership—that is, the abil-
ity to effortlessly access the same appli-
cations and data from different devices.

The Cloud Phone
A cloud phone is a mobile device in
which all customer-facing functionality
is downloaded and cached dynamically
from the Web, including all the applica-
tions and even the entire top-level user
interface (UI) of the device. For more
information on mobile cloud systems,
see the “Related Work in Mobile Cloud
Systems” sidebar. A cloud phone will
have several key characteristics.

User Experience Driven
by the Web Runtime
In a conventional mobile device, the
top-level user experience of the device
is typically written natively; a Web
browser is just one of the many ap-
plications provided by the system. In
Cloudberry, the Web runtime is the
centerpiece of the system that drives
the entire top-level UI as well as all the
applications. No native software is ex-
posed to the user directly.

Applications Written as Web Applications
In Cloudberry, all mobile device
applications—including core ones such
as the phone dialer, contacts, calendar,
messaging, music player, and maps—
are written as Web applications.

Web-Based Application
Development Model
The application development model for
Cloudberry is based entirely on Web
technologies—more specifically, on
HTML, CSS, and JavaScript. There
are no binary applications, and appli-
cations don’t have to be compiled or
linked statically; developers can use
standard Web-based development tools.

FOCUS: Mobile Software DevelopMent

Cloudberry:
An HTML5 Cloud Phone
Platform for Mobile Devices

Antero Taivalsaari and Kari Systä, Nokia

// One of the central benefits of a cloud phone is that nearly

any of its customer-facing features can be changed on

millions of devices all over the world almost instantly. //

 July/auguSt 2012 | IEEE SoftwarE 41

Web-Based Deployment Model
and Transparent Updates
Cloudberry is a zero-installation plat-
form—there’s no notion of applica-
tion installation in the conventional
sense. Logically, each application is just
like a webpage: it’s just a link that the
Web runtime will use to dynamically
load and cache the necessary data and
code for execution. Updates happen

automatically as the software changes
on the server side. In fact, the entire
suite of applications on each device can
be entirely dynamic and changed (by
the service provider or the users them-
selves) as frequently as necessary.

Master Copies in the Cloud
In a cloud phone, master copies of all
applications and user data are stored in

the cloud. This lets the user switch be-
tween different devices easily because
the same applications and data are ac-
cessible to all of his or her devices. Data
is automatically backed up in the cloud
as well as across all the user’s devices.

Offline Use through HTML5
The ability to operate without an ac-
tive network connection has become a

relaTed work in Mobile Cloud sysTeMs
The Cloudberry system was inspired by our earlier experiences
in building the Lively Kernel1, one of the first truly interactive,
exploratory JavaScript programming environments designed to run
in a standard Web browser without any modifications or plug-ins.

In the mobile device space, the most similar system is the
HP (Palm) WebOS.2 The key differences between Cloudberry and
WebOS relate to the application model. Whereas Cloudberry was
built from the beginning around an open-ended HTML5 applica-
tion model in which no explicit application installation is required,
WebOS introduces a custom application model—built around the
concept of stages and scenes—that requires explicit applica-
tion packaging and installation. More recently, WebOS has started
adopting an HTML5-style application model.

Other related systems include Google’s Chrome OS (www.
chromium.org/chromium-os) and Jolicloud (www.jolicloud.com). At
this point, both Chrome OS and Jolicloud are targeted more toward
desktop systems than mobile devices. However, it’s reasonable to
expect that these systems will eventually offer support for mobile
devices, too.

In July 2011, Mozilla announced plans to build Boot to Gecko
(B2G): a complete, standalone operating system for the open Web,
with specific focus on mobile devices. At Mobile World Congress
2012, Mozilla announced that the Spanish telecommunications
provider Telefónica intends to deliver B2G-based mobile devices.
Mozilla also announced support for the project from Adobe and
Qualcomm, and that Deutsche Telekom’s Innovation Labs will join
the project.

After Nokia discontinued the MeeGo platform development in
2011, Intel announced that the development of the MeeGo plat-
form will continue in the Tizen effort and will use HTML5 as the
primary application model (www.tizen.org). At this point, there’s

no connection between Cloudberry and Tizen. From a technical
perspective, a key difference is that Tizen uses the W3C Widget
Application Model3—requiring explicit application installation—
rather than the zero-installation HTML5 application model in which
applications are effectively just links.

The term cloud phone has been used independently in a
number of other contexts to date. Yan Lu and colleagues4 used
this term to describe a thin mobile device that relies on network-
streamed applications that run primarily on the server side, much
like applications in Sun Microsystems’ (now Oracle’s) Sun Ray
stateless client platform (www.oracle.com/us/technologies/virtual-
ization/061984.html). The term also has been used for describing
mobile telephone number swapping systems—intended primarily
for developing countries—in which several users can share the
same mobile phone. One of the leading commercial vendors in that
space is Movirtu (www.movirtu.com).

As far as we know, Cloudberry is still the only system that has
virtualized the entire end-user software environment of a mobile
phone, so that all the applications of the mobile device (including
the core applications) as well as the entire top-level user experi-
ence are downloaded from the cloud.

references
 1. A. Taivalsaari et al., Web Browser as an Application Platform: The Lively Ker-

nel Experience, tech. report TR-2008-175, Sun Microsystems Labs, 2008.
 2. M. Allen, Palm WebOS, O’Reilly, 2009.
 3. M. Cáceres, Widget Packaging and XML Configuration Specification, World

Wide Web Consortium (W3C) recommendation, Sept. 2011; www.w3.org/
TR/widgets.

 4. Y. Lu, S. Li, and H. Shen, “Virtualized Screen: A Third Element for Cloud-
Mobile Convergence,” IEEE Multimedia, April–June 2011, pp. 4–11.

42 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Mobile Software DevelopMent

key element of any mobile phone. The
Cloudberry system utilizes the HTML5
offline application support2 as well as
proprietary data-caching mechanisms
to ensure that applications and their
data are available when the device
is offline. In general, because we use
HTML5 for application execution, ap-
plications typically execute the major-
ity of code on the client side, leverag-
ing the mobile device’s CPU power and
memory for application execution.

application and user
interface examples
Although a cloud phone’s technical ar-
chitecture differs from that of a con-
ventional mobile device, from the us-
er’s perspective, a cloud phone doesn’t
have to look or feel any different from
a conventional device. In fact, one
of the principal aims in our original
cloud phone design was to make the

device look and feel instantly familiar
to conventional mobile phone users.
To reinforce this feeling, in our origi-
nal Cloudberry 2010 system, we in-
tentionally built all the applications to
resemble the corresponding native ap-
plications on the Nokia N900 device.
(We had the option to design things
to be drastically different; Cloudberry
has theming capabilities for different
looks and feels far beyond those that
are available on most mobile devices
today.) In our more recent Cloudberry
2011 (from which we’ve taken most of
the following examples), we leveraged
cloud-specific capabilities much more
extensively.

Figure 1 shows two screenshots from
Cloudberry 2011; the UI style here used
the notion of unlimited 2D space. Fig-
ure 1a shows a desktop with four open
applications: phone, clock, a photo
viewer, and a third-party HTML5

demo. Applications reside in an unlim-
ited 2D space in which applications can
float freely (which is difficult to convey
in a static image). Visual effects such as
a parallax effect reinforce the illusion
of open, infinite space. By tapping any
of the applications on the desktop, the
user can bring an application to full-
screen mode. Figure 2 shows some ex-
amples of full-screen applications.

In Figure 1b, the user has clicked on
the cloud symbol on the bottom of the
display to launch a new application.
Instead of a conventional, static ap-
plication launcher or grid, Cloudberry
2011 utilizes a dynamic, server-side-
generated application store that con-
sists of several featured applications,
prearranged application categories,
and top lists, as well as a list of those
applications that the user has accessed
recently. After the user chooses an ap-
plication (which, in reality, is just a
link), the Cloudberry client downloads
and caches that application, or runs an
existing version from cache if the ap-
plication ran recently on the device.
In the latter case, the system would
also check if the previously cached ap-
plication was recently updated on the
server; if so, the system downloads the
updated components transparently in
the background.

Although our initial application set
mimicked the native Nokia N900 ap-
plications, we recently built synthetic
mashup applications that leverage re-
sources available from the Web in vari-
ous ways, so an application’s look and
feel are unrelated to any existing native
applications. Most third-party HTML5
applications also run in Cloudberry
without modifications, although the UI
layouts of such applications aren’t al-
ways optimal for the target device.

using a Cloud Phone
for the first Time
The general idea in a cloud phone is
that applications and data can be used
effortlessly on different devices. To use

(a) (b)

figure 1. (a) Cloudberry 2011 desktop with four applications active but minimized on the

desktop. (b) The application launcher/store. The store suggests three “featured applications.” In

addition, the user can select applications from different categories or recommendation lists.

 July/auguSt 2012 | IEEE SoftwarE 43

the Cloudberry system on a specific de-
vice, the user must first enter creden-
tials to establish a connection between
the device and his or her identity in
the cloud. After that, the top-level UI
as well as existing open applications
(if the user had any applications open
on another device earlier) will become
available on that device. User identifica-
tion is performed only once per device.
After the initial login, the device is sub-
sequently associated with the specific
user unless the user explicitly wants to
detach his or her identity and purge all
personal data from that device.

Technical overview
From a technical perspective, the
Cloudberry client stack consists of sev-
eral components:

•	 a full-fledged WebKit-compatible
Web browser (http://trac.webkit.
org/wiki/QtWebKit) customized to
support additional features;

•	 a set of downloadable top-level UIs
that allow the device’s entire look
and feel and top-level user experi-
ence to change dynamically (un-
til recently, all the top-level UIs
in Cloudberry were written using
the QML [QtQuick] language3 to
maintain a clean separation be-
tween applications and the sur-
rounding device UI, but we recently
started implementing top-level UIs
in HTML5 as well);

•	 a suite of Web applications that im-
plement all the typical core applica-
tions found on a mobile phone (ap-
plications are built with adaptive UI
layouts for flexible use on devices
with different screen sizes, resolu-
tions, and orientations; HTML5
supports offline use and automatic
application updates, too);

•	 a data API that lets applications
transparently store and automati-
cally synchronize their data in a
cloud datastore (the API’s goal is to
make data storage as seamless and

transparent as possible; by default,
all data is synchronized automati-
cally in the cloud, however, data
can be earmarked as local);

•	 a set of device APIs that let appli-
cations access device-specific func-
tionality (such as initiating phone
calls, sending text messages, read-
ing GPS location information, and
so on; device APIs are based on
official W3C Device APIs [www.
w3.org/2009/dap] wherever ap-
plicable, and proprietary APIs are
used in those areas that standards
don’t yet cover);

•	 a domain-based, permission-based
security model that restricts the
use of device-specific functionality
(such as device APIs) to only those
applications from trusted domains;
and

•	 an underlying process model to po-
tentially run applications arriving
from different domains in separate
native OS processes.

Recent versions of the WebKit browser
include similar capabilities (http://trac.

webkit.org/wiki/WebKit2), but our
work in this area predates WebKit2
and provides more flexibility in choos-
ing the split between applications, Web
domains, and rendering processes.

Securely stored security-policy files
determine the level of trust between a
device and a specific Web domain. Ap-
plications must use permissions to ex-
plicitly request access to those features
that are above and beyond the sandbox
that the standard browser offers. This
security model is an extension of the
typical Web browser security model.5

Figure 3 shows a high-level archi-
tecture diagram of the Cloudberry sys-
tem. The fact that it’s built on top of a
standards-compatible browser means
that third-party HTML5 applications
run without modifications. There’s no
hard split between core Cloudberry ap-
plications and third-party Web content,
except in terms of access to the underly-
ing device and platform capabilities.

Given that all the device’s function-
ality is downloaded dynamically in
Cloudberry, we placed special emphasis
on security. Currently, we use several

figure 2. Screen snapshots of some full-screen core Cloudberry applications: contacts

list, calendar, photo gallery, and map applications.

44 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Mobile Software DevelopMent

proprietary extensions in this area, but
we expect the rest of the industry to
converge on these topics as the need for
standardized security mechanisms for
mobile Web applications becomes more
widely apparent.

evaluation and discussion
On our original Nokia N900 target
device, the Cloudberry system’s perfor-
mance could be described as adequate
at best. Over the course of the proj-
ect, the performance of mobile devices
and their Web runtimes has improved
markedly, particularly with newer de-
vices, improving user experience con-
siderably. Dramatic improvements in
JavaScript virtual machine perfor-
mance have also helped us. In general,
we’re rapidly reaching a point in which
Web engine performance will no lon-
ger be a barrier for building a mobile

device entirely around a Web-based
user experience.

Architecture Validation
One misconception that we frequently
run into when discussing the cloud
phone concept is related to client de-
vices’ “thinness.” Historically, cloud
computing has implied the use of thin
clients—that is, an approach in which
the majority of computation is per-
formed on the server side. Conse-
quently, upon first hearing about the
Cloudberry system, most people assume
an execution model in which the major-
ity of execution takes place in the cloud.

In practice, any system that relies
on the HTML5 application model, es-
pecially on its offline execution capa-
bilities, isn’t really a thin client at all.
Although the Web environment offers
flexible mechanisms for balancing the

computation needs between the client
and the server through libraries such as
Node.js (http://nodejs.org), in reality,
the majority of execution in HTML5-
based environment systems takes place
on the client. The execution model that
the Cloudberry system uses is actually
surprisingly similar to other mobile
software platforms that rely on a sand-
boxed virtual machine environment
(for example, Java ME6 or Android).
From this perspective, the Cloudberry
system’s overall architecture doesn’t
need any particular validation.

A key difference with Cloudberry
compared to systems such as JavaME
or Android is its ability to update ap-
plications and their components at a
dramatically faster pace by leverag-
ing the fact that any changes made to
the applications’ master copies and
their components on the server side are

Cache
(application and service installation framework)

Cloudberry engine & top-level UI loader

Cloud (server-side components)

Device-side
components

Host OS (usually Maemo or MeeGo)

Qt/QtWebKit
(includes WebKit browser, JavaScript engine + core JS libraries, and QML support)

Security framework
(extension of domain-based browser security model; enhanced with permissions + security policies)

Data API
(client-side data cache)

Process model
(usually applications downloaded from different domains run in separate OS processes)

Cloudberry engine

Cloud data
store

Applications
(HTML5 or QML)

Top-level UIs
(usually written in QML)

Installable services and
native components

 JavaScript libraries
• Device API(s)
• Data API
• Third-party frameworks, etc.

figure 3. A high-level architecture diagram of the Cloudberry system. Nearly all the customer-facing features of the cloud phone are

downloaded and cached dynamically from the Web.

 July/auguSt 2012 | IEEE SoftwarE 45

reflected almost immediately to poten-
tially millions of client devices across
the world. We haven’t yet tested the
scalability of these features, but sev-
eral topics related to the system’s se-
curity and overall scalability are cur-
rently under investigation.

Remaining Issues and Challenges
We discussed the limitations of the
Web browser as a software platform
extensively in earlier work.7,8 Most of
these observations apply to the Cloud-
berry system as well. If we had to pick
a single issue hampering the wide-scale
deployment of an HTML5-based mo-
bile platform, it would be the lack of
standardization. Although HTML5
and related W3C standard activities
play a critical role in turning the Web
into a compelling application platform,
the current feature set offered by an
HTML5-compliant Web browser is
still incomplete for real-world applica-
tions. For instance, the device APIs that
are under definition in W3C (www.
w3.org/2009/dap) offer only limited
access to platform features available in
personal computers and mobile devices
today. Proprietary APIs are still neces-
sary to access device and platform fea-
tures that are above and beyond the
capabilities offered by standards. This
considerably reduces the portability of
applications and the overall value of
the cloud phone proposition.

We predict that another major
round of standardization will be neces-
sary to establish a more complete Web
application platform beyond HTML5.
A critical goal in that standardization
activity will be to more comprehen-
sively virtualize the underlying oper-
ating system and device capabilities,
as well as to ensure that the necessary
security mechanisms are in place to
securely access all the platform capa-
bilities. Incidentally, the World Wide
Web Consortium has started work
on HTML.next (www.w3.org/wiki/
HTML/next).

a t this point, Cloudberry is a
research system with no im-
mediate product plans. How-

ever, many of the concepts explored
in the project are already finding their
way to commercial products. We be-
lieve that the trend toward Web-based
software will cause a paradigm shift
in the software industry from conven-
tional binary applications to dynami-
cally delivered Web applications. In the
future, the use of conventional binary
programs will be limited mainly to
system software, whereas the vast ma-
jority of end-user software will be de-
veloped using Web technologies. The
Cloudberry system, for its part, has
proven that such a transition is feasible
in the mobile device space.

references
 1. T. Mikkonen and A. Taivalsaari, “Apps vs.

Open Web: The Battle of the Decade,” Proc.
2nd Workshop Software Eng. for Mobile Ap-
plication Development (MSE 11), 2011; www.
mobileseworkshop.org/papers/6-Mikkonen_
Taivalsaari.pdf.

 2. I. Hickson, “HTML5: A Vocabulary and
Associated APIs for HTML and XHTML,”
World Wide Web Consortium (W3C) Internet
draft, work in progress, 2012.

 3. R. Rischpater and D. Zucker, Beginning
Nokia Apps Development: Qt and HTML5
for Symbian and MeeGo, APress, 2010.

 5. M. Zalewski, Browser Security Handbook,
Google, 2008; http://code.google.com/p/
browsersec/wiki/Main.

 6. R. Riggs et al., Programming Wireless Devices
with the Java 2 Platform, 2nd ed., Addison-
Wesley, 2003.

 7. A. Taivalsaari et al., Web Browser as an
Application Platform: The Lively Kernel
Experience, tech. report TR-2008-175, Sun
Microsystems Labs, 2008.

 8. A. Taivalsaari and T. Mikkonen, “The Web as
an Application Platform: The Saga Contin-
ues,” Proc. 37th Euromicro Conf. Software
Engineering and Advanced Applications
(SEAA 11), IEEE CS, 2011, pp. 170–174.

anTero Taivalsaari is a distinguished engineer at Nokia. His re-
search interests include Web application technologies and Web-based
software development especially for mobile devices. Taivalsaari has
a PhD in computer science from the University of Jyväskylä, Finland.
Contact him at antero.taivalsaari@nokia.com

kari sysTä is a professor of computer science at Tampere University
of Technology, Finland. His research interests include the Java platform
and micro edition. Systä has a PhD in computer science from Tampere
University of Technology. Contact him at kari.systa@tut.fi.

a
b

o
u

t
 t

h
e

 a
u

t
h

o
r

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

