
Mobile Computation Offloading: a Context-driven Approach

Matti Kemppainen
Aalto University School of Science
matti.kemppainen@tkk.fi

Abstract

Mobile computation offloading means transfer of execution
of mobile software computation outside of the actual device.
In this paper, we use a context-driven approach to analyse
and design offloading systems. We conduct a literature sur-
vey of the types of offloading, supportive architectural mod-
els and existing frameworks to propose taxonomies of mo-
bile offloading from viewpoints of an overall computation
system and mobile software architecture.

Moreover, we propose offloading into a local network,
calling this local context offloading. The idea is to minimise
network distance to maintain lower latency and higher bi-
trates, which have an effect to the power consumption in data
communications. In addition, our proposal attempts to over-
come challenges of scarce Internet connectivity and make
good use of collaboration with nearby devices. The main fo-
cus remains on the context-awareness. This paper is a step
towards a framework that will hide the underlying technol-
ogy in such dynamic computation environment.

KEYWORDS: computation offloading, software architec-
ture, context-awareness, local infrastructure, battery drain,
mobile software performance

1 Introduction

Thanks to open APIs and online application markets, no
longer are only device manufacturers and service providers
developing and distributing software for the mobile devices.
Instead, a myriad of hobbyists and entrepreneurs has wel-
comed mobile software development. While many mobile
devices already have the resources of a late-90s desktop com-
puter, the battery capacities of the devices still remain nearly
the same as they were a decade ago. Due to this disparity in
technological advancement, only certain types of computa-
tion are justifiable in the mobile devices, and they are heavily
dependent on the context.

Prior to mainstream mobile data networks, only simple
battery drain limitation methods were available, such as op-
timising the code or hardware and limiting the amount and
the speed of computation. In the more recent cases, locally
available network connections such as WLANs could also be
used, but in the advent of fixed-cost mobile broadband and
enhanced connectivity in the most types of networks, moving
the computation over the network has become a truly feasi-
ble method. Numerous ways of exploiting the well-known
client-server model have been available for mobile software
developers for over a decade. However, instead of just us-

ing the mobile device as a rich renderer for server-generated
information, mobile computation offloading refers to a more
profound change in the system architecture. The key idea is
that at least some parts of the mobile software itself are run
outside the actual device.

A surrogate is a computing entity that augments the mo-
bile device over a network connection takes over the the
computational work of a functionality of a mobile applica-
tion. In terms of battery usage, offloading proves beneficial
if the communication costs for the delegation are sufficiently
low and the computation efficiency increase is sufficiently
high. Artifical intelligence in a chess game is a classical
example of mobile offloading: communicating the situation
of the game involves almost negligible cost, and while the
painstakingly heavy computation of the optimal move can
be done in parallel, efficiency difference to local computing
is immense [20]. Therefore computation offloading may pro-
vide enormous benefits in certain contexts. What remains is
to find a good compromise between the usage of local re-
sources and costs of offloading.

As noted above, energy-efficiency is the keyword in mo-
bile offloading. However, the challenges are not limited to
this particular theme. To support offloading of application
internals, we need a software architecture fit for the pur-
pose. One example [7] duplicates the state of the mobile
device to a virtualised environment in the computation cloud
so that there are two (almost) identical environments. How-
ever, problems in this offloading model include cost of state
synchronization and decision on the appropriate split of com-
putation. We will see that similar challenges are common to
many other computation offloading models as well.

Despite the wide variety of viewpoints, we concentrate
mainly on architectural aspects in this paper. First, we walk
through the problem domain in section two by discussing
the taxonomy of mobile offloading. In section three, we
identify different architectural models that appear in the ex-
isting frameworks and then discuss today’s challenges of
mainstream computation offloading. Finally, we propose a
generic local context offloading scheme and discuss its chal-
lenges in sections four and five. While similar idea have been
proposed already many times [28, 19, 25], we finally have
such technology, which may make it reality.

2 System-Level Taxonomy
As an attempt to give a comprehensive view of the problem
domain and its dynamics, we traverse through five high-level
viewpoints of mobile computation offloading in this section.
Figure 1 summarizes the key factors in each viewpoint. Our

mailto:matti.kemppainen@tkk.fi


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

main focus is on describing the potential of mobile offloa-
ding. Therefore we intentionally omit deeper analysis of de-
cisionmaking formulae and process-level scheduling.

2.1 Motivation for Offloading
From a selection of recent literature [20, 7, 10, 29], we have
identified three general axes of motivation in mobile offloa-
ding. Savings in energy plays the biggest role of them. The
battery capacity has not kept the same pace in development
than other hardware components of mobile devices. To pre-
vent excessive battery drain, one approach is to reduce the
amount of computation in the mobile device [20]. Whereas
energy consumption is a device-centric aspect, reliability and
performance exploit the resources in the cloud.

As a counterweight to the positive factors, several non-
technical constraints exist. High performance and robust-
ness involve monetary cost, whereas security concerns re-
quire privacy management. Zhang et al. [29] give these two
examples as goals in describing the attributes of their cost
model. However, rather than bringing any further axes, they
act as counterforces to the noted advantages.

Recently, contextual information has been considered
only in the role of an environmental factor that may allow
or prohibit offloading. In contrast, some earlier visionary
papers on pervasive computing consider it as first-class in-
formation [25, 28]. While we consider context as the fourth
axis, it is much more difficult to define than the previous
axes. Generally speaking, the more contextual informa-
tion the mobile device can interpret, the more humane and
straight-forward is the user experience [1].

2.2 Nature of Offloadable Functionalities
Many researchers have either noted or implied that certain
traits in mobile software embrace towards offloading. Hea-
viness of computation triggers the need for additional re-
sources in order to prevent extensive battery drain [8, 14, 7,
20]. Unlike computational complexity, heaviness may also
mean deliberately repeated invocations. Parallelizability im-
plies low coupling of the software components and therefore
supports computation offloading [29, 9]. Strength of expres-
sion in terms of length of data reduces the cost of communi-
cation [20]. Time flexibility makes some context-based opti-
misations possible [25, 24]. Finally, state independency lets
us avoid costly synchronization of the internal state [18].

The concepts above contain inherently assumptions from
the programming environment. In contrast, Chun and Ma-
niatis [7] give a feature-wise categorization of offloadable
functionalities into five classes. In primary functionality
outsourcing, the offloaded functionality is a computation-
intensive key feature of the program, such as speech-to-text
processing. This is similar to the client-server applications
and must be synchronized (i.e. reactive) from the user’s
viewpoint. In background augmentation, such constraints
are less dominating. One of the best use cases in our opin-
ion is photo upload and analysis1. In mainline augmenta-

1Photos would eventually be uploaded from the phone in some way.
Therefore it would be convenient to do it in background whenever it is suit-
able.

tion, light-weight computation is offloaded for heavy-weight
processing (as described in [18]). Hardware augmentation
attempts to overcome hardware limitations of the mobile de-
vice. Probabilistic analysis and artificial intelligence are use
cases for parallel multiple execution, which exploits cloud
resources to test different scenarios of outcomes that the pro-
gram may have.

With this categorization, one could think that the data lo-
cates in the mobile device. In many cases, however, this is
not true. Kumar and Lu [20] bring up the fact with regard of
cloud storage services becoming more common. The paper
claims that sending the data over the network is not needed
that often in future. Instead, just a simple pointer to data
in the cloud would suffice. Computation could arguably be
done completely in the server-side environment, if the na-
ture of the external data is independent from the mobile soft-
ware state. However, this is a trivial case from our viewpoint.
Therefore we do not focus into this special case. For the rest
of this paper, we consider that the offloadable software might
need some external data as well, but at least some key ele-
ments still locate in the mobile device. A bittorrent client
[17] and a database indexer [12] serve as examples that sit
shallowly within our definition.

Bridging to decisionmaking, Kumar and Lu [20] describe
the classes never offload, depends on bandwidth and al-
ways offload to balance the offloading decision with the re-
lationship of computation and communication. Inspired by
thoughts in [20, 15, 10, 7], we claim that frequency of com-
putation brings an additional relationship between these two
aspects. In a scenario where the same communication feeds
multiple occurrences of computation, we can cache and recy-
cle the once transferred data, assuming there are clever ways
to perform the needed data transfer. Therefore the earlier
classification receives another category called offload over
time. To recognize its existence, one possible identifica-
tion method for the existence of such correlation is statistical
analysis similar to one presented in [15].

2.3 Decisionmaking

One of the most challenging tasks in mobile offloading is to
decide, when it is needed. Generally, offloading is benefi-
cial, whenever the gained efficiency outweighs the costs in-
volved [20]. The difficult part is to define the indicators of ef-
ficiency and their related costs, observe their realization and
optimise the corner cases where the counterparts compensate
each other. One of the key reasons to the difficulty is that mo-
bile environment is much more dynamic than any desktop or
server environment. There are generally three different types
of decision schemes: static, dynamic and their combination,
which we call hybrid. In addition to them, these can be fur-
ther splitted into automated and human-made decisions.

In terms of energy consumption, static decisions by soft-
ware engineers have already proven to be very efficient.
However, this approach requires careful considerations in the
application design. Since static decisions do not take uneven
conditioning of resources into account, their application is
efficient only under certain conditions [25]. Therefore any
general categorization cannot provide means to set strict bor-
ders. There are certain cases though, where no offloading



Aalto University T-110.5190 Seminar on Internetworking Spring 2011

motivation advantages (axes): energy savings, reliability, performance, context
constraints: monetary cost, security

nature embracing traits: heaviness of computation, parallelizability, strength of expression, time flexibility,
state independency
categorization: software features, general need for offloading

decisionmaking inclusion/exclusion: predefined, dynamic
decisionmaker: machine, user
timing: static, dynamic, hybrid
parameters: static information, hardware resources, network availability, other contextual information

infrastructures
surrogates: cloud services, PCs, specialized processors, local environment, other mobile devices
availability: always available, locally available, context-dependency
selection: availability, ownership, collaboration, context

networking
environment: static, link-level dynamic, upper layers dynamic
mobility: not handled, external handling, application-specific handling
availability: always available, known variance, predictable variance, random variance, no connection

Figure 1: Salient points of the discussed system-level views.

should take place. For instance, I/O interactions with the
sensors of the device should not normally be offloaded [18].
Also user interace computation is not often offloadable [10],
but at least parts of UI can indeed be offloaded [27]. There-
fore even these omissions are not categorical.

To tackle the challenge of dynamics, runtime decision
schemes profile the code or the environment, or both of them.
As an example, Huerta-Canepa and Lee [15] take a statis-
tical approach, in which historical data of the executable’s
resource usage is combined with the environmental status.
In addition to the following general system resources, mon-
itoring includes CPU status, memory consumption, network
usage and disk I/O. Dynamic orchestration brings benefits in
a just-in-time (or at least timely) fashion. However, profiling
takes in turn some resources, and therefore it must be done
efficiently. Hence finding an optimum solution is inexact by
nature.

Cuervo et al. [10] follow hybrid approach by combin-
ing application programmer’s vision, static analysis and dy-
namic environment in the offloading decision. To start with,
they collect the methods that the programmer has annotated
as remoateble. Calls to these methods may be offloaded,
if the system thinks that offloading is beneficial. This way,
clear mistakes are avoided and execution is offloaded when
needed. On the other hand, CloneCloud project proposes that
the system should tolerate mistakes by itself [9].

Selection criteria for the type of decisionmaking is heavily
dependent on the nature of the offloadable functionalities.
Sometimes offloading may even be the only option, whereas
in many cases offloading is not possible at all. Nevertheless,
the software developer can easily identify these extremes,
thus leaving the real challenges in the middle. The better the
context is analysed, the better decisions the user perceives.

2.4 Infrastructures

The words “cloud” and “infrastructure” are used extensively
in many recent papers that are related to offloading. The
main reason here is to abstract away the physical embodi-
ment of the exploited computation resources. Usually the
first notion from such words is a computation service by a

third-party provider, for instance Amazon EC22 or Windows
Azure3. In addition to public cloud infrastructures, private
cloud deployments (using Eucalyptus4 or similar software)
are becoming more and more common. In enterprise en-
vironments, for instance, mobile devices would send their
heavier tasks to the surrogates that are in the corporate net-
work, thus complying with the security policies.

Alternatively to the server clusters, the current per capita
density of computers allows us to consider offloading to the
surrounding devices [7]. Nowadays many specialized hard-
ware computation units are running in the personal comput-
ers. In certain types of computation, graphics processing
units (GPU) are faster than the main processors (CPU). De-
spite this, superior computation resources are not always of
the utmost importance in offloading. Continuous power sup-
ply of a surrogate may as well be the primary target. There-
fore also WLAN access points are good for consideration.
Moreover, some conventional home routers already resem-
ble minimalistic general-purpose servers5. They run Linux,
and WRT projects (e.g. OpenWRT6) help the tech-oriented
owners “optimising” their boxes. Thinking out of the boxes,
even cars may support offloading in future, as application
programming emerges in their mutimedia systems [4, 21].

Another particular hardware category worth mentioning
is simply other mobile devices. Exploiting their resources
may feel counterintuitive, because the key driving force for
computation offloading is saving their battery life7. How-
ever, if the devices have a common goal, this setup may
save in overall energy consumption. Huerta-Canepa and Lee
[16] describe a use case where the subjective exploitation of
available resources transforms into collaborative sharing of
resources in order to gain utilitaristic benefit. Specifically, a
group of colocated mobile phone users form an ad-hoc net-
work, when none of them alone have sufficient resources but

2http://aws.amazon.com/
3http://www.microsoft.com/windowsazure/
4http://www.eucalyptus.com/
5For instance, ASUSTeK’s high-end router RT-N56U runs a 500MHz

CPU and has 128MB RAM. In addition, USB bus enables an easy way to
add more hard-disk capacity.

6http://www.openwrt.org/
7We assume here that “two classes of citizens” within the mobile device

population is not desirable.

http://aws.amazon.com/
http://www.microsoft.com/windowsazure/
http://www.eucalyptus.com/
http://www.openwrt.org/


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

together they would be able to succeed. The benefits of this
arrangement are not only technical: in the given use case,
the original motivation for collaboration is economical in the
form of avoiding data roaming costs. [16]

An obvious problem of the locally available infrastruc-
tures is that they are just intermittently (or even just for once)
available. On the other hand, remote infrastructures do not
have advantage on the issue, because there is no universal
guarantee on Internet connectivity either.

2.5 Networking

In order to offload anything, we need a network connection.
In an ideal situation, every network node would be globally
and unambiguously accessible at all times, with negligible
latency and sufficient bandwidth. Especially in mobile net-
works, this is far from reality. That said, computation offloa-
ding papers pay surprisingly little attention to networking.
Regardless, Cuervo et al. [10] suggest that both the band-
width and the round-trip time (RTT) between the offloader
and the surrogate are a relevant metric in evaluating the cost
of network transfers. Chun and Maniatis [8] in turn make a
note about the diversity of network environments and effects
of mobility.

Besides the challenges of static networks, the need for mo-
bility poses additional routing problems. In a single cellular
network, the network architecture masks the mobility on the
link layer, allowing the use of any static approach on the
logical layer and above. Also link-layer hand-overs behave
generally well. However, modern mobile devices support
several types of networks; the range can be anything from
Bluetooth to Ethernet to WiMAX [7]. According to their
availability, the most appropriate interface should be selected
for each situation. No network provider can support such
switches. [5]

Ra et al. [24] discuss delay tolerance on application level
to schedule data transfer in the most efficient way. First intro-
duced in [22], the paper expects the predictability of network
availability in order to exploit the context in saving battery
life. Sharing the expectations but focusing on the overall
throughput, Deshpande et al. [11] carry out a similar anal-
ysis using commercially-available networks. Even though
the business interest in mobile data offloading stems from
the congestion of mobile networks, the same solution model,
namely using short-range radios such as WLANs, helps both
with data surge and battery drain.

3 Mobile Software Architectures

This section discusses some architectural models for the soft-
ware in a mobile device. As in all architectural problems, the
design depends heavily on the way that the designers answer
to questions that define the software. Therefore many differ-
ent approaches to resolve these requirements have been stud-
ied. The most important question remains the same: how to
support computation offloading?

Many declarative programming languages and their run-
time environments have a built-in support for concurrent and
distributed computing [13]. However, the covered related

Level Offloaded Entity
Feature sematically coherent parts of the application
Method method calls (with needed data)
Image bytecode, program image or volume image
System low-level code selected by OS scheduler

Figure 2: Architectural approaches.

work has explored imperative languages (yet with declara-
tive toolsets). Therefore we focus on object-oriented and
component-based architectures8. The scope of this paper
does not allow any further analysis on this aspect.

Listed in Figure 2, our first architectural view, namely
feature offloading, mandates the mobile software itself to
support mobile offloading inhrently. The methods that in-
volve the offloadable computation are themselves respon-
sible of passing the work to the surrogates. On the other
hand, method and image offloading reduce the effects of off-
loading in application development. Furthermore, feature
and method offloading are conceptually different from varia-
tions of image offloading and system-level distribution in the
sense that the aforementioned focus on the semantical struc-
ture of the program, whereas the latter techniques emphasize
the supportive role of the computation environment.

In the following, we introduce four frameworks inline
with a detailed discussion of the most prominent architec-
tural models. Importantly, instead of falling into only one
category, the offloading frameworks proposed so far share
qualities of several models. The main goals of the archi-
tectures are simplifying or masking the offloading process
from the application developer, and providing means to make
the offload decisions efficient. We focus on the concepts
and therefore–among other things–source building process
is mostly out of the scope. While also system-level distribu-
tion is definitely interesting, we omit its analysis due to lack
of space.

3.1 Feature Offloading

In feature9 offloading, the mobile software prepares the
dataset that is sufficient in solving the computational prob-
lem in question. Then the software sends the dataset to the
cloud, where the actual computation is done. The mobile
software eventually receives the result dataset and acts ac-
cordingly. This way, the feature implementation outside the
mobile device is rather straightforward, because the interface
between the client and the server communicate through an
interface that abstracts away the computation environment.

With this definition, applications making use of feature
offloading range from World Wide Web to graphical desk-
top sharing (VNC). This scheme is particularly useful, when
both the offloader and the surrogate share the same long-

8Paradigmatic purity is not of key importance here; we do not attempt to
differentiate the paradigms more than appropriate.

9In this context, feature means a logical composition of software execu-
tion that the user senses as a distinct and atomic behavioural trait.



Aalto University T-110.5190 Seminar on Internetworking Spring 2011

term storage for data10. Since client-server model is the
most prevalent communication method in today’s Internet
and RPC, REST, SOAP and similar access protocols are
well-known, wide deployments of the applications exploit-
ing this model are easy.

As noted in 2.3, efficiency is potentially very high for the
statically offloaded features (e.g. a Google search). As a
counterweight, by our definition, the application must pre-
pare the transferrable dataset by itself. In order to main-
tain efficiency, the more complex the offloaded feature is,
the more carefully the software must be designed. Therefore
decisionmaking is almost inherently manual by the program-
mer in the architectures relying on this model. However, the
application developer has consequentially the control over
offloading, and therefore deployment of this offloading type
is rather safe. In addition, this type of offloading does not
have any (direct) effect to those funtionalities that are not
crafted for offloading.

Despite its manual nature, feature offloading does not ne-
cessitate static timing decisions. Cuckoo framework requires
a developer to write an interface for the offloadable feature
[18], and thus has qualities of feature offloading. Elastic
Application Model introduces a similar approach by requir-
ing use of so-called weblet containers, which encapsulate an
independently11 runnable part of the software (“a weblet”)
[29]. Both of these frameworks are designed for dynamic
timing of offloading.

3.2 Method Offloading
Method offloading stands for transfer of execution of subrou-
tines. It is conceptually somewhat similar to feature offloa-
ding. The difference is that the computation split of the code
happens on a semantic rather than logical level. Therefore
offloading decisions may also be based on purely computa-
tional statistics. Also some distributed object frameworks
fall into this category.

In order to make method offloading attractive from
the developers’ point of view, programming environment
(compile-time or run-time) should be somehow aware of its
own structure and be able to use this information in offloa-
ding decisions. In practice, introspection and method wrap-
ping are required features from the programming languages
and their runtime environments. Cuervo et al. [10] rise to the
challenge with a method-level offloading framework called
MAUI. With help of .NET Reflection 12, which is one way
to do code introspection in CLR13, MAUI wraps during the
compilation the method calls that the programmer has tagged
as candidates for offloading.

Even bigger question in this model is what information
surrogates initally need. One alternative would be to off-
load initially nothing, insisting that accessing objects re-
quires communication over network [14]. MAUI’s approach
represents the other end: the visible state of the program is

10Described in section 2.2
11It is worth noting that these weblets may run other weblets, effectively

producing a tree hierarchy.
12http://msdn.microsoft.com/en-us/library/

f7ykdhsy(v=vs.71).aspx
13Common Language Runtime, Microsoft’s runtime environment for its

Common Intermediate Language (CIL).

offloaded in its entirety. However, the developers of MAUI
acknowledge this as a point of naïveté in their system and
are working on a more fine-grained solution [10]. Finally,
Cuckoo has taken a stateless approach and effectively leaves
the synchronization of bigger datasets to the application pro-
grammer [18].

Method offloading does not conceptually require any si-
milarity between the offloader and the surrogate, albeit some
existing frameworks (e.g. CloneCloud [9]) are designed to
work on the identical sandboxes. Since method calls are usu-
ally references instead of code transfer, they may be bound
in another environment with a different implementation (e.g.
Cuckoo [18]). Whereas identical environments open up an
easy way to type safety, robust object broker architectures
such as CORBA may compensate the downsides. The gen-
eral downside of method offloading is that the programmer
is restricted into certain programming languages or frame-
works that support identification of methods and their wrap-
ping.

3.3 Image Offloading

Image offloading is an intuitive yet difficult-sounding ap-
proach towards offloading computation. Simply put, the im-
age of the program code is offloaded to a virtualized envi-
ronment and the state of the machine is maintained to corre-
spond to the one of mobile device’s process.

There are many levels of image offloading. System virtual
machines (VM) allow many instances of operating systems
to share the resources on one physical machine. The pro-
cessor runs natively the machine instructions of a hardware-
assisted or native VM. However, this poses a problem in our
context, because offloading the operating system goes down
to machine instructions. Most of the mobile devices have an
ARM processor, while servers and desktop are usually based
on x86 instruction set architecture (ISA) [10]. Software-
driven or hosted VM may emulate any ISA, but the efficiency
is inferior to the native execution.

As another aspect, application-layer or process VM refer
to a virtual environment similar to hosted VM with the ex-
ception that it abstracts away the underlying operating sys-
tem and hardware for one process at a time. One well-known
example of such platform is Java VM. As an input, the VM
takes an application in a special bytecode format, which is
an optimized binary presentation of the source code. This ar-
rangement provides a certain level of platform-independency
to overcome the challenges of differing ISAs.

CloneCloud project has customized Android’s
application-layer VM (Dalvik) to support computation
offloading. It also attempts to prevent unnecessary sus-
pension of the process by working at thread granularity.
[7, 9] In contrast, the reference implementation of Elastic
Application Model runs only the offloaded weblet under the
management of a cloud-side controller.

3.4 Challenges in Today’s Frameworks

Considering mainstream deployment as the goal, the biggest
problem with MAUI, CloneCloud, Cuckoo and Elastic Ap-
plication Model is that they are simply not available. No

http://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.71).aspx
http://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.71).aspx


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

software developer can start adapting to them, nor the main-
stream mobile device users may feel their benefit. Even if the
frameworks were available, the suggested frameworks would
require awareness from the developers. Albeit the presented
solutions already lean towards easiness in application inte-
gration, they propose certain approaches towards software
development, to which the developers would need to adapt
in order to gain the benefits. Therefore the existing applica-
tions might need an extension or a partial rewrite to introduce
compatibility with the frameworks. At least the source code
must be rebuilt for static code analysis.

Applicability of the frameworks remains questionable as
well. Whether they worked in anything generic is not at least
mentioned yet. The examples given in the experiment reports
mainly cover some specifically-crafted use cases for mobile
offloading. No analysis has been done with such software
that is commonly available. We suggest that this is partially
because of the recognised need for adaptation. In addition,
this leaves the current guidelines for the software developers
quite general, since the corner-cases are not discussed.

Diversity of the approaches is also problematic. Every
framework has its own environmental needs and uses their
own application-layer networking protocol. This trend is
also likely to continue. Because offloading is application-
specific, a mobile device owner would probably use a num-
ber of offloading frameworks due to multiplicity of appli-
cations. From the viewpoint of cloud service models, this
would be a strength. Application publishers would provide
a surrogate, or separately available offloading services might
emerge. In either case, the user would be tied to the avail-
able servers and service providers, unless installation and re-
source consumption of the surrogate software is carefully ex-
amined prior to deploying a framework.

As a final note, exploiting only one aspect of offloading
would easily make the system naïve. Today’s proposals scat-
ter to many viewpoints in order to gain more benefit from
the context. However, excluding Elastic Application Model,
they omit user interaction as input. As trust issues are yet
to be solved, this is probably a point of future work. Even
so, we argue that the need of user interaction exists. The ex-
tent of it depends on the shape of the cloud, which partially
defines the user’s vision of trust (to service providers) and
personal needs (in terms of monetary cost) [29].

4 Offloading in Local Context
In this section, we discuss the architectural concerns regard-
ing computation offloading to locally available surrogates.
Our definition of local offloading thus defines the network
distance. In addition to the mobile devices, local-area net-
works have many other citizens. As described in section 2.4,
they range from ordinary consumer-level technology (such
as WLAN access points) to sensors and low-end servers.
Moreover, the number and diversity of devices are contin-
uously increasing. While music player integration in the car
audio systems has been around for a while [2], car-specific
applications using built-in touchscreen consoles is on the
edge [4, 21].

To many of these surrounding devices it applies that their
energy reserves are virtually infinite, as they are connected to

a power grid or an aggregate. Presuming their capability to
general-purpose computing, their resources may therefore be
harnessed to offering a relief mechanism for the surrounding
mobile devices14. Motivation to this lies in the basic prin-
ciples of telecommunication: the longer the distance, the
higher the latency. Earlier research has shown that offloa-
ding over high-RTT connections is expensive to the battery
[10]. The following collection of use cases illustrates the
potential.

Let our imaginary person Oliver have a bunch of different
networking-enabled devices that are fit for generic com-
putation. He wants to use these devices to help his mobile
phone save energy. When Oliver is at home, the compu-
tation is offloaded to his WLAN access point, multimedia
system or even a futuristic coffee machine. During a car
journey, the phone communicates mainly with the car, us-
ing minimal computation resources of its own. When at
work place, a local augmentation solution helps Oliver’s
phone to survive the day’s tasks. On the weekend trip to
the countryside, the train offers an Internet uplink and
a local computation infrastructure. Since Oliver is keen
to following the news, he launches an instance of news
subscriber application on the train’s surrogate. Other
travellers may join to follow the same news, thereby re-
ducing the use of uplink capacity. Finally, Oliver wants
to work on the photographs with his tablet after returning
from the trip. As his home multimedia system processes
the photos, the tablet is just a conductor of the infrastruc-
tural orchestra and an interface to the user.

In terms of software functionalities, this example revealed
numerous possibilities for offloading to locally available
hotspots. In the car, the owner of the mobile device might
be driving, and thus only background augmentation would
be realistic. In many such situations (e.g. virus scan) a sig-
nificant amount of data is located in the device itself. There-
fore use of a nearby device would be beneficial. On the other
hand, while collaborative operation in the train would be in
the interests of the train company, it would also save the
battery lives of the mobile devices by providing better RTT
and transfer speed than accessing the news service directly.
This in turn would improve user experience. Lastly, physical
essence would not limit the feature set of a compact device.
In addition to saving uplink capacity here as well, offloading
to a nearby device would put otherwise wasted resources into
good use.

As the future prospects given above sound promising, the
development of mobile offloading has yet to overcome many
technical challenges. In the following, we discuss a few of
them. Due to the reasons already mentioned in our discus-
sion about the diversity of the offloading frameworks (sec-
tion 3.4), the most important view in answering to these
problems is to thrive towards common standards. Finally,
we peek quickly into the business domain.

4.1 Service Discovery
Local surrogates need to be published and discovered, before
their use is possible. After discovery follows resolution of

14The surrogates would maintain their original tasks.



Aalto University T-110.5190 Seminar on Internetworking Spring 2011

the available services. Universal Plug and Play (UPnP) is a
protocol suite for these routines in a local IP-based network-
ing environment such as WLAN. UPnP over Bluetooth is an
alternative to defeat the limitation of native Bluetooth device
discovery, which ranges only to the Bluetooth piconet. UPnP
would enable use of Bluetooth as a gateway in extended ser-
vice discoveries [3]. However, among other benefits over
UPnP, Apple’s Bonjour has superior API support and exten-
sive documentation. It also supports a form of infrastructure-
less domain name system (DNS) called mDNS, which uses
IP multicast. [6]

Kemp et al. [18] complete the service discovery with QR
codes15, which would contain the address of the server.
However, this solution requires a unified naming scheme.
URLs work only on a logical networking layer and imply
existence of a working network connection. This would lead
to a problem in an environment, where the surrogate is only
available through a certain link-layer connection. Nonethe-
less, occurrence of such situation is unlikely due to high level
of IP penetration in the devices capable to generic comput-
ing.

Due to these facts, we suggest that IP together with mDNS
is sufficient in terms of naming scheme requirements. As
Bonjour is already a widely-deployed industry standard, it is
a natural choice for zero-configuration use of local context
offloading services. For longer-distance surrogates that in
reality would be used every now and then, the mobile device
might just maintain a simple list of addresses to the user’s
subscriptions.

4.2 Code Transfer and Execution
Remote method invoking technologies typically assume that
the remote implementation is already in place. In the dy-
namic environment described above, this is not the case.
Therefore we need a mechanism to transfer the program
code to the surrogate. There are generally two alternatives
to tackle the issue. Elastic Application Model (section 3.1)
takes a bundling approach [29]. In other words, it includes
the needed program code to the information package that is
sent to the surrogate. Another way would be to reference the
needed code, when the surrogate would have to retrieve it.

Both means have good and bad sides. First, the referenced
code must be available, whereas bundling approach works
even without Internet connectivity. An easy way to circum-
vent the problem is to keep one copy of the offload code in
the mobile device as the backup source. However, this would
in turn prevent potential environment-specific optimisations
available for downloading, since the mobile device cannot be
expected to carry all of them. Second, surrogate may cache
the static parts of popular weblets. Thus transfer is not al-
ways needed. In any case, code transfer should be handled
as soon as the need is evident, in order to prevent delays or
other artifacts to the user.

After the surrogate has received the program code, there
must be a way to execute it. Today’s mobile devices are di-
verse in terms of programming languages and runtime envi-
ronments. Therefore supporting all of them is a real chal-
lenge. This time we face three alternatives. The first one is

15http://www.qrcode.com/index-e.html

to support such a selection of platforms that is satisfactory
to the target group of the surrogate. This would allow us to
run the same code in the surrogate as in the mobile device.
Another way around is to have another implementation spe-
cially crafted for the surrogate’s software stack. Needless to
say, this would cause overhead for the application developer.
Furthermore, software dependencies are bound to produce
problems in differing computation environments [23], and
therefore a strict independency clause is likely to be concen-
trated on the offloaded code. Third, the abstraction level of
offloaded procedures might be maintained so high that the
computation is possible in every environment.

Finally, the user is not alone with trust issues. In our con-
cept, surrogate’s environment is about to run third party code
in an automated fashion, for which we need security manage-
ment. The following two places are probable for offloading
purposes. First one is infrastructure services such as pub-
lic clouds or local data processing units. In them, compu-
tation is already sandboxed with virtualization techniques or
restricted execution environments.

In this light, the most likely transfer model for local con-
text offloading is a combination of bundling and referencing
so that the offloader is able to provide a baseline implemen-
tation for the surrogate, if no optimised version is available.
Whereas making assumptions of the virtualisation or sand-
boxing level requires more empirical data, a good starting
point would be to consider one offloaded feature at a time,
focusing on the modularity of the system. Therefore we sug-
gest Elastic Application Model as the basis for future con-
siderations. In further analysis, other offloading frameworks
may be worth a revisit.

4.3 Cloud Transfer

In a mobile environment, local context changes frequently.
Therefore available computation services change as well,
and computation must occasionally be moved from a surro-
gate to another. There are two possible routes in the transfer:
directly between the surrogates or using the mobile phone as
an haulier. Nature of offloaded functionalities plays a key
role in this selection. Some background tasks could continue
in the cloud and then be moved nearby the mobile device,
when there are sufficient resources or a specific reason for it.
In terms of energy consumption, even better solution would
be a proxy model, where the computation remains in the pub-
lic cloud [29, execution pattern no. 3].

Connectivity may not always be instant, and therefore
temporary data storages are needed. In order to make use
of them, delay tolerance must be known or estimated. In ad-
dition, reliability of local surrogates is dependent on the ser-
vice provider, and it is difficult to imagine any service-level
agreement in such computation environment. This creates an
inherent need for checkpoints to resolve any data losses.

4.4 Business Opportunities

All the examples in the previous sections assume some kind
of access to surrogates. Here we substantialize our views
of getting such access to publically available resources. To
start with, privilege to use hotspots would be sold as a com-

http://www.qrcode.com/index-e.html


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

plementary service, e.g. together with a train ticket. Second,
hotspots might run some special services that are configured
to the needs of the local environment. Examples of such
locality-awareness are virtual guide in a museum or flight
tracker at an airport. The needed client-side software would
be easily available from the surrogate. Next, if several users
want to run the same program on a hotspot and the data is
shareable (e.g. subscribing a public RSS feed), the effort
would be combined into one. Such services would also en-
able advertising with sponsored offloading of applications,
keeping them free of charge to the users.

Equally important is to embrace the businesses and even
individuals to providing computation resources. For in-
stance, a homeowner association would like to offer local
augmentation and Internet connectivity to the public in a res-
idential area. To overcome its maintenance fees while main-
taining openness, the service would not be free of charge. If
the payments are charged in virtual currency, only the bank-
ing service provider would need the actual credit card in-
formation. Since such virtual banks set their own rules to
the businesses, it might be easier to get started with host-
ing a computation service than with help of traditional banks
whose operations are strictly regulated by laws.

Also collaborative wireless networks such as Fon16 or
Wippies17 are already daily business, computation hotspots
have also potential to similar deployment scenarios. If this
kind of offloading scheme can provably reduce overall en-
ergy consumption from the system, even public institutions
such as municipalities18 could be interested in setting up
hotspots.

5 Future Work
This paper only scratched the surface of local context offloa-
ding. At least the following challenges are yet to be surveyed
in this delicate domain.

Technical Aspects In addition to future challenges in sec-
tion 4.2, we propose further research on the following top-
ics. Starting with Unified configurations of surrogates, the
feature set of the surrogates should be universally compara-
ble, so that profiling the surrogates would be possible by the
manifest of it alone. This leads to quality of service guar-
antees, which are important in determining the benefit/cost
balance of a single offload decision and adapting the other
parts of the software to the usable resources.

Moving to advanced application areas, Cloud of hotspots
refers to a grid-alike arrangement of the nearly positioned
hotspots and enables sliding the offloaded computation in the
grid as the mobile device is moving. Furthermore, process
transfer allows an instance of multi-platform application to
move from a terminal device to another, as demonstrated in
Aura project [26].

Information aggregation frameworks (such as already ex-
isting mobile location APIs) make use of contextual infor-
mation easy by reducing the raw data into an informational

16http://www.fon.com/
17http://www.wippies.com/
18Wireless networks run by municipalities are already common in Fin-

land and many other countries.

and purpose-driven format. For instance, a certain level of
location-awareness may be achieved this way. However, it
is questionable whether a more precise context may be de-
fined by applying the data to create a more general contextual
model.

Social Aspects A good number of mobile offloading pa-
pers considers trust issues as a theme for future work, and
maintaining confidentiality in cloud envinroments is under
active research. The dynamic nature of local context off-
loading even increases the level of burden. In addition,
the collaborative application concepts may require certain
anonymity of the handled information and its users.

Business Models As started in 4.4, local context offloa-
ding may have potential to change our IT ecosystem. One
of the biggest questions from the developer’s point of view
is the openness of the environments. In order to gain a crit-
ical mass, a business-backed offloading model is probably a
necessity. On the other hand, if the development work is en-
tirely enterprise-driven, we may end up to a walled garden
or some other form of vendor lock. In our opinion, realising
local context offloading to its full potential requires open and
innovative business environment.

6 Conclusion
In this paper we formed a taxonomy of mobile compution
offloading by integrating existing information from related
work and proposing our own supplements. This was done
from five aspects in the system-level concepts, whereas four
levels of offloading-enabled mobile software architectures
were identified. We also discussed a small number of re-
cent efforts in compution offloading framework and analysed
their current potential in mainstream usage. Lastly, our vi-
sion of local context offloading showed a variety of ways to
improve the user experience and energy efficiency in the mo-
bile device. In order to make the vision reality, we selected
an existing basis and proposed some directions for future re-
search. Throughout the paper, we maintained that contextual
applicability brings challenges, but good answers may bring
unforeseen possibilities to mobile computing.

References
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,

M. Smith, and P. Steggles. Towards a better under-
standing of context and context-awareness. In Pro-
ceedings of the 1st international symposium on Hand-
held and Ubiquitous Computing, HUC ’99, pages 304–
307, London, UK, 1999. Springer-Verlag. ISBN 3-540-
66550-1.

[2] Apple Inc. iPod your BMW: Apple & BMW unveil
the first seamless integration of iPod and car audio sys-
tem. June 2004. URL http://www.apple.com/
pr/library/2004/jun/21bmw.html. Press re-
lease. Retrieved April 5, 2011.

http://www.fon.com/
http://www.wippies.com/
http://www.apple.com/pr/library/2004/jun/21bmw.html
http://www.apple.com/pr/library/2004/jun/21bmw.html


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

[3] A. Ayyagari. Bluetooth ESDP for UPnP, 1 2001.
URL http://www.comms.engg.sussex.ac.
uk/fft/bluetooth/ESDP_UPnP_0_95a.pdf.
Technical Draft. Retrieved April 28, 2011.

[4] M. C. Baca. Tesla CEO: Model S will sup-
port third-party apps. March 2011. URL
http://venturebeat.com/2011/03/16/
tesla-app/. News report. Retrieved March 24,
2011.

[5] F. Bonomi. The future mobile infrastructure:
challenges and opportunities. Wireless Commun.,
17:4–5, October 2010. ISSN 1536-1284. URL
http://portal.acm.org/citation.cfm?
id=1921927.1921929.

[6] S. Chesire. How does Zeroconf compare with
Viiv/DLNA/DHWG/UPnP? URL http://www.
zeroconf.org/ZeroconfAndUPnP.html.
Technical report. Retrieved April 28, 2011.

[7] B.-G. Chun and P. Maniatis. Augmented smartphone
applications through clone cloud execution. In Pro-
ceedings of the 12th conference on Hot topics in op-
erating systems, HotOS’09, pages 8–8, Berkeley, CA,
USA, 2009. USENIX Association.

[8] B.-G. Chun and P. Maniatis. Dynamically partitioning
applications between weak devices and clouds. In Pro-
ceedings of the 1st ACM Workshop on Mobile Cloud
Computing &#38; Services: Social Networks and Be-
yond, MCS ’10, pages 7:1–7:5, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0155-8.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: Elastic execution between mobile device
and cloud. EuroSys 2011, Accepted Papers, 2011. The
conference takes place April 10-13, 2011.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wol-
man, S. Saroiu, R. Chandra, and P. Bahl. MAUI: mak-
ing smartphones last longer with code offload. In Pro-
ceedings of the 8th international conference on Mo-
bile systems, applications, and services, MobiSys ’10,
pages 49–62, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-985-5.

[11] P. Deshpande, X. Hou, and S. R. Das. Performance
comparison of 3g and metro-scale wifi for vehicular
network access. In Proceedings of the 10th annual con-
ference on Internet measurement, IMC ’10, pages 301–
307, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0483-2.

[12] N. Doshi. Indexing data into Splunk
remotely. 2010. URL http://
blogs.splunk.com/2010/02/10/
indexing-data-into-splunk-remotely/.
Blog post. Retrieved March 16, 2011.

[13] Ericsson AB. Erlang – Distributed Applications. URL
http://www.erlang.org/doc/design_
principles/distributed_applications.

html. Technical Documentation. Retrieved April 25,
2011.

[14] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and
D. Milojicic. Adaptive offloading for pervasive com-
puting. Pervasive Computing, IEEE, 3(3):66 – 73, July-
Sept 2004. ISSN 1536-1268.

[15] G. Huerta-Canepa and D. Lee. An adaptable applica-
tion offloading scheme based on application behavior.
In Advanced Information Networking and Applications
- Workshops, 2008. AINAW 2008. 22nd International
Conference on, pages 387 –392, March 2008.

[16] G. Huerta-Canepa and D. Lee. A virtual cloud comput-
ing provider for mobile devices. In Proceedings of the
1st ACM Workshop on Mobile Cloud Computing & Ser-
vices: Social Networks and Beyond, MCS ’10, pages
6:1–6:5, New York, NY, USA, 2010. ACM. ISBN 978-
1-4503-0155-8.

[17] I. Kelé andnyi, A. Ludanyi, J. Nurminen, and I. Puusti-
nen. Energy-efficient mobile bittorrent with broadband
router hosted proxies. In Wireless and Mobile Network-
ing Conference (WMNC), 2010 Third Joint IFIP, pages
1 –6, 2010.

[18] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo:
a computation offloading framework for smartphones.
MobiCASE, 2010.

[19] L. Kleinrock. Nomadic computing–an opportunity.
SIGCOMM Comput. Commun. Rev., 25:36–40, January
1995. ISSN 0146-4833. URL http://doi.acm.
org/10.1145/205447.205450.

[20] K. Kumar and Y.-H. Lu. Cloud computing for mobile
users: Can offloading computation save energy? Com-
puter, 43(4):51 –56, april 2010. ISSN 0018-9162.

[21] Microsot Corporation. Windows embedded automo-
tive 7 solutions. URL http://www.microsoft.
com/windowsembedded/en-us/evaluate/
windows-embedded-automotive-7.aspx.
Marketing Material Web Site. Retrieved April 26,
2011.

[22] A. J. Nicholson and B. D. Noble. Breadcrumbs: fore-
casting mobile connectivity. In Proceedings of the
14th ACM international conference on Mobile comput-
ing and networking, MobiCom ’08, pages 46–57, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-096-
8.

[23] D. Polberger. Component technology in an embed-
ded system. Master’s thesis, January 2010. URL
http://www.polberger.se/components/
thesis.pdf. Retrieved March 24, 2011.

[24] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H.
Krieger, and M. J. Neely. Energy-delay tradeoffs in
smartphone applications. In Proceedings of the 8th
international conference on Mobile systems, applica-
tions, and services, MobiSys ’10, pages 255–270, New

http://www.comms.engg.sussex.ac.uk/fft/bluetooth/ESDP_UPnP_0_95a.pdf
http://www.comms.engg.sussex.ac.uk/fft/bluetooth/ESDP_UPnP_0_95a.pdf
http://venturebeat.com/2011/03/16/tesla-app/
http://venturebeat.com/2011/03/16/tesla-app/
http://portal.acm.org/citation.cfm?id=1921927.1921929
http://portal.acm.org/citation.cfm?id=1921927.1921929
http://www.zeroconf.org/ZeroconfAndUPnP.html
http://www.zeroconf.org/ZeroconfAndUPnP.html
http://blogs.splunk.com/2010/02/10/indexing-data-into-splunk-remotely/
http://blogs.splunk.com/2010/02/10/indexing-data-into-splunk-remotely/
http://blogs.splunk.com/2010/02/10/indexing-data-into-splunk-remotely/
http://www.erlang.org/doc/design_principles/distributed_applications.html
http://www.erlang.org/doc/design_principles/distributed_applications.html
http://www.erlang.org/doc/design_principles/distributed_applications.html
http://doi.acm.org/10.1145/205447.205450
http://doi.acm.org/10.1145/205447.205450
http://www.microsoft.com/windowsembedded/en-us/evaluate/windows-embedded-automotive-7.aspx
http://www.microsoft.com/windowsembedded/en-us/evaluate/windows-embedded-automotive-7.aspx
http://www.microsoft.com/windowsembedded/en-us/evaluate/windows-embedded-automotive-7.aspx
http://www.polberger.se/components/thesis.pdf
http://www.polberger.se/components/thesis.pdf


Aalto University T-110.5190 Seminar on Internetworking Spring 2011

York, NY, USA, 2010. ACM. ISBN 978-1-60558-985-
5.

[25] M. Satyanarayanan. Pervasive computing: vision and
challenges. Personal Communications, IEEE, 8(4):10
–17, Aug. 2001. ISSN 1070-9916.

[26] J. a. P. Sousa and D. Garlan. Aura: an architectural
framework for user mobility in ubiquitous computing
environments. In Proceedings of the IFIP 17th World
Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture: System Design,
Development and Maintenance, WICSA 3, pages 29–
43, Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V. ISBN 1-4020-7176-0.

[27] V. Stirbu. A RESTful architecture for adaptive and
multi-device application sharing. In Proceedings of the
First International Workshop on RESTful Design, WS-
REST ’10, pages 62–65, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-959-6.

[28] M. Weiser. The computer for the 21st cen-
tury. Scientific American, 265(3):66–75, Jan-
uary 1991. URL http://www.ubiq.com/
hypertext/weiser/SciAmDraft3.html.

[29] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs.
Towards an elastic application model for augmenting
computing capabilities of mobile platforms. In Mobile
Wireless Middleware, Operating Systems, and Appli-
cations - Third International Conference, Mobilware
2010, pages 161–174, 2010.

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html
http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

	Introduction
	System-Level Taxonomy
	Motivation for Offloading
	Nature of Offloadable Functionalities
	Decisionmaking
	Infrastructures
	Networking

	Mobile Software Architectures
	Feature Offloading
	Method Offloading
	Image Offloading
	Challenges in Today's Frameworks

	Offloading in Local Context
	Service Discovery
	Code Transfer and Execution
	Cloud Transfer
	Business Opportunities

	Future Work
	Conclusion

