

Mobile Computing

Juha-Matti Liukkonen, Nov 17, 2010

<symbio>

Contents

- Mobile Computing revolution
- Structural impact of device evolution
- A look into Mobile Linux

Mobile Computing revolution

<symbio>

Pocketable power

- Advances in technology make computers mobile
 - Low-power processors, displays, wireless network chipsets, ...

iSuppli, Dec 2008

- Laptops outsell desktop computers
- High-end smartphones = mobile computers

 Nokia terminology
- Handheld consumer products
 - 2010 high-end: 1 GHz, 512 MB RAM
 - 2011 high-end: 2x1.5 GHz, 1 GB RAM

New use cases

- The power and capacity of modern handheld devices enable new use cases
 - Users are always online, GBs of storage capacity
 - 3G, LTE, WiFi download speeds for fast data access
 - Rich and intuitive user interfaces

Note the emphasis on IP connectifity – voice calls are no longer the main use

- Battery technology remains a limitation
 - Key to success = device (components) must sleep whenever possible

Apple's game changer

- In 2007, Apple change the mobile world with the iPhone
 - Touch user interface, excellent developer tools, seamless services integration, ...
 - Modern operating system, shared with iPod and Mac product lines
 - Caught "industry regulars" with their pants down
 - Nokia, Google, Samsung, et al going for Linux,
 Microsoft recently introduced WP7

iPad "killed the netbook"

- In 2010, Apple introduced another mobile game changer
 - iPad = basically, a scaled-up iPhone with a 10" touch screen
 - Bigger case = can fit bigger battery, for
 ~10 hours of intensive use
 Apple, 2010
 - 7,5 million sold as of Sep 30, 2010
 - Phenomenal netbook sales growth fizzled

NPD, Morgan Stanley Research, 2010

App ecosystems

 Powerful mobile computers can run variety of software

 Dynamic availability of applications to provide added value over device lifetime

Devices become multi-purpose and adaptable

- Voice call functionality a secondary feature
- New software design challenges

Nokia was ahead of its time with the Communicator concept back in 1996.

- New user interaction models
- Preservation of battery

Structural impact of device evolution

Telecom network access

Proliferation of IP-connected devices

<symbio>

- Users love their adaptable devices
 - New apps, new content keep users entertained
 - Always online supports social networking
- Businesses love their adaptable devices
 - Devices can be adapted and repurposed via software
 - Portable data entry and viewing terminals with live GPS & IP network access (NFC is coming)
- New Cloud based business models

Structural impact: networks

- Number of always connected IP devices explodes
 - Wireless network role as an IP bearer increases, traditional telco function decreases
 - Traffic volume increases, per-packet/per-MB cost must come down
 - Latency requirements increase with device interactivity
 - Lessons learned by AT&T at iPhone launch

We should also be concerned about the IPv4 address space.

Structural impact: the Cloud

- Always online = when network is available
 - In effect, "always online" = traditional intermittent net presence, with shorter disconnected intervals
- Heavy processing must be offloaded
 - Device components must still sleep when possible, to achieve decent use times
- Synchronizing multiple devices
 - Keeping master copy of data in the cloud

Mobile devices are also easier to lose or break than traditional computers. It's good to have your key data hosted elsewhere.

<symbio>

Structural impact: open source

- Open source a strong force in the new device environment
 - Apple iOS: core OS is open source
 - Google Android: open source
 - MeeGo: open source
 - Symbian: open source (on paper)
 - Microsoft WP7: proprietary
- Platforms become commodities

Opportunities & challenges

- New business opportunities
 - Refactoring the wireless network technology
 - Re-thinking distributed application architecture
 - Finding new uses for mobile devices
- Engineering challenges
 - New wireless network technology is needed
 - Maturing the cloud services
 - Security considerations

A look into Mobile Linux

Linux Distribution

- Linux is the operating system kernel
 - Deals with hardware abstraction

- A distribution is a managed collection of software, including the kernel
 - Device drivers, middleware, user applications
 - Comes with distributor-defined default settings and applications
 - Often optimized for specific use(s)
 - E.g. Ubuntu, Red Hat Enterprise Linux, Maemo

Mobile Linux distributions

Maemo

- Nokia's Linux distribution for Internet tablets and high-end smartphones
- Powers the N770, N800, N810, N900

Android

- Google's Linux distribution for Internet tablets and smartphones
- Powers many HTC devices, Nexus One, etc.

Mobile Linux distributions

- OpenEmbedded
 - Open source project

- Best suited for custom adaptations to very small devices
- MeeGo
- New kid on the block
 - Combines Intel's Moblin netbook Linux and Nokia's Maemo Linux
 - First MeeGo devices out in fall 2010

Android details

- Uses custom Linux kernel
 - Google maintains a set of Android patches
- Applications developed using Java
 - Google's custom Dalvik Java VM

There is also a Native Development Kit (NDK) for building native Linux applications.

- 5 versions in active use
 - 1.5, 1.6, 2.0, 2.1 and now 2.2

The devices have a bit different resolutions and feature sets.

 Used in various smartphones by HTC, Google, Motorola, LG, etc.

Android architecture

Android points of interest

- Custom C library
 - C library = system calls (interface to kernel),
 POSIX & ANSI standard library routines
 - Linux standard is glibc, which is a bit bloated
 - Android has a stripped down libc
 - Compatibility issues for generic Linux code
- Custom application installation
 - Apps bundled into .apk "Android packages"

<symbio>

Android points of interest

- Programming model
 - Activity
 - Impements an application view
 - Service
 - Background program with no UI
 - Broadcast receiver
 - Listens for e.g. battery notifications
 - Content provider
 - Shares data from an app

MeeGo details

<symbio>

- Uses standard Linux kernel
- Applications developed using Qt, C/C++
- Replaces both Moblin from Intel, and Maemo from Nokia
- 1.1 release Oct 2010
 - In practice, Beta quality right now
 - Product quality release Apr 2011

MeeGo architecture

MeeGo points of interest

- Mostly regular Linux
 - Glibc, gstreamer, ALSA, etc.
 - Not based on any existing distribution, but uses rpm & zypper for package management
- User interface modules separated from base platform
 - Different user interaction models for different use scenarios
- Qt is the primary application interface

MeeGo points of interest

- UX modules
 - Handheld: touchscreen (meegotouch toolkit on top of Qt)
 - Netbook: keyboard/mouse
 - Connected TV: remote control
 - In-Vehicle Information: touchscreen, joystick
- Reference applications for each UX model
 - System vendors can customize as needed

MeeGo points of interest

- Stable API
 - Any MeeGo application can run on any MeeGo certified system (given the same CPU arch.)
 - Main part of API is Qt (Core, Gui, Mobility, ...)
 - Also: gstreamer, sqlite, ALSA, D-BUS interfaces to various frameworks, etc.
- Goal is to encourage an App Store ecosystem rivaling Apple

<symbio>

Why MeeGo is interesting to us

- Only credible challenger to Googlecontrolled Android
- Backed by Nokia -> direct impact to Finnish software development scene

You can participate in building MeeGo: go to meego.com and become active!

- Innovative architectural solutions
- Aims to become the "industry standard"
 Linux for modern embedded systems

