T-110.5110 Computer Networks II

Introduction

17.9.2007

Adj. Prof. Sasu Tarkoma

Contents

Course Outline
Carrying out the course
Lectures
Material

Course Outline

4 credit course

During Autumn 2007, we will look at protocols and architectures related to mobility management, session management, authentication, authorization and accounting (AAA) services and quality of service (QoS).

The course consists of the lectures and a final exam.

- The purpose is that the participants actively read the material beforehand and discuss problem areas during the lectures.
- Networks II lectures start on Monday 17.9. 14-16 in T2. Registration happens on this first lecture. Course material will be in English. Lectures will be in English if required.

Course Goals

- Understand advanced networking techniques
- Learn state of the art
- Get a glimpse to near-future technologies and long haul development

Time and Place

- Time and place: Mondays at 14:15 16:45 in T2 during the first period.
- Lectures will be held in T3 in the second period.
- Adj. Prof. Sasu Tarkoma gives the lecture unless otherwise indicated.

Carrying out the Course

The course grade consists of partication to lectures and a final exam.

Final exams will be held as follows:

- 17.12.2007 16-19 at T1.
- 12.3.2008 9-12 at T1.

Required preliminary knowledge

- T-110.300 Telecommunication Architectures
- T-110.350 Computer Networks
- T-110.402 Information Security Technology

Lectures

17.9. Introduction 24.9. Transport issues Invited lecture given by Dr. Pasi Sarolahti / Nokia Research Center 1.10. Mobility I Lectured by Prof. Jukka Manner 8.10. NAT (STUN, ICE, TURN) 15.10. QoS I Lectured by Prof. Jukka Manner 22.10. Mobility II (MIP, HMIP, NEMO,...) 29.10. No lecture (exam period) 5.11. QoS continued and signalling (NSIS) 12 11 AAA 19.11. HIP I 26.11. HIP II Invited lecture given by M.Sc. Miika Komu / HIIT 3.12. Privacy and identity management 10.12. Summary

Contact Points

Send email

- sasu.tarkoma@tml.hut.fi
- Follow course web-page
 - Results and updates will be posted to the Web
- Reception
 - After the lectures
 - Otherwise send email to arrange a meeting
 - Exam reception will be scheduled after results

Summary of Course

- As discussed the course focuses on several important features of current networking systems
 - Mobility, QoS, Security, Privacy
- We observe that these features were not important for the original Internet architecture
- They are important now
 - Mobility, QoS, Security are coming with IPv6
 - IPv6 deployment does not look promising
- Hence, many proposals to solve issues in the current Internet
- Also many solutions to solve expected problems in the Future Internet

Layered Architecture

Internet has a layered architecture

- Four layers in TCP/IP
 - Application (L7)
 - Transport (L4)
 - Network (L3)
 - Link layer / physical (L2-L1)
- •We will talk a lot about layering
 - Benefits, limitations, possibilities (cross-layer)
 - It is not always clear what is a good layering
- A lot of interesting networking developments are happening on application layer

The Internet has Changed

- A lot of the assumptions of the early Internet has changed
 - Trusted end-points
 - Stationary, publicly addressable addresses
 - End-to-End
- We will have a look at these in the light of recent developments
- End-to-end broken by NATs and firewalls

Network has Value

A network is about delivering data between endpoints

- Data delivery creates value
- Data is the basis for decision making
- We have requirements to the network
 - Timeliness
 - Scalability
 - Security

. . .

Looking at the Layers

Link Layer / Physical

Network

- We will look at mobility, security, and QoS on L3

- Mobile IP, network mobility, HIP, NAT Traversal

Transport

- Basic properties of transport layer protocols
 - TCP variants, DCCP, TLS, dTLS
- Mobility and security on L4

Application

- Security, identity management

 Goal: have an understanding of the solutions and tradeoffs on each layer and discussion on the role of layering

Role of Standards

On this course, we will talk a lot about standards

- IETF is the main standards body for Internet technologies
- Instruments: RFCs, Internet drafts
- Working groups
- IRTF

Other relevant standards bodies

– W3C, OMA, 3GPP, OMG

Transport Issues

 Network layer (IP) provides basic unreliable packet delivery between end-points

- Transport layer needs to provide reliability, congestion control, flow control, etc. for applications
- TCP variants
- SCTP
- DCCP
- •TLS
- •dTLS

Mobility

What happens when network endpoints start to move?

- What happens when networks move?
- Problem for on-going conversations
 - X no longer associated with address
 - Solution: X informs new address
- Problem for future conversations
 - Where is X? what is the address?
 - Solution: X makes contact address available
- In practice not so easy. Security is needed!

NAT Traversal

- As mentioned, end-to-end is broken
- Firewalls block and drop traffic
- NATs do address and port translation
 - Hide subnetwork and private IPs
- How to work with NATs
 - Tricky: two NATs between communications
 - NAT and NAPT
 - One part is to detect NATs
 - Another is to get ports open
- IETF efforts
 - STUN
 - ICE
 - TURN
 - NSIS

- By default, there is no QoS support on the Internet
- IP is unreliable, packet types are handled differently (TCP/UDP/ICMP)
- No guarantees on TCP flow priority (OS and NW stack issue)
- •IETF work
 - DiffServ, IntServ, NSIS

Security Features

- IPSec provides basic security (tunnel,transport) with IKE
- Solution for autentication, authorization, accounting is needed (AAA)
 - Radius, Diameter
- Case: WLAN access network

•HIP is a proposal to unify mobility, multi-homing, and security features that are needed by applications

- Identity-based addressing realizing locator-identity split
- Change in the networking stack that is not very visible to applications (no IP addresses though!)
- •HIP architecture, HIP implementation for Linux

Privacy and Identity Management

- Privacy and trust matters a lot
- Services on the Web
- Single sign-on
 - Liberty, OpenID, GAA, ..
- Recent developments

Questions and Discussion