Host Identity Protocol InfraHIP Experimentation

Miika Komu <miika@iki.fi>
Helsinki Institute for Information Technology 26.11.2007

Host Identity Protocol for Linux (HIPL)

- Linux-oriented, open source implementation of HIP
 - Nokia Tablets are also supported
 - Symbian support work-in-progress
- Supports several protocol extensions
 - Base exchange, mobility, RVS, different APIs, etc
 - Includes kernel-based BEET IPsec mode
- Two other active projects at Ericsson and Boeing

HIPL Implementation History 1/3

- Started as a student project in 2001 (four students)
- Continued 2002 in HIIT in Fuego-Core, InfraHIP and InfraHIP II projects by two of the students
- Implementation efforts and interoperability tests detailed provided feedback to the IETF drafts
 - Interoperability tests with IndraNet, Ericsson and Boeing

HIPL Implementation History 2/3

- Started as kernelspace-oriented implementation
 - Asymmetric crypto was done using a userspace daemon
 - BEET was implemented as a hack to Linux IPsec
- Ported asymmetric crypto to the linux kernel
 - (Nowadays there is RSA support in linux kernel)
- Moved everything (except BEET) to userspace
 - Linux networking maintainers rejected our huge kernel patch

HIPL Implementation History 3/3

- Half of the BEET patch was accepted to the official 2.6.19 linux kernel
 - The rest of the patches received multiple comments which we have been fixing
 - 2.6.24 will have an unified IPv4/IPv6 handling for
 IPsec need to revise BEET patch again
- HIP implementation has been moving from an research prototype towards an open source product

HIPL Implementation Architecture

- GUI notifies user for new host associations
- HIP daemon implements
 HIP control plane and
 controls IPsec
- Libraries / DNS proxy
 look-up HITs and convert
 HITs to IP addresses
- Both GUI and firewall can block connections

HIP-based Connection Example

Opportunistic Mode 1/3

- How to support HIP without (DNS) look-up infrastructure support in early HIP deployments?
 - Opportunistic mode establishes a connection to an unknown HIT
- What id to use in connect(id), sendto(id) calls?
 - Alternative 1: "pseudo-HIT"
 - Alternative 2: IP address (implemented)
 - Alternative 3: wildcard (standardized)

Opportunistic Mode 2/3

Opportunistic Mode 3/3

- Opportunistic mode hack: I1 is a TCP option
- Benefit: faster fallback to TCP/IP when peer does not supports HIP
- Drawback: works only for TCP, not UDP
- Implementation is work in progress

Native APIs for HIP

Application Layer	Application				
Socket Layer	IPv4 API	IPv6 API		HIP API	
Transport Layer	TCP		UDP		
HIP Layer	HIP				
Network Layer	IPv4		IPv6		
Link Layer	Ethernet				

TLS Differences to IPsec

- TLS has wider deployment (HTTPS)
- TLS-over-TCP passes through NAT boxes
- TLS does protect the TCP port numbers
- TLS-over-TCP has automatic MTU discovery
- TLS-over-TCP is more prone to e.g. RST attacks
- DTLS works with UDP
- TLS requires to modify the application
 - Both a burden and also the key to TLS success?

BTNS APIs

DNS vs. OpenDHT

- DNS is quite rigid and difficult to configure
- Is there any alternative to DNS?
- OpenDHT/Bamboo is more flexible and open
- Problems in Bamboo:
 - Unstable and unmaintained
 - Performance problems
- DNS seems to be a better long-term alternative

HIP NAT Traversal

Protocol State in HIP

- Base exchange (mirrored state machine)
 - Initiator has to create state
 - R1 packets are stateless (or fixed state)
 - RVS and NAT relay are stateless towards Initiator
 - Firewalls and other HIP-aware middleboxes may add nonces to the HIP control messages
- Mobility updates (asymmetric state machine)
 - Mobile node assumes the address of corresponder works
 - Corresponding node creates state and verifies

Mobility Management

- Locators in base exchange
- Interfamily handovers
- Handovers with long disconnectivity create problems with TCP timeouts
 - TCP user timeout option
- Simultaneous multiaccess
 - Which outbound security association to use?

Misc Implementation Fun

- Retransmissions
 - Different mechanism for base exhange and update
 - Choosing optimal retransmission timeout can be tricky (slow ADSL lines, slow WLAN authentication)
- HIP loopback
- Broadcasting of I1s
- Simultaneous initiators
- Userspace IPsec

Questions?

Miika Komu <miika@iki.fi> http://infrahip.hiit.fi/

References 1/2

- RFC4423, Host Identity Protocol Architecture, Robert Moskowitz et al, May 2006
- Host Identity Protocol, Robert Moskowitz et al, October 2007, work in progress
- End-host Mobility and Multihoming with Host Identity Protocol,
 Thomas Henderson, March 2007, work in progress
- Using the Host Identity Protocol with Legacy Applications,
 Thomas Henderson et al, Nov 2007, work in progress
- Native Application Programming Interfaces for Host Identity Protocol, Miika Komu, Nov 2007, work in progress

References 2/2

- Integrating Mobility, Multi-homing and Security in a HIP way, Pekka Nikander et al, Feb 2003
- Opportunistic Security of Host Identity Protocol, Bing Zhou, master thesis, July 2006
- Enterprise Network Packet Filtering for Mobile Cryptographic Identities, Janne Lindqvist et al, June 2007
- Establishing Host Identity Protocol Opportunistic Mode with TCP option, Janne Lindqvist, March 2006, expired internet draft
- Host Identity Protocol Domain Name System Extensions, Pekka Nikander et al, Apr 2007, work in progress