
Exercise 4, Buffer overflow and SQL Injection

T-110.4200/6 course staff

deadline Friday 16.10.2009 23:55

1 Buffer overflow

Aim of the assignment: Student understands the anatomy of a simple buffer
overflow vulnerability. Student understands why it’s bad, bad, bad to read
a theoretically unlimited amount of user input into a prelimited memory
location.

To pass this excercise you must complete the following script and answer
questions at Moodle.

The archive buffer overflow.tar.gz contains two files to be used in this ex-
ercise, buffer overflow and buffer overflow actual and respective .c-files. The
first file comes with a complete source code and the other one comes with a
source code that leaves some things for you to find out.

Both the files are executables that can be run unix platforms. Note: There
might be some problems with running the files in TKK computing centre
computers. So do this exercise in Niksula or use your own computer.

Let’s start with the first file (buffer overflow.c). If you read the code then
you can see,that 2 character tables (a.k.a. strings) are introduced at the
beginning. Next, the memory addressess are printed out. As the memory
is reserved in consecutive commands, consecutive memory areas will most
probably be reserved.

Run the program and examine the memory addresses to determine which
one of the strings is first in memory. Now, if you write a string that is
longer than the 8 characters of the first table, the extra will ”overflow” to
the next memory space. If you try to write outside the memory area reserved
to the program, unexpected things may happen. Play around a little bit to
experiment more until you feel what happens. Try to compile the software
from source with

gcc -o buffer_overflow buffer_overflow.c

1

and discover that the compiler warns you about unsafe behaviour. Ap-
parently the makers of gcc aren’t entirely stupid.

When you feel like hack-hack-hacking a little, move on to see what the
file buffer overflow actual does. It asks for a password. Actually, it recreates
a part of an old Unix security flaw: when the user gives his username, the
password hash is read into memory from /etc/passwd. Unfortunately the
memory area for the hash is immedately behind the one into which the user-
input password is read next. Now, with a correctly formatted string that
contains a password and its hash, you can overflow the stored value and the
resulting comparison with a passwd and its hash is automatically true.

In buffer overflow actual hash is not used, so the password is stored as
clear text into that memory area. Use what you learned from playing with
the demo program (buffer overflow) and enter correctly formed string to
buffer overflow actual.

If you bypass the password correctly, the software will print for you a
secret string that you must return to Moodle. We acknowledge the fact that
there are other ways to figure out the secret from the binary, but we ask
that you try to complete this illustrative assignment instead of figuring out
alternative ways to accomplish the same.

2 SQL injection

To pass this excercise you must complete the following script and answer
questions at Moodle.

From somewhere inside the TKK network, connect with ssh(1) to the
server winnie.cs.hut.fi. See the previous excercise for details on usernames
and passwords. The machine winnie is supposed to serve as an intermediate
X server. On it you can start Firefox (use -X when connecting with ssh).

Go to the website https://honeypot.cs.hut.fi/sql inj.php. There you will
find a small php script that uses a database and has a clear SQL injection
vulnerability. There’s a table in the database that has been generated with:

create table student(

id INTEGER NOT NULL AUTO_INCREMENT,

student_id varchar(7) NOT NULL,

primary key(id)

);

Your task is to INSERT a row containing your student number to the
table and then answer the related questions in Moodle.

2

Hint: Since table contains AUTO INCREMENT field that is the key of
the table, it is easier to insert value only to that student id column and let
the database handle the key.

Hint: Probably some of you won’t follow the abovementioned hint and
use a self-picked random id. This may cause collisions in the ID fields. If
you receive errors about duplicate keys violating unique constraints, this is
the reason. Normally this would be bad worksmanship on the part of the
attacker. However, it can be fixed by running the following command through
the SQL injection hole:

SELECT setval(’student_id_seq’, (SELECT max(id) FROM student));

Which sets the automatic id counter to the highest id value in the table
and removes the chance of collision.

For reference you can view the php-code below.

<html>

<head>

<title></title>

</head>

<body>

<form name="query_parameters" action="sql_inj.php" method="post">

Select student_from student <input type="text" name="parameter" />

<input type="submit" value="Submit">

</form>

<?php

$query ="select student_id from

student".stripcslashes($_POST[’parameter’]);

$connection = pg_connect("dbname=x user=x

password=x");

$results = pg_query($query);

if (!$results) {

$message = ’Invalid query: ’ . pg_last_error() . "\n";

$message .= ’Whole query: ’ . $query;

die($message);

3

}

echo "<table>";

while ($row = pg_fetch_row($results)){

echo "<tr>";

for ($i = 0; $i < sizeof(row);$i++){

echo "<td>" . $row[$i] . "</td>";

}

echo "</tr>";

}

echo "<table>";

pg_close($connection);

?>

</body>

</html>

4

