T-110.4100 Computer Networks
TCP

22.09.2011
Matti Siekkinen

Outline

—

Transport layer
= Role and main functionality
= TCP and UDP

TCP

= Basics

= Error control

= Flow control

= Congestion control

Aalto University —

A School of Science
and Technology

—

Transport layer

Application

Transport

Network

Link

Physical

[
=3
o
- C

niversity
chool of Science

ho cien
and Technology

>

Application

Transport

Network

Link

Physical

Transport layer (cont.)
-

Offers end-to-end transport of data for
applications

Different characteristics

= Reliable vs. unreliable

= Forward error correction (FEC) vs. Automatic Repeat-
reQuest (ARQ)

TCP friendly or not
Structured vs. unstructured stream

Aalto University —

A School of Science
and Technology

Reliable vs. best effort service

—

Reliable transport
= Guarantees ordered delivery of packets
= Important for e.g.
Signaling messages
File transfer
Best effort transport
= No guarantees of packet delivery
= Non-critical data delivery, e.qg. VoIP

Aalto University —

A School of Science
and Technology

Encapsulation

b
(=)

P G
headers\ JLappl. data = payload nﬁ)
\ TCP segment
IP packet _
Ethernet| frame * CRC

Aalto University
School of Science
and Technology

Role of ports

—

Well-known port Applications
numbers 'DNS | [IRC! Xyz
= RFC 2780 (44443) = - ——
= 0-1023 I 1 I
Registered port 53 6667 6500C
numbers 61
= 1024-49151
Other port numbers (T{g,';? Og;)
= 49152-65535 i

IP

v

Aalto University i %
School of Science

and Technology

Checksums

—

For detecting damaged packets
= Compute at sender, check at receiver

Computed from pseudo-header and transport
segment

* Pseudo header includes

source and destination IP addresses
protocol number

TCP/UDP length

Slightly different method for IPv4 (RFC 768/793) and IPv6
(RFC 2460)

Included for protection against misrouted segments

= Divide into 16-bit words and compute one's complement of
the one's complement sum of all the words

A Aalto University _

School of Science
and Technology

Transport Layer Protocols

—

UDP

= Lightweight protocol

Just port numbering for application multiplexing and
integrity checking (checksums) to IP

No segmentation

= Unreliable connectionless transport service
No acknowledgments and no retransmissions
Checksum optional in IPv4 and mandatory in IPv6

TCP

= Reliable service
= Our focus for the rest of the lecture...

Aalto University —

A School of Science
and Technology

TCP: Outline

—

Overview
= Largely familiar stuff from T-110.2100
Error control
Flow control
Congestion control

School of Science
and Technology

A Aalto University —

TCP properties

—

End-to-end

Connection oriented
= State maintained at both ends

= Identified by a four-tuple

Formed by the two end point's IP address and TCP port
number

Reliable

= Try to guarantee in order delivery of each packet
= Buffered fransfer

Full Duplex

= Data transfer simultaneously in both directions
o Untversity R II———

A School of Science
and Technology

TCP properties

—

Three main functionalities for active connection

1. Error control
Deal with the best effort unreliable network

2. Flow control
Do not overload the receiving application

3. Congestion control
Do not overload the network itself

Sender Receiver

Application buffers Application

—
TCP TN Network CH

Aalto University
School of Science
and Technology

TCP-header (RFC 793)

0 10 20 31
bttt —F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—F—F—F—F—F—F—F—+—+
| Source port | Destination port |

+-+—-+—-+-F+-+-+-+-+-+-+-+—-+—-+-F+—-+—-F+—-F—-+—+—-F+—-+—+—-F+—-F+—+—F—-F+—+—F+—-F+—-+—+
| Sequence number |
+-+—-+—-+-F+-+-+-+-+-+-+-+—-+—-+-F+—-+—-F+—-F—-+—+—-F+—-+—+—-F+—-F+—+—F—-F+—+—F+—-F+—-+—+
| Acknowledgment number |
+—-+-+-+-+—-+-+-+-+-+-+-+-+-+-4+-+-+-4+-+-+-4+-+-+-4+-F+-+-F-F-F+-F+-—F+-4+-+
hdr		[UIA[P	IR[S	F]			
length	Varattu IR	C	IS	S	Y	I	Advertized receiver window
		GIKIH	T[N	N			
t—t—F—t—t—F—t—t—F—F—t—F—F—t—F—F—t—F—F—t—F -t -t —F—F -t —F—F -+ —F—+—+—+							
Checksum	Urgent-pointer						

t—t—F—t—t—F—t—t—F—t—t—F—F—t—F—Ft—t—F—F—t—F -t —F—F—t—F—F -+ —F—+—+—+
| Options | Padding |
t—t—F—t—t—F—t—t—F—t—t—F—F—t—F—Ft—t—F—F—t—F -t —F—F—t—F—F -+ —F—+—+—+
| data |
t—t—F—t—t—F—F—t—F—F—t—F—F—t—F—F—t—F—F—t—F -t —F—F—t—F—F -+ —F—F—+—+

Aalto University —

A School of Science
and Technology

TCP options

—

3 = window scaling

8,10 = Timestamp and echo of previous timestamp
= Improve accuracy of RTT computation
= Protect against wrapped sequence numbers
2 = Maximum Segment Size (MSS)
= Negotiated while establishing connection
= Try to avoid fragmentation
1 = No-operation
= Sometimes between options, align option fields
O = End of options

Aalto University _

A School of Science
and Technology

Connection establishment

e ——
Three-way handshake

<SEQ=100><SYN>

<SEQ=300><ACK=101><SYN><ACK>

<SEQ=101><ACK=301><ACK>
Third packet may contain data:

<SEQ=101><ACK=301><ACK><DATA>

Aalto University —

A School of Science
and Technology

Terminating connection

—

Modified three-way handshake
If other end has no more data to send, can be
terminated one way:

= Send a packet with FIN flag set

= Recipient acks the FIN packet

After done with the data transfer to the other
direction

= FIN packet and ack to the inverse direction

Aalto University —

A School of Science
and Technology

TCP Outline

—

Overview

— 1 Error control
Flow control
Congestion control

School of Science
and Technology

A Aalto University —

Error control

—

Mechanisms to detect and recover from lost

packets

Sequence numbers

= Used in acknowledgments

= Tdentify the packets that are acknowledged

Positive acknowledgments (ARQ)

Error detection and correction

= Timers

= Checksums

Retransmissions
e e e

A School of Science
and Technology

Cumulative Acknowledgments

—

Acknowledge only the next expected packet in
sequence

= E.g.received1,2,34,6 -> ACK5
Advantages

= Single ACK for multiple packets
Delayed ACKs scheme = one ACK for 2*MSS data

= Lost ACK does not necessarily trigger retransmission

Drawback

= Cannot tell if lost only first or all of a train of packets
= => Selective ACK

Aalto University _

A School of Science
and Technology

Selective Acknowledgments (SACK)

—

RFC 2018
Helps recovery when multiple packets are lost

Receiver reports which segments were lost using TCP
SACK (Selective Acknowledgment) options

Sender can retransmit several packets per RTT

Aalto University _

A School of Science
and Technology

Retransmission timeout (RTO)

—

RTO associated to each transmitted packet

Retransmit packet if no ACK is received before RTO

has elapsed

Adjusting RTO (original algorithm):

= RTT = (a*oldRTT)+((1-a)*newRTTsample) (recommeded
a=0,9)

= RTO: B*RTT, B>1 (recommended p=2)

Problem?

= Does not take into account large variation in RTT

Aalto University _

A School of Science
and Technology

—

Modified algorithm

Take variation into account as explicit parameter
Initialize: RTO = 3
Two variables: SRTT (smoothed round-trip time) and
RTTVAR (round-trip time variation)
= First measurement R:
SRTT =R
RTTVAR = R/2
= For subsequent measurement R:
RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R|
SRTT = (1 - alpha) * SRTT + alpha * R
Use alpha=1/8, beta=1/4
RTO = SRTT + 4*RTTVAR

If computed RTO < 1s -> round it up to 1s

A

Aalto University _

School of Science
and Technology

Karn's algorithm

Receiving ACK for reftransmitted
packet

= Ts the ACK for original packet or
retransmission??

= No way to know...

=> Do not update RTO for retransmitted
packets

Timer backoff also needed

= At timeout: new_timeout = 2*timeout
(exponential backoff)

TCP timestamps can also help
disambiguate ACKs

92 timeout —>|

j— Seq

92 timeout

|<— Seq

v premature timeout

e ——————————— (e

Aalto University
School of Science
and Technology

Fast Retransmit

Introduced by Van
Jacobson 1988

Observation: TCP ACKs the
next expected missing
packet

-> Duplicate ACKs indicate
lost packet(s)

Do not wait for timeout but e {

duplicatd

retransmit after 3 ACK: resenq oo

duplicate ACKs \
= Wait for reordered packets '
= Don't do go-back-n —

timeout

Aalto University _

A School of Science
and Technology

Outline

—

Overview

Error control
— ! Flow control

Congestion control

A Aalto University —

School of Science
and Technology

Flow control
S

Goal: do not overflow the receiving application
Window based mechanism to limit transmission rate
Receiver advertised window

Sender Receiver

Application buffers Application

I i |

TCP_ " Network i TCP

v

Aalto University
School of Science
and Technology

Sliding Window

Sending window ______

1/2[3/4]5/6]7/8[9[10]11]12[13]...

sentand et bt unsent
acked
not acked
Multiple packets simultaneously “in flight”, i.e.
outstanding

= Improve efficiency
Buffer sent unacked packets

A Aalto University —

School of Science
and Technology

—

Receiver advertised window

Receiver advertises the maximum window size the
sender is allowed to use

Enables receiver TCP to signal sending TCP to
backoff

= Receiving application not consuming received data fast
enough

Value is included in each ACK
= Changes dynamically
= Depends on how application consumes buffer

A

Aalto University _

School of Science
and Technology

Silly Window Syndrome

Problem in worst case:
= Receiver buffer between TCP and application fills
up
= Receiving application read a single byte -> TCP
advertises a receiver window of size one

= Sender transmits a single byte
Lot of overhead due to packet headers

Aalto University —

A School of Science
and Technology

Avoiding Silly Window Syndrome

Window update only with significant size
= At least MSS worth of data or
» Half of its buffer

Analogy at sender side

= Application gives small chunks of data to TCP -> send
small packets

= Nagle's algorithm: Delay sending data until have MSS
worth of it
Does not work for all applications, e.g. delay sensitive apps

Need also mechanism to tell TCP to transmit immediately
-> Push flag

Aalto University _

A School of Science
and Technology

Large Receiver Windows

Receiver window hdr field size is 16 bits
= =>max size is about 65KBytes
Example: 10Mbit/s path from Europe to US west
coast bandwidth
. 0155 * 10°7/8°% 190KBytes
delay=RTT = 16 bits not enough to fill the pipe!

Use Window Scaling option

= Both ends set a factor during handshake (SYN
segments)

= Multiply window field value with this factor

Aalto University _

A School of Science
and Technology

Outline

—
Overview

Error control
Flow control

— LI Congestion control
= Background and motivation
= Basic TCP congestion control
= Fairness
= Other TCP versions and recent developments

Conclusions

Aalto University —

A School of Science
and Technology

Why we need congestion control

Flow control in TCP prevents overwhelming the receiving
application
Problem: Multiple senders (TCP (or UDP)) sharing a link can still

overwhelm it
packet losses COHQCSTiOﬂ CO”GPSG

TCP (with no congestion ctrl) makes
things worse by:
Retransmitting lost packets
= Further increases the load

Spuriously retransmitting packets
still in flight
= Unnecessary retransmissions lead
to even more load!

thrdalgyput

load

= | ike Eourinﬁ ﬁasoline oha ;ir'e
A Aalto University
School of Science
and Technology

Causes/costs of congestion: scenario 1

}\"OUt

A - original data

two senders, two
receivers

ohe router,
infinite buffers

no retransmission

unlimited shared
output link buffers

Host B

Cl2+ > ;
5 E
= [0 a large delays
0 O 5
< when congested
i | maximum
5 O W CR achievable
" " throughput

Aalto University
School of Science
and Technology

Causes/costs of congestion: scenario 2

—
one router, finite buffers

sender retransmission of lost packet

Host A, - original Xout

A data

A’y - original data, plus A
retransmitted data

finite shared output
link, buffers

Aalto University
School of Science
and Technology

Causes/costs of congestion: scenario 2

—
A. always:)\, = Kout

B. pem‘ec'r"I retransmission only when loss: k e Kout
C. retransmission of delayed (not lost) packe’r makes).

IN
larger (than perfect case) for same X
R/2 f-===--mmmmmmmmaa oo : RI2 f======--mmmmmmoomos , R/2
_ ~ R/3 ““““‘“““““““i _
&8 i &8 | (<8 [277/% it P
}; R/I2 7; R/I2 }\: R/I2
' b. C

a.
“costs” of congestion:
7 more work (retrans) for given "goodput”
7 unneeded retransmissions: link carries multiple copies of pkt

Aalto University —
School of Science
and Technology

Causes/costs of congestion: scenario 3

four senders Q: what happens as KI
multihop paths and A increase ?
. . in
timeout/retransmit
Host A 7“out

A, - original data

A', » original data, plus
retransmitted data

finite shared

output Iin

B—

Host B

Aalto University
School of Science
and Technology

Causes/costs of congestion: scenario 3

C/2

5
QO
<<

k!
N
another “cost” of congestion:

7 when packet dropped, any upstream transmission
capacity used for that packet was wasted!

Aalto University —
School of Science

and Technology

Approaches towards congestion control
e

two broad approaches towards congestion control:

end-end congestion network-assisted
control: congestion control:
no explicit feedback from routers provide feedback
network to end systems
congestion inferred from = single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,
approach taken by TCP ATM)

= explicit rate sender
should send at

A

Aalto University —

School of Science
and Technology

Explicit Congestion Notification (ECN)

—

Routers flag packets upon congestion
= Active queue management

Sender consequently adjusts sending rate
Supported by routers but not widely used

= Fear of software bugs
= Running with default configurations

Most OSs (Win7, Ubuntu, Fedora) ship with ECN
disabled

= Tuning for bugs (e.g. popular Cisco PIX firewall)

alto University
chool of Science
and Technology

w»
s
c

TCP Congestion control

—
Principle:
= Continuously throttle TCP sender's transmission rate

= Probe the network by increasing the rate when all is fine
= Decrease rate when signs of congestion (e.g. packet loss)

How?
= Introduce congestion window (cwnd):
#outstanding bytes = min(cwnd, rwnd)

= Adjust cwnd size to control the transmission rate
Adjustment strategy depends on TCP version

flow control

Aalto University —

A School of Science
and Technology

Glimpse into the past

—

Only flow control (receiver advertised window) Congestion control included
< > < >
1969 1974 1981 1983 1986 1988 1990 1994 1996 1999 -04 -05 -06
ARPAnet
TCP (Cerfet Kahn) RFC 793
TCP/IP
1st congestiop
collapse cp ——

Tahoe \
A\

TCP Reno _ TCP Vegais\

ECN \
SAC

K TCPNew [N\
Reno

- Link LBL to UC Berkeley

Aalto University
School of Science
and Technology

TCP Tahoe

—

1988 Van Jacobson

The basis for TCP congestion control

Lost packets are sign of congestion

= Detected with t/imeouts:no ACK received in time
Two modes:

= Slow Start

= Congestion Avoidance

New retransmission timeout (RTQO) calculation

= TIncorporates variance in RTT samples

= Timeout really means a lost packet (=congestion)
Fast Retransmit

Aalto University —

A School of Science
and Technology

Slow Start (SS)

—

On each ACK for new dataq,
increase cwnd by 1 packet

. . . . 0
= Exponential increase in the size é - —esegment
(a
|

of cwnd

= Ramp up a new TCP connection %’

fast (not slowl)
Kind of a misnomer...
In two cases:
= Beginning of connection
= After a timeout

Ur segments

time
!

v
Aalto University —
School of Science
and Technology

Congestion Avoidance (CA)

—

Approach the rate limit of the network more
conservatively

Easy to drive the net into saturation but hard
for the net to recover

Increase cwnd by 1 for cwnd worth of ACKs
(i.,e. per RTT)

[
-
o
- C

niversity
chool of Science
and Technology

>

Combining SS and CA

—

Introduce Slow start - AIMD
threshold (ssthresh) 7 ACKs: increase cwnd by
On timeout: 1 MSS per RTT: additive
. ssthresh = 0.5 d Increase

ssthresh = 1.0 x cwn 7 loss: cut cwnd In half
= cwnd = 1 packet (non-timeout-detected loss
On new ACK:): multiplicative decrease
= If cwnd < ssthresh: do Slow

Start

= Else: do Congestion Avoidance | AIMD: Additive Increase
Multiplicative Decrease

Aalto University —

A School of Science
and Technology

TCP Tahoe: adjusting cwnd

Congestion avoidance
affer cwnd reaches
half of previous cwnd

Timeouts

Slow Start

cwnd
"

\ t
Set ssthresh to
half of cwnd

Aalto University
School of Science
and Technology

TCP Reno

—

recovery

Van Jacobson 1990

Fast retransmit with Fast recovery

= Duplicate ACKs tell sender that packets still go through

= Do less aggressive back-off: Nb of packets that
ssthresh = 0.5 x cwnd were delivered

Fast { cwnd = ssthresh {3)packets

Increment cwnd by one for each additional duplicate ACK
When the next new ACK arrives: cwnd = ssthresh

A

Aalto University —

School of Science
and Technology

TCP Reno: adjusting cwnd

—

A
UL PR (initial) ssthresh
fast-retransmit
\ : fast-retransmit timeout
o/’
o/.
:
|
I. l
/ !
’ I
’ /
// ‘/'
Tt e, - : Time
. SlowStart ! | Congestion Avoidance !

Aalto University —

A School of Science
and Technology

Tahoe vs. Reno
S

145 TCP Reno

12—
E 104
[0)) ssthresh
N - A ——
(7))
S N A | Vo
E»U? ssthresh
=c 4
g e TCP Tahoe
o 2
20
0 v

0 | | | | | | | | |

I I I I I I
o1 2 3 4 5 6 7 B 9101112 13 14 15
Transmission round

Aalto University —

A School of Science
and Technology

Congestion control FSM

loss:
Mtlmeout
@

cwnd > ssthresh

o

@

loss:
timeou

loss:

loss:
timeout

recovery

3dupACK

A

Aalto University
School of Science
and Technology

new ACK

congestion
avoidance

loss:
3dupACK

Congestion control FSM: details

u

dupACKcount++

. ()

cwnd = 1 MSS
ssthresh = 64 KB
—dupACKecaunt=0p

timeout (/

ssthresh = cwnd/2
cwnd =1 MSS
dupACKcount =0

retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

Aalto University
School of Science
and Technology

plicate
new ACK

cwnd = cwnd+MSS
dupACKcount =0

transmit new segment(s),as allowed
cwnd > ssthresh

A | -
- timeout
ssthresh = cwnd/2
cwnd =1 MSS

dupACKcount =0
retransmit missing segment

timeout

ssthresh = cwnd/2
cwnd =1
dupACKcount =0

retransmit missing segmen

New ACK

cwnd = ssthresh
dupACKcount =0

cwnd = cwnd + MSS
dupACKcount =0
transmit new segme

congestion
avoidance

fast

v

A

recovery

duplicate ACK

L_) cwnd = cwnd + MSS

(MSS/cwnd)

s),as allowed

duplicate ACK
dupACKcount++

dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

TCP New Reno

—

1999 by Sally Floyd
Simple modification to Reno's Fast Recovery phase
Problem with Reno:

= Multiple packets lost in a window

= Sender out of Fast Recovery after retransmission of only one
packet

=> cwnd closed up

=> no room in cwnd to generate duplicate ACKs for additional
Fast Retransmits

=> eventual timeout

New Reno continues Fast Recovery until all lost packets from
that window are recovered

Aalto University —

A School of Science
and Technology

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

> _—
' -
|

bottleneck
router
capacity R

conhnectioh 2

Is TCP fair?

Aalto University
School of Science
and Technology

Why is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughput increases
multiplicative decrease decreases throughput proportionally

R

equal bandwidth share

loss: decrease window by factor of 2

ongestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Aalto University —

A School of Science
and Technology

TCP Fairness Issues (cont.)
e —

RTT Fairness Fairness and parallel TCP
What if two connections
connections have hothing prevents app from
different RTTs? opening parallel
« “Faster” connection connections between 2
grabs larger share hosts.
Reno's (AIMD) web browsers do this

fairness is RTT biased example: link of rate R
supporting 9 connections;

= new app asks for 1 TCP, gets
rate R/10

= new app asks for 11 TCPs,
gets R/2|

Aalto University —

A School of Science
and Technology

Fairness and UDP

—

Multimedia apps sometimes use UDP instead of
TCP
= Do not want rate throttled by congestion control
= Pump audio/video at constant rate, tolerate packet loss
= But vast majority of e.g. streaming traffic is TCP

Aalto University —

A School of Science
and Technology

Other TCP versions

—

Delay-based congestion control
= TCP Vegas

Wireless networks

= Take into account random packet loss due to bit errors
(not congestionl)

= E.g. TCP Veno
Paths with high bandwidth*delay

= These “long fat pipes”require large cwnd to be
saturated

= SS and CA provide too slow response
= TCP CUBIC
= Compound TCP (CTCP)

Aalto University —

A School of Science
and Technology

TCP Vegas

1994 by Brakmo et Peterson
Issue: Tahoe and Reno RTO clock is very coarse grained
= "ticks" each 500ms
Increasing delay is a sign of congestion minimum of all
= Packets start to fill up queues measured round trip
= Expected throughput = cwnd / BaseRTT’/“mes
= Compare expected to actual throughput
= Adjust rate accordingly before packets are lost
Also some modifications to Slow start and Fast Retransmit
Potentially up o 70% better throughput than Reno
Fairness with Reno?
= Reno grabs larger share due to late congestion detection

Aalto University
School of Science
and Technology

BIC and CUBIC

—

2004, 2005 by Xu and Rhee

Both for paths with high (bandwidth x delay)
= These “/ong fat pipes”lead to large cwnd
= SS and CA provide too slow response
= Scale up to tens of Gb/s

BIC TCP
= No AIMD

= Window growth function is combination of binary search
and /inear increase

= Aim for TCP friendliness and RTT fairness

Aalto University —

A School of Science
and Technology

BIC and CUBIC (cont.)

—

CUBIC TCP

= Enhanced version of BIC
= Congestion window control using a cubic function
= Improves TCP friendliness & RTT fairness compared to BIC

Steady State Behavior

« >

Wimax

slow down
= Max Probing

‘e >

accelerate
[3]

w

=Ct—-K) +W,,. K=3yW..p/C
—

cubic

Aalto University
School of Science
and Technology

Compound TCP (CTCP)

—
From Microsoft research, 2006

Tackles same problems as BIC/CUBIC
= High speed and long distance networks
= RTT fairness, TCP friendliness
Loss-based vs. delay-based approaches
= Loss-based (e.g. HSTCP, BIC/CUBIC...) too aggressive
= Delay-based (e.g. Vegas) too timid
Compound approach
= Use delay metric to sense the network congestion

= Adaptively adjust aggressiveness based on network congestion
level

= Loss-based component: cwnd (standard TCP Reno)
= Scalable delay-based component: awnd
= TCP sending window is Win = cwnd + dwnd
Aalto University —

A School of Science
and Technology

Deployment

—

Windows
= Server 2008 uses Compound TCP (CTCP) by default

= Vista, 7, support CTCP, New Reno by default
Can be enabled using Netsh command-line scripting utility

= Hotfix enabling CTCP available for server 2003 and 64-
bit XP

Linux
= TCP BIC default in kernels 2.6.8 through 2.6.18
= TCP CUBIC since 2.6.19

Aalto University —

A School of Science
and Technology

Conclusions

—
Transport layer

= End-to-end transport of data for applications
= Application multiplexing through port numbers
= Reliable (TCP) vs. unreliable (UDP)
UDP
= Unreliable, no state
= Optionally integrity checking
TCP
= Connection management
= Error control: deal with unreliable network path
= Flow control: Prevent overwhelming receiving application

= Congestion control: Prevent overwhelming the network
Loss-based and delay-based congestion detection
More and less aggressive rate control
Suitable for different network types
Fairness is important

Aalto University —

A School of Science
and Technology

References

—
[1] IETF's RFC page: http://www.ietf.org/rfc.html

[2] V. Jacobson: Congestion Avoidance and Control. In proceedings of
SIGCOMM '88.

[3]L. Brakmo et al.: TCP Vegas: New techniques for congestion
detection and avoidance. In Proceedings of SIGCOMM '94.

[4] RFC2582/RFC3782 - The NewReno Modification to TCP's Fast
Recovery Algorithm.

[5]L. Hu et al.: Binary Increase Congestion Control for Fast, Long
Distance Networks, IEEE Infocom, 2004.

[6]S. Haet al.. CUBIC: A New TCP-Friendly High-Speed TCP Variant,
ACM SIGOPS, 2008.

[7]1 K. Tan et al.: Compound TCP: A Scalable and TCP-friendly
g?)n 6es'rion Control for High-speed Networks, In IEEE Infocom,

[8] W. John et al.: Trends and Differences in Connection Behavior
within Classes of Internet Backbone Traffic, In PAM 2008.

[9] A. Medina et al.: Measuring the evolution of transport protocols in
the internet, SIGCOMM CCR, 2005.

Aalto University _

SCNOO0I OT oCience
and Technology

Aalto University
School of Science
and Technology

Questions?

