Contiki 2.x Reference Manual

Generated by Doxygen 1.4.1

Mon Jul 2 14:14:41 2007

CONTENTS 1

Contents

1 The Contiki Operating System 2.x 1
2 Contiki 2.x Module Index 3
3 Contiki 2.x Directory Hierarchy 6
4 Contiki 2.x Data Structure Index 6
5 Contiki 2.x File Index 7
6 Contiki 2.x Module Documentation 11
7 Contiki 2.x Directory Documentation 205
8 Contiki 2.x Data Structure Documentation 213
9 Contiki 2.x File Documentation 226
10 Contiki 2.x Example Documentation 295

1 The Contiki Operating System 2.x

Author:
Adam Dunkels<cadam@sics.se >

Contiki is an open source, highly portable, multi-tasking operating system for memory-constrained net-
worked embedded systems written by Adam Dunkels at the Networked Embedded Systems group at the
Swedish Institute of Computer Science.

Contiki is designed for embedded systems with small amounts of memory. A typical Contiki configuration

is 2 kilobytes of RAM and 40 kilobytes of ROM. Contiki consists of an event-driven kernel on top of which
application programs are dynamically loaded and unloaded at runtime. Contiki processes use light-weight
protothreadshat provide a linear, thread-like programming style on top of the event-driven kernel. Contiki
also supports per-process optional preemptive multi-threading, interprocess communication using message
passing through events, as well as an optional GUI subsystem with either direct graphic support for locally
connected terminals or networked virtual display with VNC or over Telnet.

Contiki contains two communication stacksiP andRime. ulP is a small RFC-compliant TCP/IP stack
that makes it possible for Contiki to communicate over the Internet. Rime is a lightweight communication
stack designed for low-power radios. Rime provides a wide range of communication primitives, from
best-effort local area broadcasi reliable multi-hop bulk data flooding

Contiki runs on a variety of platform ranging from embedded microcontrollers such as the MSP430 and
the AVR to old homecomputers. Code footprint is on the order of kilobytes and memory usage can be
configured to be as low as tens of bytes.

Contiki is written in the C programming language and is freely available as open source under
a BSD-style license. More information about Contiki can be found at the Contiki home page:
http://lwww.sics.se/contiki/

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
http://www.sics.se/contiki/

1.1 TCP/IP 2

1.1 TCP/IP

Contiki includes the ulP TCP/IP stackt{p://www.sics.se/ ~adam/uip/) that provides Contiki
with TCP/IP networking support. ulP provides the protocols TCP, UDP, IP, and ARP.

See also:
The ulP TCP/IP stack documentation
The Contiki/ulP interface
Protosockets library

1.2 Rime

Rime is a lightweight communication stacks designed for low-power radios. Rime provides a wide range
of communication primitives suitable for implementing communication-bound applications or network
protocols.

See also:
The Rime Communication Stack

1.3 Multi-threading and protothreads

Contiki is based on an event-driven kernel but provides support for both multi-threading and a lightweight
stackless thread-like construct called protothreads.

See also:
Contiki processes
Protothreads
Event timers
Optional multi-threading

1.4 Libraries

Contiki provides a set of convenience libraries for memory management and linked list operations.

See also:
Simple timer library
Memory block management
Linked list library

1.5 Getting started with Contiki

Contiki is designed to run on many differepiatforms It is also possible to compile and build both the
Contiki system and Contiki applications on many different development platforms.

SeeGetting started with Contiki for the ESB platform
1.6 Building the Contiki system and its applications
The Contiki build system is designed to make it easy to compile Contiki applications for either to a hard-

ware platform or into a simulation platform by simply supplying different parameters tmék@ com-
mand, without having to edit makefiles or modify the application code.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

http://www.sics.se/~adam/uip/

2 Contiki 2.x Module Index 3
SeeThe Contiki build system
2 Contiki 2.x Module Index
2.1 Contiki 2.x Modules
Here is a list of all modules:
Communication stacks 11
The ulP TCP/IP stack 13
ulP configuration functions 112
ulP initialization functions 114
ulP device driver functions 115
ulP application functions 119
ulP conversion functions 126
Variables used in ulP device drivers 132
Configuration options for ulP 132
Static configuration options 133
IP configuration options 134
UDP configuration options 135
TCP configuration options 135
ARP configuration options 138
General configuration options 138
CPU architecture configuration 140
Appication specific configurations 140
ulP Address Resolution Protocol 141
ulP TCP throughput booster hack 143
ulP packet forwarding 144
ulP hostname resolver functions 147
Protosockets library 149
The Contiki/ulP interface 155
Uiparch 205

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

2.1 Contiki 2.x Modules 4

The Rime communication stack 36
Anonymous best-effort local area broadcast 160
Callback timer 163
Identified best-effort local area broadcast 163
Mesh routing 165
Best-effort multihop forwarding 167
Rime neighbor management 167
Best-effort network flooding 167
Rime queue buffer management 168
Rime addresses 168
Rime buffer management 171
Rime route discovery protocol 177
Rime route table 177
Stubborn anonymous best-effort local area broadcast 178
Stubborn identified broadcast 180
Stubborn unicast 180
Tree-based hop-by-hop reliable data collection 181
Reliable single-source multi-hop flooding 181
Unique anonymous best effort local area broadcast 181
Single-hop unicast 182
Unique identified best effort local area broadcast 182
Single-hop reliable bulk data transfer 183
Multi-hop reliable bulk data transfer 183

Device driver APIs 12
EEPROM API 66
Radio API 68

Memory functions 12
Memory block management functions 183
Managed memory allocator 185

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

2.1 Contiki 2.x Modules 5

Contiki system 12
Contiki processes 39
Event timers 49
Argument buffer 53
The Contiki program loader 54

The Contiki ELF loader 68
Architecture specific functionality for the ELF loader. 70

Clock library 61
Multi-threading library 62
Architecture support for multi-threading 64
Protothreads 72
Local continuations 57
Protothread semaphores 59
The Contiki file system interface 80
Timer library 110

Libraries 13
Linked list library 188
Table-driven Manchester encoding and decoding 193
Cyclic Redundancy Check 16 (CRC16) calculcation 194

Contiki platforms 13
The Tmote Sky Board 195
The ESB Embedded Sensor Board 195

Introduction to Over The Air Reprogramming under Windows 198
Beeper interface 200

ESB RS232 202
TR1001 radio tranciever device driver 204
Microsoft Windows 204
The Contiki build system 38
CTK graphical user interface 99

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

3 Contiki 2.x Directory Hierarchy 6
CTK application functions 84
CTK events 103
CTK device driver functions 105
3 Contiki 2.x Directory Hierarchy
3.1 Contiki 2.x Directories
This directory hierarchy is sorted roughly, but not completely, alphabetically:
apps 205
program-handler 209
core 205
cfs 205
ctk 206
dev 206
lib 207
loader 207
net 208
rime 209
Sys 212
platform 209
esb 206
dev 206
4 Contiki 2.x Data Structure Index
4.1 Contiki 2.x Data Structures
Here are the data structures with brief descriptions:
abc_callbacks(Callback structure for abc) 213
ctk_menu (Representation of an individual menu) 214
ctk_menuitem (Representation of an individual menu item) 214
ctk_menus(Representation of the menu bar) 215

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

5 Contiki 2.x File Index 7

ctk_widget (The generic CTK widget structure that contains all other widget structures) 215

ctk_window (Representation of a CTK window) 216
dsc(The DSC program description structure) 218
etimer (A timer) 219
ibc_callbacks(Callback structure for abc) 219
mesh_callbackgMesh callbacks) 219
psock(The representation of a protosocket) 220
radio_driver (The structure of a device driver for a radio in Contiki) 220
sabc_conn(A sabc connection) 221
timer (A timer) 221
uip_conn (Representation of a ulP TCP connection) 221
uip_eth_addr (Representation of a 48-bit Ethernet address) 223
uip_eth_hdr (The Ethernet header) 223
uip_fw_netif (Representation of a ulP network interface) 223
uip_ip4addr_t (Representation of an IP address) 223
uip_stats(The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS
issettol) 224
uip_udp_conn(Representation of a ulP UDP connection) 225

5 Contiki 2.x File Index

5.1 Contiki 2.x File List

Here is a list of all documented files with brief descriptions:

apps/program-handlerfprogram-handler.c (The program handler, used for loading programs

and starting the screensaver) 226
core/cfstfs.h (CFS header file) 227
core/ctk/ctk-draw.h (CTK screen drawing module interface, ctk-draw) 229
core/ctk/ctk.c (The Contiki Toolkit CTK, the Contiki GUI) 229
core/ctk/ctk.h (CTK header file) 232
core/deveeprom.h(EEPROM functions) 236
core/devfadio.h (Header file for the radio API) 236

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

5.1 Contiki 2.x File List 8

core/lib/crc16.c(Implementation of the CRC16 calculcation) 236
core/lib/crc16.h (Header file for the CRC16 calculcation) 237
core/lib/ctk-textedit.c (An experimental CTK text edit widget) 237
core/lib/ctk-textedit.h (Header file for the experimental application level CTK textedit widget

) 238
core/lib/list.c (Linked list library implementation) 239
core/lib/list.h (Linked list manipulation routines) 240

core/lib/me.c(Implementation of the table-driven Manchester encoding and decoding) 241

core/lib/me.h (Header file for the table-driven Manchester encoding and decoding) 241
core/lib/memb.c(Memory block allocation routines) 242
core/lib/memb.h (Memory block allocation routines) 242
core/lib/mmem.c(Implementation of the managed memory allocator) 243
core/lib/mmem.h (Header file for the managed memory allocator) 243
core/lib/petsciiconv.h(PETSCII/ASCII conversion functions) 244
core/loaderklfloader-arch.h(Header file for the architecture specific parts of the Contiki ELF
loader) 244
core/loaderklfloader.h (Header file for the Contiki ELF loader) 245
core/net/psock.c ??
core/netpsock.h(Protosocket library header file) 246
core/nettesolv.c(DNS host name to IP address resolver) 247
core/nettesolv.h (UIP DNS resolver code header file) 248
core/nettime.h (Header file for the Rime stack) 248
core/net/tcpip.c ??
core/nettcpip.h (Header for the Contiki/ulP interface) 266
core/netlip-fw.c (UIP packet forwarding) 267
core/netlip-fw.h (UIP packet forwarding header file) 268
core/net/uip-split.c ??

core/netlip-split.h (Module for splitting outbound TCP segments in two to avoid the delayed

ACK throughput degradation) 269
core/netlip.c (The ulP TCP/IP stack code) 269
core/netlip.h (Header file for the ulP TCP/IP stack) 271

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

5.1 Contiki 2.x File List 9

core/netlip_arp.c (Implementation of the ARP Address Resolution Protocol) 275
core/netlip_arp.h (Macros and definitions for the ARP module) 276
core/net/uiplib.c ?7?
core/netuiplib.h (Various ulP library functions) 276
core/netlipopt.h (Configuration options for ulP) 277
core/net/rime/abc.c(Anonymous best-effort local area Broad Cast (abc)) 249
core/net/rime/abc.h (Header file for the Rime module Anonymous BroadCast (abc)) 249
core/net/rime/ctimer.c (Callback timer implementation) 250
core/net/rimefctimer.h (Header file for the callback timer) 250
core/net/rimefibc.c (Identified best-effort local area broadcast (ibc)) 250
core/net/rimefibc.h (Header file for identified best-effort local area broadcast) 251
core/net/rime/mesh.c(A mesh routing protocol) 251
core/net/rime/mesh.h(Header file for the Rime mesh routing protocol) 252
core/net/rime/mh.c (Multihop forwarding) 252
core/net/rime/mh.h (Multihop forwarding header file) 252
core/net/rime/eighbor.c (Radio neighborhood management) 253

core/net/rime/eighbor.h (Header file for the Contiki radio neighborhood management) 253

core/net/rime/nf.c (Best-effort network flooding (nf)) 253
core/net/rime/f.h (Header file for the best-effort network flooding (nf)) 254
core/net/rimelqueuebuf.c(Implementation of the Rime queue buffers) 254
core/net/rimelqueuebuf.h(Header file for the Rime queue buffer management) 254
core/net/rimefimeaddr.c (Functions for manipulating Rime addresses) 255
core/net/rimefimeaddr.h (Header file for the Rime address repressentation) 255
core/net/rimefimebuf.c (Rime buffer (rimebuf) management) 256
core/net/rimefimebuf.h (Header file for the Rime buffer (rimebuf) management) 256
core/net/rimefoute-discovery.c(Route discovery protocol) 257
core/net/rimefoute-discovery.h(Header file for the Rime mesh routing protocol) 258
core/net/rimefoute.c (Rime route table) 258
core/net/rimefroute.h (Header file for the Rime route table) 258

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

5.1 Contiki 2.x File List 10

core/net/rimefuc.c (Reliable unicast) 259
core/net/rimefuc.h (Reliable unicast header file) 259
core/net/rimefudolph0.c (RudolphO: a simple block data flooding protocol) 259

core/net/rimefrudolph0.h (Header file for the single-hop reliable bulk data transfer module)259
core/net/rimefudolphl.c (Rudolphl: a simple block data flooding protocol) 260

core/net/rimefudolphl.h (Header file for the multi-hop reliable bulk data transfer mecha-
nism) 260

core/net/rime/sabc.c(Implementation of the Rime module Stubborn Anonymous BroadCast
(sabc)) 260

core/net/rime/abc.h (Header file for the Rime module Stubborn Anonymous BroadCast
(sabc)) 261

core/net/rimekibce.c (Implementation of the Rime module Stubborn Identified BroadCast
(sibc)) 261

core/net/rimeksibc.h (Header file for the Rime module Stubborn Identified BroadCast (sibc) 62

core/net/rimelsuc.c(Stubborn unicast) 262
core/net/rime/suc.h(Stubborn unicast header file) 262
core/net/rimetree.c (Tree-based hop-by-hop reliable data collection) 263
core/net/rimetree.h (Header file for hop-by-hop reliable data collection) 263
core/net/rimefrickle.c (Trickle (reliable single source flooding) for Rime) 263

core/net/rimefrickle.h (Header file for Trickle (reliable single source flooding) for Rime) 264
core/net/rimefuabc.c(Unique Anonymous best effort local area BroadCast (uabc)) 264

core/net/rimefuabc.h (Header file for Unique Anonymous best effort local area BroadCast

(uabc)) 264
core/net/rimefuc.c (Single-hop unicast) 264
core/net/rimeluc.h (Header file for Rime’s single-hop unicast) 265
core/net/rimefuibc.c (Unique Identified best effort local area BroadCast (uibc)) 265

core/net/rimefuibc.h (Header file for Unique Identified best effort local area BroadCast (uibc)

) 265
core/syséarg.c (Argument buffer for passing arguments when starting processes) 279
core/systc.h (Default definitions of C compiler quirk work-arounds) 279
core/sys/clock.h ?7?
core/systisc.h(Declaration of the DSC program description structure) 280

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6 Contiki 2.x Module Documentation 11

core/sysétimer.c (Event timer library implementation) 280
core/sysétimer.h (Event timer header file) 281

core/syslc-addrlabels.h (Implementation of local continuations based on the "Labels as val-
ues" feature of gcc) 282

core/syslc-switch.h (Implementation of local continuations based on switch() statment) 282
core/syslc.h (Local continuations) 282
core/sysloader.h (Default definitions and error values for the Contiki program loader) 283

core/sysit.c (Implementation of the archtecture agnostic parts of the preemptive multi-

threading library for Contiki) 284
core/sysint.h (Header file for the preemptive multitasking library for Contiki) 285
core/sysprocess.dImplementation of the Contiki process kernel) 286
core/sysprocess.h(Header file for the Contiki process interface) 287
core/sys/procinit.c ??
core/sys/procinit.h 2?
core/syspt-sem.h(Counting semaphores implemented on protothreads) 289
core/syspt.h (Protothreads implementation) 289
core/systimer.c (Timer library implementation) 291
core/systimer.h (Timer library header file) 291
platform/esb/devbeep.h(Interface to the beeper) 292
platform/esb/deveeprom.c(EEPROM functions) 293
platform/esb/devks232.c(RS232 communication device driver for the MSP430) 293
platform/esb/devks232.h(Header file for MSP430 RS232 driver) 294

platform/esb/devtr1001.c (Device driver and packet framing for the RFM-TR1001 radio
module) 294

6 Contiki 2.x Module Documentation

6.1 Communication stacks

Modules

e The ulP TCP/IP stack
* The Rime communication stack

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.2 Device driver APIs 12

6.2 Device driver APIs

Modules

« EEPROM API
The EEPROM API defines a common interface for EEPROM access on Contiki platforms.

» Radio API
The radio APl module defines a set of functions that a radio device driver must implement.

6.3 Memory functions

Modules

« Memory block management functions

The memory block allocation routines provide a simple yet powerful set of functions for managing a set of
memory blocks of fixed size.

* Managed memory allocator
The managed memory allocator is a fragmentation-free memory manager.

6.4 Contiki system

Modules

» Contiki processes
A process in Contiki consists of a singietothread

e Eventtimers
Event timers provides a way to generate timed events.

Argument buffer
The Contiki program loader

The Contiki program loader is an abstract interface for loading and starting programs.

Clock library
The clock library is the interface between Contiki and the platform specific clock functionality.

Multi-threading library

The event driven Contiki kernel does not provide multi-threading by itself - instead, preemptive multi-
threading is implemented as a library that optionally can be linked with applications.

Protothreads

Protothreads are a type of lightweight stackless threads designed for severly memory constrained systems
such as deeply embedded systems or sensor network nodes.

The Contiki file system interface

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.5 Libraries 13

The Contiki file system interface (CFS) defines an abstract API for reading directories and for reading and
writing files.

 Timer library

The Contiki kernel does not provide support for timed events.

6.5 Libraries

Modules

« Linked list library

The linked list library provides a set of functions for manipulating linked lists.

» Table-driven Manchester encoding and decoding

Manchester encoding is a bit encoding scheme which translates each bit into two bits: the original bit and
the inverted bit.

e Cyclic Redundancy Check 16 (CRC16) calculcation

The Cyclic Redundancy Check 16 is a hash function that produces a checksum that is used to detect errors
in transmissions.

6.6 Contiki platforms

6.6.1 Detailed Description

Modules

* The Tmote Sky Board
The Tmote Sky platform is a wireless sensor board from Moteiv.

* The ESB Embedded Sensor Board

The ESB (Embedded Sensor Board) is a prototype wireless sensor network device developed at Freie Uni-
versitat Berlin.

* Microsoft Windows

It is possible to run an entire Contiki system as a program under Microsoft Windows.

6.7 The ulP TCP/IP stack
6.7.1 Detailed Description

The ulP TCP/IP stack provides Internet communication abilities to Contiki.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 14

6.7.2 ulP introduction

The ulP TCP/IP stack is intended to make it possible to communicate using the TCP/IP protocol suite even
on small 8-bit micro-controllers. Despite being small and simple, ulP do not require their peers to have
complex, full-size stacks, but can communicate with peers running a similarly light-weight stack. The code
size is on the order of a few kilobytes and RAM usage can be configured to be as low as a few hundred
bytes.

ulP can be found at the ulP web pagétp://www.sics.se/ ~adam/uip/

See also:
The Contiki/ulP interface
ulP Compile-time configuration options
ulP Run-time configuration functions
ulP initialization functions
ulP device driver interfacandulP variables used by device drivers
ulP functions called from application prograifsee below) and therotosockets APand their under-
lying protothreads

6.7.3 Introduction

With the success of the Internet, the TCP/IP protocol suite has become a global standard for communica-
tion. TCP/IP is the underlying protocol used for web page transfers, e-mail transmissions, file transfers, and
peer-to-peer networking over the Internet. For embedded systems, being able to run native TCP/IP makes
it possible to connect the system directly to an intranet or even the global Internet. Embedded devices with
full TCP/IP support will be first-class network citizens, thus being able to fully communicate with other
hosts in the network.

Traditional TCP/IP implementations have required far too much resources both in terms of code size and
memory usage to be useful in small 8 or 16-bit systems. Code size of a few hundred kilobytes and RAM
requirements of several hundreds of kilobytes have made it impossible to fit the full TCP/IP stack into

systems with a few tens of kilobytes of RAM and room for less than 100 kilobytes of code.

The ulP implementation is designed to have only the absolute minimal set of features needed for a full
TCP/IP stack. It can only handle a single network interface and contains the IP, ICMP, UDP and TCP
protocols. ulP is written in the C programming language.

Many other TCP/IP implementations for small systems assume that the embedded device always will com-
municate with a full-scale TCP/IP implementation running on a workstation-class machine. Under this
assumption, it is possible to remove certain TCP/IP mechanisms that are very rarely used in such situa-
tions. Many of those mechanisms are essential, however, if the embedded device is to communicate with
another equally limited device, e.g., when running distributed peer-to-peer services and protocols. ulP is
designed to be RFC compliant in order to let the embedded devices to act as first-class network citizens.
The ulP TCP/IP implementation that is not tailored for any specific application.

6.7.4 TCP/IP Communication

The full TCP/IP suite consists of numerous protocols, ranging from low level protocols such as ARP which
translates IP addresses to MAC addresses, to application level protocols such as SMTP that is used to
transfer e-mail. The ulP is mostly concerned with the TCP and IP protocols and upper layer protocols will
be referred to as "the application”. Lower layer protocols are often implemented in hardware or firmware
and will be referred to as "the network device" that are controlled by the network device driver.

TCP provides a reliable byte stream to the upper layer protocols. It breaks the byte stream into appropriately
sized segments and each segment is sent in its own IP packet. The IP packets are sent out on the network

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

http://www.sics.se/~adam/uip/

6.7 The ulP TCP/IP stack 15

by the network device driver. If the destination is not on the physically connected network, the IP packet
is forwarded onto another network by a router that is situated between the two networks. If the maximum
packet size of the other network is smaller than the size of the IP packet, the packet is fragmented into
smaller packets by the router. If possible, the size of the TCP segments are chosen so that fragmentation
is minimized. The final recipient of the packet will have to reassemble any fragmented IP packets before
they can be passed to higher layers.

The formal requirements for the protocols in the TCP/IP stack is specified in a number of RFC documents
published by the Internet Engineering Task Force, IETF. Each of the protocols in the stack is defined in one
more RFC documents and RFC1122 collects all requirements and updates the previous RFCs.

The RFC1122 requirements can be divided into two categories; those that deal with the host to host com-
munication and those that deal with communication between the application and the networking stack.
An example of the first kind is "A TCP MUST be able to receive a TCP option in any segment" and an
example of the second kind is "There MUST be a mechanism for reporting soft TCP error conditions to
the application."” A TCP/IP implementation that violates requirements of the first kind may not be able
to communicate with other TCP/IP implementations and may even lead to network failures. Violation of
the second kind of requirements will only affect the communication within the system and will not affect
host-to-host communication.

In ulP, all RFC requirements that affect host-to-host communication are implemented. However, in order
to reduce code size, we have removed certain mechanisms in the interface between the application and
the stack, such as the soft error reporting mechanism and dynamically configurable type-of-service bits for
TCP connections. Since there are only very few applications that make use of those features they can be
removed without loss of generality.

6.7.5 Main Control Loop

The ulP stack can be run either as a task in a multitasking system, or as the main program in a singletasking
system. In both cases, the main control loop does two things repeatedly:

¢ Check if a packet has arrived from the network.

« Check if a periodic timeout has occurred.

If a packet has arrived, the input handler functioip_input() should be invoked by the main control

loop. The input handler function will never block, but will return at once. When it returns, the stack or
the application for which the incoming packet was intended may have produced one or more reply packets
which should be sent out. If so, the network device driver should be called to send out these packets.

Periodic timeouts are used to drive TCP mechanisms that depend on timers, such as delayed acknowledg-
ments, retransmissions and round-trip time estimations. When the main control loop infers that the periodic
timer should fire, it should invoke the timer handler functiom_periodic() Because the TCP/IP stack may
perform retransmissions when dealing with a timer event, the network device driver should called to send
out the packets that may have been produced.

6.7.6 Architecture Specific Functions

ulP requires a few functions to be implemented specifically for the architecture on which ulP is intended to
run. These functions should be hand-tuned for the particular architecture, but generic C implementations
are given as part of the ulP distribution.

6.7.6.1 Checksum Calculation The TCP and IP protocols implement a checksum that covers the data
and header portions of the TCP and IP packets. Since the calculation of this checksum is made over all

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 16

bytes in every packet being sent and received it is important that the function that calculates the checksum
is efficient. Most often, this means that the checksum calculation must be fine-tuned for the particular
architecture on which the ulP stack runs.

While ulP includes a generic checksum function, it also leaves it open for an architecture specific imple-
mentation of the two functionsip_ipchksum(anduip_tcpchksum() The checksum calculations in those
functions can be written in highly optimized assembler rather than generic C code.

6.7.6.2 32-bit Arithmetic The TCP protocol uses 32-bit sequence numbers, and a TCP implementation
will have to do a number of 32-bit additions as part of the normal protocol processing. Since 32-bit
arithmetic is not natively available on many of the platforms for which ulP is intended, ulP leaves the 32-
bit additions to be implemented by the architecture specific module and does not make use of any 32-bit
arithmetic in the main code base.

While ulP implements a generic 32-bit addition, there is support for having an architecture specific imple-
mentation of the uip_add32() function.

6.7.7 Memory Management

In the architectures for which ulP is intended, RAM is the most scarce resource. With only a few kilobytes
of RAM available for the TCP/IP stack to use, mechanisms used in traditional TCP/IP cannot be directly
applied.

The ulP stack does not use explicit dynamic memory allocation. Instead, it uses a single global buffer
for holding packets and has a fixed table for holding connection state. The global packet buffer is large
enough to contain one packet of maximum size. When a packet arrives from the network, the device driver
places it in the global buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack
will notify the corresponding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy the data into a
secondary buffer for later processing. The packet buffer will not be overwritten by new packets before the
application has processed the data. Packets that arrive when the application is processing the data must be
gueued, either by the network device or by the device driver. Most single-chip Ethernet controllers have
on-chip buffers that are large enough to contain at least 4 maximum sized Ethernet frames. Devices that
are handled by the processor, such as RS-232 ports, can copy incoming bytes to a separate buffer during
application processing. If the buffers are full, the incoming packet is dropped. This will cause performance
degradation, but only when multiple connections are running in parallel. This is because ulP advertises
a very small receiver window, which means that only a single TCP segment will be in the network per
connection.

In ulP, the same global packet buffer that is used for incoming packets is also used for the TCP/IP headers
of outgoing data. If the application sends dynamic data, it may use the parts of the global packet buffer that
are not used for headers as a temporary storage buffer. To send the data, the application passes a pointer to
the data as well as the length of the data to the stack. The TCP/IP headers are written into the global buffer
and once the headers have been produced, the device driver sends the headers and the application data out
on the network. The data is not queued for retransmissions. Instead, the application will have to reproduce
the data if a retransmission is necessary.

The total amount of memory usage for ulP depends heavily on the applications of the particular device in
which the implementations are to be run. The memory configuration determines both the amount of traffic
the system should be able to handle and the maximum amount of simultaneous connections. A device that
will be sending large e-mails while at the same time running a web server with highly dynamic web pages
and multiple simultaneous clients, will require more RAM than a simple Telnet server. It is possible to run
the ulP implementation with as little as 200 bytes of RAM, but such a configuration will provide extremely
low throughput and will only allow a small number of simultaneous connections.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 17

6.7.8 Application Program Interface (API)

The Application Program Interface (API) defines the way the application program interacts with the TCP/IP
stack. The most commonly used API for TCP/IP is the BSD socket API which is used in most Unix systems
and has heavily influenced the Microsoft Windows WinSock API. Because the socket API uses stop-and-
wait semantics, it requires support from an underlying multitasking operating system. Since the overhead
of task management, context switching and allocation of stack space for the tasks might be too high in the
intended ulP target architectures, the BSD socket interface is not suitable for our purposes.

ulP provides two APIs to programmers: protosockets, a BSD socket-like API without the overhead of full
multi-threading, and a "raw" event-based API that is nore low-level than protosockets but uses less memaory.

See also:
Protosockets library
Protothreads

6.7.8.1 The ulP raw APl The "raw" ulP API uses an event driven interface where the application is
invoked in response to certain events. An application running on top of ulP is implemented as a C function
that is called by ulP in response to certain events. ulP calls the application when data is received, when
data has been successfully delivered to the other end of the connection, when a new connection has been
set up, or when data has to be retransmitted. The application is also periodically polled for new data. The
application program provides only one callback function; it is up to the application to deal with mapping
different network services to different ports and connections. Because the application is able to act on
incoming data and connection requests as soon as the TCP/IP stack receives the packet, low response times
can be achieved even in low-end systems.

ulP is different from other TCP/IP stacks in that it requires help from the application when doing re-
transmissions. Other TCP/IP stacks buffer the transmitted data in memory until the data is known to be
successfully delivered to the remote end of the connection. If the data needs to be retransmitted, the stack
takes care of the retransmission without notifying the application. With this approach, the data has to be
buffered in memory while waiting for an acknowledgment even if the application might be able to quickly
regenerate the data if a retransmission has to be made.

In order to reduce memory usage, ulP utilizes the fact that the application may be able to regenerate sent
data and lets the application take part in retransmissions. ulP does not keep track of packet contents af-
ter they have been sent by the device driver, and ulP requires that the application takes an active part in
performing the retransmission. When ulP decides that a segment should be retransmitted, it calls the appli-
cation with a flag set indicating that a retransmission is required. The application checks the retransmission
flag and produces the same data that was previously sent. From the application’s standpoint, performing
a retransmission is not different from how the data originally was sent. Therefore the application can be
written in such a way that the same code is used both for sending data and retransmitting data. Also, it is
important to note that even though the actual retransmission operation is carried out by the application, it
is the responsibility of the stack to know when the retransmission should be made. Thus the complexity of
the application does not necessarily increase because it takes an active part in doing retransmissions.

Application Events The application must be implemented as a C functigii,_APPCALL(), that ulP

calls whenever an event occurs. Each event has a corresponding test function that is used to distinguish
between different events. The functions are implemented as C macros that will evaluate to either zero or
non-zero. Note that certain events can happen in conjunction with each other (i.e., new data can arrive at
the same time as data is acknowledged).

The Connection Pointer When the application is called by ulP, the global variahile connis set to
point to theuip_connstructure for the connection that currently is handled, and is called the "current

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 18

connection". The fields in theip_connstructure for the current connection can be used, e.g., to distinguish
between different services, or to check to which IP address the connection is connected. One typical
use would be to inspect the uip_conport (the local TCP port number) to decide which service the
connection should provide. For instance, an application might decide to act as an HTTP server if the value
of uip_conn=>Iport is equal to 80 and act as a TELNET server if the value is 23.

Receiving Data If the ulP test functionuip_newdata(js non-zero, the remote host of the connection has
sent new data. The uip_appdata pointer point to the actual data. The size of the data is obtained through
the ulP functioruip_datalen() The data is not buffered by ulP, but will be overwritten after the application
function returns, and the application will therefor have to either act directly on the incoming data, or by
itself copy the incoming data into a buffer for later processing.

Sending Data When sending data, ulP adjusts the length of the data sent by the application according to
the available buffer space and the current TCP window advertised by the receiver. The amount of buffer
space is dictated by the memory configuration. It is therefore possible that all data sent from the application
does not arrive at the receiver, and the application may useiphenss()function to see how much data

that actually will be sent by the stack.

The application sends data by using the ulP functigm send() Theuip_send(function takes two argu-

ments; a pointer to the data to be sent and the length of the data. If the application needs RAM space for
producing the actual data that should be sent, the packet buffer (pointed to by the uip_appdata pointer) can
be used for this purpose.

The application can send only one chunk of data at a time on a connection and it is not possible to call
uip_send()more than once per application invocation; only the data from the last call will be sent.

Retransmitting Data Retransmissions are driven by the periodic TCP timer. Every time the periodic
timer is invoked, the retransmission timer for each connection is decremented. If the timer reaches zero,
a retransmission should be made. As ulP does not keep track of packet contents after they have been sent
by the device driver, ulP requires that the application takes an active part in performing the retransmission.
When ulP decides that a segment should be retransmitted, the application function is called wifth-the
rexmit() flag set, indicating that a retransmission is required.

The application must check thigp_rexmit()flag and produce the same data that was previously sent. From

the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefor, the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

Closing Connections The application closes the current connection by callingiipeclose()during an
application call. This will cause the connection to be cleanly closed. In order to indicate a fatal error, the
application might want to abort the connection and does so by callingjph@bort()function.

If the connection has been closed by the remote end, the test fungtiotiosed()s true. The application
may then do any necessary cleanups.

Reporting Errors There are two fatal errors that can happen to a connection, either that the connection
was aborted by the remote host, or that the connection retransmitted the last data too many times and has
been aborted. ulP reports this by calling the application function. The application can use the two test
functionsuip_aborted(anduip_timedout(}to test for those error conditions.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 19

Polling When a connection is idle, ulP polls the application every time the periodic timer fires. The
application uses the test functiaip_poll() to check if it is being polled by ulP.

The polling event has two purposes. The firstis to let the application periodically know that a connection is
idle, which allows the application to close connections that have been idle for too long. The other purpose
is to let the application send new data that has been produced. The application can only send data when
invoked by ulP, and therefore the poll event is the only way to send data on an otherwise idle connection.

Listening Ports ulP maintains a list of listening TCP ports. A new port is opened for listening with the
uip_listen()function. When a connection request arrives on a listening port, ulP creates a new connection
and calls the application function. The test functiop_connected(js true if the application was invoked
because a new connection was created.

The application can check the Iport field in thie_conrstructure to check to which port the new connection
was connected.

Opening Connections New connections can be opened from within ulP by the funatipn connect()

This function allocates a new connection and sets a flag in the connection state which will open a TCP
connection to the specified IP address and port the next time the connection is polled by wiip_Fhe
connect()function returns a pointer to thép_connstructure for the new connection. If there are no free
connection slots, the function returns NULL.

The functionuip_ipaddr()may be used to pack an IP address into the two element 16-bit array used by ulP
to represent IP addresses.

Two examples of usage are shown below. The first example shows how to open a connection to TCP port
8080 of the remote end of the current connection. If there are not enough TCP connection slots to allow
a new connection to be opened, thip_connect(function returns NULL and the current connection is
aborted byuip_abort()

void connect_examplel_app(void) {
if(uip_connect(uip_conn->ripaddr, HTONS(8080)) == NULL) {
uip_abort();
}

}

The second example shows how to open a new connection to a specific IP address. No error checks are
made in this example.

void connect_example2(void) {
uip_addr_t ipaddr;

uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(8080));
}

6.7.9 Examples

This section presents a number of very simple ulP applications. The ulP code distribution contains several
more complex applications.

6.7.9.1 A Very Simple Application This first example shows a very simple application. The applica-
tion listens forincoming connections on port 1234. When a connection has been established, the application
replies to all data sent to it by saying "ok"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 20

The implementation of this application is shown below. The application is initialized with the function
called examplel_init() and the ulP callback function is called examplel_app(). For this application, the
configuration variable UIP_APPCALL should be defined to be examplel_app().

void examplel_init(void) {
uip_listen(HTONS(1234));
}

void examplel_app(void) {
if(uip_newdata() || uip_rexmit()) {
uip_send("ok\n", 3);
}

}

The initialization function calls the ulP functianp_listen()to register a listening port. The actual applica-

tion function examplel_app() uses the test functigips newdata(anduip_rexmit()to determine why it

was called. If the application was called because the remote end has sent it data, it responds with an "ok".
If the application function was called because data was lost in the network and has to be retransmitted, it
also sends an "ok". Note that this example actually shows a complete ulP application. It is not required for

an application to deal with all types of events suchiigs connected(®r uip_timedout()

6.7.9.2 A More Advanced Application This second example is slightly more advanced than the pre-
vious one, and shows how the application state field irutheconnstructure is used.

This application is similar to the first application in that it listens to a port for incoming connections and
responds to data sent to it with a single "ok". The big difference is that this application prints out a
welcoming "Welcome!" message when the connection has been established.

This seemingly small change of operation makes a big difference in how the application is implemented.
The reason for the increase in complexity is that if data should be lost in the network, the application must
know what data to retransmit. If the "Welcome!" message was lost, the application must retransmit the
welcome and if one of the "ok" messages is lost, the application must send a new "ok".

The application knows that as long as the "Welcome!" message has not been acknowledged by the remote
host, it might have been dropped in the network. But once the remote host has sent an acknowledgment
back, the application can be sure that the welcome has been received and knows that any lost data must be
an "ok" message. Thus the application can be in either of two states: either in the WELCOME-SENT state
where the "Welcome!" has been sent but not acknowledged, or in the WELCOME-ACKED state where the
"Welcome!" has been acknowledged.

When a remote host connects to the application, the application sends the "Welcome!" message and sets
it's state to WELCOME-SENT. When the welcome message is acknowledged, the application moves to
the WELCOME-ACKED state. If the application receives any new data from the remote host, it responds
by sending an "ok" back.

If the application is requested to retransmit the last message, it looks at in which state the application is. If
the application is in the WELCOME-SENT state, it sends a "Welcome!" message since it knows that the
previous welcome message hasn’t been acknowledged. If the application is in the WELCOME-ACKED

state, it knows that the last message was an "ok" message and sends such a message.

The implementation of this application is seen below. This configuration settings for the application is
follows after its implementation.

struct example2_state {
enum {WELCOME_SENT, WELCOME_ACKED} state;
h

void example2_init(void) {
uip_listen(HTONS(2345));

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 21

}

void example2_app(void) {
struct example2_state *s;

s = (struct example2_state *)uip_conn->appstate;

if(uip_connected()) {
s->state = WELCOME_SENT;
uip_send("Welcome\n", 9);
return;

}

if(uip_acked() && s->state == WELCOME_SENT) {
s->state = WELCOME_ACKED;
}

if(uip_newdata()) {
uip_send("ok\n", 3);

if(uip_rexmit()) {

switch(s->state) {

case WELCOME_SENT:
uip_send("Welcome\n", 9);
break;

case WELCOME_ACKED:
uip_send("ok\n", 3);
break;

The configuration for the application:

#define UIP_APPCALL example2_app
#define UIP_APPSTATE_SIZE sizeof(struct example2_state)

6.7.9.3 Differentiating Between Applications If the system should run multiple applications, one
technique to differentiate between them is to use the TCP port number of either the remote end or the
local end of the connection. The example below shows how the two examples above can be combined into
one application.

void example3_init(void) {
examplel_init();
example2_init();

}

void example3_app(void) {
switch(uip_conn->Iport) {
case HTONS(1234):
examplel_app();
break;
case HTONS(2345):
example2_app();
break;

6.7.9.4 Utilizing TCP Flow Control This example shows a simple application that connects to a host,
sends an HTTP request for a file and downloads it to a slow device such a disk drive. This shows how to
use the flow control functions of ulP.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 22

void example4_init(void) {
uip_ipaddr_t ipaddr;
uip_ipaddr(ipaddr, 192,168,0,1);
uip_connect(ipaddr, HTONS(80));
}

void example4_app(void) {
if(uip_connected() || uip_rexmit()) {
uip_send("GET /file HTTP/1.0\r\nServer:192.186.0.1\r\n\r\n",
48);
return;

}

if(uip_newdata()) {
device_enqueue(uip_appdata, uip_datalen());
if(device_queue_full()) {

uip_stop();
}

if(uip_poll() && uip_stopped()) {
if('device_queue_full()) {
uip_restart();
}

}
}

When the connection has been established, an HTTP request is sent to the server. Since this is the only
data that is sent, the application knows that if it needs to retransmit any data, it is that request that should
be retransmitted. It is therefore possible to combine these two events as is done in the example.

When the application receives new data from the remote host, it sends this data to the device by using
the function device_enqueue(). It is important to note that this example assumes that this function copies
the data into its own buffers. The data in the uip_appdata buffer will be overwritten by the next incoming
packet.

If the device’s queue is full, the application stops the data from the remote host by calling the ulP function
uip_stop() The application can then be sure that it will not receive any new datauimtitestart()s called.

The application polling event is used to check if the device’s queue is no longer full and if so, the data flow
is restarted withuip_restart()

6.7.9.5 A Simple Web Server This example shows a very simple file server application that listens to
two ports and uses the port number to determine which file to send. If the files are properly formatted, this
simple application can be used as a web server with static pages. The implementation follows.

struct example5_state {
char *dataptr;
unsigned int dataleft;

h

void example5_init(void) {
uip_listen(HTONS(80));
uip_listen(HTONS(81));
}

void example5_app(void) {
struct example5_state *s;
s = (struct example5_state)uip_conn->appstate;

if(uip_connected()) {
switch(uip_conn->Iport) {
case HTONS(80):
s->dataptr = data_port_80;

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 23

s->dataleft = datalen_port_80;
break;

case HTONS(81):
s->dataptr = data_port_81;
s->dataleft = datalen_port_81;
break;

uip_send(s->dataptr, s->dataleft);
return;

}

if(uip_acked()) {
if(s->dataleft < uip_mss()) {
uip_close();
return;

}

s->dataptr += uip_conn->len;
s->dataleft -= uip_conn->len;
uip_send(s->dataptr, s->dataleft);

The application state consists of a pointer to the data that should be sent and the size of the data that is left
to send. When a remote host connects to the application, the local port number is used to determine which
file to send. The first chunk of data is sent using_send() ulP makes sure that no more than MSS bytes

of data is actually sent, even though-glataleft may be larger than the MSS.

The application is driven by incoming acknowledgments. When data has been acknowledged, new data
can be sent. If there is no more data to send, the connection is closediisintpse()

6.7.9.6 Structured Application Program Design When writing larger programs using ulP it is useful

to be able to utilize the ulP API in a structured way. The following example provides a structured design
that has showed itself to be useful for writing larger protocol implementations than the previous exam-
ples showed here. The program is divided into an ulP event handler function that calls seven application
handler functions that process new data, act on acknowledged data, send new data, deal with connection
establishment or closure events and handle errors. The functions are called newdata(), acked(), senddata(),
connected(), closed(), aborted(), and timedout(), and needs to be written specifically for the protocol that
is being implemented.

The ulP event handler function is shown below.
void example6_app(void) {
if(uip_aborted()) {
aborted();

if(uip_timedout()) {
timedout();

}
if(uip_closed()) {
closed();

if(uip_connected()) {
connected();

}
if(uip_acked()) {
acked();

}
if(uip_newdata()) {
newdata();

if(uip_rexmit() ||
uip_newdata() ||

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 24

uip_acked() ||
uip_connected() ||

uip_poll()) {
senddata();

}
}

The function starts with dealing with any error conditions that might have happened by cheakipg-if
aborted()or uip_timedout(Jare true. If so, the appropriate error function is called. Also, if the connection
has been closed, the closed() function is called to the it deal with the event.

Next, the function checks if the connection has just been established by cheakimgibnnected(s true.

The connected() function is called and is supposed to do whatever needs to be done when the connection
is established, such as intializing the application state for the connection. Since it may be the case that data
should be sent out, the senddata() function is called to deal with the outgoing data.

The following very simple application serves as an example of how the application handler functions might
look. This application simply waits for any data to arrive on the connection, and responds to the data by
sending out the message "Hello world!". To illustrate how to develop an application state machine, this
message is sent in two parts, first the "Hello" part and then the "world!" part.

#define STATE_WAITING 0
#define STATE_HELLO 1
#define STATE_WORLD 2

struct example6_state {
u8_t state;
char *textptr;
int textlen;

b

static void aborted(void) {}
static void timedout(void) {}
static void closed(void) {}

static void connected(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->state = STATE_WAITING;
s->textlen = 0;

}

static void newdata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->state == STATE_WAITING) {

s->state = STATE_HELLO;
s->textptr = "Hello *;
s->textlen = 6;

}
}

static void acked(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

s->textlen -= uip_conn->len;
s->textptr += uip_conn->len;
if(s->textlen == 0) {
switch(s->state) {
case STATE_HELLO:

s->state = STATE_WORLD;
s->textptr = "world!\n";
s->textlen = 7,

break;

case STATE_WORLD:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 25

uip_close();
break;

}
}
}

static void senddata(void) {
struct example6_state *s = (struct example6_state *)uip_conn->appstate;

if(s->textlen > 0) {
uip_send(s->textptr, s->textlen);
}

}

The application state consists of a "state" variable, a "textptr" pointer to a text message and the "textlen"
length of the text message. The "state" variable can be either "STATE_WAITING", meaning that the
application is waiting for data to arrive from the network, "STATE_HELLQO", in which the application is
sending the "Hello" part of the message, or "STATE_WORLD", in which the application is sending the
"world!" message.

The application does not handle errors or connection closing events, and therefore the aborted(), timedout()
and closed() functions are implemented as empty functions.

The connected() function will be called when a connection has been established, and in this case sets the
"state" variable to be "STATE_WAITING" and the "textlen" variable to be zero, indicating that there is no
message to be sent out.

When new data arrives from the network, the newdata() function will be called by the event handler func-
tion. The newdata() function will check if the connection is in the "STATE_WAITING" state, and if so
switches to the "STATE_HELLQO" state and registers a 6 byte long "Hello " message with the connection.
This message will later be sent out by the senddata() function.

The acked() function is called whenever data that previously was sent has been acknowleged by the receiv-
ing host. This acked() function first reduces the amount of data that is left to send, by subtracting the length
of the previously sent data (obtained from "uip_cenren”) from the "textlen" variable, and also adjusts

the "textptr" pointer accordingly. It then checks if the "textlen" variable now is zero, which indicates that all
data now has been successfully received, and if so changes application state. If the application was in the
"STATE_HELLO" state, it switches state to "STATE_WORLD" and sets up a 7 byte "wgrldhessage

to be sent. If the application was in the "STATE_WORLD" state, it closes the connection.

Finally, the senddata() function takes care of actually sending the data that is to be sent. It is called by
the event handler function when new data has been received, when data has been acknowledged, when
a new connection has been established, when the connection is polled because of inactivity, or when a
retransmission should be made. The purpose of the senddata() function is to optionally format the data that
is to be sent, and to call thep_send(function to actually send out the data. In this particular example,

the function simply callsiip_send(with the appropriate arguments if data is to be sent, after checking if
data should be sent out or not as indicated by the "textlen" variable.

Itis important to note that the senddata() function never should affect the application state; this should only
be done in the acked() and newdata() functions.

6.7.10 Protocol Implementations

The protocols in the TCP/IP protocol suite are designed in a layered fashion where each protocol performs
a specific function and the interactions between the protocol layers are strictly defined. While the layered
approach is a good way to design protocols, it is not always the best way to implement them. In ulP, the
protocol implementations are tightly coupled in order to save code space.

This section gives detailed information on the specific protocol implementations in ulP.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 26

6.7.10.1 IP — Internet Protocol When incoming packets are processed by ulP, the IP layer is the first
protocol that examines the packet. The IP layer does a few simple checks such as if the destination IP
address of the incoming packet matches any of the local IP address and verifies the IP header checksum.
Since there are no IP options that are strictly required and because they are very uncommon, any IP options
in received packets are dropped.

IP Fragment Reassembly IP fragment reassembly is implemented using a separate buffer that holds the
packet to be reassembled. An incoming fragment is copied into the right place in the buffer and a bit map
is used to keep track of which fragments have been received. Because the first byte of an IP fragment is
aligned on an 8-byte boundary, the bit map requires a small amount of memory. When all fragments have
been reassembled, the resulting IP packet is passed to the transport layer. If all fragments have not been
received within a specified time frame, the packet is dropped.

The current implementation only has a single buffer for holding packets to be reassembled, and therefore
does not support simultaneous reassembly of more than one packet. Since fragmented packets are uncom-
mon, this ought to be a reasonable decision. Extending the implementation to support multiple buffers
would be straightforward, however.

Broadcasts and Multicasts IP has the ability to broadcast and multicast packets on the local network.
Such packets are addressed to special broadcast and multicast addresses. Broadcast is used heavily in
many UDP based protocols such as the Microsoft Windows file-sharing SMB protocol. Multicast is pri-
marily used in protocols used for multimedia distribution such as RTP. TCP is a point-to-point protocol and
does not use broadcast or multicast packets. ulP current supports broadcast packets as well as sending mul-
ticast packets. Joining multicast groups (IGMP) and receiving non-local multicast packets is not currently
supported.

6.7.10.2 ICMP — Internet Control Message Protocol The ICMP protocol is used for reporting soft
error conditions and for querying host parameters. Its main use is, however, the echo mechanism which is
used by the "ping" program.

The ICMP implementation in ulP is very simple as itis restricted to only implement ICMP echo messages.
Replies to echo messages are constructed by simply swapping the source and destination IP addresses of
incoming echo requests and rewriting the ICMP header with the Echo-Reply message type. The ICMP
checksum is adjusted using standard techniques (see RFC1624).

Since only the ICMP echo message is implemented, there is no support for Path MTU discovery or ICMP
redirect messages. Neither of these is strictly required for interoperability; they are performance enhance-
ment mechanisms.

6.7.10.3 TCP — Transmission Control Protocol The TCP implementation in ulP is driven by incom-

ing packets and timer events. Incoming packets are parsed by TCP and if the packet contains data that is to
be delivered to the application, the application is invoked by the means of the application function call. If
the incoming packet acknowledges previously sent data, the connection state is updated and the application
is informed, allowing it to send out new data.

Listening Connections TCP allows a connection to listen for incoming connection requests. In ulP, a
listening connection is identified by the 16-bit port number and incoming connection requests are checked
against the list of listening connections. This list of listening connections is dynamic and can be altered by
the applications in the system.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 27

Sliding Window Most TCP implementations use a sliding window mechanism for sending data. Multiple
data segments are sent in succession without waiting for an acknowledgment for each segment.

The sliding window algorithm uses a lot of 32-bit operations and because 32-bit arithmetic is fairly expen-
sive on most 8-bit CPUs, ulP does not implement it. Also, ulP does not buffer sent packets and a sliding
window implementation that does not buffer sent packets will have to be supported by a complex appli-
cation layer. Instead, ulP allows only a single TCP segment per connection to be unacknowledged at any
given time.

It is important to note that even though most TCP implementations use the sliding window algorithm,
it is not required by the TCP specifications. Removing the sliding window mechanism does not affect
interoperability in any way.

Round-Trip Time Estimation TCP continuously estimates the current Round-Trip Time (RTT) of every
active connection in order to find a suitable value for the retransmission time-out.

The RTT estimation in ulP is implemented using TCP’s periodic timer. Each time the periodic timer
fires, it increments a counter for each connection that has unacknowledged data in the network. When an
acknowledgment is received, the current value of the counter is used as a sample of the RTT. The sample
is used together with Van Jacobson’s standard TCP RTT estimation function to calculate an estimate of the
RTT. Karn’s algorithm is used to ensure that retransmissions do not skew the estimates.

Retransmissions Retransmissions are driven by the periodic TCP timer. Every time the periodic timer
is invoked, the retransmission timer for each connection is decremented. If the timer reaches zero, a
retransmission should be made.

As ulP does not keep track of packet contents after they have been sent by the device driver, ulP requires
that the application takes an active part in performing the retransmission. When ulP decides that a segment
should be retransmitted, it calls the application with a flag set indicating that a retransmission is required.
The application checks the retransmission flag and produces the same data that was previously sent. From
the application’s standpoint, performing a retransmission is not different from how the data originally was
sent. Therefore the application can be written in such a way that the same code is used both for sending data
and retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

Flow Control The purpose of TCP’s flow control mechanisms is to allow communication between hosts
with wildly varying memory dimensions. In each TCP segment, the sender of the segment indicates its
available buffer space. A TCP sender must not send more data than the buffer space indicated by the
receiver.

In ulP, the application cannot send more data than the receiving host can buffer. And application cannot
send more data than the amount of bytes it is allowed to send by the receiving host. If the remote host
cannot accept any data at all, the stack initiates the zero window probing mechanism.

Congestion Control The congestion control mechanisms limit the number of simultaneous TCP seg-
ments in the network. The algorithms used for congestion control are designed to be simple to implement
and require only a few lines of code.

Since ulP only handles one in-flight TCP segment per connection, the amount of simultaneous segments
cannot be further limited, thus the congestion control mechanisms are not needed.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 28

Urgent Data TCP'’s urgent data mechanism provides an application-to-application notification mecha-
nism, which can be used by an application to mark parts of the data stream as being more urgent than the
normal stream. It is up to the receiving application to interpret the meaning of the urgent data.

In many TCP implementations, including the BSD implementation, the urgent data feature increases the
complexity of the implementation because it requires an asynchronous notification mechanism in an oth-
erwise synchronous API. As ulP already use an asynchronous event based API, the implementation of the
urgent data feature does not lead to increased complexity.

6.7.11 Performance

In TCP/IP implementations for high-end systems, processing time is dominated by the checksum calcu-
lation loop, the operation of copying packet data and context switching. Operating systems for high-end
systems often have multiple protection domains for protecting kernel data from user processes and user
processes from each other. Because the TCP/IP stack is run in the kernel, data has to be copied between the
kernel space and the address space of the user processes and a context switch has to be performed once the
data has been copied. Performance can be enhanced by combining the copy operation with the checksum
calculation. Because high-end systems usually have numerous active connections, packet demultiplexing

is also an expensive operation.

A small embedded device does not have the necessary processing power to have multiple protection do-
mains and the power to run a multitasking operating system. Therefore there is ho need to copy data
between the TCP/IP stack and the application program. With an event based API there is no context switch
between the TCP/IP stack and the applications.

In such limited systems, the TCP/IP processing overhead is dominated by the copying of packet data from
the network device to host memory, and checksum calculation. Apart from the checksum calculation
and copying, the TCP processing done for an incoming packet involves only updating a few counters
and flags before handing the data over to the application. Thus an estimate of the CPU overhead of our
TCP/IP implementations can be obtained by calculating the amount of CPU cycles needed for the checksum
calculation and copying of a maximum sized packet.

6.7.11.1 The Impact of Delayed Acknowledgments Most TCP receivers implement the delayed ac-
knowledgment algorithm for reducing the number of pure acknowledgment packets sent. A TCP receiver
using this algorithm will only send acknowledgments for every other received segment. If no segment is
received within a specific time-frame, an acknowledgment is sent. The time-frame can be as high as 500
ms but typically is 200 ms.

A TCP sender such as ulP that only handles a single outstanding TCP segment will interact poorly with
the delayed acknowledgment algorithm. Because the receiver only receives a single segment at a time, it
will wait as much as 500 ms before an acknowledgment is sent. This means that the maximum possible
throughput is severely limited by the 500 ms idle time.

Thus the maximum throughput equation when sending data from ulP will be $p = s/ (t + t_d)$ where s is
the segment size and t_d is the delayed acknowledgment timeout, which typically is between 200 and 500
ms. With a segment size of 1000 bytes, a round-trip time of 40 ms and a delayed acknowledgment timeout
of 200 ms, the maximum throughput will be 4166 bytes per second. With the delayed acknowledgment
algorithm disabled at the receiver, the maximum throughput would be 25000 bytes per second.

It should be noted, however, that since small systems running ulP are not very likely to have large amounts
of data to send, the delayed acknowledgmen t throughput degradation of ulP need not be very severe. Small
amounts of data sent by such a system will not span more than a single TCP segment, and would therefore
not be affected by the throughput degradation anyway.

The maximum throughput when ulP acts as a receiver is not affected by the delayed acknowledgment
throughput degradation.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 29

Note:
TheulP TCP throughput booster haokodule implements a hack that overcomes the problems with
the delayed acknowledgment throughput degradation.

Files

« file uip.h
Header file for the ulP TCP/IP stack.

« file uip.c
The ulP TCP/IP stack code.

Modules

« ulP configuration functions

 ulP initialization functions

« ulP device driver functions

« ulP application functions

« ulP conversion functions
 Variables used in ulP device drivers
« Configuration options for ulP

» ulP Address Resolution Protocol
 ulP TCP throughput booster hack
« ulP packet forwarding

* ulP hostname resolver functions
 Protosockets library

* The Contiki/ulP interface

« Uiparch

Data Structures

e unionuip_ip4addr_t
Representation of an IP address.

* structuip_conn
Representation of a ulP TCP connection.

e structuip_udp_conn
Representation of a ulP UDP connection.

« structuip_stats
The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.

« structuip_eth_addr
Representation of a 48-bit Ethernet address.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack

30

Defines

« #defineUIP_APPDATA_SIZE
The buffer size available for user data in thi@ bufbuffer.

Typedefs

* typedefuip_ip4addr_uip_ip4addr_t
Representation of an IP address.

Functions

e ul6_tuip_chksumul6_t«buf, ulé_tlen)
Calculate the Internet checksum over a buffer.

e ul6_tuip_ipchksum(void)
Calculate the IP header checksum of the packet header in uip_buf.

e ul6_tuip_tcpchksungvoid)
Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

e ul6_tuip_udpchksungvoid)
Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

* void uip_setipid(ul6_tid)
ulP initialization function.

« void uip_init (void)
ulP initialization function.

* uip_udp_conrx uip_udp_newconstuip_ipaddr_t«ripaddr, ul6_t rport)
Set up a new UDP connection.

« void uip_unlisten(u16_t port)
Stop listening to the specified port.

* void uip_listen(u16_t port)
Start listening to the specified port.

e ul6_thtons(ul6_tval)
Convert 16-bit quantity from host byte order to network byte order.

« void uip_sendconst void«data, int len)
Send data on the current connection.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 31

Variables

» CCIF void* uip_appdata
Pointer to the application data in the packet buffer.

» CCIF structuip_connx uip_conn
Pointer to the current TCP connection.

* uip_udp_conrx uip_udp_conn
The current UDP connection.

* uip_statwuip_stat
The ulP TCP/IP statistics.

e u8_tuip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

* void * uip_appdata
Pointer to the application data in the packet buffer.

e ul6_tuip_len
The length of the packet in the uip_buf buffer.

 uip_connx uip_conn
Pointer to the current TCP connection.

 uip_udp_conn uip_udp_conn
The current UDP connection.

e u8 tuip_acc374]
4-byte array used for the 32-bit sequence number calculations.

6.7.12 Define Documentation

6.7.12.1 #define UIP_APPDATA_SIZE
The buffer size available for user data in thip_bufbuffer.

This macro holds the available size for user data inuipe buf buffer. The macro is intended to be used
for checking bounds of available user data.

Example:

snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);

Definition at line 1552 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 32

6.7.13 Function Documentation

6.7.13.1 ul6_thtons (ul6 val)
Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, useHR®NS() macro instead.

Definition at line 1866 of file uip.c.
References HTONS.

Referenced by uip_chksum(), uip_ipchksum(), and uip_udp_new().

6.7.13.2 ul6_tuip_chksum (ul6_t buf, ulé_tlen)
Calculate the Internet checksum over a buffer.

The Internet checksum is the one’s complement of the one’s complement sum of all 16-bit words in the
buffer.

See RFC1071.

Parameters:
buf A pointer to the buffer over which the checksum is to be computed.

len The length of the buffer over which the checksum is to be computed.

Returns:
The Internet checksum of the buffer.

Definition at line 296 of file uip.c.

References htons().

6.7.13.3 void uip_init (void)

ulP initialization function.

This function should be called at boot up to initilize the ulP TCP/IP stack.
Definition at line 364 of file uip.c.

References uip_udp_conn::lport, uip_conn::tcpstateflags, UIP_CONNS, UIP_LISTENPORTS, and UIP_-
UDP_CONNS.

6.7.13.4 ul6_tuip_ipchksum (void)
Calculate the IP header checksum of the packet header in uip_buf.
The IP header checksum is the Internet checksum of the 20 bytes of the IP header.

Returns:
The IP header checksum of the IP header in the uip_buf buffer.

Definition at line 303 of file uip.c.
References htons(), uip_buf, and UIP_LLH_LEN.
Referenced by uip_split_output().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 33

6.7.13.5 void uip_listen (u16_port)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversionHiBDYS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 514 of file uip.c.
References UIP_LISTENPORTS.
Referenced by tcp_listen().

6.7.13.6 void uip_send (const void data, int len)
Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by ulP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. ulP will automatically crop the data so that only the appropriate amount of
data is sent. The functiomp_mss()can be used to query ulP for the amount of data that actually will be
sent.

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the
network, the application will be invoked with thép_rexmit() event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

Definition at line 1878 of file uip.c.

6.7.13.7 void uip_setipid (ul6_id)
ulP initialization function.
This function may be used at boot time to set the initial ip_id.

Definition at line 166 of file uip.c.

6.7.13.8 ul6_tuip_tcpchksum (void)
Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

The TCP checksum is the Internet checksum of data contents of the TCP segment, and a pseudo-header as
defined in RFC793.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 34

Returns:
The TCP checksum of the TCP segment in uip_buf and pointed to by uip_appdata.

Definition at line 349 of file uip.c.

Referenced by uip_split_output().

6.7.13.9 structuip_udp_conrx uip_udp_new (constuip_ipaddr_t « ripaddr, ul6_trport)
Set up a new UDP connection.

This function sets up a new UDP connection. The function will automatically allocate an unused local port
for the new connection. However, another port can be chosen by usingpthedp _bind()call, after the
uip_udp_new(function has been called.

Example:

uip_ipaddr_t addr;

struct uip_udp_conn *c;

uip_ipaddr(&addr, 192,168,2,1);

Cc = uip_udp_new(&addr, HTONS(12345));
if(c '= NULL) {

uip_udp_bind(c, HTONS(12344));
}

Parameters:
ripaddr The IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip_udp_conrstructure for the new connection or NULL if no connection could be allocated.

Definition at line 458 of file uip.c.

References HTONS, htons(), uip_udp_conn::lport, uip_udp_conn:ripaddr, uip_udp_conn::rport, uip_-
udp_conn::ttl, uip_ipaddr_copy, UIP_TTL, uip_udp_conn, and UIP_UDP_CONNS.

Referenced by udp_new().

6.7.13.10 ul6_tuip_udpchksum (void)
Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

The UDP checksum is the Internet checksum of data contents of the UDP segment, and a pseudo-header
as defined in RFC768.

Returns:
The UDP checksum of the UDP segment in uip_buf and pointed to by uip_appdata.

6.7.13.11 void uip_unlisten (ul6_port)
Stop listening to the specified port.
Note:

Since this function expects the port number in network byte order, a conversionHisDYS() or
htons()is necessary.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.7 The ulP TCP/IP stack 35

uip_unlisten(HTONS(80));

Parameters:

port A 16-bit port number in network byte order.
Definition at line 503 of file uip.c.
References UIP_LISTENPORTS.

Referenced by tcp_unlisten().

6.7.14 Variable Documentation

6.7.14.1 void uip_appdata
Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before aapingend()

Definition at line 128 of file uip.c.

Referenced by uip_arp_out(), uip_fw_forward(), and uip_split_output().

6.7.14.2 CCIF voidk uip_appdata
Pointer to the application data in the packet buffer.

This pointer points to the application data when the application is called. If the application wishes to send
data, the application may use this space to write the data into before aapingend()

Definition at line 128 of file uip.c.

Referenced by uip_arp_out(), uip_fw_forward(), and uip_split_output().

6.7.14.3 u8_wip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

void
devicedriver_send(void)

hwsend(&uip_buf[0], UIP_LLH_LEN);

if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);

} else {
hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);

}

}

Definition at line 124 of file uip.c.

Referenced by uip_arp_out(), uip_fw_forward(), and uip_ipchksum().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.8 The Rime communication stack 36

6.7.14.4 structuip_connk uip_conn
Pointer to the current TCP connection.
Theuip_connpointer can be used to access the current TCP connection.

Definition at line 148 of file uip.c.

6.7.14.5 CCIF structuip_connx uip_conn
Pointer to the current TCP connection.
Theuip_connpointer can be used to access the current TCP connection.

Definition at line 148 of file uip.c.

6.7.14.6 ul6_tip_len
The length of the packet in the uip_buf buffer.
The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the ulP input function, uip_len should be set to the length of the
packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the
length of the outgoing packet.

Definition at line 140 of file uip.c.

Referenced by tcpip_input(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), uip_fw_output(), and
uip_split_output().

6.7.14.7 structuip_statsuip_stat
The ulP TCP/IP statistics.
This is the variable in which the ulP TCP/IP statistics are gathered.

6.8 The Rime communication stack
6.8.1 Detailed Description

The Rime communication stack provides a set of lightweight communication primitives ranging from best-
effort anonymous local area broadcast to reliable network flooding.

Files
« file rime.h
Header file for the Rime stack.
Modules

« Anonymous best-effort local area broadcast
 Callback timer
« |dentified best-effort local area broadcast

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.8 The Rime communication stack 37

* Mesh routing

* Best-effort multihop forwarding

* Rime neighbor management

 Best-effort network flooding

* Rime queue buffer management

* Rime addresses

* Rime buffer management

* Rime route discovery protocol

* Rime route table

« Stubborn anonymous best-effort local area broadcast
 Stubborn identified broadcast

 Stubborn unicast

» Tree-based hop-by-hop reliable data collection

« Reliable single-source multi-hop flooding

« Unigue anonymous best effort local area broadcast
« Single-hop unicast

« Unique identified best effort local area broadcast

« Single-hop reliable bulk data transfer

< Multi-hop reliable bulk data transfer

Functions

* void rime_init (const struct mac_drivet)
Initialize Rime.

* void rime_input(void)
Send an incoming packet to Rime.

« void rime_driver_sendvoid)
Rime calls this function to send out a packet.

6.8.2 Function Documentation

6.8.2.1 void rime_driver_send (void)
Rime calls this function to send out a packet.

This function must be implemented by the driver running below Rime. It is called by abRime to send out
a packet. The packet is consecutive in the rimebuf. A pointer to the first byte of the packet is obtained
with therimebuf_hdrptr()function. The length of the packet to send is obtained wittritinebuf_totlen()
function.

The driver, which typically is a MAC protocol, may queue the packet by using the queuebuf functions.

6.8.2.2 void rime_init (const struct mac_driverx)
Initialize Rime.

This function should be called from the system boot up code to initialize Rime.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.9 The Contiki build system 38

6.8.2.3 void rime_input (void)
Send an incoming packet to Rime.

This function should be called by the network driver to hand over a packet to Rime for furhter processing.
The packet should be placed in the rimebuf (withebuf_copyfrom() before calling this function.

6.9 The Contiki build system

The Contiki build system is designed to make it easy to compile Contiki applications for either to a hard-
ware platform or into a simulation platform by simply supplying different parameters tmék® com-
mand, without having to edit makefiles or modify the application code.

The file example project in examples/hello-world/ shows how the Contiki build system works. The
hello-world.c application can be built into a complete Contiki system by runnimgke in the
examples/hello-world/ directory. Runnimgake without parameters will build a Contiki system using
thenative target. Thenative target is a special Contiki platform that builds an entire Contiki system
as a program that runs on the development system. After compiling the applicationriatitree target it

is possible to run the Contiki system with the application by running thédille-world.native . To
compile the application and a Contiki system for #®8B platform" the commandnake TARGET=esb

is used. This produces a hello-world.esb file that can be loaded into an ESB board.

To compile the hello-world application into a stand-alone executable that can be loaded into a running
Contiki system, the commandake hello-world.ce is used. To build an executable file for the ESB
platform,make TARGET=esb hello-world.ce is run.

To avoid having to typd ARGET=every timemake is run, it is possible to rumake TARGET=esb
savetarget to save the selected target as the default target platform for subsequent invocatiahe of
A file called Makefile.target containing the currently saved target is saved in the project’s directory.

6.9.1 Makefiles used in the Contiki build system
The Contiki build system is composed of a number of Makefiles. These are:

» Makefile : the project’s makefile, located in the project directory.

» Makefile.include : the system-wide Contiki makefile, located in the root of the Contiki source
tree.

» Makefile.$(TARGET) (where $(TARGET) is the name of the platform that is currently being
built): rules for the specific platform, located in the platform’s subdirectory in the platform/ directory.

» Makefile.$(CPU) (where $(CPU) is the name of the CPU or microcontroller architecture used
on the platform for which Contiki is built): rules for the CPU architecture, located in the CPU
architecture’s subdirectory in the cpu/ directory.

» Makefile.$(APP) (where $(APP) is the name of an application in the apps/ directory): rules for
applications in the apps/ directories. Each application has its own makefile.

The Makefile in the project’s directory is intentionally simple. It specifies where the Contiki source code re-
sides in the system and includes the system-wide Mak®fadefile.include . The project’'s makefile

can also define in thAPPSvariable a list of applications from the apps/ directory that should be included
in the Contiki system. The Makefile used in the hello-world example project looks like this:

CONTIKI = ../..
all: hello-world
include $(CONTIKI)/Makefile.include

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 39

First, the location of the Contiki source code tree is given by definind>®@&ITIKI variable. Next, the
name of the application is defined. Finally, the system-wilddefile.include is included.

The Makefile.include contains definitions of the C files of the core Contiki system.
Makefile.include always reside in the root of the Contiki source tree. Wmeake is run,
Makefile.include includes theMakefile. $(TARGET) as well as all makefiles for the applica-
tions in theAPPSIist (which is specified by the projectidakefile).

Makefile. $(TARGET) , which is located in the platform/$(TARGET)/ directory, contains the list of
C files that the platform adds to the Contiki system. This list is defined byC®OBTIKI_TARGET _-
SOURCEFILESvariable. TheMakefile.$(TARGET) also includes théakefile.$(CPU) from
the cpu/$(CPU)/ directory.

The Makefile.$(CPU) typically contains definitions for the C compiler used for the particular CPU.

If multiple C compilers are used, tHdakefile.$(CPU) can either contain a conditional expression
that allows different C compilers to be defined, or it can be completely overridden by the platform specific
makefileMakefile.$(TARGET)

6.10 Contiki processes

6.10.1 Detailed Description

A process in Contiki consists of a singteotothread

Files

« file process.c
Implementation of the Contiki process kernel.

« file process.h
Header file for the Contiki process interface.

Return values

 #definePROCESS_ERR_OR
Return value indicating that an operation was successful.

» #definePROCESS_ERR_FULL
Return value indicating that the event queue was full.

Process protothread functions

 #definePROCESS_BEGIY
Define the beginning of a process.

 #definePROCESS_END
Define the end of a process.

« #definePROCESS_WAIT_EVEN()

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes

40

Wait for an event to be posted to the process.

. #definePROCESS_WAIT_EVENT_UNTI(c)

Wait for an event to be posted to the process, with an extra condition.

 #definePROCESS_YIELD)
Yield the currently running process.

» #definePROCESS_YIELD_UNTIKc)
Yield the currently running process until a condition occurs.

 #definePROCESS_WAIT_UNTIKc)
Wait for a condition to occur.

» #definePROCESS_EXIY)
Exit the currently running process.

» #definePROCESS_PT_SPAW(t, thread)
Spawn a protothread from the process.

» #definePROCESS PAUSH
Yield the process for a short while.

Poll and exit handlers

 #definePROCESS_POLLHANDLERandler)
Specify an action when a process is polled.

 #definePROCESS_EXITHANDLERhandler)
Specify an action when a process exits.

Process declaration and definion

» #definePROCESS_THREAMhame, ev, data)
Define the body of a process.

» #definePROCESS_NAMEhame)
Declare the name of a process.

» #definePROCESfame, strname)
Declare a process.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes

41

Functions called from application programs

« #definePROCESS_CURRENT

Get a pointer to the currently running process.

« #definePROCESS_CONTEXT_BEGI(p)

Switch context to another process.

» #definePROCESS CONTEXT_EN(P) process_current = tmp_current; }
End a context switch.

« process_eventprocess_alloc_eveloid)
Allocate a global event number.

* void process_stafstruct processp, charxarg)
Start a process.

* void process_exifstruct processp)
Cause a process to exit.

* int process_pogstruct processp, process_event_t ev, process_data_t data)
Post an asynchronous event.

« void process_post_syndghtruct processp, process_event_t ev, process_data_t data)
Post a synchronous eventtoa process.

Functions called by the system and boot-up code

« void process_initfvoid)
Initialize the process module.

« int process_ruifvoid)
Run the system once - call poll handlers and process one event.

* int process_neven{soid)
Number of events waiting to be processed.

Functions called from device drivers

* void process_pol(struct processp)
Request a process to be polled.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 42

6.10.2 Define Documentation

6.10.2.1 #define PROCESS(name, strname)
Declare a process.

This macro declares a process. The process has two names: the variable of the process structure, which is
used by the C program, and a human readable string nhame, which is used when debugging.

Parameters:
name The variable name of the process structure.

strname The string repressentation of the process’ name.

Examples:
example-packet-drv,example-pollhandler,@xample-program,@xample-psock-serveriest-abc.¢
test-meshroute, test-rudolph0.ctest-rudolphl.ctest-treeroute,andtest-trickle.c

Definition at line 312 of file process.h.

6.10.2.2 #define PROCESS_BEGIN()

Define the beginning of a process.

This macro defines the beginning of a process, and must always appeRRO@ESS THREAD(jefi-
nition. ThePROCESS_END(@nacro must come at the end of the process.

Examples:
example-packet-drv,e@xample-pollhandler,eexample-program,example-psock-server.andtest-
treeroute.c

Definition at line 121 of file process.h.

6.10.2.3 #define PROCESS_CONTEXT_BEGIN(p)

Value:

f
struct process *tmp_current = PROCESS_CURRENT();\

process_current = p

Switch context to another process.

This function switch context to the specified process and executes the code as if run by that process.
Typical use of this function is to switch context in services, called by other processesPR&SPESS _-
CONTEXT_BEGIN()must be followed by th ROCESS CONTEXT_ENDgnacro to end the context
switch.

Example:
PROCESS_CONTEXT_BEGIN(&test_process);

etimer_set(&timer, CLOCK_SECOND);
PROCESS_CONTEXT_END(&test_process);

Parameters:
p The process to use as context

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 43

See also:
PROCESS_CONTEXT_END()
PROCESS CURRENT()

Definition at line 424 of file process.h.

6.10.2.4 #define PROCESS_CONTEXT_END(p) process_current = tmp_current; }
End a context switch.

This function ends a context switch and changes back to the previous process.

Parameters:
p The process used in the context switch

See also:
PROCESS_CONTEXT_START()

Definition at line 438 of file process.h.

6.10.2.5 #define PROCESS_CURRENT()
Get a pointer to the currently running process.

This macro get a pointer to the currently running process. Typically, this macro is used to post an event to
the current process witrocess_post()

Definition at line 400 of file process.h.

Referenced by ctk_desktop_redraw(), process_exit(), tcp_attach(), tcp_connect(), tcp_listen(), tcp_-
unlisten(), udp_attach(), and udp_new().

6.10.2.6 #define PROCESS_END()

Define the end of a process.

This macro defines the end of a process. It must appeaPR@CESS_THREAD(Jlefinition and must
always be included. The process exits whenRROCESS_END(nacro is reached.

Examples:
example-packet-drv,example-pollhandler,example-program,@xample-psock-serveriest-abc.¢
test-meshroute, test-rudolph0.ctest-rudolphl.ctest-treeroute,@ndtest-trickle.c

Definition at line 132 of file process.h.

6.10.2.7 #define PROCESS_ERR_FULL 1
Return value indicating that the event queue was full.

This value is returned fromprocess_post¢p indicate that the event queue was full and that an event could
not be posted.

Definition at line 83 of file process.h.

Referenced by process_post().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 44

6.10.2.8 #define PROCESS_ERR_OK 0

Return value indicating that an operation was successful.

This value is returned to indicate that an operation was successful.
Definition at line 75 of file process.h.

Referenced by process_post().

6.10.2.9 #define PROCESS_EXITHANDLER(handler)
Specify an action when a process exits.

Note:
This declaration must come immediately before BfROCESS_BEGIN(jnacro.

Parameters:
handler The action to be performed.

Examples:
example-packet-drv,c example-pollhandler,c test-abc.¢ test-meshroute,ctest-rudolph0.c test-
rudolphl.¢ andtest-trickle.c

Definition at line 255 of file process.h.

6.10.2.10 #define PROCESS_NAME(name)
Declare the name of a process.

This macro is typically used in header files to declare the name of a process that is implemented in the C
file.

Definition at line 294 of file process.h.

6.10.2.11 #define PROCESS_PAUSE()
Yield the process for a short while.

This macro yields the currently running process for a short while, thus letting other processes run before
the process continues.

Definition at line 222 of file process.h.

6.10.2.12 #define PROCESS_POLLHANDLER(handler)

Specify an action when a process is polled.

Note:
This declaration must come immediately before ROCESS_BEGIN(jnacro.

Parameters:
handler The action to be performed.

Examples:
example-packet-drv,@ndexample-pollhandler.c

Definition at line 243 of file process.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 45

6.10.2.13 #define PROCESS_PT_SPAWN(pt, thread)

Spawn a protothread from the process.

Parameters:
pt The protothread state (struct pt) for the new protothread

thread The call to the protothread function.

See also:
PT_SPAWN()

Definition at line 212 of file process.h.

6.10.2.14 #define PROCESS_THREAD(name, ev, data)
Define the body of a process.

This macro is used to define the body (protothread) of a process. The process is called whenever an
event occurs in the system, A process always start witiPlRO@CESS_BEGIN()nacro and end with the
PROCESS_END(nacro.

Examples:
example-packet-drv,example-pollhandler,@xample-program,@xample-psock-serveriest-abc.c
test-meshroute, test-rudolph0.ctest-rudolphl.ctest-treeroute,andtest-trickle.c

Definition at line 274 of file process.h.

6.10.2.15 #define PROCESS_WAIT_EVENT()
Wait for an event to be posted to the process.

This macro blocks the currently running process until the process receives an event.

Examples:
example-pollhandler,@andtest-treeroute.c

Definition at line 142 of file process.h.

6.10.2.16 #define PROCESS_WAIT_EVENT_UNTIL(c)
Wait for an event to be posted to the process, with an extra condition.

This macro is similar t?ROCESS_WAIT_EVENT()n that it blocks the currently running process until
the process receives an event. BIROCESS_WAIT_EVENT_UNTIL(Yakes an extra condition which
must be true for the process to continue.

Parameters:
¢ The condition that must be true for the process to continue.

See also:
PT_WAIT_UNTIL()

Examples:

example-packet-drv,@xample-program,@xample-psock-server.test-abc.ctest-meshroute, ¢est-
rudolphO.¢test-rudolphl.candtest-trickle.c

Definition at line 158 of file process.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 46

6.10.2.17 #define PROCESS_WAIT_UNTIL(c)
Wait for a condition to occur.

This macro does not guarantee that the process vyields, and should therefore be used with care. In
most casesPROCESS_WAIT_EVENT()PROCESS_WAIT_EVENT_UNTIL(PROCESS_YIELD(pr
PROCESS_YIELD_UNTIL(should be used instead.

Parameters:
¢ The condition to wait for.

Examples:
test-treeroute.c

Definition at line 193 of file process.h.

6.10.2.18 #define PROCESS_YIELD_UNTIL(c)
Yield the currently running process until a condition occurs.

This macro is different fronPROCESS_WAIT_UNTIL(jn thatPROCESS_YIELD_UNTIL()s guaran-
teed to always yield at least once. This ensures that the process does not end up in an infinite loop and
monopolizing the CPU.

Parameters:
¢ The condition to wait for.

Definition at line 179 of file process.h.

6.10.3 Function Documentation

6.10.3.1 process_event_t process_alloc_event (void)

Allocate a global event number.

Returns:
The allocated event number

In Contiki, event numbers above 128 are global and may be posted from one process to another. This
function allocates one such event number.

Note:
There currently is no way to deallocate an allocated event number.

Definition at line 96 of file process.c.

6.10.3.2 CCIF void process_exit (struct processp)

Cause a process to exit.

Parameters:
p The process that is to be exited

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 47

This function causes a process to exit. The process can either be the currently executing process, or another
process that is currently running.

See also:
PROCESS CURRENT()

Definition at line 209 of file process.c.
References PROCESS CURRENT.

6.10.3.3 void process_init (void)
Initialize the process module.
This function initializes the process module and should be called by the system boot-up code.

Definition at line 215 of file process.c.

6.10.3.4 int process_nevents (void)

Number of events waiting to be processed.

Returns:
The number of events that are currently waiting to be processed.

Definition at line 362 of file process.c.

6.10.3.5 CCIF void process_poll (struct process p)
Request a process to be polled.

This function typically is called from an interrupt handler to cause a process to be polled.

Parameters:
p A pointer to the process’ process structure.

Examples:
example-packet-drv.c

Definition at line 406 of file process.c.

Referenced by etimer_request_poll().

6.10.3.6 CCIF int process_post (struct processp, process_event_ev, process_data_tlata)
Post an asynchronous event.

This function posts an asynchronous event to one or more processes. The handing of the event is deferred
until the target process is scheduled by the kernel. An event can be broadcast to all processes, in which
case all processes in the system will be scheduled to handle the event.

Parameters:
ev The event to be posted.

data The auxillary data to be sent with the event

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.10 Contiki processes 48

p The process to which the event should be posted, or PROCESS_BROADCAST if the event should
be posted to all processes.

Return values:
PROCESS ERR_OKThe event could be posted.

PROCESS _ERR_FULLThe event queue was full and the event could not be posted.

Definition at line 372 of file process.c.
References PROCESS_ERR_FULL, and PROCESS_ERR_OK.

Referenced by process_start(), program_handler_load(), resolv_conf(), tcpip_poll_tcp(), and tcpip_poll_-
udp().

6.10.3.7 void process_post_synch (struct proces®, process_event_gev, process_data_tata)

Post a synchronous event to a process.

Parameters:
p A pointer to the process’ process structure.

ev The event to be posted.
data A pointer to additional data that is posted together with the event.

Definition at line 397 of file process.c.

Referenced by tcpip_input().

6.10.3.8 int process_run (void)
Run the system once - call poll handlers and process one event.

This function should be called repeatedly from the main() program to actually run the Contiki system. It
calls the necessary poll handlers, and processes one event. The function returns the number of events that
are waiting in the event queue so that the caller may choose to put the CPU to sleep when there are no
pending events.

Returns:
The number of events that are currently waiting in the event queue.

Definition at line 348 of file process.c.

6.10.3.9 void process_start (struct processp, char x arg)

Start a process.

Parameters:
p A pointer to a process structure.

arg An argument pointer that can be passed to the new process

Definition at line 102 of file process.c.

References process_post(), and PT_INIT.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.11 Eventtimers 49

6.11 Eventtimers
6.11.1 Detailed Description

Event timers provides a way to generate timed events.
An event timer will post an event to the process that set the timer when the event timer expires.

An event timer is declared ass&ruct etimer and all access to the event timer is made by a pointer to
the declared event timer.

See also:

Simple timer library
Clock library (used by theimer library)

Files

« file etimer.c
Event timer library implementation.

« file etimer.h
Event timer header file.

Data Structures

* structetimer
Atimer.

Functions called from timer interrupts, by the system

« void etimer_request_po(lvoid)
Make the event timer aware that the clock has changed.

* int etimer_pendingvoid)
Check if there are any non-expired event timers.

« clock_time_tetimer_next_expiration_tim@oid)
Get next event timer expiration time.

Functions called from application programs

« void etimer_se{structetimerxet, clock_time_t interval)

Set an event timer.

« void etimer_resefstructetimerxet)
Reset an event timer with the same interval as was previously set.

« void etimer_restarfstructetimersxet)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.11 Eventtimers 50

Restart an event timer from the current point in time.

« void etimer_adjus{structetimersxet, int timediff)
Adjust the expiration time for an event timer.

« int etimer_expireqstructetimerxet)
Check if an event timer has expired.

« clock_time_tetimer_expiration_timéstructetimersxet)

Get the expiration time for the event timer.

« clock_time_tetimer_start_timéstructetimerxet)
Get the start time for the event timer.

void etimer_stog(structetimerxet)
Stop a pending event timer.

6.11.2 Function Documentation

6.11.2.1 void etimer_adjust (structetimer x et, int td)

Adjust the expiration time for an event timer.

Parameters:
et A pointer to the event timer.

td The time difference to adjust the expiration time with.

This function is used to adjust the time the event timer will expire. It can be used to synchronize periodic
timers without the need to restart the timer or change the timer interval.

Note:
This function should only be used for small adjustments. For large adjustmentsimse_set()n-
stead.
A periodic timer will drift unless thetimer_reset(junction is used.

See also:
etimer_set()
etimer_reset()

Definition at line 199 of file etimer.c.

References timer::start, and timer.
6.11.2.2 clock time_t etimer_expiration_time (strucetimer x et)
Get the expiration time for the event timer.

Parameters:
et A pointer to the event timer

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.11 Eventtimers 51

Returns:
The expiration time for the event timer.

This function returns the expiration time for an event timer.
Definition at line 212 of file etimer.c.

References timer::interval, and timer::start.

6.11.2.3 CCIF int etimer_expired (structetimer x ef)

Check if an event timer has expired.

Parameters:
et A pointer to the event timer

Returns:
Non-zero if the timer has expired, zero otherwise.

This function tests if an event timer has expired and returns true or false depending on its status.

Examples:
example-program,dest-abc.ctest-meshroute, @ndtest-treeroute.c

Definition at line 206 of file etimer.c.

6.11.2.4 clock_time_t etimer_next_expiration_time (void)

Get next event timer expiration time.

Returns:
Next expiration time of all pending event timers. If there are no pending event timers this function
returns O.

This functions returns next expiration time of all pending event timers.
Definition at line 230 of file etimer.c.

References etimer_pending().

6.11.2.5 int etimer_pending (void)
Check if there are any non-expired event timers.

Returns:
True if there are active event timers, false if there are no active timers.

This function checks if there are any active event timers that have not expired.
Definition at line 224 of file etimer.c.

Referenced by etimer_next_expiration_time().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.11 Eventtimers 52

6.11.2.6 void etimer_request_poll (void)
Make the event timer aware that the clock has changed.

This function is used to inform the event timer module that the system clock has been updated. Typically,
this function would be called from the timer interrupt handler when the clock has ticked.

Definition at line 146 of file etimer.c.

References process_poll().

6.11.2.7 void etimer_reset (strucetimer x ef)
Reset an event timer with the same interval as was previously set.

Parameters:
et A pointer to the event timer.

This function resets the event timer with the same interval that was given to the event timer with the
etimer_set(function. The start point of the interval is the exact time that the event timer last expired.
Therefore, this function will cause the timer to be stable over time, unlikettheer_restart(junction.

See also:
etimer_restart()

Definition at line 185 of file etimer.c.

References timer_reset().

6.11.2.8 void etimer_restart (structetimer * et)
Restart an event timer from the current point in time.

Parameters:
et A pointer to the event timer.

This function restarts the event timer with the same interval that was given &tither_set(function.
The event timer will start at the current time.

Note:
A periodic timer will drift if this function is used to reset it. For periodic timers, usedtimer_reset()
function instead.

See also:
etimer_reset()

Definition at line 192 of file etimer.c.

References timer_restart().

6.11.2.9 CCIF void etimer_set (strucketimer x et, clock_time_tinterval)

Set an event timer.

Parameters:
et A pointer to the event timer

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.12 Argument buffer 53

interval The interval before the timer expires.

This function is used to set an event timer for a time sometime in the future. When the event timer ex-
pires, the event PROCESS EVENT_TIMER will be posted to the process that calledirtter set()
function.

Examples:
example-program,test-abc.candtest-treeroute.c
Definition at line 178 of file etimer.c.

References timer_set().

6.11.2.10 clock time_t etimer_start _time (strucetimer x ef)

Get the start time for the event timer.

Parameters:
et A pointer to the event timer

Returns:
The start time for the event timer.

This function returns the start time (when the timer was last set) for an event timer.
Definition at line 218 of file etimer.c.

References timer::start.

6.11.2.11 void etimer_stop (strucetimer x ef)
Stop a pending event timer.

Parameters:
et A pointer to the pending event timer.

This function stops an event timer that has previously been setetiitter _set(Jor etimer_reset() After
this function has been called, the event timer will not emit any event when it expires.
Definition at line 236 of file etimer.c.

References next, and p.

6.12 Argument buffer
6.12.1 Detailed Description

The argument buffer can be used when passing an argument from an exiting process to a process that
has not been created yet. Since the exiting process will have exited when the new process is started, the
argument cannot be passed in any of the processes’ addres spaces. In such situations, the argument buffer
can be used.

The argument buffer is statically allocated in memory and is globally accessible to all processes.

An argument buffer is allocated with tleeg_alloc()function and deallocated with treag_free(function.
Thearg_free()function is designed so that it can take any pointer, not just an argument buffer pointer. If
the pointer taarg_free()is not an argument buffer, the function does nothing.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.13 The Contiki program loader 54

Functions

 charx arg_alloc(char size)
Allocates an argument buffer.

« void arg_free(charxarg)
Deallocates an argument buffer.

6.12.2 Function Documentation

6.12.2.1 chak arg_alloc (char siz

Allocates an argument buffer.

Parameters:
size The requested size of the buffer, in bytes.

Returns:
Pointer to allocated buffer, or NULL if no buffer could be allocated.

Note:
It currently is not possible to allocate argument buffers of any other size than 128 bytes.

Definition at line 105 of file arg.c.

6.12.2.2 void arg_free (chak arg)
Deallocates an argument buffer.

This function deallocates the argument buffer pointed to by the parameter, but only if the buffer actually is
an argument buffer and is allocated. It is perfectly safe to call this function with any pointer.

Parameters:
arg A pointer.

Definition at line 126 of file arg.c.

6.13 The Contiki program loader
6.13.1 Detailed Description

The Contiki program loader is an abstract interface for loading and starting programs.

Files

« file loader.h
Default definitions and error values for the Contiki program loader.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.13 The Contiki program loader 55

Modules

* The Contiki ELF loader

The Contiki ELF loader links, relocates, and loads ELF (Executable Linkable Format) object files into a
running Contiki system.

Data Structures

* structdsc
The DSC program description structure.

Defines

« #defineDSC(dscname, description, prgname, process, icon) CLIF const stsadscname = {de-
scription, prgname, icon}

Intantiating macro for the DSC structure.

 #defineLOADER_OKO
No error.

« #defineLOADER_ERR_READ1
Read error.

» #defineLOADER_ERR_HDR2
Header error.

* #defineLOADER_ERR_OS3
Wrong OS.

 #defineLOADER_ERR_FMT4
Data format error.

» #defineLOADER_ERR_MEM5
Not enough memaory.

 #defineLOADER_ERR_OPEN

Could not open file.

 #defineLOADER_ERR_ARCH7
Wrong architecture.

 #defineLOADER_ERR_VERSION8
Wrong OS version.

* #defineLOADER_ERR_NOLOADERO
Program loading not supported.

#defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.13 The Contiki program loader 56

Load and execute a program.

#defineLOADER_UNLOAD()
Unload a program from memory.

#defineLOADER_LOAD_DSGname) NULL
Load a DSC (program description).

#defineLOADER_UNLOAD_DSGdsq
Unload a DSC (program description).

6.13.1.1 The program description structure The Contiki DSC structure is used for describing pro-
grams. It includes a string describing the program, the name of the program file on disk (or a pointer to the
programs initialization function for systems without disk support), a bitmap icon and a text version of the
same icon.

The DSC is saved into a file which can be loaded by programs such as the "Directory" application which
reads all DSC files on disk and presents the icons and descriptions in a window.

6.13.2 Define Documentation

6.13.2.1 #define DSC(dscname, description, prgname, process, icon) CLIF const strdstdscname
= {description, prgname, icon}

Intantiating macro for the DSC structure.

Parameters:
dscnameThe name of the C variable which is to contain the DSC.

description A one-line text describing the program.

prgname The name of the program on disk.

initfunc A pointer to the initialization function of the program.
icon A pointer to the CTK icon.

Definition at line 112 of file dsc.h.

6.13.2.2 #define LOADER_LOAD(name, arg) LOADER_ERR_NOLOADER
Load and execute a program.

This macro is used for loading and executing a program, and requires support from the architecture depen-
dant code. The actual program loading is made by architecture specific functions.

Note:
A program loaded with OADER_LOAD() must call theL OADER_UNLOAD() function to unload
itself.

Parameters:
name The name of the program to be loaded.

arg A pointer argument that is passed to the program.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.14 Local continuations 57

Returns:
A loader error, or LOADER_OK if loading was successful.

Definition at line 92 of file loader.h.

6.13.2.3 #define LOADER_LOAD_DSC(name) NULL
Load a DSC (program description).
Loads a DSC (program description) into memory and returns a pointer to the dsc.

Returns:
A pointer to the DSC or NULL if it could not be loaded.

Definition at line 116 of file loader.h.

6.13.2.4 #define LOADER_UNLOAD()
Unload a program from memory.

This macro is used for unloading a program and deallocating any memory that was allocated during the
loading of the program. This function must be called by the program itself.

Definition at line 104 of file loader.h.

6.13.2.5 #define LOADER_UNLOAD_DSCdso
Unload a DSC (program description).
Unload a DSC from memory and deallocate any memory that was allocated when it was loaded.

Definition at line 126 of file loader.h.

6.14 Local continuations
6.14.1 Detailed Description

Local continuations form the basis for implementing protothreads. A local continuation csetibea
specific function to capture the state of the function. After a local continuation has been setesubed
in order to restore the state of the function at the point where the local continuation was set.

Files

« filelc.h

Local continuations.

* file Ic-switch.h
Implementation of local continuations based on switch() statment.

« file Ic-addrlabels.h
Implementation of local continuations based on the "Labels as values" feature of gcc.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.14 Local continuations 58

Defines

#defineLC_INIT(Ic)
Initialize a local continuation.

#defineLC_SET(Ic)
Set a local continuation.

#defineLC_RESUMEHEIc)
Resume a local continuation.

#defineLC_END(Ic)
Mark the end of local continuation usage.

Typedefs

« typedef unsigned sholt_t
The local continuation type.

6.14.2 Define Documentation

6.14.2.1 #define LC_END(Ic)
Mark the end of local continuation usage.

The end operation signifies that local continuations should not be used any more in the function. This
operation is not needed for most implementations of local continuation, but is required by a few implemen-
tations.

Definition at line 108 of file Ic.h.

6.14.2.2 #define LC_INIT(Ic)
Initialize a local continuation.
This operation initializes the local continuation, thereby unsetting any previously set continuation state.

Definition at line 71 of file Ic.h.

6.14.2.3 #define LC_RESUME(Ic)
Resume a local continuation.

The resume operation resumes a previously set local continuation, thus restoring the state in which the
function was when the local continuation was set. If the local continuation has not been previously set, the
resume operation does nothing.

Definition at line 96 of file Ic.h.

6.14.2.4 #define LC_SET(Ic)

Set a local continuation.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.15 Protothread semaphores 59

The set operation saves the state of the function at the point where the operation is executed. As far as
the set operation is concerned, the state of the functionmadaclude the call-stack or local (automatic)
variables, but only the program counter and such CPU registers that needs to be saved.

Definition at line 84 of file Ic.h.

6.15 Protothread semaphores
6.15.1 Detailed Description

This module implements counting semaphores on top of protothreads. Semaphores are a synchronization
primitive that provide two operations: "wait" and "signal". The "wait" operation checks the semaphore
counter and blocks the thread if the counter is zero. The "signal" operation increases the semaphore counter
but does not block. If another thread has blocked waiting for the semaphore that is signalled, the blocked
thread will become runnable again.

Semaphores can be used to implement other, more structured, synchronization primitives such as monitors
and message queues/bounded buffers (see below).

The following example shows how the producer-consumer problem, also known as the bounded buffer
problem, can be solved using protothreads and semaphores. Notes on the program follow after the example.
#include "pt-sem.h”

#define NUM_ITEMS 32
#define BUFSIZE 8

static struct pt_sem mutex, full, empty;
PT_THREAD(producer(struct pt *pt))
{ static int produced,;
PT_BEGIN(pt);
for(produced = 0; produced < NUM_ITEMS; ++produced) {
PT_SEM_WAIT(pt, &full);
PT_SEM_WAIT(pt, &mutex);
add_to_buffer(produce_item());
PT_SEM_SIGNAL(pt, &mutex);

PT_SEM_SIGNAL(pt, &empty);
}

PT_END(pt);
}

PT_THREAD(consumer(struct pt *pt))
{ static int consumed;
PT_BEGIN(pt);
for(consumed = 0; consumed < NUM_ITEMS; ++consumed) {
PT_SEM_WAIT(pt, &empty);
PT_SEM_WAIT(pt, &mutex);

consume_item(get_from_buffer());
PT_SEM_SIGNAL(pt, &mutex);

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.15 Protothread semaphores 60

PT_SEM_SIGNAL(pt, &full);
}

PT_END(pt);
}

PT_THREAD(driver_thread(struct pt *pt))
{

static struct pt pt_producer, pt_consumer;
PT_BEGIN(pt);

PT_SEM_INIT(&empty, 0);
PT_SEM_INIT(&full, BUFSIZE);
PT_SEM_INIT(&mutex, 1);

PT_INIT(&pt_producer);
PT_INIT(&pt_consumer);

PT_WAIT_THREAD(pt, producer(&pt_producer) &
consumer(&pt_consumer));

PT_END(pt);

The program uses three protothreads: one protothread that implements the consumer, one thread that im-
plements the producer, and one protothread that drives the two other protothreads. The program uses three
semaphores: "full”, "empty" and "mutex”. The "mutex" semaphore is used to provide mutual exclusion
for the buffer, the "empty" semaphore is used to block the consumer is the buffer is empty, and the "full"
semaphore is used to block the producer is the buffer is full.

The "driver_thread" holds two protothread state variables, "pt_producer" and "pt_consumer”. It is impor-
tant to note that both these variables are declarestidis If the static keyword is not used, both variables

are stored on the stack. Since protothreads do not store the stack, these variables may be overwritten dur-
ing a protothread wait operation. Similarly, both the "consumer” and "producer" protothreads declare their
local variables as static, to avoid them being stored on the stack.

Files

« file pt-sem.h
Counting semaphores implemented on protothreads.

Defines

 #definePT_SEM_INIT(s, ¢)
Initialize a semaphore.

 #definePT_SEM_WAIT(pt, s)
Wait for a semaphore.

 #definePT_SEM_SIGNAI(pt, s)
Signal a semaphore.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.16 Clock library 61

6.15.2 Define Documentation

6.15.2.1 #define PT_SEM_INIT(s, c)

Initialize a semaphore.

This macro initializes a semaphore with a value for the counter. Internally, the semaphores use an "unsigned
int" to represent the counter, and therefore the "count" argument should be within range of an unsigned int.

Parameters:
s (struct pt_sem) A pointer to the pt_sem struct representing the semaphore

¢ (unsigned int) The initial count of the semaphore.

Definition at line 183 of file pt-sem.h.

6.15.2.2 #define PT_SEM_SIGNAL(pt, s)

Signal a semaphore.

This macro carries out the "signal" operation on the semaphore. The signal operation increments the
counter inside the semaphore, which eventually will cause waiting protothreads to continue executing.

Parameters:
pt (struct ptx) A pointer to the protothread (struct pt) in which the operation is executed.

s (struct pt_sem) A pointer to the pt_sem struct representing the semaphore

Definition at line 222 of file pt-sem.h.

6.15.2.3 #define PT_SEM_WAIT(pt, s)
Wait for a semaphore.

This macro carries out the "wait" operation on the semaphore. The wait operation causes the protothread
to block while the counter is zero. When the counter reaches a value larger than zero, the protothread will
continue.

Parameters:
pt (struct pt«) A pointer to the protothread (struct pt) in which the operation is executed.

s (struct pt_sem) A pointer to the pt_sem struct representing the semaphore

Definition at line 201 of file pt-sem.h.

6.16 Clock library
6.16.1 Detailed Description

The clock library is the interface between Contiki and the platform specific clock functionality.

The clock library performs a single function: measuring time. Additionally, the clock library provides a
macro, CLOCK_SECOND, which corresponds to one second of system time.

Note:
The clock library need in many cases not be used directly. Ratheiptbelibraryor theevent timers
should be used.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.17 Multi-threading library 62

See also:
Timer library
Event timers

Defines

* #defineCLOCK_SECOND
A second, measured in system clock time.

Functions

* void clock_init (void)
Initialize the clock library.

« clock_time_tclock_time(void)
Get the current clock time.

6.16.2 Function Documentation

6.16.2.1 void clock_init (void)
Initialize the clock library.

This function initializes the clock library and should be called from the main() function of the system.

6.16.2.2 clock_time_t clock_time (void)
Get the current clock time.

This function returns the current system clock time.

Returns:
The current clock time, measured in system ticks.

Referenced by timer_expired(), timer_restart(), and timer_set().

6.17 Multi-threading library
6.17.1 Detailed Description

The event driven Contiki kernel does not provide multi-threading by itself - instead, preemptive multi-
threading is implemented as a library that optionally can be linked with applications.

This library constists of two parts: a platform independent part, which is the same for all platforms on
which Contiki runs, and a platform specific part, which must be implemented specifically for the platform
that the multi-threading library should run.

Modules

* Architecture support for multi-threading

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.17 Multi-threading library 63

Defines

* #defineMT_OK
No error.

Functions

* void mt_init (void)
Initializes the multithreading library.

 void mt_removegvoid)
Uninstalls library and cleans up.

 void mt_start(struct mt_threadthread, void¢function)(voidsx), void xdata)
Starts a multithreading thread.

» void mt_exedstruct mt_threadthread)
Execute parts of a thread.

« void mt_yield (void)
Voluntarily give up the processor.

 void mt_exit(void)
Exit a thread.

 void mt_stop(struct mt_threadthread)
Stop a thread.

6.17.2 Function Documentation

6.17.2.1 void mt_exec (struct mt_threack thread)
Execute parts of a thread.

This function is called by a Contiki process and runs a thread. The function does not return until the thread
has yielded, or is preempted.

Note:
The thread library must first be initialized with the_init() function.

Parameters:
thread A pointer to a struct mt_thread block that must be allocated by the caller.

Definition at line 82 of file mt.c.

References mtarch_exec().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.18 Architecture support for multi-threading 64

6.17.2.2 void mt_exit (void)
Exit a thread.

This function is called from within an executing thread in order to exit the thread. The function never
returns.

Definition at line 110 of file mt.c.

References mtarch_yield().

6.17.2.3 void mt_start (struct mt_threadx* thread, void(x)(void *) function, void x data
Starts a multithreading thread.

Parameters:
thread Pointer to an mt_thread struct that must have been previously allocated by the caller.

function A pointer to the entry function of the thread that is to be set up.
data A pointer that will be passed to the entry function.

Definition at line 72 of file mt.c.

References mtarch_start().

6.17.2.4 void mt_stop (struct mt_thread« thread)
Stop a thread.

This function is called by a Contiki process in order to clean up a thread. The struct mt_thread block may
then be discarded by the caller.

Parameters:
thread A pointer to a struct mt_thread block that must be allocated by the caller.

Definition at line 118 of file mt.c.

References mtarch_stop().

6.17.2.5 void mt_yield (void)

Voluntarily give up the processor.

This function is called by a running thread in order to give up control of the CPU.
Definition at line 96 of file mt.c.

References mtarch_yield().

6.18 Architecture support for multi-threading
6.18.1 Detailed Description

The Contiki multi-threading library requires some architecture specific support for seting up and switching
stacks. This support requires four stack manipulation functions to be implementeath_start()which

sets up the stack frame for a new threaxdarch_exec()which switches in the stack of a threadtarch_-
yield(), which restores the kernel stack from a thread’s stacknatadch_stop()which cleans up the stack

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.18 Architecture support for multi-threading 65

of a thread. Additionally, two functions for controlling the preemption (if any) must be implemented:
mtarch_pstart() and mtarch_pstop(). If no preemption is used, these functions can be implemented as
empty functions. Finally, the functiomtarch_init()is called bymt_init(), and can be used for initalization

of timer interrupts, or any other mechanisms required for correct operation of the architecture specific
support funcions whilentarch_remove(js called bymt_remove(}¥o clean up those resources.

Files

* file mt.h
Header file for the preemptive multitasking library for Contiki.

Functions

« void mtarch_init(void)
Initialize the architecture specific support functions for the multi-thread library.

« void mtarch_removévoid)
Uninstall library and clean up.

void mtarch_star{struct mtarch_threaethread, void¢function)(void«data), void«data)
Setup the stack frame for a thread that is being started.

void mtarch_exegstruct mtarch_threagthread)
Start executing a thread.

void mtarch_yield(void)
Yield the processor.

void mtarch_stog{struct mtarch_threagthread)
Clean up the stack of a thread.

6.18.2 Function Documentation

6.18.2.1 void mtarch_exec (struct mtarch_thread thread)
Start executing a thread.

This function is called frommt_exec()and the purpose of the function is to start execution of the thread.
The function should switch in the stack of the thread, and does not return until the thread has explicitly
yielded (usingmt_yield()) or until it is preempted.

Parameters:
thread A pointer to a struct mtarch_thread for the thread to be executed.

Referenced by mt_exec().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.19 EEPROM API 66

6.18.2.2 struct void mtarch_init (void)
Initialize the architecture specific support functions for the multi-thread library.

This function is implemented by the architecture specific functions for the multi-thread library and is called
by themt_init() function as part of the initialization of the library. Tietarch_init()function can be used

for, e.g., starting preemtion timers or other architecture specific mechanisms required for the operation of
the library.

Referenced by mt_init().

6.18.2.3 void mtarch_start (struct mtarch_thread « thread, void(x)(void xdata) function, void x
data)

Setup the stack frame for a thread that is being started.

This function is called by thent_start()function in order to set up the architecture specific stack of the
thread to be started.

Parameters:
thread A pointer to a struct mtarch_thread for the thread to be started.

function A pointer to the function that the thread will start executing the first time it is scheduled to
run.

data A pointer to the argument that the function should be passed.

Referenced by mt_start().

6.18.2.4 void mtarch_stop (struct mtarch_thread« thread)
Clean up the stack of a thread.

This function is called by thent_stop()function in order to clean up the architecture specific stack of the
thread to be stopped.

Note:
If the stack is wholly contained in struct mtarch_thread this function may very well be empty.

Parameters:
thread A pointer to a struct mtarch_thread for the thread to be stopped.

Referenced by mt_stop().
6.18.2.5 void mtarch_yield (void)

Yield the processor.

This function is called by thent_yield() function, which is called from the running thread in order to give
up the processor.

Referenced by mt_exit(), and mt_yield().

6.19 EEPROM API
6.19.1 Detailed Description

The EEPROM API defines a common interface for EEPROM access on Contiki platforms.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.19 EEPROM API 67

A platform with EEPROM support must implement this API.

Files

« file eeprom.h
EEPROM functions.

Functions

 void eeprom_writdeeprom_addr_t addr, unsigned chbuf, int size)
Write a buffer into EEPROM.

 void eeprom_reageeprom_addr_t addr, unsigned chhuf, int size)
Read data from the EEPROM.

* void eeprom_init(void)
Initialize the EEPROM module.

6.19.2 Function Documentation

6.19.2.1 void eeprom_init (void)
Initialize the EEPROM module.

This function initializes the EEPROM module and is called from the bootup code.

6.19.2.2 void eeprom_read (eeprom_addr &ddr, unsigned charx buf, int sizg
Read data from the EEPROM.

This function reads a number of bytes from the specified address in EEPROM and into a buffer in memory.

Parameters:
addr The address in EEPROM from which the data should be read.

buf A pointer to the buffer to which the data should be stored.
size The number of bytes to read.

6.19.2.3 void eeprom_write (eeprom_addr_addr, unsigned charx buf, int size
Write a buffer into EEPROM.

This function writes a buffer of the specified size into EEPROM.

Parameters:
addr The address in EEPROM to which the buffer should be written.

buf A pointer to the buffer from which data is to be read.
size The number of bytes to write into EEPROM.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.20 Radio API 68

6.20 Radio API
6.20.1 Detailed Description

The radio API module defines a set of functions that a radio device driver must implement.

Files

« file radio.h
Header file for the radio API.

Data Structures

« structradio_driver
The structure of a device driver for a radio in Contiki.

6.21 The Contiki ELF loader
6.21.1 Detailed Description

The Contiki ELF loader links, relocates, and loads ELF (Executable Linkable Format) object files into a
running Contiki system.

ELF is a standard format for relocatable object code and executable files. ELF is the standard program
format for Linux, Solaris, and other operating systems.

An ELF file contains either a standalone executable program or a program module. The file contains
both the program code, the program data, as well as information about how to link, relocate, and load the
program into a running system.

The ELF file is composed of a set of sections. The sections contain program code, data, or relocation
information, but can also contain debugging information.

To link and relocate an ELF file, the Contiki ELF loader first parses the ELF file structure to find the

appropriate ELF sections. It then allocates memory for the program code and data in ROM and RAM,
respectively. After allocating memory, the Contiki ELF loader starts relocating the code found in the ELF
file.

Files

« file elfloader.h
Header file for the Contiki ELF loader.

Modules

 Architecture specific functionality for the ELF loader.

The architecture specific functionality for the Contiki ELF loader has to be implemented for each processor
type Contiki runs on.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.21 The Contiki ELF loader 69

Defines

#defineELFLOADER_OKO
Return value fronelfloader_load(jndicating that loading worked.

* #defineEELFLOADER_BAD_ELF_HEADER1

Return value fronelfloader_load(jndicating that the ELF file had a bad header.

 #defineELFLOADER_NO_SYMTAB2
Return value fronelfloader_load(jndicating that no symbol table could be find in the ELF file.

 #defineEELFLOADER_NO_STRTAB3
Return value fronelfloader_load(jndicating that no string table could be find in the ELF file.

e #defineELFLOADER_NO_TEXT4
Return value fronelfloader_load(jndicating that the size of the .text segment was zero.

» #defineELFLOADER_SYMBOL_NOT_FOUNDb
Return value fronelfloader_load(jndicating that a symbol specific symbol could not be found.

* #defineEELFLOADER_SEGMENT_NOT_FOUNIB

Return value fronelfloader_load(jndicating that one of the required segments (.data, .bss, or .text) could
not be found.

* #defineEELFLOADER_NO_STARTPOINT/
Return value fronelfloader_load(jndicating that no starting point could be found in the loaded module.

Functions

« void elfloader_init(void)
elfloader initialization function.

« int elfloader_loadint fd)
Load and relocate an ELF file.

Variables

» processx elfloader_autostart_processes
A pointer to the processes loaded wiffloader_load()

« charelfloader_unknowifi30]
If elfloader_load()ould not find a specific symbol, it is copied into this array.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.22 Architecture specific functionality for the ELF loader. 70

6.21.2 Define Documentation

6.21.2.1 #define ELFLOADER_SYMBOL_NOT_FOUND 5
Return value fronelfloader_load()ndicating that a symbol specific symbol could not be found.

If this value is returned fronelfloader_load()the symbol has been copied into the elfloader_unknown]]
array.

Definition at line 111 of file elfloader.h.

6.21.3 Function Documentation

6.21.3.1 void elfloader_init (void)
elfloader initialization function.

This function should be called at boot up to initilize the elfloader.

6.21.3.2 intelfloader_load (inffd)
Load and relocate an ELF file.

Parameters:
fd An open CFS file descriptor.

Returns:
ELFLOADER_OK if loading and relocation worked. Otherwise an error value.

This function loads and relocates an ELF file. The ELF file must have been openedwitipen()prior
to calling this function.

If the function is able to load the ELF file, a pointer to the process structure in the model is stored in the
elfloader_loaded_process variable.

Note:
This function modifies the ELF file opened witFs_open() If the contents of the file is required to be
intact, the file must be backed up first.

6.22 Architecture specific functionality for the ELF loader.
6.22.1 Detailed Description

The architecture specific functionality for the Contiki ELF loader has to be implemented for each processor
type Contiki runs on.

Since the ELF format is slightly different for different processor types, the Contiki ELF loader is divided
into two parts: the generic ELF loader moduléhé Contiki ELF loadérand the architecture specific part

(this module). The architecture specific part deals with memory allocation, code and data relocation, and
writing the relocated ELF code into program memory.

To port the Contiki ELF loader to a new processor type, this module has to be implemented for the new
processor type.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.22 Architecture specific functionality for the ELF loader. 71

Files

« file elfloader-arch.h
Header file for the architecture specific parts of the Contiki ELF loader.

Functions

« void x elfloader_arch_allocate_rafimt size)
Allocate RAM for a new module.

« void x elfloader_arch_allocate_rofimt size)

Allocate program memory for a new module.

« void elfloader_arch_reloca{@nt fd, unsigned int sectionoffset, chasectionaddr, struct elf32_rela
«rela, charaddr)

Perform a relocation.

« void elfloader_arch_write_rorint fd, unsigned short textoff, unsigned int size, ckarem)
Write to read-only memory (for example the text segment).

6.22.2 Function Documentation

6.22.2.1 voic elfloader_arch_allocate_ram (intsiz

Allocate RAM for a new module.

Parameters:
size The size of the requested memory.

Returns:
A pointer to the allocated RAM

This function is called from the Contiki ELF loader to allocate RAM for the module to be loaded into.

6.22.2.2 void elfloader_arch_allocate_rom (intsiz

Allocate program memory for a new module.

Parameters:
size The size of the requested memory.

Returns:
A pointer to the allocated program memory

This function is called from the Contiki ELF loader to allocate program memory (typically ROM) for the
module to be loaded into.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 72

6.22.2.3 void elfloader_arch_relocate (infd, unsigned int sectionoffset char x sectionaddy struct
elf32_relax rela, char x addr)

Perform a relocation.

Parameters:
fd The file descriptor for the ELF file.

sectionoffsetThe file offset at which the relocation can be found.
sectionaddr The section start address (absolute runtime).

rela A pointer to an ELF32 rela structure (struct elf32_rela).
addr The relocated address.

This function is called from the Contiki ELF loader to perform a relocation on a piece of code or data. The

relocated address is calculated by the Contiki ELF loader, based on information in the ELF file, and it is
the responsibility of this function to patch the executable code. The Contiki ELF loader passes a pointer
to an ELF32 rela structure (struct elf32_rela) that contains information about how to patch the code. This
information is different from processor to processor.

6.22.2.4 void elfloader_arch_write_rom (intfd, unsigned shorttextoff, unsigned int size char x

memn)

Write to read-only memory (for example the text segment).

Parameters:
fd The file descriptor for the ELF file.

textoff Offset of text segment relative start of file.
size The size of the text segment.
mem A pointer to the where the text segment should be flashed

This function is called from the Contiki ELF loader to write the program code (text segment) of a loaded
module into memory. The function is called when all relocations have been performed.

6.23 Protothreads
6.23.1 Detailed Description

Protothreads are a type of lightweight stackless threads designed for severly memory constrained systems
such as deeply embedded systems or sensor network nodes.

Protothreads provides linear code execution for event-driven systems implemented in C. Protothreads can
be used with or without an RTOS.

Protothreads are a extremely lightweight, stackless type of threads that provides a blocking context on top
of an event-driven system, without the overhead of per-thread stacks. The purpose of protothreads is to
implement sequential flow of control without complex state machines or full multi-threading. Protothreads
provides conditional blocking inside C functions.

The advantage of protothreads over a purely event-driven approach is that protothreads provides a sequen-
tial code structure that allows for blocking functions. In purely event-driven systems, blocking must be
implemented by manually breaking the function into two pieces - one for the piece of code before the
blocking call and one for the code after the blocking call. This makes it hard to use control structures such
as if() conditionals and while() loops.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 73

The advantage of protothreads over ordinary threads is that a protothread do not require a separate stack.
In memory constrained systems, the overhead of allocating multiple stacks can consume large amounts of
the available memory. In contrast, each protothread only requires between two and twelve bytes of state,
depending on the architecture.

Note:
Because protothreads do not save the stack context across a blockingaoedliyariables are not
preserved when the protothread blocks This means that local variables should be used with utmost
care -if in doubt, do not use local variables inside a protothread!

Main features:
* No machine specific code - the protothreads library is pure C

« Does not use error-prone functions such as longjmp()

Very small RAM overhead - only two bytes per protothread

» Can be used with or without an OS

Provides blocking wait without full multi-threading or stack-switching
Examples applications:
* Memory constrained systems

« Event-driven protocol stacks

Deeply embedded systems
* Sensor network nodes

The protothreads API consists of four basic operations: initializai#dn:INIT(), executionPT_BEGIN()
conditional blocking:PT_WAIT_UNTIL() and exit: PT_END() On top of these, two convenience func-
tions are built: reversed condition blockingT_WAIT_WHILE() and protothread blockind®T_WAIT_-
THREAD).

See also:
Protothreads API documentation

The protothreads library is released under a BSD-style license that allows for both non-commercial and
commercial usage. The only requirement is that credit is given.

6.23.2 Authors

The protothreads library was written by Adam Dunkelsdam@sics.se > with support from Oliver
Schmidt<ol.sc@web.de >.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:ol.sc@web.de

6.23 Protothreads 74

6.23.3 Protothreads

Protothreads are a extremely lightweight, stackless threads that provides a blocking context on top of an
event-driven system, without the overhead of per-thread stacks. The purpose of protothreads is to imple-
ment sequential flow of control without using complex state machines or full multi-threading. Protothreads
provides conditional blocking inside a C function.

In memory constrained systems, such as deeply embedded systems, traditional multi-threading may have a
too large memory overhead. In traditional multi-threading, each thread requires its own stack, that typically
is over-provisioned. The stacks may use large parts of the available memory.

The main advantage of protothreads over ordinary threads is that protothreads are very lightweight: a
protothread does not require its own stack. Rather, all protothreads run on the same stack and context
switching is done by stack rewinding. This is advantageous in memory constrained systems, where a stack
for a thread might use a large part of the available memory. A protothread only requires only two bytes
of memory per protothread. Moreover, protothreads are implemented in pure C and do not require any
machine-specific assembler code.

A protothread runs within a single C function and cannot span over other functions. A protothread may
call normal C functions, but cannot block inside a called function. Blocking inside nested function calls is
instead made by spawning a separate protothread for each potentially blocking function. The advantage of
this approach is that blocking is explicit: the programmer knows exactly which functions that block that
which functions the never blocks.

Protothreads are similar to asymmetric co-routines. The main difference is that co-routines uses a separate
stack for each co-routine, whereas protothreads are stackless. The most similar mechanism to protothreads
are Python generators. These are also stackless constructs, but have a different purpose. Protothreads
provides blocking contexts inside a C function, whereas Python generators provide multiple exit points
from a generator function.

6.23.4 Local variables

Note:
Because protothreads do not save the stack context across a blocking call, local variables are not
preserved when the protothread blocks. This means that local variables should be used with utmost
care - if in doubt, do not use local variables inside a protothread!

6.23.5 Scheduling

A protothread is driven by repeated calls to the function in which the protothread is running. Each time the
function is called, the protothread will run until it blocks or exits. Thus the scheduling of protothreads is
done by the application that uses protothreads.

6.23.6 Implementation

Protothreads are implemented uslogal continuations A local continuation represents the current state

of execution at a particular place in the program, but does not provide any call history or local variables.
A local continuation can be set in a specific function to capture the state of the function. After a local
continuation has been set can be resumed in order to restore the state of the function at the point where the
local continuation was set.

Local continuations can be implemented in a variety of ways:

1. by using machine specific assembler code,

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 75

2. by using standard C constructs, or

3. by using compiler extensions.

The first way works by saving and restoring the processor state, except for stack pointers, and requires
between 16 and 32 bytes of memory per protothread. The exact amount of memory required depends on
the architecture.

The standard C implementation requires only two bytes of state per protothread and utilizes the C switch()
statement in a non-obvious way that is similar to Duff's device. This implementation does, however,
impose a slight restriction to the code that uses protothreads in that the code cannot use switch() statements
itself.

Certain compilers has C extensions that can be used to implement protothreads. GCC supports label point-
ers that can be used for this purpose. With this implementation, protothreads require 4 bytes of RAM per
protothread.

Files
« file pt.h
Protothreads implementation.
Modules

 Local continuations
» Protothread semaphores

Initialization

* #definePT_INIT(pt)
Initialize a protothread.

Declaration and definition

» #definePT_THREADQhame_args)
Declaration of a protothread.

 #definePT_BEGINpt)
Declare the start of a protothread inside the C function implementing the protothread.

o #definePT_ENDO(pt)
Declare the end of a protothread.

Blocked wait

* #definePT_WAIT_UNTIL(pt, condition)
Block and wait until condition is true.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 76

 #definePT_WAIT_WHILE(pt, cond)
Block and wait while condition is true.

Hierarchical protothreads

 #definePT_WAIT_THREAD(pt, thread)
Block and wait until a child protothread completes.

» #definePT_SPAWNpt, child, thread)
Spawn a child protothread and wait until it exits.

Exiting and restarting

 #definePT_RESTARTpt)
Restart the protothread.

 #definePT_EXIT(pt)
Exit the protothread.

Calling a protothread

* #definePT_SCHEDULEKf)
Schedule a protothread.

Yielding from a protothread

o #definePT_YIELD(pt)
Yield from the current protothread.

 #definePT_YIELD_UNTIL(pt, cond)
Yield from the protothread until a condition occurs.

6.23.7 Define Documentation

6.23.7.1 #define PT_BEGIN(pt)
Declare the start of a protothread inside the C function implementing the protothread.

This macro is used to declare the starting point of a protothread. It should be placed at the start of the func-
tion in which the protothread runs. All C statements aboveRieBEGIN()invokation will be executed
each time the protothread is scheduled.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 115 of file pt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 77

6.23.7.2 #define PT_END(pt)

Declare the end of a protothread.

This macro is used for declaring that a protothread ends. It must always be used together with a matching
PT_BEGIN()macro.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 127 of file pt.h.

6.23.7.3 #define PT_EXIT(pt)

Exit the protothread.

This macro causes the protothread to exit. If the protothread was spawned by another protothread, the
parent protothread will become unblocked and can continue to run.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 246 of file pt.h.

6.23.7.4 #define PT_INIT(pt)
Initialize a protothread.
Initializes a protothread. Initialization must be done prior to starting to execute the protothread.

Parameters:
pt A pointer to the protothread control structure.

See also:
PT_SPAWN()

Definition at line 80 of file pt.h.

Referenced by process_start().

6.23.7.5 #define PT_RESTART(pt)

Restart the protothread.

This macro will block and cause the running protothread to restart its execution at the placédf the
BEGIN() call.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 229 of file pt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 78

6.23.7.6 #define PT_SCHEDULE(f)
Schedule a protothread.

This function shedules a protothread. The return value of the function is non-zero if the protothread is
running or zero if the protothread has exited.

Parameters:
f The call to the C function implementing the protothread to be scheduled

Definition at line 271 of file pt.h.

6.23.7.7 #define PT_SPAWN(pt, child, thread)
Spawn a child protothread and wait until it exits.

This macro spawns a child protothread and waits until it exits. The macro can only be used within a
protothread.

Parameters:
pt A pointer to the protothread control structure.

child A pointer to the child protothread’s control structure.
thread The child protothread with arguments

Definition at line 206 of file pt.h.

6.23.7.8 #define PT_THREAD(hame_args)
Declaration of a protothread.
This macro is used to declare a protothread. All protothreads must be declared with this macro.

Parameters:
name_args The name and arguments of the C function implementing the protothread.

Examples:
example-psock-server.c

Definition at line 100 of file pt.h.

6.23.7.9 #define PT_WAIT_THREAD(pt, thread)
Block and wait until a child protothread completes.

This macro schedules a child protothread. The current protothread will block until the child protothread
completes.

Note:
The child protothread must be manually initialized with Bie_INIT() function before this function is
used.

Parameters:
pt A pointer to the protothread control structure.

thread The child protothread with arguments

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.23 Protothreads 79

See also:
PT_SPAWN()

Definition at line 192 of file pt.h.

6.23.7.10 #define PT_WAIT_UNTIL(pt, condition)
Block and wait until condition is true.

This macro blocks the protothread until the specified condition is true.

Parameters:
pt A pointer to the protothread control structure.

condition The condition.

Definition at line 148 of file pt.h.

6.23.7.11 #define PT_WAIT_WHILE(pt, cond)
Block and wait while condition is true.
This function blocks and waits while condition is true. e WAIT_UNTIL().

Parameters:
pt A pointer to the protothread control structure.

cond The condition.

Definition at line 167 of file pt.h.

6.23.7.12 #define PT_YIELD(pt)
Yield from the current protothread.
This function will yield the protothread, thereby allowing other processing to take place in the system.

Parameters:
pt A pointer to the protothread control structure.

Definition at line 290 of file pt.h.

6.23.7.13 #define PT_YIELD_UNTIL(pt, cond)
Yield from the protothread until a condition occurs.

Parameters:
pt A pointer to the protothread control structure.

cond The condition.

This function will yield the protothread, until the specified condition evaluates to true.
Definition at line 310 of file pt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 80

6.24 The Contiki file system interface
6.24.1 Detailed Description

The Contiki file system interface (CFS) defines an abstract API for reading directories and for reading and
writing files.

The CFS API is intentionally simple. The CFS API is modeled after the POSIX file API, and slightly
simplified.
Files

« file cfs.h
CFS header file.

Defines

» #defineCFS_READ1
Specify thatfs_open(should open a file for reading.

» #defineCFS_WRITE2
Specify thatfs_open(khould open a file for writing.

» #defineCFS_APPENDA
Specify thatfs_open(should append written data to the file rather than overwriting it.

Functions

CCIF intcfs_open(const chakxname, int flags)
Open afile.

CCIF voidcfs_closg(int fd)
Close an open file.

CCIF intcfs_readint fd, char«buf, unsigned int len)
Read data from an open file.

CCIF intcfs_write(int fd, charxbuf, unsigned int len)
Write data to an open file.

CCIF intcfs_seeKint fd, unsigned int offset)
Seek to a specified position in an open file.

CCIF intcfs_opendilstruct cfs_dirdirp, const chakname)
Open a directory for reading directory entries.

CCIF intcfs_readdir(struct cfs_dirdirp, struct cfs_direntdirent)
Read a directory entry.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 81

» CCIF intcfs_closedir(struct cfs_dirdirp)
Close a directory opened wittfs_opendir()

6.24.2 Define Documentation

6.24.2.1 #define CFS_APPEND 4
Specify thatcfs_open(should append written data to the file rather than overwriting it.

This constant indicates tds_open(}hat a file that should be opened for writing gets written data appended
to the end of the file. The default behaviour (without CFS_APPEND) is that the file is overwritten with the
new data.

See also:
cfs_open()

Definition at line 107 of file cfs.h.

6.24.2.2 #define CFS_READ 1
Specify thatcfs_open(should open a file for reading.

This constant indicates tfs_open(that a file should be opened for reading. CFS_WRITE should be used
if the file is opened for writing, and CFS_READ + CFS_WRITE indicates that the file is opened for both
reading and writing.

See also:
cfs_open()

Definition at line 83 of file cfs.h.

6.24.2.3 #define CFS_WRITE 2
Specify thatcfs_open(should open a file for writing.

This constant indicates tfs_open(}that a file should be opened for writing. CFS_READ should be used
if the file is opened for reading, and CFS_READ + CFS_WRITE indicates that the file is opened for both
reading and writing.

See also:
cfs_open()

Definition at line 95 of file cfs.h.

6.24.3 Function Documentation

6.24.3.1 CCIF void cfs_close (infd)

Close an open file.

Parameters:
fd The file descriptor of the open file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 82

This function closes a file that has previously been openedaisttopen()

Examples:
test-rudolphO.candtest-rudolphl.c

6.24.3.2 CCIF int cfs_closedir (struct cfs_dir« dirp)

Close a directory opened witlis_opendir()

Parameters:
dirp A pointer to a struct cfs_dir that has been opened wfith opendir()

See also:
cfs_opendir()
cfs_readdir()

6.24.3.3 CCIF int cfs_open (const chax name int flags)

Open afile.

Parameters:
name The name of the file.

flags CFS_READ, or CFS_WRITE, or both.

Returns:
A file descriptor, if the file could be opened, or -1 if the file could not be opened.

This function opens a file and returns a file descriptor for the opened file. If the file could not be opened,
the function returns -1. The function can open a file for reading or writing, or both.

An opened file must be closed witlis_close()

See also:
CFS_READ
CFS_WRITE
cfs_close()

Examples:
test-rudolphO.candtest-rudolphl.c

6.24.3.4 CCIF int cfs_opendir (struct cfs_dirx dirp, const charx name

Open a directory for reading directory entries.

Parameters:
dirp A pointer to a struct cfs_dir that is filled in by the function.

name The name of the directory.

Returns:
0 or -1 if the directory could not be opened.

See also:
cfs_readdir()
cfs_closedir()

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.24 The Contiki file system interface 83

6.24.3.5 CCIFint cfs_read (intfd, char * buf, unsigned intlen)

Read data from an open file.

Parameters:
fd The file descriptor of the open file.

buf The buffer in which data should be read from the file.
len The number of bytes that should be read.

Returns:
The number of bytes that was actually read from the file.

This function reads data from an open file into a buffer. The file must have first been openetswatben()
and the CFS_READ flag.

Examples:
test-rudolphO.candtest-rudolphl.c

6.24.3.6 CCIF int cfs_readdir (struct cfs_dirx dirp, struct cfs_dirent « dirent)

Read a directory entry.

Parameters:
dirp A pointer to a struct cfs_dir that has been opened wfish opendir()

dirent A pointer to a struct cfs_dirent that is filled in lojs_readdir()

Return values:
0 If a directory entry was read.

0 If no more directory entries can be read.

See also:
cfs_opendir()
cfs_closedir()

6.24.3.7 CCIF int cfs_seek (infd, unsigned intoffse}
Seek to a specified position in an open file.

Parameters:
fd The file descriptor of the open file.

offset The position in the file.

Returns:
The new position in the file.

This function moves the file position to the specified position in the file. The next byte that is read from or
written to the file will be at the position given by the offset parameter.

Examples:
test-rudolphO.candtest-rudolphl.c

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 84

6.24.3.8 CCIF int cfs_write (intfd, char * buf, unsigned intlen)

Write data to an open file.

Parameters:
fd The file descriptor of the open file.

buf The buffer from which data should be written to the file.
len The number of bytes that should be written.

Returns:
The number of bytes that was actually written to the file.

This function reads writes data from a memory buffer to an open file. The file must have been opened with
cfs_open(jand the CFS_WRITE flag.

Examples:
test-rudolphO.candtest-rudolphl.c

6.25 CTK application functions
6.25.1 Detailed Description

The CTK functions used by an application program.

Defines

« #define CTK_SEPARATORYX, y, w) NULL, NULL, x, y, CTK_WIDGET_SEPARATOR, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for the ctk_separator widget.

. #defineCTK_BUTTON(X, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-
WIDGET_FLAG_INITIALIZER(O) text

Instantiating macro for the ctk_button widget.

« #defineCTK_LABEL(X, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-
WIDGET_FLAG_INITIALIZER(O) text,

Instantiating macro for the ctk_label widget.

« #defineCTK_HYPERLINK(x, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(O) text, url

Instantiating macro for the ctk_hyperlink widget.

 #defineCTK_TEXTENTRY_CLEARE)
Clears a text entry widget and sets the cursor to the start of the text line.

 #defineCTK_TEXTENTRY(X, y, w, h, text, len)

Instantiating macro for the ctk_textentry widget.

« #defineCTK _ICON(title, bitmap, textmap)

Instantiating macro for the ctk_icon widget.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions

85

« #defineCTK_ICON_ADD(icon, p) ctk_icon_add((structk widgetx)icon, p)
Add an icon to the desktop.

 #defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structk_widget«)widg)
Add a widget to a window.

» #defineCTK_WIDGET_FOCU$win, widg) (win) — focused = (structtk_widgetx)(widg)
Set focus to a widget.

» #defineCTK_WIDGET_REDRAWwidg) ctk_widget_redraw((structk widget«)widg)
Add a widget to the redraw queue.

 #defineCTK_WIDGET_TYPHEw) ((w) — type)
Obtain the type of a widget.

» #defineCTK_WIDGET_SET_WIDTHwidget, width)
Sets the width of a widget.

 #defineCTK_WIDGET_XPO%w) (((structctk_widgetx)(w)) — X)
Retrieves the x position of a widget, relative to the window in which the widget is contained.

» #defineCTK_WIDGET_SET_XPOS&w, xpos) ((structtk_widgetx)(w)) — X = (Xpos)
Sets the x position of a widget, relative to the window in which the widget is contained.

o #defineCTK_WIDGET_YPOS{w) (((structctk_widgetx)(w)) — y)
Retrieves the y position of a widget, relative to the window in which the widget is contained.

» #defineCTK_WIDGET_SET_YPOSw, ypos) ((structtk_widgetx)(w)) — y = (ypos)
Sets the y position of a widget, relative to the window in which the widget is contained.

« #definectk_label_set heigfw, height) (w)— widget.label.h = (height)
Set the height of a label.

» #definectk_label_set_teft t) (I) — text = (t)
Set the text of a label.

« #definectk_button_set_tef, t) (b) — text = (t)
Set the text of a button.

Functions

« CCIF voidctk_widget_redravstructctk widgetsw)
Redraws a widget.

« void ctk_desktop_redraystruct ctk_desktopd)
Redraw the entire desktop.

e CCIF unsigned chartk_desktop_widtlfstruct ctk_desktopd)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 86

Gets the width of the desktop.

« unsigned chactk desktop_heighistruct ctk_desktopd)
Gets the height of the desktop.

« void ctk_mode_sefunsigned char m)
Sets the current CTK mode.

« unsigned chactk_mode_gefvoid)
Retrieves the current CTK mode.

« void ctk_icon_addCC_REGISTER_ARG struattk widgetxicon, struct processp)
Add an icon to the desktop.

« void ctk_dialog_operstructctk_window:d)
Open a dialog box.

« void ctk_dialog_closgvoid)
Close the dialog box, if one is open.

« void ctk_window_ope{CC_REGISTER_ARG struattk_window:w)
Open a window, or bring window to front if already open.

« void ctk_window_closéstructctk_windowsxw)
Close a window if it is open.

« void ctk_window_cleafstructctk_windowsw)
Remove all widgets from a window.

« void ctk_menu_addstructctk_menuxmenu)
Add a menu to the menu bar.

« void ctk_menu_removéstructctk_menuxmenu)
Remove a menu from the menu bar.

« void ctk_window_redrawstructctk windowxw)
Redraw a window.

« void ctk_window_new(structctk_windowsxwindow, unsigned char w, unsigned char h, cktte)
Create a new window.

« void ctk_dialog_newWCC_REGISTER_ARG struatk_windowsxdialog, unsigned char w, unsigned
char h)

Creates a new dialog.

 void ctk_menu_newWCC_REGISTER_ARG struatk _menuxmenu, chakxtitle)
Creates a new menu.

 unsigned chactk_menuitem_ad@CC_REGISTER_ARG struatk_menuxmenu, chaxkname)
Adds a menu item to a menu.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 87

« void CC_FASTCALLctk widget addCC_REGISTER_ARG struattk_window «window, CC_-
REGISTER_ARG struattk_widgetxwidget)

Adds a widget to a window.

Variables

CCIF process_eventctk_signal_keypress
Emitted for every key being pressed.

« CCIF process_eventctk_signal_widget_activate
Emitted when a widget is activated (pressed).

« CCIF process_eventctk signal_widget_select
Emitted when a widget is selected.

¢ CCIF process_eventctk_signal_menu_activate
Emitted when a menu item is activated.

* CCIF process_eventctk _signal_window_close
Emitted when a window is closed.

» CCIF process_eventctk_signal_pointer_move
Emitted when the mouse pointer is moved.

» CCIF process_eventctk_signal_pointer_button
Emitted when a mouse button is pressed.

» CCIF process_eventctk _signal_button_activate
Same as ctk_signal_widget_activate.

« CCIF process_eventctk_signal_button_hover
Same as ctk_signal_widget_select.

« CCIF process_eventctk_signal_hyperlink_activate
Emitted when a hyperlink is activated.

» CCIF process_eventctk_signal_hyperlink_hover
Same as ctk_signal_widget_select.

6.25.2 Define Documentation

6.25.2.1 #define CTK_BUTTON(X, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1,
CTK_WIDGET_FLAG_INITIALIZER(O) text

Instantiating macro for the ctk_button widget.

This macro is used when instantiating a ctk_button widget and is intended to be used together with a struct
assignment like this:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 88

struct ctk_button but =
{CTK_BUTTON(, 0, 2, "Ok")}

Parameters:
X The x position of the widget, relative to the widget’'s window.
y The y position of the widget, relative to the widget's window.
w The widget’s width.
text The button text.

Definition at line 141 of file ctk.h.

6.25.2.2 #define ctk_button_set_text(b, t) (b} text = (t)
Set the text of a button.

Parameters:
b The CTK button widget.

t The new text of the button.

Definition at line 832 of file ctk.h.

6.25.2.3 #define CTK_HYPERLINK(X, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_-
HYPERLINK, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, url

Instantiating macro for the ctk_hyperlink widget.
This macro is used when instantiating a ctk_hyperlink widget and is intended to be used together with a
struct assignment like this:

struct ctk_hyperlink hlink =
{CTK_HYPERLINK(0, 0, 7, "Contiki", "http://dunkels.com/adam/contiki/")};

Parameters:
x The x position of the widget, relative to the widget's window.

y The y position of the widget, relative to the widget's window.
w The widget’s width.

text The hyperlink text.

url The hyperlink URL.

Definition at line 203 of file ctk.h.

6.25.2.4 #define CTK_ICON(title, bitmap, textmap)

Value:

NULL, NULL, 0, 0, CTK_WIDGET_ICON, 2, 4, CTK_WIDGET_FLAG_INITIALIZER(0) \
title, PROCESS_NONE, \
CTK_ICON_BITMAP(bitmap), CTK_ICON_TEXTMAP(textmap)

Instantiating macro for the ctk_icon widget.

This macro is used when instantiating a ctk_icon widget and is intended to be used together with a struct
assignment like this:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 89

struct ctk_icon icon =
{CTK_ICON("An icon", bitmapptr, textmapptr)};

Parameters:
titte The icon’s text.

bitmap A pointer to the icon’s bitmap image.
textmap A pointer to the icon’s text version of the bitmap.

Definition at line 313 of file ctk.h.

6.25.2.5 #define CTK_ICON_ADD(icon, p) ctk_icon_add((structtk_widget x)icon, p)
Add an icon to the desktop.

Parameters:
icon The icon to be added.

p The process ID of the process that owns the icon.

Definition at line 716 of file ctk.h.
Referenced by program_handler_add().

6.25.2.6 #define CTK_LABEL(x, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h,
CTK_WIDGET_FLAG_INITIALIZER(O) text,

Instantiating macro for the ctk_label widget.

This macro is used when instantiating a ctk_label widget and is intended to be used together with a struct
assignment like this:

struct ctk_label lab =
{CTK_LABEL(0, 0, 5, 1, "Label")};

Parameters:
x The x position of the widget, relative to the widget’'s window.

y The y position of the widget, relative to the widget's window.
w The widget’s width.

h The height of the label.

text The label text.

Definition at line 172 of file ctk.h.

6.25.2.7 #define ctk_label_set_height(w, height) (w) widget.label.h = (height)
Set the height of a label.

Parameters:
w The CTK label widget.

height The new height of the label.

Definition at line 815 of file ctk.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 90

6.25.2.8 #define ctk_label_set_text(l, t) (B> text = (t)

Set the text of a label.

Parameters:
| The CTK label widget.

t The new text of the label.

Definition at line 824 of file ctk.h.

Referenced by program_handler_load().

6.25.2.9 #define CTK_SEPARATOR(x, y, W) NULL, NULL, X, y, CTK_WIDGET_SEPARATOR,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(0)

Instantiating macro for the ctk_separator widget.

This macro is used when instantiating a ctk_separator widget and is intended to be used together with a
struct assignment like this:

struct ctk_separator sep =
{CTK_SEPARATOR(0, 0, 23)}

Parameters:
x The x position of the widget, relative to the widget's window.

y The y position of the widget, relative to the widget's window.
w The widget’s width.

Definition at line 112 of file ctk.h.

6.25.2.10 #define CTK_TEXTENTRY(X, y, w, h, text, len)

Value:

NULL, NULL, x, y, CTK_WIDGET_TEXTENTRY, w, 1, CTK_WIDGET_FLAG_INITIALIZER(0) text, len, \
CTK_TEXTENTRY_NORMAL, 0, 0, NULL

Instantiating macro for the ctk_textentry widget.

This macro is used when instantiating a ctk_textentry widget and is intended to be used together with a
struct assignment like this:

struct ctk_textentry tentry =
{CTK_TEXTENTRY(0, 0, 30, 1, textbuffer, 50)};

Note:
The height of the text entry widget is obsolete and not intended to be used.

Parameters:
X The x position of the widget, relative to the widget's window.

y They position of the widget, relative to the widget's window.
w The widget’s width.

h The text entry height (obsolete).

text A pointer to the buffer that should be edited.

len The length of the text buffer

Definition at line 265 of file ctk.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 91

6.25.2.11 #define CTK_TEXTENTRY_CLEAR(e)

Value:

do { memset((e)->text, 0, (e)->h * ((e)->len + 1)); \
(e)->xpos = 0; (e)->ypos = 0; } while(0)

Clears a text entry widget and sets the cursor to the start of the text line.

Parameters:
e The text entry widget to be cleared.

Definition at line 230 of file ctk.h.

6.25.2.12 #define CTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (struct ctk_widget
x)widg)

Add a widget to a window.

Parameters:
win The window to which the widget should be added.

widg The widget to be added.

Definition at line 727 of file ctk.h.
Referenced by ctk_textedit_add().

6.25.2.13 #define CTK_WIDGET_FOCUS(win, widg) (win) — focused = (struct ctk_widget
x)(widg)
Set focus to a widget.

Parameters:
win The widget's window.

widg The widget

Definition at line 738 of file ctk.h.

Referenced by ctk_textedit_eventhandler().

6.25.2.14 #define CTK_WIDGET_REDRAW(widg) ctk_widget_redraw((structctk_widget «)widg)

Add a widget to the redraw queue.

Parameters:
widg The widget to be redrawn.

Definition at line 746 of file ctk.h.

Referenced by ctk_textedit_eventhandler().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions

6.25.2.15 #define CTK_WIDGET_SET_WIDTH(widget, width)

Value:

do {\
((struct ctk_widget *)(widget))->w = (width); } while(0)

Sets the width of a widget.

Parameters:
widget The widget.

width The width of the widget, in characters.

Definition at line 764 of file ctk.h.

6.25.2.16 #define CTK_WIDGET_SET_XPOS(w, xpos) ((struattk_widget «)(w)) — x = (Xpos)

Sets the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

xpos The x position of the widget.

Definition at line 783 of file ctk.h.

6.25.2.17 #define CTK_WIDGET_SET_YPOS(w, ypos) ((struattk_widget +)(w)) — y = (ypos)

Sets the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

ypos The y position of the widget.

Definition at line 801 of file ctk.h.

6.25.2.18 #define CTK_WIDGET_TYPE(w) ((w)— type)
Obtain the type of a widget.

Parameters:
w The widget.

Definition at line 755 of file ctk.h.

6.25.2.19 #define CTK_WIDGET_XPOS(w) (((structtk_widget x)(w)) — X)

Retrieves the x position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The x position of the widget.

Definition at line 774 of file ctk.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions

93

6.25.2.20 #define CTK_WIDGET_YPOS(w) (((structtk_widget)(w)) — y)

Retrieves the y position of a widget, relative to the window in which the widget is contained.

Parameters:
w The widget.

Returns:
The y position of the widget.

Definition at line 792 of file ctk.h.

6.25.3 Function Documentation
6.25.3.1 unsigned char ctk_desktop_height (struct ctk_desktopd)
Gets the height of the desktop.

Parameters:
d The desktop.

Returns:
The height of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

Definition at line 939 of file ctk.c.

6.25.3.2 void ctk_desktop_redraw (struct ctk_desktop: d)

Redraw the entire desktop.

Parameters:
d The desktop to be redrawn.

Note:
Currently the parameter d is not used, but must be set to NULL.

Definition at line 602 of file ctk.c.

References PROCESS_CURRENT.

6.25.3.3 unsigned char ctk_desktop_width (struct ctk_desktop d)
Gets the width of the desktop.

Parameters:
d The desktop.

Returns:
The width of the desktop, in characters.

Note:
The d parameter is currently unused and must be set to NULL.

Definition at line 924 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 94

6.25.3.4 void ctk_dialog_new (CC_REGISTER_ARG structtk_window x* dialog, unsigned char
w, unsigned charh)

Creates a new dialog.

This function only sets up the internal structure of ¢itle windowstruct but does not open the dialog. The
dialog must be explicitly opened by calling thtk_dialog_open(junction.

Parameters:
dialog The dialog to be created.

w The width of the dialog.
h The height of the dialog.

Definition at line 729 of file ctk.c.

6.25.3.5 void ctk_dialog_open (structtk_window x* d)
Open a dialog box.

Parameters:
d The dialog to be opened.

Definition at line 313 of file ctk.c.

Referenced by program_handler_load().

6.25.3.6 void ctk_icon_add (CC_REGISTER_ARG structtk_widget x icon, struct processx p)
Add an icon to the desktop.

Parameters:
icon The icon to be added.

p The process that owns the icon.

Definition at line 288 of file ctk.c.

References ctk_widget_add(), ctk_widget::icon, and ctk_widget::widget.

6.25.3.7 void ctk_menu_add (structtk_menu x menu)
Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

Definition at line 488 of file ctk.c.

References ctk_menus::menus, and ctk_menu::next.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 95

6.25.3.8 void ctk_menu_new (CC_REGISTER_ARG structtk_menu x menu, char « title)
Creates a new menu.

This function sets up the internal structure of the menu, but does not add it to the menubar. Use the function
ctk_menu_add(for that purpose.

Parameters:
menu The menu to be created.

title The title of the menu.

Definition at line 747 of file ctk.c.

References ctk_menu::active, ctk_menu::next, ctk_menu::nitems, ctk_menu::title, and ctk_menu::titlelen.

6.25.3.9 void ctk_menu_remove (structtk_menu x menu)
Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

Definition at line 516 of file ctk.c.

References ctk_menus::menus, and ctk_menu::next.

6.25.3.10 unsigned char ctk_menuitem_add (CC_REGISTER_ARG struatk _menux menu, char
* name

Adds a menu item to a menu.

In CTK, each menu item is identified by a number which is unique within each menu. When a menu item
is selected, a ctk_menuitem_activated signal is emitted and the menu item number is passed as signal data
with the signal.

Parameters:
menu The menu to which the menu item should be added.

name The name of the menu item.

Returns:
The number of the menu item.

Definition at line 773 of file ctk.c.
References ctk_menu::items, ctk_menuitem::title, and ctk_menuitem::titlelen.

Referenced by program_handler_add().

6.25.3.11 unsigned char ctk_mode_get (void)

Retrieves the current CTK mode.

Returns:
The current CTK mode.

Definition at line 275 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 96

6.25.3.12 void ctk_mode_set (unsigned chan)
Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

Definition at line 264 of file ctk.c.

6.25.3.13 void CC_FASTCALL ctk_widget_add (CC_REGISTER_ARG structctk_window * win-
dow, CC_REGISTER_ARG struct ctk_widget « widge)

Adds a widget to a window.

This function adds a widget to a window. The order of which the widgets are added is important, as it sets
the order to which widgets are cycled with the widget selection keys.

Parameters:
window The window to which the widhet should be added.

widget The widget to be added.

Definition at line 896 of file ctk.c.

References ctk_window::active, CTK_WIDGET_LABEL, CTK_WIDGET_SEPARATOR, ctk_-
window::inactive, ctk_window::next, and ctk_widget::window.

Referenced by ctk_icon_add().

6.25.3.14 void ctk_widget_redraw (structctk_widget = widge)
Redraws a widget.

This function will set a flag which causes the widget to be redrawn next time the CTK process is scheduled.

Parameters:
widget The widget that is to be redrawn.

Note:
This function should usually not be called directly since it requires typecasting of the widget param-
eter. The wrapper maclOoTK_WIDGET_REDRAW()does the required typecast and should be used
instead.

Definition at line 873 of file ctk.c.

6.25.3.15 void ctk_window_clear (structtk_window x w)

Remove all widgets from a window.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 97

Parameters:
w The window to be cleared.

Definition at line 471 of file ctk.c.

References ctk_window::active.

6.25.3.16 void ctk_window_close (struattk_window * w)
Close a window if it is open.

If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

Definition at line 387 of file ctk.c.

References ctk_window::next, and ctk_window::prev.

6.25.3.17 void ctk_window_new (structtk_window * window, unsigned charw, unsigned charh,
char x title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thle windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by callinctkhevindow_open()
function.

Parameters:
window The window to be created.

w The width of the new window.
h The height of the new window.
title The title of the new window.

Definition at line 707 of file ctk.c.

6.25.3.18 void ctk_window_open (CC_REGISTER_ARG structtk_window * w)

Open a window, or bring window to front if already open.

Parameters:
w The window to be opened.

Definition at line 338 of file ctk.c.

References ctk_window::next, and ctk_window::prev.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.25 CTK application functions 98

6.25.3.19 void ctk_window_redraw (structctk_window * w)
Redraw a window.

This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Definition at line 628 of file ctk.c.
References ctk_draw_dialog(), ctk_draw_window(), CTK_FOCUS_WINDOW, and ctk_menus::open.

6.25.4 Variable Documentation

6.25.4.1 CCIF process_event dtk_signal_hyperlink_activate
Emitted when a hyperlink is activated.
The signal is broadcast to all listeners.

Definition at line 115 of file ctk.c.

6.25.4.2 CCIF process_event dtk_signal_keypress
Emitted for every key being pressed.

The key is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler().

6.25.4.3 CCIF process_event dtk_signal_menu_activate
Emitted when a menu item is activated.
The number of the menu item is passed as signal data.

Definition at line 115 of file ctk.c.

6.25.4.4 CCIF process_event dtk signal_pointer_button
Emitted when a mouse button is pressed.
The button is passed as signal data to the listening process.

Definition at line 115 of file ctk.c.

6.25.4.5 CCIF process_event dtk_signal_pointer_move
Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

Definition at line 115 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface

99

6.25.4.6 CCIF process_event dtk_signal_widget_activate
Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler().

6.25.4.7 CCIF process_event dtk_signal_widget_select
Emitted when a widget is selected.
A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

6.25.4.8 CCIF process_event dtk signal_window_close
Emitted when a window is closed.
A pointer to the window is passed as signal data.

Definition at line 115 of file ctk.c.

6.26 CTK graphical user interface
6.26.1 Detailed Description

The Contiki Toolkit (CTK) provides the graphical user interface for the Contiki system.

Files

« file ctk.h
CTK header file.

« file ctk.c
The Contiki Toolkit CTK, the Contiki GUI.

« file ctk-draw.h
CTK screen drawing module interface, ctk-draw.

Modules

» CTK application functions
The CTK functions used by an application program.

e CTK events
* CTK device driver functions

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 100

Functions

« void ctk_mode_sefunsigned char mode)
Sets the current CTK mode.

« unsigned chactk_mode_gefvoid)
Retrieves the current CTK mode.

e CCIF voidctk_window_new(structctk window«window, unsigned char w, unsigned char h, char
xtitle)

Create a new window.

» CCIF voidctk_window_cleafstructctk_windowxw)
Remove all widgets from a window.

» CCIF voidctk_window_closéstructctk_windowxw)
Close a window if it is open.

» CCIF voidctk_window_redrawstructctk_windowsw)
Redraw a window.

» CCIF voidctk_dialog_opertstructctk_window:d)
Open a dialog box.

e CCIF voidctk _dialog_closévoid)
Close the dialog box, if one is open.

e CCIF voidctk_menu_addstructctk_menuxmenu)
Add a menu to the menu bar.

e CCIF voidctk_menu_removéstructctk _menuxmenu)
Remove a menu from the menu bar.

6.26.2 Function Documentation

6.26.2.1 CCIF void ctk_dialog_open (structtk_window x d)
Open a dialog box.

Parameters:
d The dialog to be opened.

Definition at line 313 of file ctk.c.

Referenced by program_handler_load().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 101

6.26.2.2 CCIF void ctk_menu_add (structtk_menu s menu)
Add a menu to the menu bar.

Parameters:
menu The menu to be added.

Note:
Do not call this function multiple times for the same menu, as no check is made to see if the menu
already is in the menu bar.

Definition at line 488 of file ctk.c.

References ctk_menus::menus, and ctk_menu::next.

6.26.2.3 CCIF void ctk_menu_remove (structtk_menu x menu)
Remove a menu from the menu bar.

Parameters:
menu The menu to be removed.

Definition at line 516 of file ctk.c.

References ctk_menus::menus, and ctk_menu::next.

6.26.2.4 unsigned char ctk_mode_get (void)
Retrieves the current CTK mode.

Returns:
The current CTK mode.

Definition at line 275 of file ctk.c.

6.26.2.5 void ctk_mode_set (unsigned chamn)
Sets the current CTK mode.

The CTK mode can be either CTK_MODE_NORMAL, CTK_MODE_SCREENSAVER or CTK_-
MODE_EXTERNAL. CTK_MODE_NORMAL is the normal mode, in which keypresses and mouse
pointer movements are processed and the screen is redrawn. In CTK_MODE_SCREENSAVER, no screen
redraws are performed and the first key press or pointer movement will cause the ctk_signal_screensaver_-
stop to be emitted. In the CTK_MODE_EXTERNAL mode, key presses and pointer movements are ig-
nored and no screen redraws are made.

Parameters:
m The mode.

Definition at line 264 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.26 CTK graphical user interface 102

6.26.2.6 CCIF void ctk_window_clear (structctk_window * w)
Remove all widgets from a window.

Parameters:
w The window to be cleared.

Definition at line 471 of file ctk.c.

References ctk_window::active.

6.26.2.7 CCIF void ctk_window_close (structtk_window * w)
Close a window if it is open.
If the window is not open, this function does nothing.

Parameters:
w The window to be closed.

Definition at line 387 of file ctk.c.

References ctk_window::next, and ctk_window::prev.

6.26.2.8 CCIF void ctk_window_new (structttk_window x window, unsigned charw, unsigned char
h, char « title)

Create a new window.

Creates a new window. The memory for the window structure must already be allocated by the caller, and
is usually done with a static declaration.

This function sets up the internal structure of thle windowstruct and creates the move and close buttons,
but it does not open the window. The window must be explicitly opened by callinggkh&/indow_open()
function.

Parameters:
window The window to be created.

w The width of the new window.
h The height of the new window.
title The title of the new window.

Definition at line 707 of file ctk.c.

6.26.2.9 CCIF void ctk_window_redraw (structctk_window x w)
Redraw a window.
This function redraws the window, but only if it is the foremost one on the desktop.

Parameters:
w The window to be redrawn.

Definition at line 628 of file ctk.c.
References ctk_draw_dialog(), ctk_draw_window(), CTK_FOCUS_WINDOW, and ctk_menus::open.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.27 CTK events 103

6.27 CTK events

Variables

» process_eventdtk signal_keypress
Emitted for every key being pressed.

» process_eventdtk signal_widget_activate
Emitted when a widget is activated (pressed).

» process_event dtk_signal_button_activate
Same as ctk_signal_widget_activate.

» process_event dik signal_widget_select
Emitted when a widget is selected.

« process_eventdtk signal_button_hover
Same as ctk_signal_widget_select.

« process_eventdtk signal_hyperlink_activate
Emitted when a hyperlink is activated.

 process_eventdtk_signal_hyperlink_hover
Same as ctk_signal_widget_select.

e process_eventdk signal_menu_activate
Emitted when a menu item is activated.

» process_eventdtk signal_window_close
Emitted when a window is closed.

» process_eventdtk signal_pointer_move
Emitted when the mouse pointer is moved.

* process_eventdtk signal_pointer_button
Emitted when a mouse button is pressed.

6.27.1 Variable Documentation

6.27.1.1 process_eventctk signal_hyperlink_activate
Emitted when a hyperlink is activated.
The signal is broadcast to all listeners.

Definition at line 115 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.27 CTK events 104

6.27.1.2 process_eventctk signal_keypress
Emitted for every key being pressed.

The key is passed as signal data.

Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler().

6.27.1.3 process_eventctk_signal_menu_activate
Emitted when a menu item is activated.
The number of the menu item is passed as signal data.

Definition at line 115 of file ctk.c.

6.27.1.4 process_eventctk signal_pointer_button
Emitted when a mouse button is pressed.
The button is passed as signal data to the listening process.

Definition at line 115 of file ctk.c.

6.27.1.5 process_eventctk signal_pointer_move
Emitted when the mouse pointer is moved.

A NULL pointer is passed as signal data and it is up to the listening process to check the position of the
mouse using the CTK mouse API.

Definition at line 115 of file ctk.c.

6.27.1.6 process_eventctk signal_widget_activate
Emitted when a widget is activated (pressed).

A pointer to the widget is passed as signal data.
Definition at line 115 of file ctk.c.

Referenced by ctk_textedit_eventhandler().

6.27.1.7 process_eventctk signal_widget_select
Emitted when a widget is selected.
A pointer to the widget is passed as signal data.

Definition at line 115 of file ctk.c.

6.27.1.8 process_eventctk signal_window_close
Emitted when a window is closed.
A pointer to the window is passed as signal data.

Definition at line 115 of file ctk.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 105

6.28 CTK device driver functions
6.28.1 Detailed Description

The CTK device driver functions are divided into two modules, the ctk-draw module and the ctk-arch
module. The purpose of the ctk-arch and the ctk-draw modules is to act as an interface between the CTK
and the actual hardware of the system on which Contiki is run. The ctk-arch takes care of the keyboard input
from the user, and the ctk-draw is responsible for drawing the CTK desktop, windows and user interface
widgets onto the actual screen.

More information about the ctk-draw and the ctk-arch modules can be found in the s8di®otk-draw
moduleandThe ctk-arch module

Data Structures

structctk_widget
The generic CTK widget structure that contains all other widget structures.

structctk_window
Representation of a CTK window.

structctk_menuitem
Representation of an individual menu item.

structctk_menu
Representation of an individual menu.

structctk_menus
Representation of the menu bar.

Defines

e #defineCTK_WIDGET_SEPARATORL
Widget number: The CTK separator widget.

#defineCTK_WIDGET_LABEL 2
Widget number: The CTK label widget.

#defineCTK_WIDGET_BUTTON3
Widget number: The CTK button widget.

#defineCTK_WIDGET_HYPERLINK4
Widget number: The CTK hyperlink widget.

#defineCTK_WIDGET_TEXTENTRY5
Widget number: The CTK textentry widget.

#defineCTK_WIDGET_BITMAP 6
Widget number: The CTK bitmap widget.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 106

#defineCTK_WIDGET_ICON7
Widget number: The CTK icon widget.

#defineCTK_FOCUS_NONB
Widget focus flag: no focus.

#defineCTK_FOCUS_WIDGETL
Widget focus flag: widget has focus.

#defineCTK_FOCUS_WINDOW2
Widget focus flag: widget's window is the foremost one.

#defineCTK_FOCUS_DIALOG4
Widget focus flag: widget is in a dialog.

Typedefs

« typedef chactk_arch_key t
The keyboard character type of the system.

Functions

« void ctk_draw_init(void)
The initialization function.

« void ctk_draw_cleafunsigned char clipyl, unsigned char clipy2)
Clear the screen between the clip bounds.

« void ctk_draw_clear_windowstruct ctk_window swindow, unsigned char focus, unsigned char
clipyl, unsigned char clipy2)

Draw the window background.

« void ctk_draw_window(struct ctk_window xwindow, unsigned char focus, unsigned char clipyl,
unsigned char clipy2, unsigned char draw_borders)

Draw a window onto the screen.

« void ctk_draw_dialodstructctk_windowsxdialog)
Draw a dialog onto the screen.

« void ctk_draw_widge{structctk_widgetxw, unsigned char focus, unsigned char clipyl, unsigned
char clipy2)

Draw a widget on a window.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 107

6.28.1.1 The ctk-draw module In order to work efficiently even on limited systems, CTK uses a simple
coordinate system, where the screen is addressed using character coordinates instead of pixel coordinates.
This makes it trivial to implement the coordinate system on a text-based screen, and significantly reduces
complexity for pixel based screen systems.

The top left of the screen is (0,0) with x and y coordinates growing downwards and to the right.

It is the responsibility of the ctk-draw module to keep track of the screen size and must implement the two
functions ctk_draw_width() and ctk_draw_height(), which are used by the CTK for querying the screen
size. The functions must return the width and the height of the ctk-draw screen in character coordinates.

The ctk-draw module is responsible for drawing CTK windows onto the screen through the fusiktien
draw_window(). A pseudo-code implementation of this function might look like this:

ctk_draw_window(window, focus, clipyl, clipy2, draw_borders) {
if(draw_borders) {
draw_window_borders(window, focus, clipyl, clipy2);
}

foreach(widget, window->inactive) {
ctk_draw_widget(widget, focus, clipyl, clipy2);
}

foreach(widget, window->active) {
if(widget == window->focused) {
ctk_draw_widget(widget, focus | CTK_FOCUS_WIDGET,
clipyl, clipy2);
} else {
ctk_draw_widget(widget, focus, clipyl, clipy2);
}

}
}

Where draw_window_borders() draws the window borders (also between clipyl and clipy2LtkThe
draw_widget(function is explained below. Notice how the clipyl and clipy2 parameters are passed to all
other functions; every function needs to know the boundaries within which they are allowed to draw.

In order to aid in implementing a ctk-draw module, a text-based ctk-draw called ctk-conio has already been
implemented. It conforms to the Borland conio C library, and a skeleton implementation of said library
exists in lib/libconio.c. If a more machine specific ctk-draw module is to be implemented, the instructions
in this file should be followed.

6.28.1.2 The ctk-arch module The ctk-arch module deals with keyboard input from the underlying
target system on which Contiki is running. The ctk-arch manages a keyboard input queue that is queried
using the two functions ctk_arch_keyavail() and ctk_arch_getkey().

6.28.2 Typedef Documentation

6.28.2.1 typedef charctk arch_key t
The keyboard character type of the system.
The ctk_arch_key tis usually typedef'd to the char type, but some systems (such as VNC) have a 16-bit

key type.
Definition at line 237 of file ctk.h.

6.28.3 Function Documentation

6.28.3.1 void ctk_draw_clear (unsigned chaclipyl, unsigned charclipy2)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 108

Clear the screen between the clip bounds.

This function should clear the screen between the y coordinates "clipyl" and "clipy2", including the line at
y coordinate "clipyl", but not the line at y coordinate "clipy2".

Note:
This function may be used to draw a background image (wallpaper) on the desktop; it does not neces-
sarily "clear” the screen.

Parameters:
clipyl The lower y coordinate of the clip region.

clipy2 The upper y coordinate of the clip region.

6.28.3.2 void ctk_draw_clear_window (structtk_window * window, unsigned charfocus unsigned
char clipyl, unsigned charclipy2)

Draw the window background.

This function will be called by the CTK before a window will be completely redrawn.The function is
supposed to draw the window background, excluding window borders as these should be drawn by the
function that actually draws the window, between "clipy1" and "clipy2".

Note:
This function does not necessarily have to clear the window - it can be used for drawing a background
pattern in the window as well.

Parameters:
window The window for which the background should be drawn.

focus The focus of the window, either CTK_FOCUS_NONE for a background window, or CTK_-
FOCUS_WINDOW for the foreground window.

clipyl The lower y coordinate of the clip region.
clipy2 The upper y coordinate of the clip region.

6.28.3.3 void ctk_draw_dialog (structctk_window * dialog)
Draw a dialog onto the screen.

In CTK, a dialog is similar to a window, with the only exception being that they are drawn in a different
style. Also, since dialogs always are drawn on top of everything else, they do not need to be drawn within
any special boundaries.

Note:
This function can usually be implemented so that it uses the same widget drawing codetks the
draw_window()function.

Parameters:
dialog The dialog that is to be drawn.

Referenced by ctk_window_redraw().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.28 CTK device driver functions 109

6.28.3.4 void ctk_draw_init (void)
The initialization function.

This function is supposed to get the screen ready for drawing, and may be called at more than one time
during the operation of the system.

6.28.3.5 void ctk_draw_widget (structctk_widget * w, unsigned charfocus unsigned charclipyl,
unsigned charclipy?2)

Draw a widget on a window.

This function is used for drawing a CTK widgets onto the screem is likely to be the most complex function
in the ctk-draw module. Still, it is straightforward to implement as it can be written in an incremental
fashion, starting with a single widget type and adding more widget types, one at a time.

The ctk-draw module may exploit how the CTK focus constants are defined in order to use a look-up table
for the colors. The CTK focus constants are defined in the file ctk/ctk.h as follows:

#define CTK_FOCUS_NONE 0
#define CTK_FOCUS_WIDGET 1
#define CTK_FOCUS_WINDOW 2
#define CTK_FOCUS_DIALOG 4

This gives the following table:

CTK_FOCUS_NONE (Background window, non-focused widget)
CTK_FOCUS_WIDGET (Background window, focused widget)
CTK_FOCUS_WINDOW (Foreground window, non-focused widget)
CTK_FOCUS_WINDOW | CTK_FOCUS_WIDGET

(Foreground window, focused widget)
CTK_FOCUS_DIALOG (Dialog, non-focused widget)
CTK_FOCUS_DIALOG | CTK_FOCUS_WIDGET

(Dialog, focused widget)

a kR

Parameters:
w The widget to be drawn.

focus The focus of the widget.
clipyl The lower y coordinate of the clip region.
clipy2 The upper y coordinate of the clip region.

6.28.3.6 void ctk_draw_window (structctk_window x window, unsigned charfocus, unsigned char
clipyl, unsigned charclipy2, unsigned chardraw_border$

Draw a window onto the screen.

This function is called by the CTK when a window should be drawn on the screen. The ctk-draw layer is
free to choose how the window will appear on screen; with or without window borders and the style of the
borders, with or without transparent window background and how the background shall look, etc.

Parameters:
window The window which is to be drawn.

focus Specifies if the window should be drawn in foreground or background colors and can be either
CTK_FOCUS_NONE or CTK_FOCUS_WINDOW. Windows with a focus of CTK_FOCUS _-
WINDOW is usually drawn in a brighter color than those with CTK_FOCUS_NONE.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.29 Timer library 110

clipyl Specifies the first lines on screen that actually should be drawn, in screen coordinates (line 1 is
the first line below the menus).

clipy2 Specifies the last + 1 line on screen that should be drawn, in screen coordinates (line 1 is the
first line below the menus)

Referenced by ctk_window_redraw().

6.29 Timer library
6.29.1 Detailed Description

The Contiki kernel does not provide support for timed events.
Rather, an application that wants to use timers needs to explicitly use the timer library.

The timer library provides functions for setting, resetting and restarting timers, and for checking if a timer
has expired. An application must "manually" check if its timers have expired; this is not done automatically.

A timer is declared as struct timer and all access to the timer is made by a pointer to the declared
timer.

Note:
The timer library is not able to post events when a timer expires.EMeat timersshould be used for
this purpose.
The timer library uses th€lock libraryto measure time. Intervals should be specified in the format
used by the clock library.

See also:
Event timers

Files

« file timer.h
Timer library header file.

« file timer.c
Timer library implementation.

Data Structures

 structtimer
A timer.

Functions

« void timer_sef(structtimer «t, clock_time_t interval)
Set a timer.

« void timer_rese{structtimer xt)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.29 Timer library 111

Reset the timer with the same interval.

« void timer_restar{structtimer «t)
Restart the timer from the current point in time.

* int timer_expiredstructtimer xt)
Check if a timer has expired.

6.29.2 Function Documentation

6.29.2.1 inttimer_expired (structtimer x t)
Check if a timer has expired.

This function tests if a timer has expired and returns true or false depending on its status.

Parameters:
t A pointer to the timer

Returns:
Non-zero if the timer has expired, zero otherwise.

Definition at line 122 of file timer.c.

References clock_time().

6.29.2.2 void timer_reset (structimer x t)
Reset the timer with the same interval.

This function resets the timer with the same interval that was given tortteg_set()function. The start
point of the interval is the exact time that the timer last expired. Therefore, this function will cause the
timer to be stable over time, unlike thiener_restart(function.

Parameters:
t A pointer to the timer.

See also:
timer_restart()

Definition at line 85 of file timer.c.

Referenced by etimer_reset().

6.29.2.3 void timer_restart (structtimer x t)

Restart the timer from the current point in time.

This function restarts a timer with the same interval that was given ttrter_set()function. The timer
will start at the current time.

Note:
A periodic timer will drift if this function is used to reset it. For preioric timers, usetiimer_reset()
function instead.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.30 ulP configuration functions 112

Parameters:
t A pointer to the timer.

See also:
timer_reset()

Definition at line 105 of file timer.c.
References clock_time().

Referenced by etimer_restart().

6.29.2.4 void timer_set (structimer * t, clock_time_tinterval)
Set a timer.

This function is used to set a timer for a time sometime in the future. The funiitie@n_expired(will
evaluate to true after the timer has expired.

Parameters:
t A pointer to the timer

interval The interval before the timer expires.

Definition at line 65 of file timer.c.
References clock_time().

Referenced by etimer_set().

6.30 ulP configuration functions
6.30.1 Detailed Description

The ulP configuration functions are used for setting run-time parameters in ulP such as IP addresses.

Defines

« #defineuip_sethostadgaddr)
Set the IP address of this host.

« #defineuip_gethostaddaddr)
Get the IP address of this host.

#defineuip_setdraddiaddr)
Set the default router’s IP address.

#defineuip_setnetmagkddr)
Set the netmask.

* #defineuip_getdraddaddr)
Get the default router’s IP address.

#defineuip_getnetmagiaddr)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.30 ulP configuration functions 113

Get the netmask.

* #defineuip_setethaddeaddr)
Specifiy the Ethernet MAC address.

6.30.2 Define Documentation
6.30.2.1 #define uip_getdraddr(addr)
Get the default router’s IP address.

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the IP address of the default router.

Definition at line 174 of file uip.h.

6.30.2.2 #define uip_gethostaddr(addr)
Get the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Example:

uip_ipaddr_t hostaddr;

uip_gethostaddr(&hostaddr);

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the currently configured IP address.

Definition at line 139 of file uip.h.

6.30.2.3 #define uip_getnetmask(addr)

Get the netmask.

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the value of the netmask.

Definition at line 184 of file uip.h.

6.30.2.4 #define uip_setdraddr(addr)

Set the default router’s IP address.

Parameters:
addr A pointer to a uip_ipaddr_t variable containing the IP address of the default router.

See also:
uip_ipaddr()

Definition at line 151 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.31 ulP initialization functions 114

6.30.2.5 #define uip_setethaddr(eaddr)
Specifiy the Ethernet MAC address.

The ARP code needs to know the MAC address of the Ethernet card in order to be able to respond to ARP
gueries and to generate working Ethernet headers.

Note:
This macro only specifies the Ethernet MAC address to the ARP code. It cannot be used to change the
MAC address of the Ethernet card.

Parameters:
eaddr A pointer to a structiip_eth_addcontaining the Ethernet MAC address of the Ethernet card.

Definition at line 134 of file uip_arp.h.

6.30.2.6 #define uip_sethostaddr(addr)
Set the IP address of this host.

The IP address is represented as a 4-byte array where the first octet of the IP address is put in the first
member of the 4-byte array.

Example:

uip_ipaddr_t addr;

uip_ipaddr(&addr, 192,168,1,2);
uip_sethostaddr(&addr);

Parameters:
addr A pointer to an IP address of type uip_ipaddr_t;

See also:
uip_ipaddr()

Definition at line 119 of file uip.h.

6.30.2.7 #define uip_setnetmask(addr)

Set the netmask.

Parameters:
addr A pointer to a uip_ipaddr_t variable containing the IP address of the netmask.

See also:
uip_ipaddr()

Definition at line 163 of file uip.h.

6.31 ulP initialization functions

6.31.1 Detailed Description

The ulP initialization functions are used for booting ulP.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.32 ulP device driver functions 115

Functions

« void uip_init (void)
ulP initialization function.

« void uip_setipid(ul6_tid)
ulP initialization function.

6.31.2 Function Documentation

6.31.2.1 void uip_init (void)

ulP initialization function.

This function should be called at boot up to initilize the ulP TCP/IP stack.
Definition at line 364 of file uip.c.

References uip_udp_conn::lport, uip_conn::tcpstateflags, UIP_CONNS, UIP_LISTENPORTS, and UIP_-
UDP_CONNS.

6.31.2.2 void uip_setipid (ul6_id)
ulP initialization function.
This function may be used at boot time to set the initial ip_id.

Definition at line 166 of file uip.c.

6.32 ulP device driver functions
6.32.1 Detailed Description

These functions are used by a network device driver for interacting with ulP.

Defines

#defineuip_inpul)

Process an incoming packet.

#defineuip_periodig¢conn)
Periodic processing for a connection identified by its number.

#defineuip_periodic_conftonn)

Perform periodic processing for a connection identified by a pointer to its structure.

#defineuip_poll_conifconn)

Reugest that a particular connection should be polled.

#defineuip_udp_periodiconn)
Periodic processing for a UDP connection identified by its number.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.32 ulP device driver functions 116

* #defineuip_udp_periodic_cor{nonn)
Periodic processing for a UDP connection identified by a pointer to its structure.

Variables

o CCIF u8_tuip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

6.32.2 Define Documentation

6.32.2.1 #define uip_input()
Process an incoming packet.

This function should be called when the device driver has received a packet from the network. The packet
from the device driver must be present in the uip_buf buffer, and the length of the packet should be placed
in the uip_len variable.

When the function returns, there may be an outbound packet placed in the uip_buf packet buffer. If so, the
uip_len variable is set to the length of the packet. If no packet is to be sent out, the uip_len variable is set
to 0.

The usual way of calling the function is presented by the source code below.

uip_len = devicedriver_poll();
if(uip_len > 0) {
uip_input();
if(uip_len > 0) {
devicedriver_send();
}
}

Note:
If you are writing a ulP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning ulP over Ethernet, you will need to call the ulP ARP code before calling this function:

#define BUF ((struct uip_eth_hdr *)&uip_buf[0])
uip_len = ethernet_devicedrver_poll();
if(uip_len > 0) {
if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
uip_arp_ipin();
uip_input();
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();

}
} else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {
uip_arp_arpin();
if(uip_len > 0) {
ethernet_devicedriver_send();
}
}

Definition at line 270 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.32 ulP device driver functions 117

6.32.2.2 #define uip_periodic(conn)
Periodic processing for a connection identified by its number.

This function does the necessary periodic processing (timers, polling) for a ulP TCP conneciton, and should
be called when the periodic ulP timer goes off. It should be called for every connection, regardless of
whether they are open of closed.

When the function returns, it may have an outbound packet waiting for service in the ulP packet buffer,
and if so the uip_len variable is set to a value larger than zero. The device driver should be called to send
out the packet.

The ususal way of calling the function is through a for() loop like this:

for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {
devicedriver_send();
}
}

Note:
If you are writing a ulP device driver that needs ARP (Address Resolution Protocol), e.g., when run-
ning ulP over Ethernet, you will need to call thiép_arp_out()function before calling the device
driver:
for(i = 0; i < UIP_CONNS; ++i) {
uip_periodic(i);
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the connection which is to be periodically polled.

Definition at line 314 of file uip.h.

6.32.2.3 #define uip_periodic_conn(conn)
Perform periodic processing for a connection identified by a pointer to its structure.

Same aslip_periodic()but takes a pointer to the actuap_connstruct instead of an integer as its argument.
This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip_connstruct for the connection to be processed.

Definition at line 336 of file uip.h.

6.32.2.4 #define uip_poll_conn(conn)
Reugest that a particular connection should be polled.

Similar to uip_periodic_conn(put does not perform any timer processing. The application is polled for
new data.

Parameters:
conn A pointer to theuip_connstruct for the connection to be processed.

Definition at line 350 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.32 ulP device driver functions 118

6.32.2.5 #define uip_udp_periodic(conn)
Periodic processing for a UDP connection identified by its number.

This function is essentially the samew@p_periodic() but for UDP connections. It is called in a similar
fashion as theiip_periodic()function:

for(i = 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {
devicedriver_send();

}
}

Note:
As for theuip_periodic()function, special care has to be taken when using ulP together with ARP and
Ethernet:

for(= 0; i < UIP_UDP_CONNS; i++) {
uip_udp_periodic(i);
if(uip_len > 0) {
uip_arp_out();
ethernet_devicedriver_send();

}
}

Parameters:
conn The number of the UDP connection to be processed.

Definition at line 386 of file uip.h.

6.32.2.6 #define uip_udp_periodic_conn(conn)
Periodic processing for a UDP connection identified by a pointer to its structure.

Same aslip_udp_periodic(put takes a pointer to the actuaip_connstruct instead of an integer as its
argument. This function can be used to force periodic processing of a specific connection.

Parameters:
conn A pointer to theuip_udp_conrstruct for the connection to be processed.

Definition at line 403 of file uip.h.

6.32.3 Variable Documentation

6.32.3.1 CCIF u8_tuip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

The uip_buf array is used to hold incoming and outgoing packets. The device driver should place incoming
data into this buffer. When sending data, the device driver should read the link level headers and the TCP/IP
headers from this buffer. The size of the link level headers is configured by the UIP_LLH_LEN define.

Note:
The application data need not be placed in this buffer, so the device driver must read it from the place
pointed to by the uip_appdata pointer as illustrated by the following example:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions

119

void
devicedriver_send(void)
hwsend(&uip_buf[0], UIP_LLH_LEN);
if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
} else {
hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);

}
}

Definition at line 124 of file uip.c.

Referenced by uip_arp_out(), uip_fw_forward(), and uip_ipchksum().

6.33 ulP application functions
6.33.1 Detailed Description

Functions used by an application running of top of ulP.

Defines

#defineuip_datale()

The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

« #defineuip_urgdatalef)
The length of any out-of-band data (urgent data) that has arrived on the connection.

« #defineuip_clos€)
Close the current connection.

« #defineuip_abor()
Abort the current connection.

« #defineuip_stoy)
Tell the sending host to stop sending data.

« #defineuip_stoppeftonn)
Find out if the current connection has been previously stoppeduigthstop()

* #defineuip_restarf)
Restart the current connection, if is has previously been stoppediipitistop()

« #defineuip_udpconnectiaf)
Is the current connection a UDP connection?

* #defineuip_newdat§
Is new incoming data available?

 #defineuip_acked)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33

ulP application functions

120

Has previously sent data been acknowledged?

#defineuip_connected
Has the connection just been connected?

#defineuip_closed)
Has the connection been closed by the other end?

#defineuip_aborted)
Has the connection been aborted by the other end?

#defineuip_timedou()
Has the connection timed out?

#defineuip_rexmi()
Do we need to retransmit previously data?

#defineuip_poll)
Is the connection being polled by ulP?

#defineuip_initialmsg)
Get the initial maxium segment size (MSS) of the current connection.

#defineuip_msg)

Get the current maxium segment size that can be sent on the current connection.

#defineuip_udp_removeonn)
Removed a UDP connection.

#defineuip_udp_bindconn, port)
Bind a UDP connection to a local port.

#defineuip_udp_sengen)
Send a UDP datagram of length len on the current connection.

Functions

void uip_listen(ul6_t port)
Start listening to the specified port.

void uip_unlisten(u16_t port)
Stop listening to the specified port.

uip_connx uip_connec{uip_ipaddr_t«ripaddr, ul6_t port)
Connect to a remote host using TCP.

CCIF voiduip_sendconst void«data, int len)
Send data on the current connection.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions 121

* uip_udp_conrx uip_udp_newconstuip_ipaddr_t«ripaddr, ul6_t rport)
Set up a new UDP connection.

6.33.2 Define Documentation

6.33.2.1 #define uip_abort()
Abort the current connection.

This function will abort (reset) the current connection, and is usually used when an error has occured that
prevents using theip_close()function.

Definition at line 594 of file uip.h.

6.33.2.2 #define uip_aborted()
Has the connection been aborted by the other end?
Non-zero if the current connection has been aborted (reset) by the remote host.

Examples:
example-psock-server.c

Definition at line 693 of file uip.h.

6.33.2.3 #define uip_acked()
Has previously sent data been acknowledged?

Will reduce to non-zero if the previously sent data has been acknowledged by the remote host. This means
that the application can send new data.

Definition at line 661 of file uip.h.

6.33.2.4 #define uip_close()
Close the current connection.
This function will close the current connection in a nice way.

Definition at line 583 of file uip.h.

6.33.2.5 #define uip_closed()

Has the connection been closed by the other end?

Is non-zero if the connection has been closed by the remote host. The application may then do the necessary
clean-ups.

Examples:
example-psock-server.c

Definition at line 683 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions 122

6.33.2.6 #define uip_connected()

Has the connection just been connected?

Reduces to non-zero if the current connection has been connected to a remote host. This will happen both
if the connection has been actively opened (wiihh_connect()or passively opened (withip_listen().

Examples:
example-psock-server.c

Definition at line 673 of file uip.h.

6.33.2.7 #define uip_datalen()
The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.
The test function uip_data() must first be used to check if there is any data available at all.

Definition at line 563 of file uip.h.

6.33.2.8 #define uip_mss()
Get the current maxium segment size that can be sent on the current connection.

The current maxiumum segment size that can be sent on the connection is computed from the receiver's
window and the MSS of the connection (which also is available by caliipginitialmss().

Definition at line 750 of file uip.h.

6.33.2.9 #define uip_newdata()
Is new incoming data available?

Will reduce to non-zero if there is new data for the application present at the uip_appdata pointer. The size
of the data is avaliable through the uip_len variable.

Definition at line 650 of file uip.h.

6.33.2.10 #define uip_poll()
Is the connection being polled by ulP?

Is non-zero if the reason the application is invoked is that the current connection has been idle for a while
and should be polled.

The polling event can be used for sending data without having to wait for the remote host to send data.

Definition at line 729 of file uip.h.

6.33.2.11 #define uip_restart()
Restart the current connection, if is has previously been stoppediipitistop()

This function will open the receiver’s window again so that we start receiving data for the current connec-
tion.

Definition at line 623 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions 123

6.33.2.12 #define uip_rexmit()
Do we need to retransmit previously data?

Reduces to non-zero if the previously sent data has been lost in the network, and the application should
retransmit it. The application should send the exact same data as it did the last time, usiipg skead()
function.

Definition at line 715 of file uip.h.

6.33.2.13 #define uip_stop()
Tell the sending host to stop sending data.
This function will close our receiver’'s window so that we stop receiving data for the current connection.

Definition at line 604 of file uip.h.

6.33.2.14 #define uip_timedout()
Has the connection timed out?

Non-zero if the current connection has been aborted due to too many retransmissions.

Examples:
example-psock-server.c

Definition at line 703 of file uip.h.

6.33.2.15 #define uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

Parameters:
conn A pointer to theuip_udp_conrstructure for the connection.

port The local port number, in network byte order.

Definition at line 800 of file uip.h.

6.33.2.16 #define uip_udp_remove(conn)

Removed a UDP connection.

Parameters:
conn A pointer to theuip_udp_conrstructure for the connection.

Definition at line 788 of file uip.h.

6.33.2.17 #define uip_udp_send(len)

Send a UDP datagram of length len on the current connection.

This function can only be called in response to a UDP event (poll or newdata). The data must be present in
the uip_buf buffer, at the place pointed to by the uip_appdata pointer.

Parameters:
len The length of the data in the uip_buf buffer.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions 124

Definition at line 813 of file uip.h.

6.33.2.18 #define uip_udpconnection()
Is the current connection a UDP connection?
This function checks whether the current connection is a UDP connection.

Definition at line 639 of file uip.h.

6.33.2.19 #define uip_urgdatalen()

The length of any out-of-band data (urgent data) that has arrived on the connection.

Note:
The configuration parameter UIP_URGDATA must be set for this function to be enabled.

Definition at line 574 of file uip.h.

6.33.3 Function Documentation

6.33.3.1 structuip_connx uip_connect (iip_ipaddr_t « ripaddr, ul6_tport)
Connect to a remote host using TCP.

This function is used to start a new connection to the specified port on the specied host. It allocates a new
connection identifier, sets the connection to the SYN_SENT state and sets the retransmission timer to O.
This will cause a TCP SYN segment to be sent out the next time this connection is periodically processed,
which usually is done within 0.5 seconds after the callifp_connect()

Note:
This function is avaliable only if support for active open has been configured by defining UIP_-
ACTIVE_OPEN to 1 inuipopt.h
Since this function requires the port number to be in network byte order, a conversiotHI€digS()
or htons()is necessary.

uip_ipaddr_t ipaddr;

uip_ipaddr(&ipaddr, 192,168,1,2);
uip_connect(&ipaddr, HTONS(80));

Parameters:
ripaddr The IP address of the remote hot.

port A 16-bit port number in network byte order.

Returns:
A pointer to the ulP connection identifier for the new connection, or NULL if no connection could be
allocated.

Referenced by tcp_connect().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.33 ulP application functions 125

6.33.3.2 void uip_listen (u16_port)

Start listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversionHiBDYS() or
htons()is necessary.

uip_listen(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 514 of file uip.c.
References UIP_LISTENPORTS.
Referenced by tcp_listen().

6.33.3.3 CCIF void uip_send (const void data, int len)
Send data on the current connection.

This function is used to send out a single segment of TCP data. Only applications that have been invoked
by ulP for event processing can send data.

The amount of data that actually is sent out after a call to this funcion is determined by the maximum
amount of data TCP allows. ulP will automatically crop the data so that only the appropriate amount of
data is sent. The functiomp_mss()can be used to query ulP for the amount of data that actually will be
sent.

Note:
This function does not guarantee that the sent data will arrive at the destination. If the data is lost in the
network, the application will be invoked with thép_rexmit() event being set. The application will
then have to resend the data using this function.

Parameters:
data A pointer to the data which is to be sent.

len The maximum amount of data bytes to be sent.

Examples:
example-program.c

Definition at line 1878 of file uip.c.

6.33.3.4 structuip_udp_conrx uip_udp_new (constuip_ipaddr_t * ripaddr, ul6_trport)
Set up a new UDP connection.

This function sets up a new UDP connection. The function will automatically allocate an unused local port
for the new connection. However, another port can be chosen by usingpthedp _bind()call, after the
uip_udp_new(function has been called.

Example:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions 126

uip_ipaddr_t addr;
struct uip_udp_conn *c;
uip_ipaddr(&addr, 192,168,2,1);
Cc = uip_udp_new(&addr, HTONS(12345));
if(c '= NULL) {
uip_udp_bhind(c, HTONS(12344));
}

Parameters:
ripaddr The IP address of the remote host.

rport The remote port number in network byte order.

Returns:
Theuip_udp_conrstructure for the new connection or NULL if no connection could be allocated.

Definition at line 458 of file uip.c.

References htons(), HTONS, uip_udp_conn::lport, uip_udp_conn::ripaddr, uip_udp_conn::rport, uip_-
udp_conn::ttl, uip_ipaddr_copy, UIP_TTL, uip_udp_conn, and UIP_UDP_CONNS.

Referenced by udp_new().

6.33.3.5 void uip_unlisten (u1l6_port)

Stop listening to the specified port.

Note:
Since this function expects the port number in network byte order, a conversionHiEDNS() or
htons()is necessary.

uip_unlisten(HTONS(80));

Parameters:
port A 16-bit port number in network byte order.

Definition at line 503 of file uip.c.
References UIP_LISTENPORTS.

Referenced by tcp_unlisten().

6.34 ulP conversion functions
6.34.1 Detailed Description

These functions can be used for converting between different data formats used by ulP.

Defines

« #defineuip_ipaddr_to_quae)
Convert an IP address to four bytes separated by commas.

« #defineuip_ipadd(addr, addr0, addrl, addr2, addr3)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions 127

Construct an IP address from four bytes.

* #defineuip_ip6addfaddr, addrO, addrl, addr2, addr3, addr4, addr5, addr6, addr7)
Construct an IPv6 address from eight 16-bit words.

« #defineuip_ipaddr_copfdest, src)
Copy an IP address to another IP address.

* #defineuip_ipaddr_cmfaddrl, addr2)
Compare two IP addresses.

« #defineuip_ipaddr_maskcn{pddrl, addr2, mask)

Compare two IP addresses with netmasks.

« #defineuip_ipaddr_masklest, src, mask)
Mask out the network part of an IP address.

« #defineuip_ipaddrladdr)
Pick the first octet of an IP address.

* #defineuip_ipaddrZaddr)
Pick the second octet of an IP address.

* #defineuip_ipaddr3addr)
Pick the third octet of an IP address.

* #defineuip_ipaddr4addr)
Pick the fourth octet of an IP address.

» #defineHTONS(n)
Convert 16-bit quantity from host byte order to network byte order.

Functions

e CCIF ul6_thtons(ul6_t val)
Convert 16-bit quantity from host byte order to network byte order.

» CCIF unsigned chauiplib_ipaddrconcharxaddrstr, unsigned chaaddr)
Convert a textual representation of an IP address to a numerical representation.

6.34.2 Define Documentation

6.34.2.1 #define HTONS(n)
Convert 16-bit quantity from host byte order to network byte order.

This macro is primarily used for converting constants from host byte order to network byte order. For
converting variables to network byte order, usetitens()function instead.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions 128

Examples:
example-program,@andexample-psock-server.c

Definition at line 1107 of file uip.h.
Referenced by htons(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), and uip_udp_new().

6.34.2.2 #define uip_ip6addr(addr, addr0O, addrl, addr2, addr3, addr4, addr5, addr6, addr7)
Construct an IPv6 address from eight 16-bit words.
This function constructs an IPv6 address.

Definition at line 881 of file uip.h.

6.34.2.3 #define uip_ipaddr(addr, addr0, addrl, addr2, addr3)
Construct an IP address from four bytes.

This function constructs an IP address of the type that ulP handles internally from four bytes. The function
is handy for specifying IP addresses to use with e.gutheconnect(function.

Example:

uip_ipaddr_t ipaddr;

struct uip_conn *c;

uip_ipaddr(&ipaddr, 192,168,1,2);

¢ = uip_connect(&ipaddr, HTONS(80));

Parameters:
addr A pointer to a uip_ipaddr_t variable that will be filled in with the IP address.

addr0 The first octet of the IP address.
addrl The second octet of the IP address.
addr2 The third octet of the IP address.
addr3 The forth octet of the IP address.

Definition at line 867 of file uip.h.

Referenced by udp_broadcast_new().

6.34.2.4 #define uip_ipaddrl(addr)

Pick the first octet of an IP address.

Picks out the first octet of an IP address.

Example:

uip_ipaddr_t ipaddr;

u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);

octet = uip_ipaddrl(&ipaddr);

In the example above, the variable "octet" will contain the value 1.
Definition at line 1034 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions

129

6.34.2.5 #define uip_ipaddr2(addr)

Pick the second octet of an IP address.
Picks out the second octet of an IP address.
Example:

uip_ipaddr_t ipaddr;

u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr2(&ipaddr);

In the example above, the variable "octet" will contain the value 2.

Definition at line 1054 of file uip.h.

6.34.2.6 #define uip_ipaddr3(addr)
Pick the third octet of an IP address.
Picks out the third octet of an IP address.
Example:

uip_ipaddr_t ipaddr;

u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr3(&ipaddr);

In the example above, the variable "octet" will contain the value 3.

Definition at line 1074 of file uip.h.

6.34.2.7 #define uip_ipaddr4(addr)

Pick the fourth octet of an IP address.
Picks out the fourth octet of an IP address.
Example:

uip_ipaddr_t ipaddr;

u8_t octet;

uip_ipaddr(&ipaddr, 1,2,3,4);
octet = uip_ipaddr4(&ipaddr);

In the example above, the variable "octet" will contain the value 4.

Definition at line 1094 of file uip.h.

6.34.2.8 #define uip_ipaddr_cmp(addrl, addr2)
Compare two IP addresses.
Compares two IP addresses.

Example:

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions 130

uip_ipaddr_t ipaddrl, ipaddr2;
uip_ipaddr(&ipaddrl, 192,16,1,2);

if(uip_ipaddr_cmp(&ipaddr2, &ipaddrl)) {
printf("They are the same");

Parameters:
addrl The first IP address.

addr2 The second IP address.

Definition at line 933 of file uip.h.
Referenced by uip_arp_arpin(), uip_arp_out(), uip_arp_timer(), uip_fw_forward(), and uip_fw_output().

6.34.2.9 #define uip_ipaddr_copy(dest, src)
Copy an IP address to another IP address.
Copies an IP address from one place to another.

Example:

uip_ipaddr_t ipaddrl, ipaddr2;

uip_ipaddr(&ipaddrl, 192,16,1,2);
uip_ipaddr_copy(&ipaddr2, &ipaddrl);

Parameters:
dest The destination for the copy.

src The source from where to copy.

Definition at line 910 of file uip.h.

Referenced by resolv_conf(), uip_arp_out(), and uip_udp_new().

6.34.2.10 #define uip_ipaddr_mask(dest, src, mask)
Mask out the network part of an IP address.
Masks out the network part of an IP address, given the address and the netmask.

Example:

uip_ipaddr_t ipaddrl, ipaddr2, netmask;

uip_ipaddr(&ipaddrl, 192,16,1,2);
uip_ipaddr(&netmask, 255,255,255,0);
uip_ipaddr_mask(&ipaddr2, &ipaddrl, &netmask);

In the example above, the variable "ipaddr2" will contain the IP address 192.168.1.0.

Parameters:
dest Where the result is to be placed.

src The IP address.
mask The netmask.

Definition at line 1011 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.34 ulP conversion functions 131

6.34.2.11 #define uip_ipaddr_maskcmp(addrl, addr2, mask)
Compare two IP addresses with netmasks.
Compares two IP addresses with netmasks. The masks are used to mask out the bits that are to be compared.

Example:

uip_ipaddr_t ipaddrl, ipaddr2, mask;

uip_ipaddr(&mask, 255,255,255,0);

uip_ipaddr(&ipaddrl, 192,16,1,2);

uip_ipaddr(&ipaddr2, 192,16,1,3);

if(uip_ipaddr_maskcmp(&ipaddrl, &ipaddr2, &mask)) {
printf("They are the same");

}

Parameters:
addrl The first IP address.

addr2 The second IP address.
mask The netmask.

Definition at line 963 of file uip.h.
Referenced by uip_arp_out().

6.34.2.12 #define uip_ipaddr_to_quad(a)
Convert an IP address to four bytes separated by commas.

Example:

uip_ipaddr_t ipaddr;
printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr));

Parameters:
a A pointer to a uip_ipaddr_t.

Definition at line 839 of file uip.h.

6.34.3 Function Documentation

6.34.3.1 CCIF ul6_t htons (ul6_val)
Convert 16-bit quantity from host byte order to network byte order.

This function is primarily used for converting variables from host byte order to network byte order. For
converting constants to network byte order, useHR®NS() macro instead.

Definition at line 1866 of file uip.c.
References HTONS.
Referenced by uip_chksum(), uip_ipchksum(), and uip_udp_new().

6.34.3.2 CCIF unsigned char uiplib_ipaddrconv (char« addrstr, unsigned charx addr)
Convert a textual representation of an IP address to a numerical representation.

This function takes a textual representation of an IP address in the form a.b.c.d and converts it into a 4-byte
array that can be used by other ulP functions.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.35 Variables used in ulP device drivers 132

Parameters:
addrstr A pointer to a string containing the IP address in textual form.

addr A pointer to a 4-byte array that will be filled in with the numerical representation of the address.

Return values:
0 If the IP address could not be parsed.

Non-zero If the IP address was parsed.

Definition at line 43 of file uiplib.c.

6.35 Variables used in ulP device drivers
6.35.1 Detailed Description

ulP has a few global variables that are used in device drivers for ulP.

Variables

e CCIF ul6_tuip_len
The length of the packet in the uip_buf buffer.

6.35.2 Variable Documentation

6.35.2.1 CCIF ul6_tuip_len
The length of the packet in the uip_buf buffer.
The global variable uip_len holds the length of the packet in the uip_buf buffer.

When the network device driver calls the ulP input function, uip_len should be set to the length of the
packet in the uip_buf buffer.

When sending packets, the device driver should use the contents of the uip_len variable to determine the
length of the outgoing packet.

Definition at line 140 of file uip.c.

Referenced by tcpip_input(), uip_arp_arpin(), uip_arp_out(), uip_fw_forward(), uip_fw_output(), and
uip_split_output().

6.36 Configuration options for ulP

6.36.1 Detailed Description

ulP is configured using the per-project configuration file "uipopt.h”. This file contains all compile-time
options for ulP and should be tweaked to match each specific project. The ulP distribution contains a
documented example "uipopt.h" that can be copied and modified for each project.

Note:

Contiki does not use tha@popt.hfile to configure ulP, but uses a per-port uip-conf.h file that should be
edited instead.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.37 Static configuration options 133

Files
« file uipopt.h
Configuration options for ulP.
Modules

« Static configuration options

« |IP configuration options

« UDP configuration options

e TCP configuration options

« ARP configuration options

« General configuration options

« CPU architecture configuration

» Appication specific configurations

6.37 Static configuration options
6.37.1 Detailed Description

These configuration options can be used for setting the IP address settings statically, but only if UIP_-
FIXEDADDR is set to 1. The configuration options for a specific node includes IP address, netmask
and default router as well as the Ethernet address. The netmask, default router and Ethernet address are
appliciable only if ulP should be run over Ethernet.

All of these should be changed to suit your project.

Defines

* #defineUIP_FIXEDADDR
Determines if ulP should use a fixed IP address or not.

* #defineUIP_PINGADDRCONF

Ping IP address asignment.

« #defineUIP_FIXEDETHADDR
Specifies if the ulP ARP module should be compiled with a fixed Ethernet MAC address or not.

6.37.2 Define Documentation

6.37.2.1 #define UIP_FIXEDADDR
Determines if ulP should use a fixed IP address or not.

If ulP should use a fixed IP address, the settings are set inigopt.hfile. If not, the macrosiip_-
sethostaddr(uip_setdraddr(@anduip_setnetmask@hould be used instead.

Definition at line 102 of file uipopt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.38 IP configuration options 134

6.37.2.2 #define UIP_FIXEDETHADDR
Specifies if the ulP ARP module should be compiled with a fixed Ethernet MAC address or not.

If this configuration option is 0, the mactop_setethaddr(@an be used to specify the Ethernet address at
run-time.

Definition at line 132 of file uipopt.h.

6.37.2.3 #define UIP_PINGADDRCONF
Ping IP address asignment.

ulP uses a "ping" packets for setting its own IP address if this option is set. If so, ulP will start with an
empty IP address and the destination IP address of the first incoming "ping" (ICMP echo) packet will be
used for setting the hosts IP address.

Note:
This works only if UIP_FIXEDADDR is 0.

Definition at line 119 of file uipopt.h.

6.38 IP configuration options

Defines

* #defineUIP_TTL 64
The IP TTL (time to live) of IP packets sent by ulP.

* #defineUIP_REASSEMBLY

Turn on support for IP packet reassembly.

* #defineUIP_REASS_MAXAGE40

The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

6.38.1 Define Documentation

6.38.1.1 #define UIP_REASSEMBLY
Turn on support for IP packet reassembly.

ulP supports reassembly of fragmented IP packets. This features requires an additonal amount of RAM
to hold the reassembly buffer and the reassembly code size is approximately 700 bytes. The reassembly
buffer is of the same size as the uip_buf buffer (configured by UIP_BUFSIZE).

Note:
IP packet reassembly is not heavily tested.

Definition at line 161 of file uipopt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.39 UDP configuration options 135

6.38.1.2 #define UIP_TTL 64

The IP TTL (time to live) of IP packets sent by ulP.
This should normally not be changed.

Definition at line 146 of file uipopt.h.

Referenced by uip_udp_new().

6.39 UDP configuration options

6.39.1 Detailed Description

Note:
The UDP support in ulP is still not entirely complete; there is no support for sending or receiving
broadcast or multicast packets, but it works well enough to support a number of vital applications such
as DNS queries, though

Defines

 #defineUIP_UDP
Toggles wether UDP support should be compiled in or not.

 #defineUIP_UDP_CHECKSUMS
Toggles if UDP checksums should be used or not.

» #defineUIP_UDP_CONNS
The maximum amount of concurrent UDP connections.

6.39.2 Define Documentation

6.39.2.1 #define UIP_UDP_CHECKSUMS

Toggles if UDP checksums should be used or not.

Note:
Support for UDP checksums is currently not included in ulP, so this option has no function.

Definition at line 205 of file uipopt.h.

6.40 TCP configuration options

Defines

* #defineUIP_ACTIVE_OPEN

Determines if support for opening connections from ulP should be compiled in.

* #defineUIP_CONNS

The maximum number of simultaneously open TCP connections.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.40 TCP configuration options 136

 #defineUIP_LISTENPORTS
The maximum number of simultaneously listening TCP ports.

« #defineUIP_URGDATA
Determines if support for TCP urgent data natification should be compiled in.

* #defineUIP_RTO3
The initial retransmission timeout counted in timer pulses.

 #defineUIP_MAXRTX 8
The maximum number of times a segment should be retransmitted before the connection should be aborted.

* #defineUIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

* #defineUIP_TCP_MSSUIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
The TCP maximum segment size.

 #defineUIP_RECEIVE_WINDOW
The size of the advertised receiver’s window.

 #defineUIP_TIME_WAIT_TIMEOUT 120
How long a connection should stay in the TIME_WAIT state.

6.40.1 Define Documentation

6.40.1.1 #define UIP_ACTIVE_OPEN
Determines if support for opening connections from ulP should be compiled in.

If the applications that are running on top of ulP for this project do not need to open outgoing TCP con-
nections, this configration option can be turned off to reduce the code size of ulP.

Definition at line 243 of file uipopt.h.

6.40.1.2 #define UIP_CONNS
The maximum number of simultaneously open TCP connections.

Since the TCP connections are statically allocated, turning this configuration knob down results in less
RAM used. Each TCP connection requires approximatly 30 bytes of memory.

Definition at line 255 of file uipopt.h.
Referenced by uip_init().

6.40.1.3 #define UIP_LISTENPORTS

The maximum number of simultaneously listening TCP ports.
Each listening TCP port requires 2 bytes of memory.
Definition at line 269 of file uipopt.h.

Referenced by tcp_listen(), tcp_unlisten(), uip_init(), uip_listen(), and uip_unlisten().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.40 TCP configuration options 137

6.40.1.4 #define UIP_MAXRTX 8

The maximum number of times a segment should be retransmitted before the connection should be aborted.
This should not be changed.

Definition at line 298 of file uipopt.h.

6.40.1.5 #define UIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

This should not need to be changed.

Definition at line 307 of file uipopt.h.

6.40.1.6 #define UIP_RECEIVE_WINDOW
The size of the advertised receiver’s window.

Should be set low (i.e., to the size of the uip_buf buffer) is the application is slow to process incoming data,
or high (32768 bytes) if the application processes data quickly.

Definition at line 327 of file uipopt.h.

6.40.1.7 #define UIP_RTO 3

The initial retransmission timeout counted in timer pulses.
This should not be changed.

Definition at line 290 of file uipopt.h.

6.40.1.8 #define UIP_TCP_MSS (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
The TCP maximum segment size.

This is should not be to set to more than UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN.
Definition at line 315 of file uipopt.h.

6.40.1.9 #define UIP_TIME_WAIT_TIMEOUT 120
How long a connection should stay in the TIME_WAIT state.
This configiration option has no real implication, and it should be left untouched.

Definition at line 338 of file uipopt.h.

6.40.1.10 #define UIP_URGDATA
Determines if support for TCP urgent data notification should be compiled in.
Urgent data (out-of-band data) is a rarely used TCP feature that very seldom would be required.

Definition at line 283 of file uipopt.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.41 ARP configuration options 138

6.41 ARP configuration options

Defines

» #defineUIP_ARPTAB_SIZE
The size of the ARP table.

* #defineUIP_ARP_MAXAGE120
The maxium age of ARP table entries measured in 10ths of seconds.

6.41.1 Define Documentation

6.41.1.1 #define UIP_ARP_MAXAGE 120

The maxium age of ARP table entries measured in 10ths of seconds.

An UIP_ARP_MAXAGE of 120 corresponds to 20 minutes (BSD default).
Definition at line 368 of file uipopt.h.

Referenced by uip_arp_timer().

6.41.1.2 #define UIP_ARPTAB_SIZE
The size of the ARP table.

This option should be set to a larger value if this ulP node will have many connections from the local
network.

Definition at line 359 of file uipopt.h.

Referenced by uip_arp_init(), uip_arp_out(), and uip_arp_timer().

6.42 General configuration options

Defines

 #defineUIP_BUFSIZE
The size of the ulP packet buffer.

#defineUIP_STATISTICS
Determines if statistics support should be compiled in.

#defineUIP_LOGGING
Determines if logging of certain events should be compiled in.

#defineUIP_BROADCAST
Broadcast support.

#defineUIP_LLH_LEN
The link level header length.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.42 General configuration options 139

Functions

« void uip_log(charxmsg)
Print out a ulP log message.

6.42.1 Define Documentation

6.42.1.1 #define UIP_BROADCAST

Broadcast support.

This flag configures IP broadcast support. This is useful only together with UDP.
Definition at line 433 of file uipopt.h.

6.42.1.2 #define UIP_BUFSIZE
The size of the ulP packet buffer.

The ulP packet buffer should not be smaller than 60 bytes, and does not need to be larger than 1500 bytes.
Lower size results in lower TCP throughput, larger size results in higher TCP throughput.

Definition at line 389 of file uipopt.h.
Referenced by uip_split_output().

6.42.1.3 #define UIP_LLH_LEN
The link level header length.

This is the offset into the uip_buf where the IP header can be found. For Ethernet, this should be set to 14.
For SLIP, this should be set to 0.

Definition at line 458 of file uipopt.h.
Referenced by uip_arp_out(), uip_fw_forward(), uip_ipchksum(), and uip_split_output().

6.42.1.4 #define UIP_LOGGING
Determines if logging of certain events should be compiled in.

This is useful mostly for debugging. The functiaip_log() must be implemented to suit the architecture
of the project, if logging is turned on.

Definition at line 418 of file uipopt.h.

6.42.1.5 #define UIP_STATISTICS
Determines if statistics support should be compiled in.
The statistics is useful for debugging and to show the user.

Definition at line 403 of file uipopt.h.

6.42.2 Function Documentation

6.42.2.1 void uip_log (char msg

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.43 CPU architecture configuration 140

Print out a ulP log message.

This function must be implemented by the module that uses ulP, and is called by ulP whenever a log
message is generated.

6.43 CPU architecture configuration
6.43.1 Detailed Description

The CPU architecture configuration is where the endianess of the CPU on which ulP is to be run is specified.
Most CPUs today are little endian, and the most notable exception are the Motorolas which are big endian.
The BYTE_ORDER macro should be changed to reflect the CPU architecture on which ulP is to be run.

Defines

» #defineUIP_BYTE_ORDER
The byte order of the CPU architecture on which ulP is to be run.

6.43.2 Define Documentation

6.43.2.1 #define UIP_BYTE_ORDER
The byte order of the CPU architecture on which ulP is to be run.

This option can be either UIP_BIG_ENDIAN (Motorola byte order) or UIP_LITTLE_ENDIAN (Intel byte
order).

Definition at line 485 of file uipopt.h.

6.44 Appication specific configurations
6.44.1 Detailed Description

An ulP application is implemented using a single application function that is called by ulP whenever a
TCP/IP event occurs. The name of this function must be registered with ulP at compile time using the
UIP_APPCALL definition.

ulP applications can store the application state withinutpe connstructure by specifying the type of the
application structure by typedef:ing the type uip_tcp_appstate_t and uip_udp_appstate_t.

The file containing the definitions must be included in tif@opt.hfile.
The following example illustrates how this can look.

void httpd_appcall(void);
#define UIP_APPCALL httpd_appcall

struct httpd_state {
u8_t state;
ul6_t count;
char *dataptr;
char *script;

typedef struct httpd_state uip_tcp_appstate_t

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.45 ulP Address Resolution Protocol 141

Defines

« #defineUIP_APPCALLtcpip_uipcall
The name of the application function that ulP should call in response to TCP/IP events.

Typedefs

* typedef tcpip_uipstateip_tcp_appstate_t
The type of the application state that is to be stored inuipe connstructure.

* typedef tcpip_uipstateip_udp_appstate_t
The type of the application state that is to be stored inuipe connstructure.

6.44.2 Typedef Documentation

6.44.2.1 typedefiip_tcp_appstate_t
The type of the application state that is to be stored irutpeconnstructure.
This usually is typedef:ed to a struct holding application state information.

Definition at line 82 of file tcpip.h.

6.44.2.2 typedeliip_udp_appstate_t
The type of the application state that is to be stored irutpeconnstructure.
This usually is typedef:ed to a struct holding application state information.

Definition at line 81 of file tcpip.h.

6.45 ulP Address Resolution Protocol
6.45.1 Detailed Description

The Address Resolution Protocol ARP is used for mapping between IP addresses and link level addresses
such as the Ethernet MAC addresses. ARP uses broadcast queries to ask for the link level address of a
known IP address and the host which is configured with the IP address for which the query was meant, will
respond with its link level address.

Note:
This ARP implementation only supports Ethernet.
Files

« file uip_arp.h
Macros and definitions for the ARP module.

« file uip_arp.c
Implementation of the ARP Address Resolution Protocol.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.45 ulP Address Resolution Protocol 142

Data Structures

e structuip_eth_hdr
The Ethernet header.

Functions

* void uip_arp_init(void)
Initialize the ARP module.

* void uip_arp_arpir(void)
ARP processing for incoming ARP packets.

« void uip_arp_oui{void)
Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

« void uip_arp_timer(void)
Periodic ARP processing function.

6.45.2 Function Documentation

6.45.2.1 void uip_arp_arpin (void)
ARP processing for incoming ARP packets.

This function should be called by the device driver when an ARP packet has been received. The function
will act differently depending on the ARP packet type: if it is a reply for a request that we previously sent
out, the ARP cache will be filled in with the values from the ARP reply. If the incoming ARP packet is an
ARP request for our IP address, an ARP reply packet is created and put into the uip_buf[] buffer.

When the function returns, the value of the global variable uip_len indicates whether the device driver
should send out a packet or not. If uip_len is zero, no packet should be sent. If uip_len is non-zero, it
contains the length of the outbound packet that is present in the uip_buf[] buffer.

This function expects an ARP packet with a prepended Ethernet header in the uip_buf[] buffer, and the
length of the packet in the global variable uip_len.

Definition at line 283 of file uip_arp.c.

References uip_eth_addr::addr, HTONS, uip_ip4addr_t::u8, uip_ipaddr_cmp, and uip_len.

6.45.2.2 void uip_arp_out (void)
Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

This function should be called before sending out an IP packet. The function checks the destination IP
address of the IP packet to see what Ethernet MAC address that should be used as a destination MAC
address on the Ethernet.

If the destination IP address is in the local network (determined by logical ANDing of netmask and our IP

address), the function checks the ARP cache to see if an entry for the destination IP address is found. If so,
an Ethernet header is prepended and the function returns. If no ARP cache entry is found for the destination
IP address, the packet in the uip_buf[] is replaced by an ARP request packet for the IP address. The IP

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.46 ulP TCP throughput booster hack 143

packet is dropped and it is assumed that they higher level protocols (e.g., TCP) eventually will retransmit
the dropped packet.

If the destination IP address is not on the local network, the IP address of the default router is used instead.

When the function returns, a packet is present in the uip_buf[] buffer, and the length of the packet is in the
global variable uip_len.

Definition at line 366 of file uip_arp.c.

References uip_eth_addr::addr, HTONS, uip_appdata, UIP_ARPTAB_SIZE, uip_buf, uip_ipaddr_cmp,
uip_ipaddr_copy, uip_ipaddr_maskcmp, uip_len, and UIP_LLH_LEN.

6.45.2.3 void uip_arp_timer (void)
Periodic ARP processing function.

This function performs periodic timer processing in the ARP module and should be called at regular inter-
vals. The recommended interval is 10 seconds between the calls.

Definition at line 150 of file uip_arp.c.
References UIP_ARP_MAXAGE, UIP_ARPTAB_SIZE, and uip_ipaddr_cmp.

6.46 ulP TCP throughput booster hack
6.46.1 Detailed Description

The basic ulP TCP implementation only allows each TCP connection to have a single TCP segment in
flight at any given time. Because of the delayed ACK algorithm employed by most TCP receivers, ulP’s

limit on the amount of in-flight TCP segments seriously reduces the maximum achievable throughput for
sending data from ulP.

The uip-split module is a hack which tries to remedy this situation. By splitting maximum sized outgoing
TCP segments into two, the delayed ACK algorithm is not invoked at TCP receivers. This improves the
throughput when sending data from ulP by orders of magnitude.

The uip-split module uses the uip-fw module (ulP IP packet forwarding) for sending packets. Therefore,
the uip-fw module must be set up with the appropriate network interfaces for this module to work.

Files
« file uip-split.h
Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.
Functions

« void uip_split_outpuivoid)
Handle outgoing packets.

6.46.2 Function Documentation

6.46.2.1 void uip_split_output (void)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.47 ulP packet forwarding 144

Handle outgoing packets.

This function inspects an outgoing packet in the uip_buf buffer and sends it out using tie_output()
function. If the packet is a full-sized TCP segment it will be split into two segments and transmitted
separately. This function should be called instead of the actual device driver output functionuipr the
fw_output()function.

The headers of the outgoing packet is assumed to be in the uip_buf buffer and the payload is assumed to be
wherever uip_appdata points. The length of the outgoing packet is assumed to be in the uip_len variable.

Definition at line 49 of file uip-split.c.

References uip_acc32, uip_appdata, UIP_BUFSIZE, uip_ipchksum(), uip_len, UIP_LLH_LEN, and uip_-
tcpchksum().

6.47 ulP packet forwarding

Files

* file uip-fw.h
ulP packet forwarding header file.

* file uip-fw.c
ulP packet forwarding.

Data Structures

e structuip_fw_netif
Representation of a ulP network interface.

Defines

 #defineUIP_FW_NETIKip1, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)
Intantiating macro for a ulP network interface.

#defineuip_fw_setipaddnetif, addr)
Set the IP address of a network interface.

#defineuip_fw_setnetmagketif, addr)
Set the netmask of a network interface.

#defineUIP_FW_LOCAL
A non-error message that indicates that a packet should be processed locally.

#defineUIP_FW_OK
A non-error message that indicates that something went OK.

#defineUIP_FW_FORWARDED
A non-error message that indicates that a packet was forwarded.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.47 ulP packet forwarding 145

#defineUIP_FW_ZEROLEN

A non-error message that indicates that a zero-length packet transmission was attempted, and that no packet
was sent.

#defineUIP_FW_TOOLARGE

An error message that indicates that a packet that was too large for the outbound network interface was
detected.

#defineUIP_FW_NOROUTE
An error message that indicates that no suitable interface could be found for an outbound packet.

#defineUIP_FW_DROPPED
An error message that indicates that a packet that should be forwarded or output was dropped.

Functions

« void uip_fw_init (void)
Initialize the ulP packet forwarding module.

e u8_tuip_fw_forward(void)
Forward an IP packet in the uip_buf buffer.

e u8_tuip_fw_output(void)
Output an IP packet on the correct network interface.

« void uip_fw_registel(structuip_fw_netifxnetif)
Register a network interface with the forwarding module.

* void uip_fw_default(structuip_fw_netif xnetif)
Register a default network interface.

* void uip_fw_periodic(void)
Perform periodic processing.

6.47.1 Define Documentation

6.47.1.1 #define UIP_FW_NETIF(ipl, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)
Intantiating macro for a ulP network interface.

Example:

struct uip_fw_netif slipnetif =
{UIP_FW_NETIF(192,168,76,1, 255,255,255,0, slip_output)};

Parameters:
ipl,ip2,ip3,ip4 The IP address of the network interface.

nml1,nm2,nm3,nm4The netmask of the network interface.
outputfunc A pointer to the output function of the network interface.

Definition at line 80 of file uip-fw.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.47 ulP packet forwarding 146

6.47.1.2 #define uip_fw_setipaddr(netif, addr)

Set the IP address of a network interface.

Parameters:
netif A pointer to theuip_fw_netifstructure for the network interface.

addr A pointer to an IP address.

Definition at line 95 of file uip-fw.h.

6.47.1.3 #define uip_fw_setnetmask(netif, addr)

Set the netmask of a network interface.

Parameters:
netif A pointer to theuip_fw_netifstructure for the network interface.

addr A pointer to an IP address representing the netmask.

Definition at line 107 of file uip-fw.h.

6.47.2 Function Documentation

6.47.2.1 void uip_fw_default (structuip_fw_netif * netif)
Register a default network interface.
All packets that don’t go out on any of the other interfaces will be routed to the default interface.

Parameters:
netif A pointer to the network interface that is to be registered.

Definition at line 518 of file uip-fw.c.

6.47.2.2 u8_tuip_fw_forward (void)
Forward an IP packet in the uip_buf buffer.
Returns:

UIP_FW_FORWARDED if the packet was forwarded, UIP_FW_LOCAL if the packet should be pro-
cessed locally.

Definition at line 407 of file uip-fw.c.

References HTONS, uip_appdata, uip_buf, UIP_FW_FORWARDED, UIP_FW_LOCAL, uip_fw_-
output(), uip_ipaddr_cmp, uip_len, and UIP_LLH_LEN.

6.47.2.3 u8_tuip_fw_output (void)

Output an IP packet on the correct network interface.

The IP packet should be present in the uip_buf buffer and its length in the global uip_len variable.
Return values:

UIP_FW_ZEROLEN Indicates that a zero-length packet transmission was attempted and that no
packet was sent.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.48 ulP hostname resolver functions 147

UIP_FW_NOROUTE No suitable network interface could be found for the outbound packet, and the
packet was not sent.

Returns:
The return value from the actual network interface output function is passed unmodified as a return
value.

Definition at line 360 of file uip-fw.c.

References uip_fw_netif::next, uip_fw_netif::output, UIP_FW_NOROUTE, UIP_FW_OK, UIP_FW_-
ZEROLEN, uip_ipaddr_cmp, and uip_len.

Referenced by uip_fw_forward().

6.47.2.4 void uip_fw_register (structip_fw_netif * netif)

Register a network interface with the forwarding module.

Parameters:
netif A pointer to the network interface that is to be registered.

Definition at line 501 of file uip-fw.c.

References uip_fw_netif::next.

6.48 ulP hostname resolver functions
6.48.1 Detailed Description

The ulP DNS resolver functions are used to lookup a hostname and map it to a numerical IP address.
It maintains a list of resolved hostnames that can be queried withetb@dv_lookup()function. New
hostnames can be resolved usingrbsolv_query(function.

The event resolv_event_found is posted when a hostname has been resolved. It is up to the receiving
process to determine if the correct hostname has been found by callingstite lookup(¥unction with
the hostname.

Files

« file resolv.c
DNS host name to IP address resolver.

Functions

« void resolv_qguerychar«name)

Queues a name so that a question for the name will be sent out.

¢ ul6_tx resolv_lookup(charxname)
Look up a hostname in the array of known hostnames.

 uip_ipaddr_t resolv_getservegwoid)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.48 ulP hostname resolver functions 148

Obtain the currently configured DNS server.

« void resolv_conf(constuip_ipaddr_tdnsserver)
Configure a DNS server.

Variables

» process_eventresolv_event found
Event that is broadcasted when a DNS name has been resolved.

6.48.2 Function Documentation

6.48.2.1 void resolv_conf (consiip_ipaddr_t x dnsservey

Configure a DNS server.

Parameters:
dnsserverA pointer to a 4-byte representation of the IP address of the DNS server to be configured.

Definition at line 479 of file resolv.c.

References process_post(), and uip_ipaddr_copy.

6.48.2.2 uip_ipaddr_tx resolv_getserver (void)

Obtain the currently configured DNS server.

Returns:
A pointer to a 4-byte representation of the IP address of the currently configured DNS server or NULL
if no DNS server has been configured.

Definition at line 463 of file resolv.c.

References uip_udp_conn::ripaddr.

6.48.2.3 ul6_tresolv_lookup (charx name

Look up a hostname in the array of known hostnames.

Note:
This function only looks in the internal array of known hostnames, it does not send out a query for the
hostname if none was found. The functi@solv_query(ran be used to send a query for a hostname.

Returns:
A pointer to a 4-byte representation of the hostname’s IP address, or NULL if the hostname was not
found in the array of hostnames.

Definition at line 437 of file resolv.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 149

6.48.2.4 void resolv_query (chax name

Queues a name so that a question for the name will be sent out.

Parameters:
name The hostname that is to be queried.

Definition at line 389 of file resolv.c.

References tcpip_poll_udp().

6.49 Protosockets library
6.49.1 Detailed Description

The protosocket library provides an interface to the ulP stack that is similar to the traditional BSD socket
interface. Unlike programs written for the ordinary ulP event-driven interface, programs written with the
protosocket library are executed in a sequential fashion and does not have to be implemented as explicit
state machines.

Protosockets only work with TCP connections.

The protosocket library useRrotothreadgprotothreads to provide sequential control flow. This makes
the protosockets lightweight in terms of memory, but also means that protosockets inherits the functional
limitations of protothreads. Each protosocket lives only within a single function block. Automatic variables
(stack variables) are not necessarily retained across a protosocket library function call.

Note:
Because the protosocket library uses protothreads, local variables will not always be saved across a
call to a protosocket library function. It is therefore advised that local variables are used with extreme
care.

The protosocket library provides functions for sending data without having to deal with retransmissions
and acknowledgements, as well as functions for reading data without having to deal with data being split
across more than one TCP segment.

Because each protosocket runs as a protothread, the protosocket has to be started wittP& Callko-
BEGIN() at the start of the function in which the protosocket is used. Similarly, the protosocket protothread
can be terminated by a call RSOCK_EXIT()

Files

« file psock.h
Protosocket library header file.

Data Structures

* structpsock
The representation of a protosocket.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 150

Defines

« #definePSOCK_INIT{psock buffer, buffersize)
Initialize a protosocket.

* #definePSOCK_BEGINpsocR

Start the protosocket protothread in a function.

 #definePSOCK_SENIpsock data, datalen)
Send data.

» #definePSOCK_SEND_STpsock str)
Send a null-terminated string.

» #definePSOCK_GENERATOR_SEN(psock generator, arg)
Generate data with a function and send it.

* #definePSOCK_CLOSHKpsocK
Close a protosocket.

 #definePSOCK_READBURpsocR
Read data until the buffer is full.

» #definePSOCK_READT(@psock c)
Read data up to a specified character.

» #definePSOCK_DATALENpsock
The length of the data that was previously read.

* #definePSOCK_EXITpsock
Exit the protosocket’s protothread.

* #definePSOCK_CLOSE_EXI{psock
Close a protosocket and exit the protosocket’s protothread.

* #definePSOCK_ENDpsock
Declare the end of a protosocket’s protothread.

o #definePSOCK_NEWDATApsock
Check if new data has arrived on a protosocket.

» #definePSOCK_WAIT_UNTIL(psock condition)
Wait until a condition is true.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 151

6.49.2 Define Documentation

6.49.2.1 #define PSOCK_BEGIN{sock)
Start the protosocket protothread in a function.

This macro starts the protothread associated with the protosocket and must come before other protosocket
calls in the function it is used.

Parameters:
psock (struct psocks) A pointer to the protosocket to be started.

Examples:
example-psock-server.c

Definition at line 165 of file psock.h.

6.49.2.2 #define PSOCK_CLOSH(socK
Close a protosocket.

This macro closes a protosocket and can only be called from within the protothread in which the protosocket
lives.

Parameters:
psock (struct psocks) A pointer to the protosocket that is to be closed.

Examples:
example-psock-server.c

Definition at line 242 of file psock.h.

6.49.2.3 #define PSOCK_CLOSE_EXITgsock)
Close a protosocket and exit the protosocket’s protothread.

This macro closes a protosocket and exits the protosocket’s protothread.

Parameters:
psock (struct psock) A pointer to the protosocket.

Definition at line 315 of file psock.h.

6.49.2.4 #define PSOCK_DATALENpsock)
The length of the data that was previously read.

This macro returns the length of the data that was previously read BS®CK_READTO(pr PSOCK_-
READ().

Parameters:
psock (struct psock) A pointer to the protosocket holding the data.

Examples:
example-psock-server.c

Definition at line 288 of file psock.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 152

6.49.2.5 #define PSOCK_ENDsock

Declare the end of a protosocket’s protothread.

This macro is used for declaring that the protosocket’s protothread ends. It must always be used together
with a matchingPSOCK_BEGIN(macro.

Parameters:
psock (struct psockk) A pointer to the protosocket.

Examples:
example-psock-server.c

Definition at line 332 of file psock.h.

6.49.2.6 #define PSOCK_EXITjgsocK

Exit the protosocket’s protothread.

This macro terminates the protothread of the protosocket and should almost always be used in conjunction
with PSOCK_CLOSE()

See also:
PSOCK_CLOSE_EXIT()

Parameters:
psock (struct psock<) A pointer to the protosocket.

Definition at line 304 of file psock.h.

6.49.2.7 #define PSOCK_GENERATOR_SENIp&ock generator, arg)

Generate data with a function and send it.

Parameters:
psock Pointer to the protosocket.

generator Pointer to the generator function
arg Argument to the generator function

This function generates data and sends it over the protosocket. This can be used to dynamically generate
data for a transmission, instead of generating the data in a buffer beforehand. This function reduces the
need for buffer memory. The generator function is implemented by the application, and a pointer to the
function is given as an argument with the calRBOCK_GENERATOR_SENDY)

The generator function should place the generated data directly in the uip_appdata buffer, and return the
length of the generated data. The generator function is called by the protosocket layer when the data first
is sent, and once for every retransmission that is needed.

Definition at line 226 of file psock.h.

6.49.2.8 #define PSOCK _INITpsock buffer, buffersize)
Initialize a protosocket.

This macro initializes a protosocket and must be called before the protosocket is used. The initialization
also specifies the input buffer for the protosocket.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 153

Parameters:
psock (struct psocks) A pointer to the protosocket to be initialized

buffer (charx) A pointer to the input buffer for the protosocket.
buffersize (unsigned int) The size of the input buffer.

Examples:
example-psock-server.c

Definition at line 151 of file psock.h.

6.49.2.9 #define PSOCK_NEWDATAg§socK
Check if new data has arrived on a protosocket.

This macro is used in conjunction with tRSOCK_WAIT_UNTIL()macro to check if data has arrived on
a protosocket.

Parameters:
psock (struct psockk) A pointer to the protosocket.

Definition at line 346 of file psock.h.

6.49.2.10 #define PSOCK_READBUFR(socK
Read data until the buffer is full.

This macro will block waiting for data and read the data into the input buffer specified with the call to
PSOCK_INIT() Data is read until the buffer is full..

Parameters:
psock (struct psock) A pointer to the protosocket from which data should be read.

Definition at line 257 of file psock.h.

6.49.2.11 #define PSOCK_READTQqsock, c)
Read data up to a specified character.

This macro will block waiting for data and read the data into the input buffer specified with the call to
PSOCK_INIT() Data is only read until the specifieed character appears in the data stream.

Parameters:
psock (struct psocks) A pointer to the protosocket from which data should be read.

¢ (char) The character at which to stop reading.

Examples:
example-psock-server.c

Definition at line 275 of file psock.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.49 Protosockets library 154

6.49.2.12 #define PSOCK_SENI§ock data, datalen)
Send data.

This macro sends data over a protosocket. The protosocket protothread blocks until all data has been sent
and is known to have been received by the remote end of the TCP connection.

Parameters:
psock (struct psock) A pointer to the protosocket over which data is to be sent.

data (charx) A pointer to the data that is to be sent.
datalen (unsigned int) The length of the data that is to be sent.

Examples:
example-psock-server.c

Definition at line 185 of file psock.h.

6.49.2.13 #define PSOCK_SEND_STR$ock str)
Send a null-terminated string.

Parameters:
psock Pointer to the protosocket.

str The string to be sent.

This function sends a null-terminated string over the protosocket.

Examples:
example-psock-server.c

Definition at line 198 of file psock.h.

6.49.2.14 #define PSOCK_WAIT_UNTILfsock condition)
Wait until a condition is true.

This macro blocks the protothread until the specified condition is true. The R&DECK NEWDATA()
can be used to check if new data arrives when the protosocket is waiting.

Typically, this macro is used as follows:

PT_THREAD(thread(struct psock *s, struct timer *t))
PSOCK_BEGIN(s);
PSOCK_WAIT_UNTIL(s, PSOCK_NEWADATA(s) || timer_expired(t));
if(PSOCK_NEWDATA(S)) {
PSOCK_READTO(s, \n’);
} else {

handle_timed_out(s);

}

PSOCK_END(s);

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.50 The Contiki/ulP interface 155

Parameters:
psock (struct psocks) A pointer to the protosocket.

condition The condition to wait for.

Definition at line 379 of file psock.h.

6.50 The Contiki/ulP interface
6.50.1 Detailed Description

TCP/IP support in Contiki is implemented using the ulP TCP/IP stack. For sending and receiving data,
Contiki uses the functions provided by the ulP module, but Contiki adds a set of functions for connec-
tion management. The connection management functions make sure that the ulP TCP/IP connections are
connected to the correct process.

Contiki also includes an optional protosocket library that provides an API similar to the BSD socket API.

See also:
The ulP TCP/IP stack
Protosockets library

Files

« file tcpip.h
Header for the Contiki/ulP interface.

TCP functions

» CCIF voidtcp_attacHstructuip_connxconn, voidsappstate)
Attach a TCP connection to the current process.

CCIF voidtcp_listen(ul6_t port)
Open a TCP port.

CCIF voidtcp_unlistenul6_t port)
Close a listening TCP port.

CCIF structuip_connx tcp_connecfuip_ipaddr_tripaddr, ul6_t port, voig¢appstate)
Open a TCP connection to the specified IP address and port.

« void tcpip_poll_tcp(structuip_connxconn)
Cause a specified TCP connection to be polled.

UDP functions

« #defineudp_bindconn, port) uip_udp_bind(conn, port)
Bind a UDP connection to a local port.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.50 The Contiki/ulP interface 156

void udp_attack{structuip_udp_connconn, void«appstate)
Attach the current process to a UDP connection.

CCIF structuip_udp_conn udp_new(constuip_ipaddr_tripaddr, ul6_t port, voidappstate)
Create a new UDP connection.

 uip_udp_connx udp_broadcast_neu16_t port, voidkappstate)
Create a new UDP broadcast connection.

CCIF voidtcpip_poll_udp(structuip_udp_conn:conn)
Cause a specified UDP connection to be polled.

TCP/IP packet processing

« CCIF voidtcpip_input(void)
Deliver an incoming packet to the TCP/IP stack.

Variables

« CCIF process_eventttpip_event
The ulP event.

6.50.2 Define Documentation

6.50.2.1 #define udp_bind(conn, port) uip_udp_bind(conn, port)
Bind a UDP connection to a local port.
This function binds a UDP conncetion to a specified local port.

When a connction is created withdp_new() it gets a local port number assigned automatically. If the
application needs to bind the connection to a specified local port, this function should be used.

Note:
The port number must be provided in network byte order so a conversiorHFVBNS() usually is
necessary.

Parameters:
conn A pointer to the UDP connection that is to be bound.

port The port number in network byte order to which to bind the connection.

Definition at line 259 of file tcpip.h.

Referenced by udp_broadcast_new().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.50 The Contiki/ulP interface 157

6.50.3 Function Documentation

6.50.3.1 CCIF void tcp_attach (structuip_conn x conn, void * appstatg
Attach a TCP connection to the current process.

This function attaches the current process to a TCP connection. Each TCP connection must be attached to
a process in order for the process to be able to receive and send data. Additionally, this function can add a
pointer with connection state to the connection.

Parameters:
conn A pointer to the TCP connection.

appstate An opaque pointer that will be passed to the process whenever an event occurs on the con-
nection.

Definition at line 161 of file tcpip.c.
References PROCESS_CURRENT.

6.50.3.2 CCIF structuip_conn« tcp_connect (lip_ipaddr_t « ripaddr, ul6_tport, void x appstat¢

Open a TCP connection to the specified IP address and port.

This function opens a TCP connection to the specified port at the host specified with an IP address. Addi-
tionally, an opaque pointer can be attached to the connection. This pointer will be sent together with ulP
events to the process.

Note:
The port number must be provided in network byte order so a conversiorHVIG®NS() usually is
necessary.
This function will only create the connection. The connection is not opened directly. ulP will try to
open the connection the next time the ulP stack is scheduled by Contiki.

Parameters:
ripaddr Pointer to the IP address of the remote host.

port Port number in network byte order.
appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Definition at line 107 of file tcpip.c.
References uip_conn::appstate, PROCESS CURRENT, tcpip_poll_tcp(), and uip_connect().

6.50.3.3 CCIF void tcp_listen (u16_port)
Open a TCP port.

This function opens a TCP port for listening. When a TCP connection request occurs for the port, the
process will be sent a tcpip_event with the new connection request.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.50 The Contiki/ulP interface 158

Note:
Port numbers must always be given in network byte order. The fundd®@NS()andhtons()can be
used to convert port numbers from host byte order to network byte order.

Parameters:
port The port number in network byte order.

Examples:
example-psock-server.c

Definition at line 143 of file tcpip.c.
References PROCESS CURRENT, uip_listen(), and UIP_LISTENPORTS.

6.50.3.4 CCIF void tcp_unlisten (ul6_port)
Close a listening TCP port.

This function closes a listening TCP port.

Note:
Port numbers must always be given in network byte order. The fundd®@NS()andhtons()can be
used to convert port numbers from host byte order to network byte order.

Parameters:
port The port number in network byte order.

Definition at line 125 of file tcpip.c.
References PROCESS_CURRENT, UIP_LISTENPORTS, and uip_unlisten().

6.50.3.5 CCIF void tcpip_input (void)
Deliver an incoming packet to the TCP/IP stack.

This function is called by network device drivers to deliver an incoming packet to the TCP/IP stack. The
incoming packet must be present in the uip_buf buffer, and the length of the packet must be in the global
uip_len variable.

Examples:
example-packet-drv.c

Definition at line 325 of file tcpip.c.

References process_post_synch(), and uip_len.

6.50.3.6 void tcpip_poll_tcp (structuip_conn* conn)
Cause a specified TCP connection to be polled.

This function causes ulP to poll the specified TCP connection. The function is used when the application
has data that is to be sentimmediately and do not wish to wait for the periodic ulP polling mechanism.

Parameters:
conn A pointer to the TCP connection that should be polled.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.50 The Contiki/ulP interface 159

Definition at line 338 of file tcpip.c.
References process_post().

Referenced by tcp_connect().

6.50.3.7 CCIF void tcpip_poll_udp (structuip_udp_conns conn)
Cause a specified UDP connection to be polled.

This function causes ulP to poll the specified UDP connection. The function is used when the application
has data that is to be sent immediately and do not wish to wait for the periodic ulP polling mechanism.

Parameters:
conn A pointer to the UDP connection that should be polled.

Examples:
example-program.c

Definition at line 332 of file tcpip.c.
References process_post().

Referenced by resolv_query().

6.50.3.8 struct void udp_attach (structuip_udp_connx conn, void x appstatg
Attach the current process to a UDP connection.

This function attaches the current process to a UDP connection. Each UDP connection must have a process
attached to it in order for the process to be able to receive and send data over the connection. Additionally,
this function can add a pointer with connection state to the connection.

Parameters:
conn A pointer to the UDP connection.

appstate An opaque pointer that will be passed to the process whenever an event occurs on the con-
nection.

Definition at line 172 of file tcpip.c.
References PROCESS CURRENT.

6.50.3.9 structuip_udp_conr« udp_broadcast_new (ul6_port, void « appstatg
Create a new UDP broadcast connection.

This function creates a new (link-local) broadcast UDP connection to a specified port.

Parameters:
port Port number in network byte order.

appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.51 Anonymous best-effort local area broadcast 160

Examples:
example-program.c

Definition at line 201 of file tcpip.c.

References udp_bind, udp_new(), and uip_ipaddr.

6.50.3.10 CCIF structuip_udp_connx udp_new (constuip_ipaddr_t * ripaddr, ul6_tport, void *
appstate

Create a new UDP connection.
This function creates a new UDP connection with the specified remote endpoint.
Note:

The port number must be provided in network byte order so a conversiorHFV@NS() usually is
necessary.

See also:
udp_bind()

Parameters:
ripaddr Pointer to the IP address of the remote host.

port Port number in network byte order.
appstatePointer to application defined data.

Returns:
A pointer to the newly created connection, or NULL if memory could not be allocated for the connec-
tion.

Definition at line 183 of file tcpip.c.
References uip_udp_conn::appstate, PROCESS_CURRENT, and uip_udp_new().

Referenced by udp_broadcast_new().

6.50.4 Variable Documentation

6.50.4.1 CCIF process_event ttpip_event
The ulP event.
This event is posted to a process whenever a ulP event has occured.

Definition at line 42 of file tcpip.c.

6.51 Anonymous best-effort local area broadcast
6.51.1 Detailed Description

The abc module sends packets to all local area neighbors. The abc module adds no headers to outgoing
packets.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.51 Anonymous best-effort local area broadcast 161

6.51.2 Channels

The abc module uses 1 channel.

Files

« file abc.h
Header file for the Rime module Anonymous BroadCast (abc).

« file abc.c
Anonymous best-effort local area Broad Cast (abc).

Data Structures

« structabc_callbacks
Callback structure for abc.

« structabc_callbacks
Callback structure for abc.

Functions

« void abc_oper{struct abc_connc, ul6_t channel, const struaibc_callbacksu)
Set up an anonymous best-effort broadcast connection.

« void abc_closdstruct abc_connc)
Close an abc connection.

« int abc_sendstruct abc_connc)
Send an anonymous best-effort broadcast packet.

« void abc_input_packdoid)
Internal Rime function: Pass a packet to the abc layer.

6.51.3 Function Documentation

6.51.3.1 void abc_close (struct abc_connc)

Close an abc connection.

Parameters:
c A pointer to a struct abc_conn

This function closes an abc connection that has previously been openeabwitbpen()

This function typically is called as an exit handler.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.51 Anonymous best-effort local area broadcast 162

Examples:

test-abc.c
Definition at line 78 of file abc.c.
References list_remove().

Referenced by ibc_close().

6.51.3.2 void abc_input_packet (void)

Internal Rime function: Pass a packet to the abc layer.

This function is used internally by Rime to pass packets to the abc layer. Should never be called directly.
Definition at line 99 of file abc.c.

References list_head(), rimeaddr_node_addr, rimebuf_dataptr(), and rimebuf_hdrreduce().

6.51.3.3 void abc_open (struct abc_connc, ul6_tchannel const structabc_callbacksk u)
Set up an anonymous best-effort broadcast connection.

Parameters:
¢ A pointer to a struct abc_conn

channel The channel on which the connection will operate

u A structabc_callbacksvith function pointers to functions that will be called when a packet has been
received

This function sets up an abc connection on the specified channel. The caller must have allocated the
memory for the struct abc_conn, usually by declaring it as a static variable.

The structabc_callbackpointer must point to a structure containing a pointer to a function that will be
called when a packet arrives on the channel.

Definition at line 68 of file abc.c.
References list_add().

Referenced by ibc_open(), and sabc_open().

6.51.3.4 intabc_send (struct abc_consnc)
Send an anonymous best-effort broadcast packet.

Parameters:
¢ The abc connection on which the packet should be sent

Return values:
Non-zero if the packet could be sent, zero otherwise

This function sends an anonymous best-effort broadcast packet. The packet must be present in the rimebuf
before this function is called.

The parameter ¢ must point to an abc connection that must have previously been setaljgwaien()

Examples:
test-abc.c

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.52 Callback timer 163

Definition at line 84 of file abc.c.
References rimeaddr_node_addr, rimebuf_hdralloc(), and rimebuf_hdrptr().

Referenced by ibc_send().

6.52 Callback timer
6.52.1 Detailed Description

The ctimer module provides a timer mechanism that calls a specified C function when a ctimer expires.

Files

« file ctimer.h
Header file for the callback timer.

« file ctimer.c

Callback timer implementation.

6.53 Identified best-effort local area broadcast
6.53.1 Detailed Description

The ibc module sends packets to all local area neighbors with an a header that identifies the sender.

6.53.2 Channels

The ibc module uses 1 channel.

Files

« file ibc.h
Header file for identified best-effort local area broadcast.

« file ibc.c
Identified best-effort local area broadcast (ibc).

Data Structures

« structibc_callbacks
Callback structure for abc.

« structibc_callbacks
Callback structure for abc.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.53 Identified best-effort local area broadcast 164

Functions

« void ibc_open(struct ibc_conn:c, ul6_t channel, const strubt_callbacksxu)
Set up an identified best-effort broadcast connection.

« void ibc_close(struct ibc_connc)
Close an ibc connection.

« intibc_sendstruct ibc_connc)
Send an anonymous best-effort broadcast packet.

6.53.3 Function Documentation

6.53.3.1 void ibc_close (struct ibc_conr c)
Close an ibc connection.

Parameters:
c A pointer to a struct ibc_conn

This function closes an ibc connection that has previously been openeibwitipen()
This function typically is called as an exit handler.
Definition at line 87 of file ibc.c.

References abc_close().

6.53.3.2 void ibc_open (struct ibc_cong ¢, ul6_tchannel const structibc_callbacksx u)
Set up an identified best-effort broadcast connection.

Parameters:
¢ A pointer to a struct ibc_conn

channel The channel on which the connection will operate

u Astructibc_callbackswith function pointers to functions that will be called when a packet has been
received

This function sets up an ibc connection on the specified channel. The caller must have allocated the memory
for the struct ibc_conn, usually by declaring it as a static variable.

The structibc_callbackspointer must point to a structure containing a pointer to a function that will be
called when a packet arrives on the channel.

Definition at line 79 of file ibc.c.

References abc_open().
6.53.3.3 intibc_send (struct ibc_conm c)
Send an anonymous best-effort broadcast packet.

Parameters:
¢ The ibc connection on which the packet should be sent

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.54 Mesh routing 165

Return values:
Non-zero if the packet could be sent, zero otherwise

This function sends an anonymous best-effort broadcast packet. The packet must be present in the rimebuf
before this function is called.

The parameter ¢ must point to an abc connection that must have previously been setibp witken()
Definition at line 93 of file ibc.c.

References abc_send(), rimeaddr_copy(), rimeaddr_node_addr, rimebuf_hdralloc(), and rimebuf_hdrptr().

6.54 Mesh routing
6.54.1 Detailed Description

The mesh module sends packets using multi-hop routing to a specified receiver somewhere in the network.

6.54.2 Channels

The mesh module uses 3 channel; one for the multi-hop forwardiy &nd two for the route disovery
(route-discovery.

Files

« file mesh.h
Header file for the Rime mesh routing protocol.

« file mesh.c
A mesh routing protocol.

Data Structures

« structmesh_callbacks
Mesh callbacks.

« structmesh_callbacks
Mesh callbacks.

Functions

« void mesh_opeifstruct mesh_connrc, ul6_t channels, const strunesh_callbackscallbacks)
Open a mesh connection.

« void mesh_closéstruct mesh_conic)
Close an mesh connection.

« int mesh_sen@struct mesh_congrc, rimeaddr_tdest)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.54 Mesh routing 166

Send a mesh packet.

6.54.3 Function Documentation

6.54.3.1 void mesh_close (struct mesh_conrt)

Close an mesh connection.

Parameters:
¢ A pointer to a struct mesh_conn

This function closes an mesh connection that has previously been openeadasith open()

This function typically is called as an exit handler.

Examples:
test-meshroute.c

Definition at line 129 of file mesh.c.

6.54.3.2 void mesh_open (struct mesh_comrit, ul6_tchannels const structmesh_callbacksx call-
backg

Open a mesh connection.

Parameters:
¢ A pointer to a struct mesh_conn

channels The channels on which the connection will operate; mesh uses 3 channels
callbacks Pointer to callback structure

This function sets up a mesh connection on the specified channel. The caller must have allocated the
memory for the struct mesh_conn, usually by declaring it as a static variable.

The structmesh_callbackpointer must point to a structure containing function pointers to functions that
will be called when a packet arrives on the channel.

Definition at line 117 of file mesh.c.
References CLOCK_SECOND.

6.54.3.3 int mesh_send (struct mesh_connc, rimeaddr_t x des)
Send a mesh packet.

Parameters:
¢ The mesh connection on which the packet should be sent

dest The address of the final destination of the packet

Return values:
Non-zero if the packet could be queued for sending, zero otherwise

This function sends a mesh packet. The packet must be present in the rimebuf before this function is called.

The parameter ¢ must point to an abc connection that must have previously been set oeslith
open()

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.55 Best-effort multihop forwarding 167

Examples:
test-meshroute.c

Definition at line 136 of file mesh.c.

References rimeaddr_copy().

6.55 Best-effort multihop forwarding
6.55.1 Detailed Description
The mh module implements a multihop forwarding mechanism. Routes must have already been setup with

the route_add() function. Setting up routes is done with another Rime module suchastéidiscovery
module

6.55.2 Channels

The mh module uses 1 channel.

Files

« file mh.h
Multihop forwarding header file.

« file mh.c
Multihop forwarding.

6.56 Rime neighbor management
6.56.1 Detailed Description

The neighbor module manages the neighbor table.

Files

« file neighbor.h
Header file for the Contiki radio neighborhood management.

« file neighbor.c
Radio neighborhood management.

6.57 Best-effort network flooding
6.57.1 Detailed Description

The nf module does best-effort flooding.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.58 Rime queue buffer management

168

6.57.2 Channels

The nf module uses 1 channel.

Files

« file nf.h
Header file for the best-effort network flooding (nf).

« file nf.c
Best-effort network flooding (nf).

6.58 Rime queue buffer management

6.58.1 Detailed Description

The queuebuf module handles buffers that are queued.

Files

« file queuebuf.h

Header file for the Rime queue buffer management.

« file queuebuf.c

Implementation of the Rime queue buffers.

6.59 Rime addresses

6.59.1 Detailed Description

The rimeaddr module is an abstract repressentation of addresses in Rime.

Files

« file rimeaddr.h

Header file for the Rime address repressentation.

« file rimeaddr.c

Functions for manipulating Rime addresses.

Functions

* void rimeaddr_copyfrimeaddr_tdest, const rimeaddr xfrom)

Copy a Rime address.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.59 Rime addresses 169

« int rimeaddr_cmgconst rimeaddr_taddrl, const rimeaddr «addr2)
Compare two Rime addresses.

 void rimeaddr_set_node_ad@imeaddr_txaddr)
Set the address of the current node.

Variables

 rimeaddr_timeaddr_node_addr
The Rime address of the node.

 const rimeaddr_ttimeaddr_null
The null Rime address.

e rimeaddr_timeaddr_node_addr
The Rime address of the node.

 const rimeaddr_timeaddr_null
The null Rime address.

6.59.2 Function Documentation

6.59.2.1 intrimeaddr_cmp (const rimeaddr_t« addrl, const rimeaddr_t addr?)
Compare two Rime addresses.

Parameters:
addrl The first address

addr2 The second address

Returns:
Non-zero if the addresses are the same, zero if they are different

This function compares two Rime addresses and returns the result of the comparison. The function acts like
the '==" operator and returns non-zero if the addresses are the same, and zero if the addresses are different.

Definition at line 59 of file rimeaddr.c.

6.59.2.2 void rimeaddr_copy (rimeaddr_t« dest const rimeaddr_t x from)
Copy a Rime address.

Parameters:
dest The destination

from The source

This function copies a Rime address from one location to another.
Definition at line 53 of file rimeaddr.c.

Referenced by ibc_send(), mesh_send(), and rimeaddr_set_node_addr().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.59 Rime addresses 170

6.59.2.3 void rimeaddr_set_node_addr (rimeaddr_% addr)
Set the address of the current node.

Parameters:
addr The address

This function sets the Rime address of the node.
Definition at line 65 of file rimeaddr.c.

References rimeaddr_copy(), and rimeaddr_node_addr.

6.59.3 Variable Documentation

6.59.3.1 rimeaddr_trimeaddr_node_addr
The Rime address of the node.

This variable contains the Rime address of the node. This variable should not be changed directly; rather,
therimeaddr_set_node_addf(nction should be used.

Definition at line 48 of file rimeaddr.c.

Referenced by abc_input_packet(), abc_send(), ibc_send(), and rimeaddr_set_node_addr().

6.59.3.2 rimeaddr_trimeaddr_node_addr
The Rime address of the node.

This variable contains the Rime address of the node. This variable should not be changed directly; rather,
therimeaddr_set_node_addf()nction should be used.

Definition at line 48 of file rimeaddr.c.

Referenced by abc_input_packet(), abc_send(), ibc_send(), and rimeaddr_set_node_addr().

6.59.3.3 constrimeaddr_timeaddr_null
The null Rime address.

This variable contains the null Rime address. The null address is used in route tables to indicate that the
table entry is unused. Nodes with no configured address has the null address. Nodes with their node address
set to the null address will have problems communicating with other nodes.

Definition at line 49 of file rimeaddr.c.

6.59.3.4 const rimeaddr_timeaddr_null
The null Rime address.

This variable contains the null Rime address. The null address is used in route tables to indicate that the
table entry is unused. Nodes with no configured address has the null address. Nodes with their node address
set to the null address will have problems communicating with other nodes.

Definition at line 49 of file rimeaddr.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60

Rime buffer management

171

6.60 Rime buffer management

6.60.1 Detailed Description

The rimebuf module does Rime’s buffer management.

Files

file rimebuf.h

Header file for the Rime buffer (rimebuf) management.

file rimebuf.c

Rime buffer (rimebuf) management.

Defines

#defineRIMEBUF_SIZE128
The size of the rimebuf, in bytes.

#defineRIMEBUF_HDR_SIZE32
The size of the rimebuf header, in bytes.

Functions

void rimebuf_cleai(void)
Clear and reset the rimebuf.

void x rimebuf_datapt(void)
Get a pointer to the data in the rimebuf.

void x rimebuf_hdrptr(void)
Get a pointer to the header in the rimebuf, for outbound packets.

u8_trimebuf_hdrlen(void)

Get the length of the header in the rimebuf, for outbound packets.

ul6_trimebuf_datalerfvoid)
Get the length of the data in the rimebuf.

ul6_trimebuf_totlen(void)
Get the total length of the header and data in the rimebuf.

void rimebuf_set_dataleful6_tlen)
Set the length of the data in the rimebuf.

void rimebuf_referencévoid «ptr, ul6_t len)
Point the rimebuf to external data.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60 Rime buffer management 172

* intrimebuf_is_referencéroid)
Check if the rimebuf references external data.

« void * rimebuf_reference_p{woid)
Get a pointer to external data referenced by the rimebuf.

« void rimebuf_compacfvoid)
Compact the rimebuf.

* int rimebuf_copyfrom(u8_txfrom, ul6_tlen)
Copy from external data into the rimebuf.

« int rimebuf_copytqu8_txto)
Copy the entire rimebuf to an external buffer.

« int rimebuf_copyto_hd(u8_tx*to)
Copy the header portion of the rimebuf to an external buffer.

« int rimebuf_hdrallodint size)
Extend the header of the rimebuf, for outbound packets.

« int rimebuf_hdrreducént size)
Reduce the header in the rimebuf, for incoming packets.

6.60.2 Function Documentation

6.60.2.1 void rimebuf_clear (void)

Clear and reset the rimebuf.

This function clears the rimebuf and resets all internal state pointers (header size, header pointer, external
data pointer). It is used before preparing a packet in the rimebuf.

Examples:
test-treeroute.c

Definition at line 69 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.

Referenced by rimebuf_copyfrom(), and rimebuf_reference().

6.60.2.2 void rimebuf_compact (void)
Compact the rimebuf.

This function compacts the rimebuf by copying the data portion of the rimebuf so that becomes consecutive
to the header. It also copies external data that has previously been referencechelithf_reference(pto
the rimebuf.

This function is called by the Rime code before a packet is to be sent by a device driver. This assures that
the entire packet is consecutive in memory.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60 Rime buffer management 173

Definition at line 90 of file rimebuf.c.

References rimebuf_datalen(), RIMEBUF_HDR_SIZE, rimebuf_is_reference(), and rimebuf_reference_-
ptr().

6.60.2.3 int rimebuf_copyfrom (u8_t« from, ul6_tlen)

Copy from external data into the rimebuf.

Parameters:
from A pointer to the data from which to copy

len The size of the data to copy

Return values:
The number of bytes that was copied into the rimebuf

This function copies data from a pointer into the rimebuf. If the data that is to be copied is larger than the
rimebuf, only the data that fits in the rimebuf is copied. The number of bytes that could be copied into the
rimbuf is returned.

Examples:
test-abc.ctest-meshroute,@ndtest-trickle.c

Definition at line 78 of file rimebuf.c.

References rimebuf_clear(), and RIMEBUF_SIZE.

6.60.2.4 intrimebuf_copyto (u8_t« to)
Copy the entire rimebuf to an external buffer.

Parameters:
to A pointer to the buffer to which the data is to be copied

Return values:
The number of bytes that was copied to the external buffer

This function copies the rimebuf to an external buffer. Both the data portion and the header portion of
the rimebuf is copied. If the rimebuf referenced external data (referencedimitiouf reference))the
external data is copied.

The external buffer to which the rimebuf is to be copied must be able to accomodate at least (RIMEBUF_-
SIZE + RIMEBUF_HDR_SIZE) bytes. The number of bytes that was copied to the external buffer is
returned.

Definition at line 120 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.

6.60.2.5 intrimebuf_copyto_hdr (u8_t« to)
Copy the header portion of the rimebuf to an external buffer.

Parameters:
to A pointer to the buffer to which the data is to be copied

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60 Rime buffer management 174

Return values:
The number of bytes that was copied to the external buffer

This function copies the header portion of the rimebuf to an external buffer.

The external buffer to which the rimebuf is to be copied must be able to accomodate at least RIMEBUF_-
HDR_SIZE bytes. The number of bytes that was copied to the external buffer is returned.

Definition at line 103 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.

6.60.2.6 ul6_trimebuf datalen (void)
Get the length of the data in the rimebuf.

Returns:
Length of the data in the rimebuf

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to get the
length of the data in the rimebuf. The data is stored in the rimebuf and accessedrimagbef dataptr()
function.

For incoming packets, both the packet header and the packet data is stored in the data portion of the rimebuf.
This function is then used to get the total length of the packet - both header and data.

Examples:
test-meshroute.c

Definition at line 210 of file rimebuf.c.

Referenced by rimebuf_compact(), and rimebuf_totlen().

6.60.2.7 void« rimebuf_dataptr (void)

Get a pointer to the data in the rimebuf.

Returns:
Pointer to the rimebuf data

This function is used to get a pointer to the data in the rimebuf. The data is either stored in the rimebuf, or
referenced to an external location.

For outbound packets, the rimebuf consists of two parts: header and data. The header is accessed with the
rimebuf_hdrptr(function.

For incoming packets, both the packet header and the packet data is stored in the data portion of the rimebuf.
Thus this function is used to get a pointer to the header for incoming packets.

Examples:
test-abc.ctest-meshroute, @andtest-treeroute.c
Definition at line 178 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.
Referenced by abc_input_packet().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60 Rime buffer management 175

6.60.2.8 intrimebuf_hdralloc (int sizg

Extend the header of the rimebuf, for outbound packets.

Parameters:
size The number of bytes the header should be extended

Return values:
Non-zero if the header could be extended, zero otherwise

This function is used to allocate extra space in the header portion in the rimebuf, when preparing outbound
packets for transmission. If the function is unable to allocate sufficient header space, the function returns
zero and does not allocate anything.

Definition at line 148 of file rimebuf.c.

Referenced by abc_send(), and ibc_send().

6.60.2.9 u8_trimebuf_hdrlen (void)

Get the length of the header in the rimebuf, for outbound packets.

Returns:
Length of the header in the rimebuf

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to get the
length of the header in the rimebuf. The header is stored in the rimebuf and accessedrivieethd -
hdrptr() function.

Definition at line 216 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.

Referenced by rimebuf _totlen().

6.60.2.10 void« rimebuf_hdrptr (void)
Get a pointer to the header in the rimebuf, for outbound packets.

Returns:
Pointer to the rimebuf header

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to get a
pointer to the header in the rimebuf. The header is stored in the rimebuf.

Definition at line 184 of file rimebuf.c.

Referenced by abc_send(), and ibc_send().
6.60.2.11 intrimebuf_hdrreduce (intsizg
Reduce the header in the rimebuf, for incoming packets.

Parameters:
size The number of bytes the header should be reduced

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.60 Rime buffer management 176

Return values:
Non-zero if the header could be reduced, zero otherwise

This function is used to remove the first part of the header in the rimebuf, when processing incoming
packets. If the function is unable to remove the requested amount of header space, the function returns zero
and does not allocate anything.

Definition at line 159 of file rimebuf.c.

Referenced by abc_input_packet().

6.60.2.12 intrimebuf_is_reference (void)
Check if the rimebuf references external data.

Return values:
Non-zero if the rimebuf references external data, zero otherwise.

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to check if
the rimebuf points to external data that has previously been referencedmathuf _reference()

Definition at line 198 of file rimebuf.c.
References RIMEBUF_HDR_SIZE.

Referenced by rimebuf_compact().

6.60.2.13 void rimebuf_reference (void ptr, ul6_tlen)
Point the rimebuf to external data.

Parameters:
ptr A pointer to the external data

len The length of the external data

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to make the
rimebuf point to external data. The function also specifies the length of the external data that the rimebuf
references.

Definition at line 190 of file rimebuf.c.

References rimebuf_clear().

6.60.2.14 void« rimebuf_reference_ptr (void)

Get a pointer to external data referenced by the rimebuf.

Return values:
A pointer to the external data

For outbound packets, the rimebuf consists of two parts: header and data. The data may point to external
data that has previously been referenced wittebuf_reference()This function is used to get a pointer to
the external data.

Definition at line 204 of file rimebuf.c.

Referenced by rimebuf_compact().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.61 Rime route discovery protocol 177

6.60.2.15 void rimebuf_set datalen (ul6 len)
Set the length of the data in the rimebuf.

Parameters:
len The length of the data

For outbound packets, the rimebuf consists of two parts: header and data. This function is used to set the
length of the data in the rimebuf.

Examples:
test-treeroute.c

Definition at line 171 of file rimebuf.c.
6.60.2.16 ul6_trimebuf_totlen (void)
Get the total length of the header and data in the rimebuf.

Returns:
Length of data and header in the rimebuf

Definition at line 222 of file rimebuf.c.

References rimebuf_datalen(), and rimebuf_hdrlen().

6.61 Rime route discovery protocol
6.61.1 Detailed Description

The route-discovery module does route discovery for Rime.

6.61.2 Channels

The ibc module uses 2 channels; one for the flooded route request packets and one for the unicast route
replies.

Files

« file route-discovery.h
Header file for the Rime mesh routing protocol.

« file route-discovery.c
Route discovery protocol.

6.62 Rime route table
6.62.1 Detailed Description

The route module handles the route table in Rime.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.63 Stubborn anonymous best-effort local area broadcast 178

Files

« file route.h
Header file for the Rime route table.

« file route.c
Rime route table.

6.63 Stubborn anonymous best-effort local area broadcast
6.63.1 Detailed Description

The sabc module provides stubborn anonymous best-effort local area broadcast. A message sent with the
sabc module is repeated until either the mssage is canceled or a new message is sent. Messages sent with
the sabc module are not identified with a sender ID.

6.63.2 Channels

The sabc module uses 1 channel.

Files

« file sabc.h
Header file for the Rime module Stubborn Anonymous BroadCast (sabc).

« file sabc.c
Implementation of the Rime module Stubborn Anonymous BroadCast (sabc).

Data Structures

* structsabc_conn
A sabc connection.

Functions

« void sabc_opelfstructsabc_conrc, ul6_t channel, const struct sabc_callbaaKs
Set up a sabc connection.

« int sabc_send_stubbo(structsabc_conmc, clock time tt)
Send a stubborn message.

« void sabc_cancdtructsabc_conic)
Cancel the current stubborn message.

 void sabc_set_timgstructsabc_conrc, clock_time_tt)
Set the retransmission time of the current stubborn message.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.63 Stubborn anonymous best-effort local area broadcast 179

6.63.3 Function Documentation

6.63.3.1 void sabc_cancel (structabc_conn« c)

Cancel the current stubborn message.

Parameters:
¢ A sabc connection that must have been previously set upsatikh_open()

This function cancels a stubborn message that has previously been sent wsdbthesend_stubborn()
function.

Definition at line 116 of file sabc.c.

6.63.3.2 void sabc_open (structabc_conn« ¢, ul6_tchannel const struct sabc_callbacks u)

Set up a sabc connection.

Parameters:
¢ A pointer to a user-supplied struct sabc variable.

channel The Rime channel on which messages should be sent.
u Pointer to the upper layer functions that should be used for this connection.

This function sets up a sabc connection on the specified channel. No checks are made if the channel is
currently used by another connection.

This function must be called before any other function that operates on the connection is called.
Definition at line 65 of file sabc.c.

References abc_open().

6.63.3.3 intsabc_send_stubborn (structabc_connk ¢, clock_time_tt)

Send a stubborn message.

Parameters:
¢ A sabc connection that must have been previously set upsaltlh_open()

t The time between message retransmissions.

This function sends a message from the Rime buffer. The message must have been previously constructed
in the Rime buffer. When this function returns, the message has been copied into a queue buffer.

If another message has previously been sent, the old message is canceled.
Definition at line 100 of file sabc.c.

References sabc_conn::buf, and sabc_set_timer().

6.63.3.4 void sabc_set_timer (structabc_conn« ¢, clock_time_tt)

Set the retransmission time of the current stubborn message.

Parameters:
¢ A sabc connection that must have been previously set upsatikh_open()

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.64 Stubborn identified broadcast 180

t The new time between message retransmissions.

This function sets the retransmission timer for the current stubborn message to a new value.
Definition at line 94 of file sabc.c.

Referenced by sabc_send_stubborn().

6.64 Stubborn identified broadcast
6.64.1 Detailed Description
The sibc module provides stubborn identified best-effort local area broadcast. A message sent with the sibc

module is repeated until either the mssage is canceled or a new message is sent. Messages sent with the
sibc module are identified with a sender ID.

6.64.2 Channels

The sibc module uses 1 channel.

Files

« file sibc.h
Header file for the Rime module Stubborn Identified BroadCast (sibc).

« file sibc.c
Implementation of the Rime module Stubborn Identified BroadCast (sibc).

6.65 Stubborn unicast
6.65.1 Detailed Description

The suc module takes one packet and sends it repetedly.

6.65.2 Channels

The suc module uses 1 channel.

Files

« file suc.h
Stubborn unicast header file.

« file suc.c
Stubborn unicast.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.66 Tree-based hop-by-hop reliable data collection

181

6.66 Tree-based hop-by-hop reliable data collection
6.66.1 Detailed Description

The tree module implements a hop-by-hop reliable data collection mechanism.

6.66.2 Channels

The tree module uses 2 channels; one for neighbor discovery and one for data packets.

Files

« file tree.h
Header file for hop-by-hop reliable data collection.

« file tree.c
Tree-based hop-by-hop reliable data collection.

6.67 Reliable single-source multi-hop flooding
6.67.1 Detailed Description

The trickle module sends a single packet to all nodes on the network.

6.67.2 Channels

The trickle module uses 1 channel.

Files

« file trickle.h
Header file for Trickle (reliable single source flooding) for Rime.

« file trickle.c
Trickle (reliable single source flooding) for Rime.

6.68 Unique anonymous best effort local area broadcast
6.68.1 Detailed Description

The uabc module sends one anonymous packet that is unique within a time interval.

6.68.2 Channels

The uabc module uses 1 channel.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.69 Single-hop unicast 182

Files

« file uabc.h
Header file for Uniqgue Anonymous best effort local area BroadCast (uabc).

« file uabc.c
Unique Anonymous best effort local area BroadCast (uabc).

6.69 Single-hop unicast
6.69.1 Detailed Description

The uc module sends a packet to a single receiver.

6.69.2 Channels

The uc module uses 1 channel.

Files

* fileuc.h
Header file for Rime’s single-hop unicast.

« file uc.c

Single-hop unicast.

6.70 Unique identified best effort local area broadcast
6.70.1 Detailed Description

The uibc module sends one packet that is unique within a time interval.

6.70.2 Channels

The uibc module uses 1 channel.

Files

« file uibc.h
Header file for Unique Identified best effort local area BroadCast (uibc).

« file uibc.c
Unique Identified best effort local area BroadCast (uibc).

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.71 Single-hop reliable bulk data transfer 183

6.71 Single-hop reliable bulk data transfer
6.71.1 Detailed Description

The rudolphO module implements a single-hop reliable bulk data transfer mechanism.

6.71.2 Channels

The rudolphO module uses 2 channels; one for data packets and one for NACK and repair packets.

Files

« file rudolph0.h
Header file for the single-hop reliable bulk data transfer module.

« file rudolphO.c
RudolphO: a simple block data flooding protocol.

6.72 Multi-hop reliable bulk data transfer
6.72.1 Detailed Description

The rudolphl module implements a multi-hop reliable bulk data transfer mechanism.

6.72.2 Channels

The rudolphl module uses 2 channels; one for data transmissions and one for NACKs and repair packets.

Files

« file rudolphl.h
Header file for the multi-hop reliable bulk data transfer mechanism.

« file rudolphl.c
Rudolphl: a simple block data flooding protocol.

6.73 Memory block management functions
6.73.1 Detailed Description

The memory block allocation routines provide a simple yet powerful set of functions for managing a set of
memory blocks of fixed size.

A set of memory blocks is statically declared with tiEMB() macro. Memory blocks are allocated from
the declared memory by teemb_alloc(¥unction, and are deallocated with threemb_free(function.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.73 Memory block management functions 184

Files

« file memb.h
Memory block allocation routines.

« file memb.c
Memory block allocation routines.

Defines

» #defineMEMB (hame, structure, num)
Declare a memory block.

Functions

« void memb_init(struct memb_blocksm)
Initialize a memory block that was declared WiRtEMB)().

* void x memb_alloqstruct memb_blocksm)
Allocate a memory block from a block of memory declared WiEMB().

» charmemb_fregstruct memb_blocksm, void xptr)
Deallocate a memory block from a memory block previously declaredviilB().

6.73.2 Define Documentation

6.73.2.1 #define MEMB(name, structure, num)

Value:

static char MEMB_CONCAT(name,_memb_count)[num]; \
static structure MEMB_CONCAT(name,_memb_mem)[num]; \
static struct memb_blocks name = {sizeof(structure), num, \
MEMB_CONCAT(hame,_memb_count), \
(void *)MEMB_CONCAT(name,_memb_mem)}

Declare a memory block.

This macro is used to staticall declare a block of memory that can be used by the block allocation functions.
The macro statically declares a C array with a size that matches the specified number of blocks and their
individual sizes.

Example:
MEMB(connections, struct connection, 16);

Parameters:
name The name of the memory block (later used witemb_init() memb_alloc(rndmemb_free()

structure The name of the struct that the memory block holds
num The total number of memory chunks in the block.

Definition at line 96 of file memb.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.74 Managed memory allocator 185

6.73.3 Function Documentation

6.73.3.1 void« memb_alloc (struct memb_blocksx m)

Allocate a memory block from a block of memory declared viitEMBY().

Parameters:
m A memory block previosly declared witiEMB().

Definition at line 60 of file memb.c.

6.73.3.2 char memb_free (struct memb_blocks m, void x ptr)

Deallocate a memory block from a memory block previously declared MEMBY().

Parameters:
m m A memory block previosly declared withEMB().

ptr A pointer to the memory block that is to be deallocated.

Returns:
The new reference count for the memory block (should be 0 if successfully deallocated) or -1 if the
pointer "ptr" did not point to a legal memory block.

Definition at line 80 of file memb.c.

6.73.3.3 void memb_init (struct memb_blocks m)

Initialize a memory block that was declared WMEMB().

Parameters:
m A memory block previosly declared witiEMB().

Definition at line 53 of file memb.c.

6.74 Managed memory allocator
6.74.1 Detailed Description

The managed memory allocator is a fragmentation-free memory manager.

It keeps the allocated memory free from fragmentation by compacting the memory when blocks are freed.
A program that uses the managed memory module cannot be sure that allocated memory stays in place.
Therefore, a level of indirection is used: access to allocated memory must always be done using a special
macro.

Note:
This module has not been heavily tested.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.74 Managed memory allocator

186

Files

« file mmem.h
Header file for the managed memory allocator.

* file mmem.c
Implementation of the managed memory allocator.

Defines

 #defineMMEM_PTR(m)
Get a pointer to the managed memory.

Functions

 int mmem_allodstruct mmenxm, unsigned int size)

Allocate a managed memory block.

 void mmem_fregstruct mmen)
Deallocate a managed memory block.

« void mmem_init(void)
Initialize the managed memory module.

6.74.2 Define Documentation

6.74.2.1 #define MMEM_PTR(m)

Get a pointer to the managed memory.

Parameters:
m A pointer to the struct mmem

Returns:

A pointer to the memory block, or NULL if memory could not be allcated.

Author:
Adam Dunkels

This macro is used to get a pointer to a memory block allocatedmiitiem_alloc()

Definition at line 76 of file mmem.h.

6.74.3 Function Documentation

6.74.3.1 int mmem_alloc (struct mmemx m, unsigned intsize

Allocate a managed memory block.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.74 Managed memory allocator 187

Parameters:
m A pointer to a struct mmem.

size The size of the requested memory block

Returns:
Non-zero if the memory could be allocated, zero if memory was not available.

Author:
Adam Dunkels

This function allocates a chunk of managed memory. The memory allocated with this function must be
deallocated using themem_free(Function.

Note:
This function does NOT return a pointer to the allocated memory, but a pointer to a structure that
contains information about the managed memory. The meddi&M_PTR() is used to get a pointer
to the allocated memory.

Definition at line 84 of file mmem.c.

References list_add().

6.74.3.2 void mmem_free (struct mmem m)

Deallocate a managed memory block.

Parameters:
m A pointer to the managed memory block

Author:
Adam Dunkels

This function deallocates a managed memory block that previously has been allocatenngith_alloc()
Definition at line 120 of file mmem.c.

References list_remove().

6.74.3.3 void mmem_init (void)

Initialize the managed memory module.

Author:
Adam Dunkels

This function initializes the managed memory module and should be called before any other function from
the module.

Definition at line 153 of file mmem.c.

References list_init().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.75 Linked list library 188

6.75 Linked list library
6.75.1 Detailed Description

The linked list library provides a set of functions for manipulating linked lists.

A linked list is made up of elements where the first elemmenst be a pointer. This pointer is used by the
linked list library to form lists of the elements.

Lists are declared with thelST() macro. The declaration specifies the name of the list that later is used
with all list functions.

Lists can be manipulated by inserting or removing elements from either sides of thistigiush() list_-
add() list_pop() list_chop(). A specified element can also be removed from inside a list sth-
remove() The head and tail of a list can be extracted usistg head(Jandlist_tail(), respecitively.

Files

« file list.h

Linked list manipulation routines.

« file list.c
Linked list library implementation.

Defines

« #defineLIST(name)
Declare a linked list.

Typedefs

* typedef voidkx list_t
The linked list type.

Functions

« void list_init (list_tlist)
Initialize a list.

« void x list_head(list_t list)
Get a pointer to the first element of a list.

« void x list_tail (list_tlist)
Get the tail of a list.

« void x list_pop(list_t list)
Remove the first object on a list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.75 Linked list library 189

« void list_push(list_t list, void xitem)
Add an item to the start of the list.

« void x list_chop(list_t list)
Remove the last object on the list.

« void list_add(list_t list, void xitem)
Add an item at the end of a list.

« void list_remove(list_t list, void xitem)
Remove a specific element from a list.

« intlist_length(list_tlist)
Get the length of a list.

« void list_copy(list_t dest,list_t src)
Duplicate a list.

« void list_insert(list_t list, void xprevitem, voidknewitem)
Insert an item after a specified item on the list.

6.75.2 Define Documentation

6.75.2.1 #define LIST(name)

Value:

static void *LIST_CONCAT(name,_list) = NULL; \
static list_t name = (list_t)&LIST_CONCAT(name,_list)

Declare a linked list.

This macro declares a linked list with the specifigde . The typemust be a structurestruct) with its
first element being a pointer. This pointer is used by the linked list library to form the linked lists.

Parameters:
name The name of the list.

Examples:
example-list.c

Definition at line 85 of file list.h.

6.75.3 Function Documentation

6.75.3.1 void list_add |fst_t list, void * item)
Add an item at the end of a list.

This function adds an item to the end of the list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.75 Linked list library 190

Parameters:
list The list.

item A pointer to the item to be added.

See also:
list_push()

Examples:
example-list.c

Definition at line 143 of file list.c.
References list_tail().

Referenced by abc_open(), and mmem_alloc().

6.75.3.2 voidk list_chop (ist_t list)
Remove the last object on the list.

This function removes the last object on the list and returns it.

Parameters:
list The list

Returns:
The removed object

Definition at line 180 of file list.c.

6.75.3.3 void list_copy/|{st_t dest list_t src)

Duplicate a list.

This function duplicates a list by copying the list reference, but not the elements.
Note:

This function doeshot copy the elements of the list, but merely duplicates the pointer to the first
element of the list.

Parameters:
dest The destination list.

src The source list.

Definition at line 101 of file list.c.

6.75.3.4 voidk list_head (ist_t list)

Get a pointer to the first element of a list.

This function returns a pointer to the first element of the list. The elemennwailbe removed from the
list.

Parameters:
list The list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.75 Linked list library 191

Returns:
A pointer to the first element on the list.

See also:
list_tail()

Examples:
example-list.c

Definition at line 83 of file list.c.

Referenced by abc_input_packet().

6.75.3.5 void list_init (ist_t list)
Initialize a list.
This function initalizes a list. The list will be empty after this function has been called.

Parameters:
list The list to be initialized.

Examples:
example-list.c

Definition at line 66 of file list.c.

Referenced by mmem_init().

6.75.3.6 void list_insert [ist_t list, void = previtem void x newiten)

Insert an item after a specified item on the list.

Parameters:
list The list

previtem The item after which the new item should be inserted
newitem The new item that is to be inserted

Author:
Adam Dunkels

This function inserts an item right after a specified item on the list. This function is useful when using the
list module to ordered lists.

If previtem is NULL, the new item is placed at the start of the list.
Definition at line 295 of file list.c.

References list_push().

6.75.3.7 intlist_length (ist_t list)
Get the length of a list.

This function counts the number of elements on a specified list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.75 Linked list library 192

Parameters:
list The list.

Returns:
The length of the list.

Definition at line 267 of file list.c.

6.75.3.8 voidk list_pop (list_t list)
Remove the first object on a list.
This function removes the first object on the list and returns a pointer to the list.

Parameters:
list The list.

Returns:
The new head of the list.

Definition at line 212 of file list.c.

6.75.3.9 void list_removelist_t list, void * item)
Remove a specific element from a list.
This function removes a specified element from the list.

Parameters:
list The list.

item The item that is to be removed from the list.

Definition at line 232 of file list.c.

Referenced by abc_close(), and mmem_free().

6.75.3.10 voidk list_tail (list_t list)

Get the tail of a list.

This function returns a pointer to the elements following the first element of a list. No elements are removed
by this function.

Parameters:
list The list

Returns:
A pointer to the element after the first element on the list.

See also:
list_head()

Definition at line 118 of file list.c.

Referenced by list_add().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.76 Table-driven Manchester encoding and decoding 193

6.76 Table-driven Manchester encoding and decoding
6.76.1 Detailed Description
Manchester encoding is a bit encoding scheme which translates each bit into two bits: the original bit and

the inverted bit.

Manchester encoding is used for transmitting ones and zeroes between two computers. The Manchester
encoding reduces the receive oscillator drift by making sure that no consecutive ones or zeroes are ever
transmitted.

The table driven method of Manchester encoding and decoding uses two tables with 256 entries. One table
is a direct mapping of an 8-bit byte into a 16-bit Manchester encoding of the byte. The second table is a
mapping of a Manchester encoded 8-bit byte to 4 decoded bits.

Files

* file me.h
Header file for the table-driven Manchester encoding and decoding.

« file me.c
Implementation of the table-driven Manchester encoding and decoding.

Functions

* unsigned chame_valid(unsigned char m)
Check if an encoded byte is valid.

 unsigned shomne_encodéunsigned char c)
Manchester encode an 8-bit byte.

« unsigned chame_decodel@unsigned short m)
Decode a Manchester encoded 16-bit word.

 unsigned chame_decode@unsigned char m)
Decode a Manchester encoded 8-bit byte.

6.76.2 Function Documentation

6.76.2.1 unsigned char me_decodel6 (unsigned short
Decode a Manchester encoded 16-bit word.

This function decodes a Manchester encoded 16-bit word into a 8-bit byte. The function does not check
for parity errors in the encoded byte.

Parameters:
m The 16-bit Manchester encoded word

Returns:
The decoded 8-bit byte

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.77 Cyclic Redundancy Check 16 (CRC16) calculcation 194

Definition at line 76 of file me.c.

6.76.2.2 unsigned char me_decode8 (unsigned cha)
Decode a Manchester encoded 8-bit byte.

This function decodes a Manchester encoded 8-bit byte into 4 decoded bits.. The function does not check
for parity errors in the encoded byte.

Parameters:
m The 8-bit Manchester encoded byte

Returns:
The decoded 4 bits

Definition at line 100 of file me.c.

6.76.2.3 unsigned short me_encode (unsigned chgr
Manchester encode an 8-bit byte.

This function Manchester encodes an 8-bit byte into a 16-bit word. The function me_decode() does the
inverse operation.

Parameters:
¢ The byte to be encoded

Return values:
The encoded word.

Definition at line 59 of file me.c.

6.77 Cyclic Redundancy Check 16 (CRC16) calculcation
6.77.1 Detailed Description

The Cyclic Redundancy Check 16 is a hash function that produces a checksum that is used to detect errors
in transmissions.

The CRC16 calculation module is an iterative CRC calculator that can be used to cummulatively update a
CRC checksum for every incoming byte.
Files

« file crc16.h
Header file for the CRC16 calculcation.

« file crcl6.c
Implementation of the CRC16 calculcation.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.78 The Tmote Sky Board 195

Functions

« unsigned shortrc16_addunsigned char b, unsigned short crc)
Update an accumulated CRC16 checksum with one byte.

6.77.2 Function Documentation

6.77.2.1 unsigned short crc16_add (unsigned chér unsigned shortcrc)
Update an accumulated CRC16 checksum with one byte.

Parameters:
b The byte to be added to the checksum

crc The accumulated CRC that is to be updated.

Returns:
The updated CRC checksum.

This function updates an accumulated CRC16 checksum with one byte. It can be used as a running check-
sum, or to checksum an entire data block.

Note:
The algorithm used in this implementation is tailored for a running checksum and does not perform as
well as a table-driven algorithm when checksumming an entire data block.

Definition at line 48 of file crc16.c.

6.78 The Tmote Sky Board

Itis an MSP430-based board with an 802.15.4-compatible CC2420 radio chip, a 1 megabyte external serial
flash memory, and two light sensors. Contiki was ported to the Tmote Sky by Bjorn Grénvall as part of the
RUNES project. The Tmote Sky port was integrated into the Contiki build system in March 2007.

The platform-specif source code for the Tmote Sky port can be found in the directories plat-
form/sky and cpu/msp430 in the Contiki source tree. Code for writing to the on-chip flash ROM
is in the cpu/msp430/flash.c and code for reading and writing to the external flash is the file plat-
form/sky/dev/xmem.c. Code for reading the light sensors is in platform/sky/dev/light.c.

The serial/USB port is read from and written to with either the code in cpu/msp430/dev/uartl.c or
platform/sky/slip_uartl.c, depending on weather or not the Tmote Sky is running TCP/IP or not.

There are currently two CC2420 drivers in the Contiki source code, core/dev/simple-cc2420.c (a really
simple CC2420 driver) and core/dev/cc2420.c (a more feature-rich CC2420 driver).

More information about the Tmote Sky, including data sheets, can be found at Moteiv’s web site:
http://www.moteiv.com

6.79 The ESB Embedded Sensor Board
6.79.1 Detailed Description

The ESB (Embedded Sensor Board) is a prototype wireless sensor network device developed at Freie
Universitat Berlin.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

http://www.moteiv.com

6.79 The ESB Embedded Sensor Board 196

The ESB consists of a Texas Instruments MSP430 low-power microcontroller with 2k RAM and 60k flash
ROM, a TR1001 radio transceiver, a 32k serial EEPROM, an RS232 port, a JTAG port, a beeper, and a
number of sensors (passive IR, active IR sender/receiver, vibration/tilt, microphone, temperature).

The Contiki/ESB port contains drivers for most of the sensors. The drivers were mostly adapted from
sources from FU Berlin.

6.79.2 Getting started with Contiki for the ESB platform

The ESB is equipped with an MSP430 microcontroller. The first step to getting started with Contiki for the
ESB is to install the development tools for compiling Contiki for the MSP430.

Windows users, seBetting up the Windows environmenkreeBSD users, seetting up the FreeBSD
environment

6.79.3 Setting up the Windows environment

The Contiki development environment under Windows uses the Cygwin environment. Cygwin is a Linux-
like environment for Windows. Cygwin can be foundtdtp://www.cygwin.com. Click on the
icon "Install Cygwin Now" to the right to get the installation started.

Choose "Install from Internet” and then specify where you want to install cygwin (recommended instal-
lation path: C: \cygwin). Continue with the installation until you are asked to select packages. Most
packages can be left as "Default" but there is one package that are not installed by default. Install the
following package by clicking at "Default" until it changes to "Install":

« Devel - contains things for developers (make, etc).

When cygwin is installed there should be a cygwin icon that starts up a cygwin bash when clicked on.
Whenever it is time to compile and send programs to the ESB nodes it will be done from a cygwin shell.

6.79.3.1 C programming editor If you do not already have a nice programming editor it is a good idea
to download and install one. The Crimson editor is a nice windows based editor that is both easy to get
started with and fairly powerful.

Crimson Editor can be found dtttp://www.crimsoneditor.com/

The editor is useful both when editing C programs and when modifying scripts and configuration files.

6.79.3.2 MSP430 Compiler and tools A compiler is needed to compile the programs to the MSP430
microprocessor that is used on the ESB sensor nodes. Download and install the GCC toolchain for MSP430
(recommended installation path:\GISP430,).

The GCC toolchain for MSP430 can be foundtatp://sourceforge.net/projects/mspgcc/

When the above software is installed you also need to set-up the PATH so that all of the necessary tools
can be reached. In cygwin this is done by the following line (given that you have installed at recommended
locations):

export PATH=$PATH:/cygdrive/c/MSP430/mspgcc/bin

This line can also be added to the .profile startup file in your cygwin home directory
(C:\cygwin \home\<YOUR USERNAME.profile).

If your home directory is located elsewhere you can find it by starting cygwin and ruodifglowed by
pwd.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

http://www.cygwin.com.
http://www.crimsoneditor.com/
http://sourceforge.net/projects/mspgcc/

6.79 The ESB Embedded Sensor Board 197

6.79.3.3 The Contiki operating system, including examplesWhen programming the ESB sensor
nodes it is very useful to have an operating system that takes care of some of the low-level tasks and also
gives you as a programmer APIs for things like events, hardware and networking. We will use the Contiki
operating system developed by Adam Dunkels, SICS, which is very well suited when programming small
embedded systems.

The Contiki OS can be found atttp://www.sics.se/ ~adam/contiki/

Unzip the Contiki OS at (for example) Cand you will get the following directories among others:

« contiki-2.x/core - the contiki operating system
« contiki-2.x/platform/esb - the contiki operating system drivers, etc for the ESB

« contiki-2.x/platform/esb/apps/ - example applications for the ESB

6.79.3.4 Testing the tools Now everything necessary to start developing Contiki-based sensor net appli-
cations should be installed. Start cygwin and change to the diremboitiki-2.x/platform/esb/
Then callmake beeper.co

If you get an error about multiple cygwin dlls when compiling, you need to delggevini.dll from
the MSP430 GCC toolchairc(\MSP430\bin \cygwinl.dll).

Connect a node and turn it on. Upload the test application by catlige beeper.u

6.79.3.5 Development tools

* make <SPEC> will compile and make a executable file ready for sending to the ESB nodes. De-
pending on theSPECit might even startup the application that sends the executable to the node.
Typically you would write things like'make beeper.u” to get the filebeeper.c compiled,
linked and sent out to the ESB node

6.79.3.6 Some basic shell commands

* cd <DIR> change to a specified directory (same as in DOS)

e pwd <DIR> shows your current directory

Is list the directory
* mkdir <DIR> creates a new directory

e cp <SRC> <DEST> copies afile

6.79.4 Setting up the FreeBSD environment

Download the msp430-gcc, msp430-binutils, and msp430-libc packages from
http://lwww.sics.se/ ~adam/contiki/freebsd-packages/. Install the packages (as
root) with pkg_add .

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

http://www.sics.se/~adam/contiki/
http://www.sics.se/~adam/contiki/freebsd-packages/.

6.80 Introduction to Over The Air Reprogramming under Windows 198

6.79.5 Compiling your first Contiki system
6.79.6 Burning node IDs to EEPROM

The Contiki ESB port comes with a small prograbyrn-nodeid that semi-permanently stores a
(unique) node ID number in the ESB EEPROM. When the Contiki ESB port boots up, this node ID is
restored from the EEPROM. To compile and run this program, go into your project directory and run

make burn-nodeid.u nodeid=X

WhereX is the node ID that will be burned into EEPROM. Thearn-nodeid program stores the node
ID in EEPROM, reads it back, and writes the output

Modules

Introduction to Over The Air Reprogramming under Windows
» Beeper interface

ESB RS232

TR1001 radio tranciever device driver

6.80 Introduction to Over The Air Reprogramming under Windows

Author:
Joakim Eriksson, Niclas Finne

6.80.1 Introduction

This is a brief introduction how to program ESB sensor nodes over radio under Windows. It is assumed
that you already have the environment setup for programming ESB sensor nodes using JTAG cable.

6.80.2 Configuring SLIP under Windows XP

This section describes how to setup a SLIP connection under Windows. A SLIP connection forwards
TCP/IP traffic to/from the sensor nodes and lets you communicate with them using standard network tools
such aging .

1. Click start button and choose 'My Computer’. Right-click 'My Network Places’ and choose 'Prop-
erties’.

. Click 'Create a new connection’.

. Select 'Set up an advanced connection’.

. Select 'Connect directly to another computer’.

. Select 'Guest'.

Select a name for the slip connection (for example 'ESB’).

. Select the serial port to use when communicating with the sensor node.

. Add the connection by clicking 'Finish’.

. A connection window will open. Choose 'Properties’.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.80

Introduction to Over The Air Reprogramming under Windows 199

10.
11.

12.

13.
14.

Click on 'Configure...” and deselect all selected buttons. Choose the speed 57600 bps.

Close the modem configuration window, and go to the 'Options’ tab in the ESB properties. Deselect
all except 'Display progress....

Go to the 'Networking’ tab. Change to 'SLIP: Unix Connection’ and deselect all except the first two
items in the connection item list.

Select 'Internet Protocol (TCP/IP)’ and click 'Properties’. Enter the IP address '172.16.0.1".

Click 'Advanced’ and deselect all checkboxes in the 'Advanced TCP/IP Settings’. Go to the 'WINS’
tab and deselect 'Enable LMHOSTS lookup’ if it is selected. Also select 'Disable NetBIOS over
TCP/IP'.

6.80.3 Setup ESB for over the air programming

1.

Make sure you have the latest version of contiki (older versions of contiki might not work with SLIP
under Windows)

. Install the contiki kernel by running

make core.u

. Attach the ESB node to the serial port and make sure it is turned on. Select your ESB SLIP con-

nection in your 'Network Connections’ and choose 'Connect’ (or double click on it). If everything
works Windows should say that you have a new connection.

. Set the IP address for the node by pinging it (it will claim the IP address of the first ping it hears).

Note that the slip interface has IP address 172.16.0.1 but the node will have the IP address 172.16.1.1.

ping 172.16.1.1

If everything works the node should click and reply to the pings.

6.80.4 Send programs over the air

Contiki applications to be installed via radio are compiled somewhat different compared to normal appli-
cations.

Each node needs an IP address for OTA to work. A node id can be specified when you upload the contiki
kernel to a node and this is used to construct an IP address for the node. If you specify 2 as node id, the
node will have the IP address 172.16.1.2. Each node should have its own unique node id.

You need to compile a core and upload it onto the nodes. All nodes must run the same core. Move to the
directory ‘contiki-2.x/platform/esb “and run

make
make

core.u nodeid=X

to upload the core to your nodes. Use the number 1, 2, 3, etc, as the nofjdad the nodes. This will
give the nodes the IP addresses 172.16.1.1, 172.16.1.2, etc.

Then you need a program to send the application to connected nodes. Compile it by running

make

send

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.81 Beeper interface 200

Make sure you have a node with IP address 172.16.1.1 connected to your serial port and have SLIP acti-
vated. Then compile and send a testprogram by running

make beeper.ce
Jsend 172.16.1.1 beeper.ce

6.81 Beeper interface

Files
« file beep.h
Interface to the beeper.
Functions

« void beep_beefint len)
Beep for a specified time.

« void beep_alarnfint alarmmode, int len)
Beep an alarm for a specified time.

« void beep(void)
Produces a quick click-like beep.

« void beep_dowr{int len)
A beep with a pitch-bend down.

« void beep_or(void)
Turn the beeper on.

« void beep_off(void)
Turn the beeper off.

« void beep_spinugvoid)
Produce a sound similar to a hard-drive spinup.

 void beep_londclock_time_tlen)
Beep for a long time (seconds).

6.81.1 Function Documentation

6.81.1.1 void beep (void)
Produces a quick click-like beep.

This function produces a short beep that sounds like a click.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.81 Beeper interface 201

6.81.1.2 void beep_alarm (inelarmmode int len)

Beep an alarm for a specified time.

This function causes the beeper to beep for the specified time. The time is measured in the same units as
for the clock_delay() function.

Note:
This function will hang the CPU during the beep.
This function will stop any beep that was on previously when this function ends.
If the beeper is turned off witheep_off()this call will still take the same time, though it will be silent.

Parameters:
alarmmode The alarm mode (BEEP_ALARM1,BEEP_ALARM2)

len The length of the beep.

6.81.1.3 void beep_beep (ifen)

Beep for a specified time.

This function causes the beeper to beep for the specified time. The time is measured in the same units as
for the clock_delay() function.

Note:
This function will hang the CPU during the beep.
This function will stop any beep that was on previously when this function ends.
If the beeper is turned off witheep_off(Jthis call will still take the same time, though it will be silent.

Parameters:
len The length of the beep.

6.81.1.4 void beep_down (inken)
A beep with a pitch-bend down.
This function produces a pitch-bend sound with deecreasing frequency.

Parameters:
len The length of the pitch-bend.

6.81.1.5 void beep_long (clock_time_len)
Beep for a long time (seconds).

This function produces a beep with the specified length and will not return until the beep is complete. The
length of the beep is specified using CLOCK_SECOND: a two second beep is CLOCK_SE€2NDd
a quarter second beep is CLOCK_SECOND / 4.

Note:
If the beeper is turned off witheep_off(Jthis call will still take the same time, though it will be silent.

Parameters:
len The length of the beep, measured in units of CLOCK_SECOND

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.82 ESB RS232 202

6.81.1.6 void beep_off (void)
Turn the beeper off.

This function turns the beeper off after it has been turned onlvédp_on()

6.81.1.7 void beep_on (void)
Turn the beeper on.

This function turns on the beeper. The beeper is turned off withd&eg_off()function.

6.81.1.8 void beep_spinup (void)
Produce a sound similar to a hard-drive spinup.

This function produces a sound that is intended to be similar to the sound a hard-drive makes when it starts.

6.82 ESB RS232

Files

« file rs232.h
Header file for MSP430 RS232 driver.

* file rs232.c
RS232 communication device driver for the MSP430.

Functions

* void rs232_init(void)
Initialize the RS232 module.

void rs232_set_inputint(xf)(unsigned char))
Set an input handler for incoming RS232 data.

void rs232_set_speddnsigned char speed)
Configure the speed of the RS232 hardware.

void rs232_printcharxstr)
Print a text string on RS232.

void rs232_sendchar c)
Print a character on RS232.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.82 ESB RS232 203

6.82.1 Function Documentation

6.82.1.1 void rs232_init (void)

Initialize the RS232 module.

This function is called from the boot up code to initalize the RS232 module.
Definition at line 78 of file rs232.c.

References rs232_set_speed().

6.82.1.2 void rs232_print (chark str)
Print a text string on RS232.

Parameters:
str A pointer to the string that is to be printed

This function prints a string to RS232. The string must be terminated by a null byte. The RS232 module
must be correctly initalized and configured for this function to work.

Definition at line 135 of file rs232.c.

References rs232_send().

6.82.1.3 void rs232_send (chas)
Print a character on RS232.

Parameters:
¢ The character to be printed

This function prints a character to RS232. The RS232 module must be correctly initalized and configured
for this function to work.

Definition at line 94 of file rs232.c.

Referenced by rs232_print().

6.82.1.4 void rs232_set_input (int)(unsigned char)f)
Set an input handler for incoming RS232 data.

Parameters:
f A pointer to a byte input handler

This function sets the input handler for incoming RS232 data. The input handler function is called for
every incoming data byte. The function is called from the RS232 interrupt handler, so care must be taken
when implementing the input handler to avoid race conditions.

The return value of the input handler affects the sleep mode of the CPU: if the input handler returns non-
zero (true), the CPU is awakened to let other processing take place. If the input handler returns zero, the
CPU is kept sleeping.

Definition at line 144 of file rs232.c.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

6.83 TR1001 radio tranciever device driver 204

6.82.1.5 void rs232_set_speed (unsigned ctsreedl
Configure the speed of the RS232 hardware.

Parameters:
speedThe speed

This function configures the speed of the RS232 hardware. The allowed parameters are RS232_19200,
RS232_38400, RS232_57600, and RS232_115200.

Definition at line 108 of file rs232.c.
Referenced by rs232_init().

6.83 TR21001 radio tranciever device driver

Files

« filetrl001.c
Device driver and packet framing for the RFM-TR1001 radio module.

6.84 Microsoft Windows

Author:
Oliver Schmidt<ol.sc@web.de >

6.84.1 Getting started

The Microsoft Windows port of Contiki doesn’t use the the Contiki build system. Instead it is built with
the Microsoft Visual C++. If you already have Microsoft Visual Studio 2005 Standard Edition (or better)
installed you're ready to go.

Otherwise you can download and install the free Visual C++ 2005 Express Edition. I'd recommend to
download the full package and then do a local install. That so called Manual Installation is described on
this pagehttp://msdn.microsoft.com/vstudio/express/support/install/

Then follow the instructions on this page carefully (Note - You only need to
install the Microsoft Windows Core SDK from the Microsoft Platform SDK):
http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/default.aspx

Finally you might want to integrate the Platform SDK help content into the IDE help system (although this
isn’t necessary for Contiki development) by choosing this topic in the IDE help system and following the
instructions given: ms-help://MS.VSExpressCC.v80/dv_vsexpcc/local/CollectionManagerExpress.htm

For network 1/O you need the WinPcap library which is available on this page:
http://www.winpcap.org/install/default.htm

I'd recommend to install the Wireshark network protocol analyzer which uses (and therefore comes with)
the WinPcap libary from this page instead of installing just the WinPcap library from the page above:
http://www.wireshark.org/download.html

Doubleclicking contiki-2.x platform\win32\ contiki.sIn should bring up the IDE and load the Contiki So-
lution. This takes some time if done for the first time as the source is scanned and quite some metadata gets
generated.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:ol.sc@web.de
http://msdn.microsoft.com/vstudio/express/support/install/
http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/default.aspx
http://www.winpcap.org/install/default.htm
http://www.wireshark.org/download.html

6.85 Uiparch 205

Now press F7 for Build Solution and then F5 for Start Debugging. This should bring up Contiki inside a
new command prompt window. Starting Contiki in the debugger has the benefit of having the debug output
routed to the IDE output pane.

Depending on your settings for command prompt windows the mouse should work right away with Contiki.
Contiki resizes its desktop on resizing the command prompt window Contiki is running in.

Beside the Contiki Quit menu entry you can safely use Ctrl-C for a clean exit. You'll notice that when
running Contiki from an already open command prompt window (that therefore doesn’t close on Contiki
exit): The caption, colors, cursor, ... are restored.

6.85 Uiparch
Variables

» u8_tuip_acc374]
4-byte array used for the 32-bit sequence number calculations.

7 Contiki 2.x Directory Documentation

7.1 apps/ Directory Reference

Directories

« directoryprogram-handler

7.2 core/cfs/ Directory Reference

Files

« file cfs.h
CFS header file.

7.3 core/ Directory Reference

Directories

« directorycfs
directoryctk
directorydev
directorylib
directoryloader
« directorynet
directorysys

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.4 core/ctk/ Directory Reference

206

7.4 core/ctk/ Directory Reference

Files

« file ctk-draw.h
CTK screen drawing module interface, ctk-draw.

« file ctk.c
The Contiki Toolkit CTK, the Contiki GUI.

« file ctk.h
CTK header file.

7.5 platform/esb/dev/ Directory Reference

Files

« file beep.h
Interface to the beeper.

file eeprom.c
EEPROM functions.

file rs232.c

RS232 communication device driver for the MSP430.

file rs232.h
Header file for MSP430 RS232 driver.

file tr1001.c

Device driver and packet framing for the RFM-TR1001 radio module.

7.6 core/dev/ Directory Reference

Files

« file eeprom.h
EEPROM functions.

« file radio.h
Header file for the radio API.

7.7 platform/esb/ Directory Reference

Directories

« directorydev

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.8 core/lib/ Directory Reference

207

7.8

Files

7.9

Files

core/lib/ Directory Reference

file crc16.c

Implementation of the CRC16 calculcation.

file crc16.h
Header file for the CRC16 calculcation.

file ctk-textedit.c
An experimental CTK text edit widget.

file ctk-textedit.h

Header file for the experimental application level CTK textedit widget.

file list.c
Linked list library implementation.

file list.h

Linked list manipulation routines.

file me.c

Implementation of the table-driven Manchester encoding and decoding.

file me.h
Header file for the table-driven Manchester encoding and decoding.

file memb.c

Memory block allocation routines.

file memb.h
Memory block allocation routines.

file mmem.c

Implementation of the managed memory allocator.

file mmem.h
Header file for the managed memory allocator.

file petsciiconv.h
PETSCII/ASCII conversion functions.

core/loader/ Directory Reference

file elfloader-arch.h

Header file for the architecture specific parts of the Contiki ELF loader.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.10 core/net/ Directory Reference 208

« file elfloader.h
Header file for the Contiki ELF loader.

7.10 core/net/ Directory Reference

Directories

« directoryrime

Files

file psock.c
file psock.h

Protosocket library header file.

« file resolv.c
DNS host name to IP address resolver.

« file resolv.h
ulP DNS resolver code header file.

« file rime.h
Header file for the Rime stack.

« file tcpip.c
« file tcpip.h
Header for the Contiki/ulP interface.

* file uip-fw.c
ulP packet forwarding.

* file uip-fw.h
ulP packet forwarding header file.

« file uip-split.c
« file uip-split.h
Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

« file uip.c
The ulP TCP/IP stack code.

« file uip.h
Header file for the ulP TCP/IP stack.

« file uip_arp.c
Implementation of the ARP Address Resolution Protocol.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.11 platform/ Directory Reference 209

file uip_arp.h
Macros and definitions for the ARP module.

file uiplib.c
file uiplib.h
Various ulP library functions.

file uipopt.h
Configuration options for ulP.

7.11 platform/ Directory Reference

Directories

« directoryesb

7.12 apps/program-handler/ Directory Reference

Files

« file program-handler.c
The program handler, used for loading programs and starting the screensaver.

7.13 core/net/rime/ Directory Reference

Files

« file abc.c
Anonymous best-effort local area Broad Cast (abc).

« file abc.h
Header file for the Rime module Anonymous BroadCast (abc).

« file ctimer.c
Callback timer implementation.

« file ctimer.h
Header file for the callback timer.

« fileibc.c
Identified best-effort local area broadcast (ibc).

« file ibc.h
Header file for identified best-effort local area broadcast.

« file mesh.c
A mesh routing protocol.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.13

core/net/rime/ Directory Reference

210

file mesh.h

Header file for the Rime mesh routing protocol.

file mh.c
Multihop forwarding.

file mh.h
Multihop forwarding header file.

file neighbor.c
Radio neighborhood management.

file neighbor.h

Header file for the Contiki radio neighborhood management.

file nf.c
Best-effort network flooding (nf).

file nf.h

Header file for the best-effort network flooding (nf).

file queuebuf.c
Implementation of the Rime queue buffers.

file queuebuf.h
Header file for the Rime queue buffer management.

file rimeaddr.c

Functions for manipulating Rime addresses.

file rimeaddr.h
Header file for the Rime address repressentation.

file imebuf.c
Rime buffer (rimebuf) management.

file rimebuf.h

Header file for the Rime buffer (rimebuf) management.

file route-discovery.c
Route discovery protocol.

file route-discovery.h
Header file for the Rime mesh routing protocol.

file route.c
Rime route table.

file route.h

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.13

core/net/rime/ Directory Reference

211

Header file for the Rime route table.

file ruc.c
Reliable unicast.

file ruc.h
Reliable unicast header file.

file rudolphO.c
RudolphO: a simple block data flooding protocol.

file rudolph0.h

Header file for the single-hop reliable bulk data transfer module.

file rudolphl.c
Rudolphl: a simple block data flooding protocol.

file rudolphl.h
Header file for the multi-hop reliable bulk data transfer mechanism.

file sabc.c
Implementation of the Rime module Stubborn Anonymous BroadCast (sabc).

file sabc.h
Header file for the Rime module Stubborn Anonymous BroadCast (sabc).

file sibc.c
Implementation of the Rime module Stubborn Identified BroadCast (sibc).

file sibc.h

Header file for the Rime module Stubborn Identified BroadCast (sibc).

file suc.c
Stubborn unicast.

file suc.h
Stubborn unicast header file.

file tree.c

Tree-based hop-by-hop reliable data collection.

file tree.h
Header file for hop-by-hop reliable data collection.

file trickle.c
Trickle (reliable single source flooding) for Rime.

file trickle.h
Header file for Trickle (reliable single source flooding) for Rime.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

7.14 core/sys/ Directory Reference 212

file uabc.c
Unigue Anonymous best effort local area BroadCast (uabc).

file uabc.h

Header file for Uniqgue Anonymous best effort local area BroadCast (uabc).

« file uc.c
Single-hop unicast.

 file uc.h

Header file for Rime’s single-hop unicast.

file uibc.c

Unique Identified best effort local area BroadCast (uibc).

file uibc.h

Header file for Unique Identified best effort local area BroadCast (uibc).

7.14 core/sys/ Directory Reference

Files

file arg.c
Argument buffer for passing arguments when starting processes.

file cc.h

Default definitions of C compiler quirk work-arounds.

file clock.h
file dsc.h

Declaration of the DSC program description structure.

file etimer.c

Event timer library implementation.

file etimer.h
Event timer header file.

file Ic-addrlabels.h

Implementation of local continuations based on the "Labels as values" feature of gcc.

file Ic-switch.h
Implementation of local continuations based on switch() statment.

file lc.h
Local continuations.

file loader.h

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8 Contiki 2.x Data Structure Documentation 213

Default definitions and error values for the Contiki program loader.

« file mt.c
Implementation of the archtecture agnostic parts of the preemptive multithreading library for Contiki.

file mt.h
Header file for the preemptive multitasking library for Contiki.

« file process.c
Implementation of the Contiki process kernel.

« file process.h
Header file for the Contiki process interface.

« file procinit.c
file procinit.h
file pt-sem.h

Counting semaphores implemented on protothreads.

file pt.h
Protothreads implementation.

* file timer.c
Timer library implementation.

file timer.h
Timer library header file.

8 Contiki 2.x Data Structure Documentation

8.1 abc_callbacks Struct Reference

#include <abc.h >

8.1.1 Detailed Description

Callback structure for abc.

Examples:
test-abc.c

Definition at line 69 of file abc.h.

Data Fields

* void(x recv)(struct abc_consptr)
Called when a packet has been received by the abc module.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.2 ctk_menu Struct Reference 214

8.2 ctk_menu Struct Reference

#include <ctk.h >

8.2.1 Detailed Description

Representation of an individual menu.
Definition at line 567 of file ctk.h.

Data Fields

¢ ctk_menux next

Apointer to the next menu, or is NULL if this is the last menu, and should be used by the ctk-draw module
when stepping through the menus when drawing them on screen.

* charx title
The menu title.

« unsigned chatitlelen
The length of the title in characters.

 unsigned chanitems
The total number of menu items in the menu.

« unsigned chaactive
The currently active menu item.

 ctk_menuitenitems[CTK_MAXMENUITEMS]
The array which contains all the menu items.

8.2.2 Field Documentation

8.2.2.1 unsigned charctk_menu::titlelen
The length of the title in characters.
Cached for speed reasons.

Definition at line 574 of file ctk.h.

Referenced by ctk_menu_new().

8.3 ctk_menuitem Struct Reference

#include <ctk.h >

8.3.1 Detailed Description

Representation of an individual menu item.
Definition at line 552 of file ctk.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.4 ctk_menus Struct Reference 215

Data Fields

* charx title

The menu items text.

« unsigned chatitlelen
The length of the item text, cached for speed.

8.4 ctk_menus Struct Reference

#include <ctk.h >

8.4.1 Detailed Description

Representation of the menu bar.
Definition at line 592 of file ctk.h.

Data Fields

e ctk_menux menus
A pointer to a linked list of all menus, including the open menu and the desktop menu.

e ctk_menu« open
The currently open menu, if any.

¢ ctk_menu« desktopmenu

A pointer to the "Desktop" menu that can be used for drawing the desktop menu in a special way (such as
drawing it at the rightmost position).

8.4.2 Field Documentation

8.4.2.1 structctk_menux ctk_menus::open
The currently open menu, if any.

If all menus are closed, this item is NULL:
Definition at line 596 of file ctk.h.

Referenced by ctk_window_redraw().

8.5 ctk_widget Struct Reference

#include <ctk.h >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.6 ctk_window Struct Reference 216

8.5.1 Detailed Description

The generic CTK widget structure that contains all other widget structures.

Since the widgets of a window are arranged on a linked list, the widget structure contains a next pointer
which is used for this purpose. The widget structure also contains the placement and the size of the widget.

Finally, the actual per-widget structure is contained in this top-level widget structure.
Definition at line 427 of file ctk.h.

Data Fields

« ctk_widgetx next
The next widget in the linked list of widgets that is contained irctkewindowstructure.

¢ ctk_windowsx* window
The window in which the widget is contained.

 unsigned chax
The x position of the widget within the containing window, in character coordinates.

 unsigned chay
The y position of the widget within the containing window, in character coordinates.

* unsigned chatype

The type of the widget: CTK_WIDGET_SEPARATOR, CTK_WIDGET_LABEL, CTK_WIDGET._-
BUTTON, CTK_WIDGET_HYPERLINK, CTK_WIDGET_TEXTENTRY, CTK_WIDGET_BITMAP or
CTK_WIDGET_ICON.

* unsigned chaw
The width of the widget in character coordinates.

¢ unsigned chah
The height of the widget in character coordinates.

* union {
} widget

The union which contains the actual widget structure, as determined by the type field.

8.6 ctk_window Struct Reference

#include <ctk.h >

8.6.1 Detailed Description

Representation of a CTK window.

For the CTK, each window is repessented by a ctk_window structure. All open windows are kept on a
doubly linked list, linked by the next and prev fields in the ctk_window struct. The window structure holds
all widgets that is contained in the window as well as a pointer to the currently selected widget.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.6 ctk_window Struct Reference 217

Definition at line 489 of file ctk.h.

Data Fields

 ctk_window=x next
The next window in the doubly linked list of open windows.

» ctk_windows prev
The previous window in the doubly linked list of open windows.

« ctk_desktopr desktop
The desktop on which this window is open.

* processt owner
The process that owns the window.

» charx title
The title of the window.

 unsigned chatitlelen
The length of the title, cached for speed reasons.

* unsigned chax
The x coordinate of the window, in characters.

« unsigned chay
The y coordinate of the window, in characters.

 unsigned chaw
The width of the window, excluding window borders.

« unsigned chah
The height of the window, excluding window borders.

« ctk_widgetx inactive
The list if widgets that cannot be selected by the user.

» ctk_widgetx active
The list of widgets that can be selected by the user.

« ctk_widgetx focused
A pointer to the widget on the active list that is currently selected, or NULL if no widget is selected.

8.6.2 Field Documentation

8.6.2.1 structctk_widget« ctk_window::active
The list of widgets that can be selected by the user.

Buttons, hyperlinks, text entry fields, etc., are placed on this list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.7 dsc Struct Reference 218

Definition at line 539 of file ctk.h.

Referenced by ctk_widget_add(), and ctk_window_clear().

8.6.2.2 structctk widgetx ctk_window::inactive
The list if widgets that cannot be selected by the user.
Labels and separator widgets are placed on this list.
Definition at line 535 of file ctk.h.

Referenced by ctk_widget_add().

8.6.2.3 struct process ctk_window::owner

The process that owns the window.

This process will be the receiver of all CTK signals that pertain to this window.
Definition at line 498 of file ctk.h.

8.6.2.4 chaw ctk_window::title

The title of the window.

Used for constructing the "Dekstop” menu.
Definition at line 503 of file ctk.h.

8.7 dsc Struct Reference

#include <dsc.h >

8.7.1 Detailed Description

The DSC program description structure.

The DSC structure is used for describing a Contiki program. It includes a short textual description of the
program, either the name of the program on disk, or a pointer to the init() function, and an icon for the
program.

Definition at line 75 of file dsc.h.

Data Fields

* charx description
A text string containing a one-line description of the program.

¢ charx prgname
The name of the program on disk.

 ctk_iconx icon
A pointer to the ctk_icon structure for the DSC.

void * loadaddr

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.8 etimer Struct Reference 219

The loading address of the DSC.

8.7.2 Field Documentation

8.7.2.1 void dsc::loadaddr
The loading address of the DSC.

Used by thd OADER_UNLOAD() function when deallocating the memory allocated for the DSC when
loading it.

Definition at line 89 of file dsc.h.

8.8 etimer Struct Reference

#include <etimer.h >

8.8.1 Detailed Description

A timer.

This structure is used for declaring a timer. The timer must be set atither set()before it can be
used.

Examples:
example-program,dest-abc.ctest-meshroute,@andtest-treeroute.c

Definition at line 77 of file etimer.h.

8.9 ibc_callbacks Struct Reference

#include <ibc.h >

8.9.1 Detailed Description
Callback structure for abc.

Definition at line 71 of file ibc.h.

Data Fields

« void(x recv)(struct ibc_connptr, imeaddr_tsender)
Called when a packet has been received by the ibc module.

8.10 mesh_callbacks Struct Reference

#include <mesh.h >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.11 psock Struct Reference

220

8.10.1 Detailed Description

Mesh callbacks.

Examples:
test-meshroute.c

Definition at line 74 of file mesh.h.

Data Fields

* void(x recv)(struct mesh_connc, rimeaddr_#from)
Called when a packet is received.

« void(x sent)(struct mesh_conic)
Called when a packet, sent withesh_send()s actually transmitted.

* void(x timedout)(struct mesh_conrc)

Called when a packet, sent withesh_send(}imes out and is dropped.

8.11 psock Struct Reference

#include <psock.h >

8.11.1 Detailed Description

The representation of a protosocket.

The protosocket structrure is an opaque structure with no user-visible elements.

Examples:
example-psock-server.c

Definition at line 113 of file psock.h.

8.12 radio_driver Struct Reference

#include <radio.h >

8.12.1 Detailed Description

The structure of a device driver for a radio in Contiki.

Definition at line 61 of file radio.h.

Data Fields

« int(x send)(const void«payload, unsigned short payload_len)
Send a packet.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.13 sabc_conn Struct Reference 221

int(x read)(void <buf, unsigned short buf_len)
Read a received packet into a buffer.

 void(x set_receive_functioj(void(xf)(const structadio_driverxd))
Set a function to be called when a packet has been received.

int(x on)(void)
Turn the radio on.

int(x off)(void)
Turn the radio off.

8.13 sabc_conn Struct Reference

#include <sabc.h >

8.13.1 Detailed Description

A sabc connection.

This is an opaque structure with no user-visible fields. $alec_open(junction is used for setting up a
sabc connection.

Definition at line 80 of file sabc.h.

8.14 timer Struct Reference

#include <timer.h >

8.14.1 Detailed Description

A timer.
This structure is used for declaring a timer. The timer must be settiwvigr _set()oefore it can be used.

Definition at line 87 of file timer.h.

8.15 uip_conn Struct Reference

#include <uip.h >

8.15.1 Detailed Description

Representation of a ulP TCP connection.

The uip_conn structure is used for identifying a connection. All but one field in the structure are to be
considered read-only by an application. The only exception is the appstate field whos purpose is to let the
application store application-specific state (e.g., file pointers) for the connection. The type of this field is
configured in the "uipopt.h" header file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.15 uip_conn Struct Reference

222

Definition at line 1201 of file uip.h.

Data Fields

* uip_ipaddr_tipaddr
The IP address of the remote host.

¢ ul6_tlport
The local TCP port, in network byte order.

¢ ul6_trport
The local remote TCP port, in network byte order.

e u8_trcv_nxt[4]
The sequence number that we expect to receive next.

e u8_tsnd_nx{4]
The sequence number that was last sent by us.

e ul6_tlen
Length of the data that was previously sent.

e ul6_tmss

Current maximum segment size for the connection.

¢ ul6_tinitialmss

Initial maximum segment size for the connection.

e u8_tsa

Retransmission time-out calculation state variable.

e u8_tsv
Retransmission time-out calculation state variable.

e u8_trto
Retransmission time-out.

« u8_ttcpstateflags
TCP state and flags.

e u8_ttimer
The retransmission timer.

e u8_tnrtx

The number of retransmissions for the last segment sent.

* uip_tcp_appstate appstate
The application state.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.16 uip_eth_addr Struct Reference 223

8.16 uip_eth_addr Struct Reference

#include <uip.h >

8.16.1 Detailed Description
Representation of a 48-bit Ethernet address.
Definition at line 1590 of file uip.h.

8.17 uip_eth_hdr Struct Reference

#include <uip_arp.h >

8.17.1 Detailed Description

The Ethernet header.

Definition at line 63 of file uip_arp.h.

8.18 uip_fw_netif Struct Reference

#include <uip-fw.h >

8.18.1 Detailed Description

Representation of a ulP network interface.

Definition at line 54 of file uip-fw.h.

Data Fields

uip_fw_netifx next
Pointer to the next interface when linked in a list.

* Uuip_ipaddr_tfpaddr
The IP address of this interface.

e uip_ipaddr_mnetmask
The netmask of the interface.

u8_t(output)(void)
A pointer to the function that sends a packet.

8.19 uip_ip4addr_t Union Reference

#include <uip.h >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.20 uip_stats Struct Reference 224

8.19.1 Detailed Description

Representation of an IP address.

Definition at line 62 of file uip.h.

8.20 uip_stats Struct Reference

#include <uip.h >

8.20.1 Detailed Description

The structure holding the TCP/IP statistics that are gathered if UIP_STATISTICS is set to 1.
Definition at line 1280 of file uip.h.

Data Fields

* struct {

uip_stats_tecv

Number of received packets at the IP layer.
uip_stats_sent

Number of sent packets at the IP layer.
uip_stats_tirop

Number of dropped packets at the IP layer.
uip_stats_thlerr

Number of packets dropped due to wrong IP version or header length.
uip_stats_tblenerr

Number of packets dropped due to wrong IP length, high byte.
uip_stats_tblenerr

Number of packets dropped due to wrong IP length, low byte.
uip_stats_fragerr

Number of packets dropped since they were IP fragments.
uip_stats_thkerr

Number of packets dropped due to IP checksum errors.
uip_stats_protoerr

Number of packets dropped since they were neither ICMP, UDP nor TCP.

}ip
IP statistics.

* struct {
uip_stats_tecv
Number of received ICMP packets.
uip_stats_sent
Number of sent ICMP packets.
uip_stats_trop
Number of dropped ICMP packets.
uip_stats_typeerr
Number of ICMP packets with a wrong type.
} icmp

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

8.21 uip_udp_conn Struct Reference 225

ICMP statistics.

* struct {

uip_stats_tecv

Number of recived TCP segments.
uip_stats_sent

Number of sent TCP segments.
uip_stats_trop

Number of dropped TCP segments.
uip_stats_thkerr

Number of TCP segments with a bad checksum.
uip_stats_tckerr

Number of TCP segments with a bad ACK number.
uip_stats_tst

Number of recevied TCP RST (reset) segments.
Uip_stats_texmit

Number of retransmitted TCP segments.
uip_stats_syndrop

Number of dropped SYNs due to too few connections was avaliable.
uip_stats_synrst

Number of SYNs for closed ports, triggering a RST.

} tep
TCP statistics.

* struct {
uip_stats_trop
Number of dropped UDP segments.
uip_stats_tecv
Number of recived UDP segments.
uip_stats sent
Number of sent UDP segments.
uip_stats_thkerr
Number of UDP segments with a bad checksum.

} udp

UDP statistics.

8.21 uip_udp_conn Struct Reference

#include <uip.h >

8.21.1 Detailed Description
Representation of a ulP UDP connection.

Examples:
example-program.c

Definition at line 1258 of file uip.h.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9 Contiki 2.x File Documentation 226

Data Fields

* uip_ipaddr_tipaddr
The IP address of the remote peer.

ulé_tlport
The local port number in network byte order.

ul6_trport
The remote port number in network byte order.

e u8_tttl
Default time-to-live.

 uip_udp_appstate appstate
The application state.

9 Contiki 2.x File Documentation

9.1 apps/program-handler/program-handler.c File Reference
9.1.1 Detailed Description

The program handler, used for loading programs and starting the screensaver.

Author:
Adam Dunkels<adam@dunkels.com >

The Contiki program handler is responsible for the Contiki menu and the desktop icons, as well as for
loading programs and displaying a dialog with a message telling which program that is loading.

The program handler also is responsible for starting the screensaver when the CTK detects that it should
be started.

Definition in file program-handler.c
#include <string.h >
#include <stdlib.h >
#include "contiki.h"

#include "ctk/ctk.h"

#include "ctk/ctk-draw.h"

#include "program-handler.h”

Defines

 #defineNUM_PNARGS6
Initializes the program handler.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.2 core/cfs/cfs.h File Reference 227

Functions

« void program_handler_adgtructdscxdsg charxmenuname, unsigned char desktop)
Add a program to the program handler.

« void program_handler_loa@har«name, chararg)

Loads a program and displays a dialog telling the user about it.

9.1.2 Define Documentation

9.1.2.1 #define NUM_PNARGS 6
Initializes the program handler.
Is called by the initialization before any programs have been addedowdtiram_handler_add()

Definition at line 180 of file program-handler.c.

9.1.3 Function Documentation

9.1.3.1 void program_handler_add (structdsc* dsg char x menuname unsigned chardesktop

Add a program to the program handler.

Parameters:
dsc The DSC description structure for the program to be added.

menuname The name that the program should have in the Contiki menu.
desktop Flag which specifies if the program should show up as an icon on the desktop or not.

Definition at line 161 of file program-handler.c.
References CTK_ICON_ADD, and ctk_menuitem_add().

9.1.3.2 void program_handler_load (char name char * arg)
Loads a program and displays a dialog telling the user about it.

Parameters:
name The name of the program to be loaded.

arg An argument which is passed to the new process when it is loaded.
Definition at line 223 of file program-handler.c.

References ctk_dialog_open(), ctk_label_set_text, and process_post().

9.2 core/cfs/cfs.h File Reference
9.2.1 Detailed Description

CFS header file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.2 core/cfs/cfs.h File Reference 228

Author:
Adam Dunkels<cadam@sics.se >

Definition in file cfs.h

#include "contiki.h"

Defines

» #defineCFS_READ1
Specify thatfs_open(should open a file for reading.

* #defineCFS_WRITE2
Specify thatfs_open(should open a file for writing.

* #defineCFS_APPEND4
Specify thatfs_open(should append written data to the file rather than overwriting it.

Functions

e CCIF intcfs_open(const chaxname, int flags)
Open afile.

» CCIF voidcfs_closg(int fd)
Close an open file.

» CCIFintcfs_readint fd, charxbuf, unsigned int len)
Read data from an open file.

» CCIF intcfs_write(int fd, charxbuf, unsigned int len)
Write data to an open file.

* CCIF intcfs_seeKint fd, unsigned int offset)
Seek to a specified position in an open file.

» CCIF intcfs_opendii(struct cfs_dirdirp, const chakname)
Open a directory for reading directory entries.

« CCIF intcfs_readdif(struct cfs_dirdirp, struct cfs_direntdirent)
Read a directory entry.

e CCIFintcfs_closedii(struct cfs_dirdirp)
Close a directory opened wittfs_opendir()

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.3 core/ctk/ctk-draw.h File Reference 229

9.3 core/ctk/ctk-draw.h File Reference
9.3.1 Detailed Description

CTK screen drawing module interface, ctk-draw.

Author:
Adam Dunkelscadam@dunkels.com >

This file contains the interface for the ctk-draw module.The ctk-draw module takes care of the actual screen
drawing for CTK by implementing a handful of functions that are called by CTK.

Definition in file ctk-draw.h
#include "ctk/ctk.h"

#include "contiki-conf.h"

Functions

« void ctk_draw_init(void)
The initialization function.

« void ctk_draw_cleafunsigned char clipyl, unsigned char clipy2)
Clear the screen between the clip bounds.

 void ctk_draw_clear_windowstruct ctk_window swindow, unsigned char focus, unsigned char
clipyl, unsigned char clipy2)

Draw the window background.

« void ctk_draw_window(struct ctk_window xwindow, unsigned char focus, unsigned char clipy1,
unsigned char clipy2, unsigned char draw_borders)

Draw a window onto the screen.

« void ctk_draw_dialogstructctk_windowsxdialog)

Draw a dialog onto the screen.

« void ctk_draw_widge{structctk_widgetxw, unsigned char focus, unsigned char clipyl, unsigned
char clipy2)

Draw a widget on a window.

9.4 core/ctk/ctk.c File Reference
9.4.1 Detailed Description
The Contiki Toolkit CTK, the Contiki GUI.

Author:
Adam Dunkels<adam@dunkels.com >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@dunkels.com

9.4 core/ctk/ctk.c File Reference 230

Definition in file ctk.c.
#include <stringh >
#include "contiki.h"
#include "ctk/ctk.h"
#include "ctk/ctk-draw.h"

#include "ctk/ctk-mouse.h"

Functions

« void ctk_mode_sefunsigned char m)
Sets the current CTK mode.

 unsigned chactk_mode_gefvoid)
Retrieves the current CTK mode.

« void ctk_icon_addCC_REGISTER_ARG structtk widgetxicon, struct processp)
Add an icon to the desktop.

« void ctk_dialog_operstructctk_window=xd)
Open a dialog box.

« void ctk_dialog_closdvoid)
Close the dialog box, if one is open.

« void ctk_window_oper{CC_REGISTER_ARG struatk window:w)
Open a window, or bring window to front if already open.

« void ctk_window_closdstructctk_windowsw)

Close a window if it is open.

« void ctk_window_cleafstructctk_windowsw)
Remove all widgets from a window.

« void ctk_menu_addstructctk_menuxmenu)
Add a menu to the menu bar.

« void ctk_menu_removéstructctk_menuxmenu)
Remove a menu from the menu bar.

« void ctk_window_redrawstructctk_windowsw)
Redraw a window.

« void ctk_window_new(structctk_windowswindow, unsigned char w, unsigned char h, cktdte)
Create a new window.

« void ctk_dialog_newWCC_REGISTER_ARG struatk_windowsxdialog, unsigned char w, unsigned
char h)

Creates a new dialog.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.4 core/ctk/ctk.c File Reference 231

« void ctk_menu_newWCC_REGISTER_ARG struatk _menuxmenu, chakxtitle)
Creates a new menu.

 unsigned chactk_menuitem_ad@CC_REGISTER_ARG struatk_menuxmenu, chaxkname)

Adds a menu item to a menu.

 void CC_FASTCALLctk_widget_addCC_REGISTER_ARG struattk_window swindow, CC_-
REGISTER_ARG struattk_widget«xwidget)

Adds a widget to a window.

Variables

* process_eventdtk_signal_keypress
Emitted for every key being pressed.

» process_eventdtk signal_widget_activate
Emitted when a widget is activated (pressed).

» process_eventdtk signal_button_activate
Same as ctk_signal_widget_activate.

» process_eventdtk signal_widget_select
Emitted when a widget is selected.

» process_event dtk_signal_button_hover
Same as ctk_signal_widget_select.

« process_eventdtk signal_hyperlink_activate
Emitted when a hyperlink is activated.

« process_eventdtk signal_hyperlink_hover
Same as ctk_signal_widget_select.

e process_eventdk signal_menu_activate
Emitted when a menu item is activated.

« process_eventatk signal_window_close
Emitted when a window is closed.

e process_eventdtk signal_pointer_move
Emitted when the mouse pointer is moved.

» process_eventdtk signal_pointer_button
Emitted when a mouse button is pressed.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference

232

9.5 core/ctk/ctk.h File Reference
9.5.1 Detailed Description
CTK header file.

Author:

Adam Dunkels<adam@dunkels.com >

The CTK header file contains functioin declarations and definitions of CTK structures and macros.

Definition in file ctk.h.
#include "contiki-conf.h"

#include "contiki.h"

Defines

» #defineCTK_WIDGET_SEPARATORL

Widget number: The CTK separator widget.

#defineCTK_WIDGET_LABEL 2
Widget number: The CTK label widget.

#defineCTK_WIDGET_BUTTON3
Widget number: The CTK button widget.

#defineCTK_WIDGET_HYPERLINK4
Widget number: The CTK hyperlink widget.

#defineCTK_WIDGET_TEXTENTRY5
Widget number: The CTK textentry widget.

#defineCTK_WIDGET_BITMAP 6
Widget number: The CTK bitmap widget.

#defineCTK_WIDGET _ICON7
Widget number: The CTK icon widget.

#define CTK_SEPARATORYX, y, w) NULL, NULL, X, y, CTK_WIDGET_SEPARATOR, w, 1,

CTK_WIDGET_FLAG_INITIALIZER(0O)

Instantiating macro for the ctk_separator widget.

#defineCTK_BUTTON(X, y, w, text) NULL, NULL, x, y, CTK_WIDGET_BUTTON, w, 1, CTK_-

WIDGET_FLAG_INITIALIZER(0) text

Instantiating macro for the ctk_button widget.

#defineCTK_LABEL(X, y, w, h, text) NULL, NULL, x, y, CTK_WIDGET_LABEL, w, h, CTK_-

WIDGET_FLAG_INITIALIZER(O) text,

Instantiating macro for the ctk_label widget.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.5

core/ctk/ctk.h File Reference 233

#defineCTK_HYPERLINK(X, y, w, text, url) NULL, NULL, x, y, CTK_WIDGET_HYPERLINK,
w, 1, CTK_WIDGET_FLAG_INITIALIZER(O) text, url

Instantiating macro for the ctk_hyperlink widget.

#defineCTK_TEXTENTRY_CLEARE)
Clears a text entry widget and sets the cursor to the start of the text line.

#defineCTK_TEXTENTRY(X, y, w, h, text, len)
Instantiating macro for the ctk_textentry widget.

#defineCTK_ICON(title, bitmap, textmap)
Instantiating macro for the ctk_icon widget.

#defineCTK_ICON_ADD(icon, p) ctk_icon_add((structk_widgetx)icon, p)
Add an icon to the desktop.

#defineCTK_WIDGET_ADD(win, widg) ctk_widget_add(win, (structk_widget«)widg)
Add a widget to a window.

#defineCTK_WIDGET_FOCUS$win, widg) (win) — focused = (structtk_widgets«)(widg)
Set focus to a widget.

#defineCTK_WIDGET_REDRAWwidg) ctk_widget_redraw((structk_widget«)widg)
Add a widget to the redraw queue.

#defineCTK_WIDGET_TYPHEw) ((w) — type)
Obtain the type of a widget.

#defineCTK_WIDGET_SET_WIDTHwidget, width)
Sets the width of a widget.

#defineCTK_WIDGET_XPO%w) (((structctk_widgetx)(w)) — X)
Retrieves the x position of a widget, relative to the window in which the widget is contained.

#defineCTK_WIDGET_SET_XPO&w, xpos) ((structtk_widget«)(w)) — X = (Xpos)
Sets the x position of a widget, relative to the window in which the widget is contained.

#defineCTK_WIDGET_YPOS%w) (((structctk_widgetx)(w)) —)
Retrieves the y position of a widget, relative to the window in which the widget is contained.

#defineCTK_WIDGET_SET_YPOGS8w, ypos) ((structtk_widget«)(w)) — y = (ypos)
Sets the y position of a widget, relative to the window in which the widget is contained.

#definectk_label_set_heigtw, height) (w)— widget.label.h = (height)
Set the height of a label.

#definectk_label_set_tet t) (I) — text = (t)
Set the text of a label.

#definectk_button_set_tefly, t) (b) — text = (t)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 234

Set the text of a button.

#defineCTK_FOCUS_NONB
Widget focus flag: no focus.

#defineCTK_FOCUS_WIDGETL
Widget focus flag: widget has focus.

#defineCTK_FOCUS_WINDOW2
Widget focus flag: widget’s window is the foremost one.

#defineCTK_FOCUS_DIALOG4
Widget focus flag: widget is in a dialog.

Typedefs

* typedef chactk_arch_key t
The keyboard character type of the system.

Functions

« void ctk_mode_sefunsigned char mode)
Sets the current CTK mode.

« unsigned chactk_mode_gefvoid)
Retrieves the current CTK mode.

e CCIF void ctk_window_new(structctk window«window, unsigned char w, unsigned char h, char
«title)

Create a new window.

» CCIF voidctk_window_cleafstructctk_windowxw)
Remove all widgets from a window.

« CCIF voidctk_window_closéstructctk_windowsxw)
Close a window if it is open.

¢ CCIF voidctk_window_redrawstructctk_windowsw)
Redraw a window.

« CCIF voidctk _dialog_operfstructctk windowsxd)
Open a dialog box.

» CCIF voidctk _dialog_closévoid)
Close the dialog box, if one is open.

e CCIF voidctk_menu_addstructctk_menuxmenu)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.5 core/ctk/ctk.h File Reference 235

Add a menu to the menu bar.

CCIF voidctk_menu_removéstructctk_menusmenu)
Remove a menu from the menu bar.

CCIF voidctk_widget_redrawstructctk_widgetxw)
Redraws a widget.

void ctk_desktop_redragstruct ctk_desktopd)
Redraw the entire desktop.

e CCIF unsigned chartk_desktop_widtlfstruct ctk_desktopd)
Gets the width of the desktop.

« unsigned chactk _desktop_heighistruct ctk_desktopd)
Gets the height of the desktop.

Variables

« CCIF process_eventctk_signal_keypress
Emitted for every key being pressed.

» CCIF process_eventctk_signal_widget_activate
Emitted when a widget is activated (pressed).

« CCIF process_eventctk_signal_widget_select
Emitted when a widget is selected.

« CCIF process_eventctk_signal_menu_activate
Emitted when a menu item is activated.

» CCIF process_eventctk_signal_window_close
Emitted when a window is closed.

« CCIF process_eventctk_signal_pointer_move
Emitted when the mouse pointer is moved.

» CCIF process_eventctk_signal_pointer_button
Emitted when a mouse button is pressed.

» CCIF process_eventctk_signal_button_activate
Same as ctk_signal_widget_activate.

« CCIF process_eventctk_signal_button_hover
Same as ctk_signal_widget_select.

« CCIF process_eventctk_signal_hyperlink_activate
Emitted when a hyperlink is activated.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.6 core/dev/eeprom.h File Reference 236

» CCIF process_eventctk_signal_hyperlink_hover
Same as ctk_signal_widget_select.

9.6 core/dev/eeprom.h File Reference
9.6.1 Detailed Description
EEPROM functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileeeprom.h

Functions

» void eeprom_writdeeprom_addr_t addr, unsigned chbuf, int size)
Write a buffer into EEPROM.

» void eeprom_rea@eeprom_addr_t addr, unsigned chhuf, int size)
Read data from the EEPROM.

* void eeprom_init(void)
Initialize the EEPROM module.

9.7 core/dev/radio.h File Reference
9.7.1 Detailed Description
Header file for the radio API.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileradio.h

9.8 corellib/crcl6.c File Reference
9.8.1 Detailed Description
Implementation of the CRC16 calculcation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file crc16.c

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.9 corellib/crc16.h File Reference 237

9.9 core/lib/crc16.h File Reference
9.9.1 Detailed Description
Header file for the CRC16 calculcation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file crc16.h

Functions

¢ unsigned shortrc16_addunsigned char b, unsigned short crc)
Update an accumulated CRC16 checksum with one byte.

9.10 core/lib/ctk-textedit.c File Reference
9.10.1 Detailed Description
An experimental CTK text edit widget.

Author:
Adam Dunkels<adam@dunkels.com >

This module contains an experimental CTK widget which is implemented in the application process rather
than in the CTK process. The widget is instantiated in a similar fashion as other CTK widgets, but is
different from other widgets in that it requires a signal handler function to be called by the process signal
handler function.

Definition in file ctk-textedit.c
#include "ctk-textedit.h"

#include <string.h >

Functions

« void ctk_textedit_addstructctk_window=w, struct ctk_textedikt)
Add a CTK textedit widget to a window.

« void ctk_textedit_eventhandl¢struct ctk_textedikt, process_event_t s, process_data_t data)
The CTK textedit signal handler.

9.10.2 Function Documentation

9.10.2.1 void ctk_textedit_add (structctk_window * w, struct ctk_textedit x t)
Add a CTK textedit widget to a window.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@dunkels.com

9.11 corel/lib/ctk-textedit.h File Reference 238

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

Definition at line 70 of file ctk-textedit.c.
References CTK_WIDGET_ADD.

9.10.2.2 void ctk_textedit_eventhandler (struct ctk_textedit t, process_event_s, process_data_t
data)

The CTK textedit signal handler.

This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.
data The signal data.

Definition at line 89 of file ctk-textedit.c.

References ctk signal_keypress, ctk signal _widget activate, CTK _WIDGET_FOCUS, and CTK -
WIDGET_REDRAW.

9.11 corellib/ctk-textedit.h File Reference
9.11.1 Detailed Description

Header file for the experimental application level CTK textedit widget.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file ctk-textedit.h
#include "ctk/ctk.h"

Defines

» #defineCTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, 0
Instantiating macro for the CTK textedit widget.

Functions

« void ctk_textedit_addstructctk_window=w, struct ctk_textedikt)
Add a CTK textedit widget to a window.

« void ctk_textedit_eventhandl€struct ctk _textedikt, process_event ts, process_data_t data)
The CTK textedit signal handler.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.12 corellibl/list.c File Reference 239

9.11.2 Define Documentation

9.11.2.1 #define CTK_TEXTEDIT(tx, ty, tw, th, ttext) {CTK_LABEL(tx, ty, tw, th, ttext)}, 0, O
Instantiating macro for the CTK textedit widget.

Parameters:
tx The x position of the widget.

ty The y position of the widget.
tw The width of the widget.

th The height of the widget.
ttext The text buffer to be edited.

Definition at line 57 of file ctk-textedit.h.

9.11.3 Function Documentation

9.11.3.1 void ctk_textedit_add (structctk_window * w, struct ctk_textedit « t)
Add a CTK textedit widget to a window.

Parameters:
w A pointer to the window to which the entry is to be added.

t A pointer to the CTK textentry structure.

Definition at line 70 of file ctk-textedit.c.
References CTK_WIDGET_ADD.

9.11.3.2 void ctk_textedit_eventhandler (struct ctk_textedit t, process_event_s, process_data_t
data)

The CTK textedit signal handler.
This function must be called as part of the normal signal handler of the process that contains the CTK
textentry structure.

Parameters:
t A pointer to the CTK textentry structure.

s The signal number.
data The signal data.

Definition at line 89 of file ctk-textedit.c.

References ctk_signal_keypress, ctk signal_widget activate, CTK_WIDGET_FOCUS, and CTK_-
WIDGET_REDRAW.

9.12 corellib/list.c File Reference
9.12.1 Detailed Description

Linked list library implementation.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.13 corellib/list.h File Reference

240

Author:
Adam Dunkels<cadam@sics.se >

Definition in filelist.c.
#include "lib/list.n"

9.13 corellib/list.h File Reference
9.13.1 Detailed Description
Linked list manipulation routines.

Author:
Adam Dunkels<adam@sics.se >

Definition in file list.h.

Defines

* #defineLIST(name)
Declare a linked list.

Typedefs

* typedef void«x list_t
The linked list type.

Functions

« void list_init (list_tlist)
Initialize a list.

void x list_head(list_tlist)
Get a pointer to the first element of a list.

void x list_tail (list_tlist)
Get the tail of a list.

« void x list_pop(list_t list)
Remove the first object on a list.

void list_push(list_t list, void xitem)
Add an item to the start of the list.

void x list_chop(list_t list)
Remove the last object on the list.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.14 corellib/me.c File Reference

241

void list_add(list_t list, void xitem)
Add an item at the end of a list.

void list_remove(list_t list, void xitem)
Remove a specific element from a list.

int list_length(list_t list)
Get the length of a list.

void list_copy(list_tdest,list_t src)
Duplicate a list.

void list_insert(list_t list, void xprevitem, void«newitem)
Insert an item after a specified item on the list.

9.14 corel/lib/me.c File Reference

9.14.1 Detailed Description

Implementation of the table-driven Manchester encoding and decoding.

Author:
Adam Dunkelscadam@sics.se >

Definition in file me.c

#include "me_tabs.h"

9.15 core/lib/me.h File Reference
9.15.1 Detailed Description
Header file for the table-driven Manchester encoding and decoding.

Author:
Adam Dunkels<cadam@sics.se >

Definition in file me.h

Functions

« unsigned chame_valid(unsigned char m)
Check if an encoded byte is valid.

« unsigned shomne_encodgunsigned char c)
Manchester encode an 8-bit byte.

« unsigned chame_decodel@unsigned short m)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.16 corel/lib/memb.c File Reference

242

Decode a Manchester encoded 16-bit word.

« unsigned chame_decode@unsigned char m)
Decode a Manchester encoded 8-bit byte.

9.16 core/lib/memb.c File Reference
9.16.1 Detailed Description
Memory block allocation routines.

Author:
Adam Dunkels<adam@sics.se >

Definition in file memb.c
#include <string.h >
#include "contiki.h"

#include "lib/memb.h"

9.17 corel/lib/memb.h File Reference
9.17.1 Detailed Description
Memory block allocation routines.

Author:
Adam Dunkelscadam@sics.se >

Definition in file memb.h

Defines

* #defineMEMB (name, structure, num)
Declare a memory block.

Functions

* void memb_init(struct memb_blocksm)
Initialize a memory block that was declared wiRtEMBJ().

 void x memb_alloqstruct memb_blocksm)
Allocate a memory block from a block of memory declared WiEMB().

» charmemb_fregstruct memb_blocksm, void xptr)

Deallocate a memory block from a memory block previously declaredvikiB ().

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.18 core/lib/mmem.c File Reference 243

9.18 core/lib/mmem.c File Reference
9.18.1 Detailed Description
Implementation of the managed memory allocator.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mmem.c
#include "mmem.h"
#include "list.h"
#include "contiki-conf.h"

#include <string.h >

9.19 core/lib/mmem.h File Reference
9.19.1 Detailed Description
Header file for the managed memory allocator.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mmem.h

Defines

 #defineMMEM_PTR(m)
Get a pointer to the managed memory.

Functions

 int mmem_alloqstruct mmenxm, unsigned int size)
Allocate a managed memory block.

 void mmem_fregstruct mmenmn)
Deallocate a managed memory block.

 void mmem_init(void)
Initialize the managed memory module.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.20 corellib/petsciiconv.h File Reference 244

9.20 core/lib/petsciiconv.h File Reference
9.20.1 Detailed Description
PETSCII/ASCII conversion functions.

Author:
Adam Dunkels<adam@dunkels.com >

The Commodore based Contiki targets all have a special character encoding called PETSCII which differs
from the ASCII encoding that normally is used for representing characters.

Note:
For targets that do not use PETSCII encoding the C compiler define WITH_ASCII should be used to
avoid the PETSCII converting functions.

Definition in file petsciiconv.h

9.21 core/loader/elfloader-arch.h File Reference
9.21.1 Detailed Description
Header file for the architecture specific parts of the Contiki ELF loader.

Author:
Adam Dunkels<adam@sics.se >

Definition in file elfloader-arch.h

#include "loader/elfloader.h”

Functions

« void x elfloader_arch_allocate_raimt size)
Allocate RAM for a new module.

« void x elfloader_arch_allocate_rofimt size)
Allocate program memory for a new module.

« void elfloader_arch_relocat@nt fd, unsigned int sectionoffset, chasectionaddr, struct elf32_rela
«rela, charaddr)

Perform a relocation.

« void elfloader_arch_write_roifint fd, unsigned short textoff, unsigned int size, chiarem)
Write to read-only memory (for example the text segment).

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@sics.se

9.22 corel/loader/elfloader.h File Reference 245

9.22 core/loader/elfloader.h File Reference
9.22.1 Detailed Description
Header file for the Contiki ELF loader.

Author:
Adam Dunkels<adam@sics.se >

Definition in file elfloader.h

#include "cfs/cfs.h"

Defines

 #defineELFLOADER_OKO
Return value fronelfloader_load(jndicating that loading worked.

 #defineELFLOADER_BAD_ ELF HEADER1
Return value fronelfloader_load(jndicating that the ELF file had a bad header.

 #defineELFLOADER_NO_SYMTAB2
Return value fronelfloader_load(jndicating that no symbol table could be find in the ELF file.

* #defineELFLOADER_NO_STRTAB3
Return value fronelfloader_load(jndicating that no string table could be find in the ELF file.

* #defineEELFLOADER_NO_TEXT4
Return value fronelfloader_load(jndicating that the size of the .text segment was zero.

* #defineEELFLOADER_SYMBOL_NOT_FOUNCB
Return value fronelfloader_load(jndicating that a symbol specific symbol could not be found.

* #defineEELFLOADER_SEGMENT_NOT_FOUN®

Return value fronelfloader_load()ndicating that one of the required segments (.data, .bss, or .text) could
not be found.

 #defineELFLOADER_NO_STARTPOINT/
Return value fronelfloader_load(jndicating that no starting point could be found in the loaded module.

Functions

« void elfloader_init(void)
elfloader initialization function.

« int elfloader_loadint fd)

Load and relocate an ELF file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.23 core/net/psock.h File Reference 246

Variables

» processx elfloader_autostart_processes
A pointer to the processes loaded witfloader_load()

« charelfloader_unknowii30]
If elfloader_load()ould not find a specific symbol, it is copied into this array.

9.23 core/net/psock.h File Reference
9.23.1 Detailed Description
Protosocket library header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in file psock.h
#include "contiki.h"
#include "contiki-lib.h"

#include "contiki-net.h"

Defines

 #definePSOCK_INIT{psock buffer, buffersize)
Initialize a protosocket.

#definePSOCK_BEGINpsock
Start the protosocket protothread in a function.

#definePSOCK_SENIPpsock data, datalen)
Send data.

#definePSOCK_SEND_STfpsock str)
Send a null-terminated string.

#definePSOCK_GENERATOR_SEN(psock generator, arg)
Generate data with a function and send it.

#definePSOCK_CLOSHKysock
Close a protosocket.

#definePSOCK_READBURpsock
Read data until the buffer is full.

#definePSOCK_READT@psock c)
Read data up to a specified character.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.24 core/net/resolv.c File Reference 247

#definePSOCK_DATALENpsock
The length of the data that was previously read.

#definePSOCK_EXITpsocRk
Exit the protosocket’s protothread.

#definePSOCK_CLOSE_EXI{psocR
Close a protosocket and exit the protosocket’s protothread.

#definePSOCK_ENDpsochk
Declare the end of a protosocket’s protothread.

#definePSOCK_NEWDATApsock
Check if new data has arrived on a protosocket.

#definePSOCK_WAIT_UNTIL(psock condition)
Wait until a condition is true.

9.24 core/net/resolv.c File Reference
9.24.1 Detailed Description

DNS host name to IP address resolver.

Author:
Adam Dunkels<adam@dunkels.com >

This file implements a DNS host name to IP address resolver.
Definition in file resolv.c

#include "net/tcpip.h”

#include "net/resolv.h"

#include <stringh >

Functions

« void resolv_querycharxname)
Queues a name so that a question for the name will be sent out.

e ul6_tx resolv_lookupcharxname)
Look up a hostname in the array of known hostnames.

* uip_ipaddr_t resolv_getservegwoid)
Obtain the currently configured DNS server.

« void resolv_conf(constuip_ipaddr_txdnsserver)
Configure a DNS server.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.25 core/net/resolv.h File Reference

248

Variables

« process_eventresolv_event_found

Event that is broadcasted when a DNS name has been resolved.

9.25 core/net/resolv.h File Reference
9.25.1 Detailed Description
ulP DNS resolver code header file.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in fileresolv.h

#include "contiki.h"

Functions

» CCIF voidresolv_conflconstuip_ipaddr_txdnsserver)
Configure a DNS server.

e CCIFuip_ipaddr_t« resolv_getservegwoid)
Obtain the currently configured DNS server.

¢ CCIF ul6_t« resolv_lookupcharsname)
Look up a hostname in the array of known hostnames.

« CCIF voidresolv_querycharxname)
Queues a nhame so that a question for the name will be sent out.

Variables

» CCIF process_eventrésolv_event_found

Event that is broadcasted when a DNS name has been resolved.

9.26 core/net/rime.h File Reference
9.26.1 Detailed Description
Header file for the Rime stack.

Author:
Adam Dunkels<adam@sics.se >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@sics.se

9.27 core/net/rime/abc.c File Reference

249

Definition in file rime.h

#include "net/rime/rimestats.h"
#include "net/rime/rimeaddr.h"
#include "net/rime/ctimer.h"
#include "net/rime/rimebuf.h"
#include "net/rime/queuebuf.h”
#include "net/rime/ruc.h”
#include "net/rime/sibc.h"

#include "net/mac/mac.h”

Functions

* void rime_init (const struct mac_drives)
Initialize Rime.

« void rime_input(void)
Send an incoming packet to Rime.

« void rime_driver_sendvoid)
Rime calls this function to send out a packet.

9.27 core/net/rime/abc.c File Reference

9.27.1 Detailed Description

Anonymous best-effort local area Broad Cast (abc).

Author:
Adam Dunkels<adam@sics.se >

Definition in file abc.c
#include "contiki-net.h"

#include "net/rime.h"

9.28 core/net/rime/abc.h File Reference

9.28.1 Detailed Description

Header file for the Rime module Anonymous BroadCast (abc).

Author:
Adam Dunkels<cadam@sics.se >

Definition in file abc.h

#include "net/rime/rimebuf.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.29 core/net/rime/ctimer.c File Reference 250

Functions

void abc_oper{struct abc_connc, ul6_t channel, const struedbc_callbacksu)
Set up an anonymous best-effort broadcast connection.

void abc_closédstruct abc_connc)
Close an abc connection.

int abc_sendstruct abc_connc)
Send an anonymous best-effort broadcast packet.

« void abc_input_packdoid)
Internal Rime function: Pass a packet to the abc layer.

9.29 core/net/rime/ctimer.c File Reference
9.29.1 Detailed Description
Callback timer implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file ctimer.c
#include "net/rime/ctimer.h"
#include "contiki.h"
#include "lib/list.h"

#include "net/rime.h"

9.30 core/net/rime/ctimer.h File Reference
9.30.1 Detailed Description
Header file for the callback timer.

Author:
Adam Dunkels<adam@sics.se >

Definition in file ctimer.h

#include "sys/etimer.h"

9.31 core/net/rimel/ibc.c File Reference
9.31.1 Detailed Description

Identified best-effort local area broadcast (ibc).

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.32 core/net/rime/ibc.h File Reference 251

Author:
Adam Dunkels<cadam@sics.se >

Definition in fileibc.c.
#include "contiki-net.h"

#include <string.h >

9.32 core/net/rimel/ibc.h File Reference
9.32.1 Detailed Description

Header file for identified best-effort local area broadcast.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileibc.h.
#include "net/rime/abc.h"

#include "net/rime/rimeaddr.h"

Functions

« void ibc_open(struct ibc_conn:c, ul6_t channel, const strubt_callbacksxu)
Set up an identified best-effort broadcast connection.

« void ibc_close(struct ibc_connc)
Close an ibc connection.

« intibc_sendstruct ibc_connc)
Send an anonymous best-effort broadcast packet.

9.33 core/net/rime/mesh.c File Reference
9.33.1 Detailed Description
A mesh routing protocol.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mesh.c
#include "contiki.h"
#include "net/rime.h"
#include "net/rime/route.h"
#include "net/rime/mesh.h"

#include <stddef.h >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.34 core/net/rime/mesh.h File Reference 252

9.34 core/net/rime/mesh.h File Reference
9.34.1 Detailed Description

Header file for the Rime mesh routing protocol.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mesh.h
#include "net/rime.h"
#include "net/rime/mh.h"

#include "net/rime/route-discovery.h"

Functions

« void mesh_opeifstruct mesh_conrc, ul6_t channels, const strunesh_callbackscallbacks)

Open a mesh connection.

« void mesh_closéstruct mesh_connc)
Close an mesh connection.

« int mesh_sengstruct mesh_congrc, rimeaddr_tdest)
Send a mesh packet.

9.35 core/net/rime/mh.c File Reference
9.35.1 Detailed Description
Multihop forwarding.

Author:
Adam Dunkels<adam@sics.se >

Definition in filemh.c
#include "contiki.h"
#include "net/rime.h"
#include "net/rime/mh.h"

#include "net/rime/route.h"

9.36 core/net/rime/mh.h File Reference
9.36.1 Detailed Description

Multihop forwarding header file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.37 core/net/rime/neighbor.c File Reference

253

Author:
Adam Dunkels<cadam@sics.se >

Definition in file mh.h
#include "net/rime/abc.h"

#include "net/rime/rimeaddr.h"

9.37 core/net/rime/neighbor.c File Reference
9.37.1 Detailed Description
Radio neighborhood management.

Author:
Adam Dunkelscadam@sics.se >

Definition in file neighbor.c
#include <limits.h >
#include <stdio.h >
#include "contiki.h"

#include "net/rime/neighbor.h"

#include "net/rime/ctimer.h"

9.38 core/net/rime/neighbor.h File Reference

9.38.1 Detailed Description

Header file for the Contiki radio neighborhood management.

Author:
Adam Dunkels<adam@sics.se >

Definition in file neighbor.h

#include "net/rime/rimeaddr.h”

9.39 core/net/rime/nf.c File Reference
9.39.1 Detailed Description
Best-effort network flooding (nf).

Author:
Adam Dunkels<adam@sics.se >

Definition in file nf.c.

#include "net/rime/nf.n"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.40 core/net/rime/nf.h File Reference

254

#include "net/rime.h"
#include "lib/rand.h"
#include <string.h >

#include <stdio.h >

9.40 core/net/rime/nf.h File Reference
9.40.1 Detailed Description
Header file for the best-effort network flooding (nf).

Author:
Adam Dunkels<adam@sics.se >

Definition in file nf.h.
#include "net/rime/ctimer.h"
#include "net/rime/queuebuf.h”

#include "net/rime/ipolite.h"

9.41 core/net/rime/queuebuf.c File Reference
9.41.1 Detailed Description
Implementation of the Rime queue buffers.

Author:
Adam Dunkels<adam@sics.se >

Definition in file queuebuf.c
#include "contiki-net.h"

#include <stringh >

9.42 core/net/rime/queuebuf.h File Reference
9.42.1 Detailed Description
Header file for the Rime queue buffer management.

Author:
Adam Dunkelscadam@sics.se >

Definition in file queuebuf.h

#include "net/rime/rimebuf.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.43 core/net/rime/rimeaddr.c File Reference

255

9.43 core/net/rime/rimeaddr.c File Reference
9.43.1 Detailed Description
Functions for manipulating Rime addresses.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rimeaddr.c

#include "net/rime/rimeaddr.h"

Variables

e rimeaddr_timeaddr_node_addr
The Rime address of the node.

e const rimeaddr_timeaddr_null
The null Rime address.

9.44 core/net/rime/rimeaddr.h File Reference
9.44.1 Detailed Description
Header file for the Rime address repressentation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rimeaddr.h

Functions

« void rimeaddr_copyrimeaddr_t«dest, const rimeaddr xfrom)
Copy a Rime address.

« int rimeaddr_cmgconst rimeaddr_taddrl, const rimeaddr xaddr2)
Compare two Rime addresses.

 void rimeaddr_set_node_ad@iimeaddr_txaddr)
Set the address of the current node.

Variables

e rimeaddr_timeaddr_node_addr
The Rime address of the node.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.45 core/net/rime/rimebuf.c File Reference 256

 const rimeaddr_timeaddr_null
The null Rime address.

9.45 core/net/rime/rimebuf.c File Reference
9.45.1 Detailed Description
Rime buffer (rimebuf) management.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rimebuf.c
#include <string.h >
#include “contiki-net.h"
#include "net/rime/rimebuf.h"

#include "net/rime.h"

9.46 core/net/rime/rimebuf.h File Reference
9.46.1 Detailed Description
Header file for the Rime buffer (rimebuf) management.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rimebuf.h

#include "contiki-conf.h"

Defines

 #defineRIMEBUF_SIZE128
The size of the rimebuf, in bytes.

» #defineRIMEBUF_HDR_SIZE32
The size of the rimebuf header, in bytes.

Functions

« void rimebuf_clear(void)
Clear and reset the rimebuf.

« void * rimebuf_dataptfvoid)
Get a pointer to the data in the rimebuf.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.47 core/net/rime/route-discovery.c File Reference 257

« void * rimebuf_hdrptr(void)
Get a pointer to the header in the rimebuf, for outbound packets.

» u8_trimebuf_hdrlen(void)
Get the length of the header in the rimebuf, for outbound packets.

* ul6_trimebuf_datalerfvoid)
Get the length of the data in the rimebuf.

e ul6_trimebuf_totlen(void)
Get the total length of the header and data in the rimebuf.

« void rimebuf_set_dataleful6_t len)
Set the length of the data in the rimebuf.

« void rimebuf_referencévoid xptr, ul6_tlen)
Point the rimebuf to external data.

« int rimebuf_is_referencévoid)

Check if the rimebuf references external data.

« void * rimebuf_reference_p{void)
Get a pointer to external data referenced by the rimebuf.

« void rimebuf_compacfvoid)
Compact the rimebuf.

* intrimebuf_copyfromu8_t«from, ul6_tlen)
Copy from external data into the rimebuf.

« int rimebuf_copytqu8_txto)
Copy the entire rimebuf to an external buffer.

« int rimebuf_copyto_hd(u8_txto)
Copy the header portion of the rimebuf to an external buffer.

« int rimebuf_hdrallodint size)
Extend the header of the rimebuf, for outbound packets.

« int rimebuf_hdrreducéint size)
Reduce the header in the rimebuf, for incoming packets.

9.47 core/net/rime/route-discovery.c File Reference
9.47.1 Detailed Description

Route discovery protocol.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.48 core/net/rime/route-discovery.h File Reference

258

Author:

Adam Dunkels<cadam@sics.se >
Definition in file route-discovery.c
#include "contiki.h"

#include "net/rime.h"
#include "net/rime/route.h"
#include "net/rime/route-discovery.h"

#include <stddef.h >

9.48 core/net/rime/route-discovery.h File Reference

9.48.1 Detailed Description

Header file for the Rime mesh routing protocol.

Author:
Adam Dunkels<adam@sics.se >

Definition in file route-discovery.h
#include "net/rime.h"

#include "net/rime/nf.n"

9.49 core/net/rime/route.c File Reference
9.49.1 Detailed Description

Rime route table.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileroute.c
#include <stdio.h >

#include "net/rime/route.h"

9.50 core/net/rime/route.h File Reference
9.50.1 Detailed Description

Header file for the Rime route table.
Author:

Adam Dunkels<adam@sics.se >
Definition in fileroute.h
#include "contiki-net.h"

#include "net/rime.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.51 core/net/rime/ruc.c File Reference

259

9.51 core/net/rime/ruc.c File Reference
9.51.1 Detailed Description

Reliable unicast.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileruc.c

#include "net/rime/ruc.h”
#include "net/rime/neighbor.h"
#include "net/rime.h"

#include <string.h >

9.52 core/net/rime/ruc.h File Reference
9.52.1 Detailed Description

Reliable unicast header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileruc.h

#include "net/rime/suc.h"

9.53 core/net/rime/rudolphO.c File Reference
9.53.1 Detailed Description
RudolphO: a simple block data flooding protocol.

Author:
Adam Dunkels<cadam@sics.se >

Definition in file rudolphO.c
#include <stddef.h >
#include "net/rime.h"
#include "net/rime/rudolph0.h"
#include <stdio.h >

9.54 core/net/rime/rudolph0.h File Reference

9.54.1 Detailed Description

Header file for the single-hop reliable bulk data transfer module.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.55 core/net/rime/rudolphl.c File Reference

260

Author:
Adam Dunkels<cadam@sics.se >

Definition in file rudolph0.h
#include "net/rime.h"

#include "net/rime/sabc.h"
#include "net/rime/polite.h”

#include "contiki-net.h"

9.55 core/net/rime/rudolphl.c File Reference
9.55.1 Detailed Description
Rudolphl: a simple block data flooding protocol.

Author:
Adam Dunkels<adam@sics.se >

Definition in file rudolphl.c
#include <stdio.h >
#include <stddef.h >
#include "net/rime.h"
#include "net/rime/rudolphl.h"

#include "cfs/cfs.h"

9.56 core/net/rime/rudolphl.h File Reference

9.56.1 Detailed Description

Header file for the multi-hop reliable bulk data transfer mechanism.

Author:
Adam Dunkels<adam@sics.se >

Definition in filerudolphl.h
#include "net/rime.h"
#include "net/rime/trickle.h”
#include "net/rime/uabc.h”

#include "contiki-net.n"

9.57 core/net/rime/sabc.c File Reference

9.57.1 Detailed Description

Implementation of the Rime module Stubborn Anonymous BroadCast (sabc).

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.58 core/net/rime/sabc.h File Reference 261

Author:
Adam Dunkels<cadam@sics.se >

Definition in file sabc.c
#include "net/rime/sabc.h"
#include "net/rime.h"

#include <string.h >

9.58 core/net/rime/sabc.h File Reference
9.58.1 Detailed Description

Header file for the Rime module Stubborn Anonymous BroadCast (sabc).

Author:
Adam Dunkels<adam@sics.se >

Definition in file sabc.h
#include "net/rime/uc.h"
#include "net/rime/ctimer.h"

#include "net/rime/queuebuf.h”

Functions

« void sabc_opeifstructsabc_conrc, ul6_t channel, const struct sabc_callbaaks
Set up a sabc connection.

« int sabc_send_stubbo(structsabc_conmc, clock_time_tt)
Send a stubborn message.

« void sabc_cancestructsabc_conic)
Cancel the current stubborn message.

« void sabc_set_timgstructsabc_conmc, clock time_tt)
Set the retransmission time of the current stubborn message.

9.59 core/net/rime/sibc.c File Reference
9.59.1 Detailed Description
Implementation of the Rime module Stubborn Identified BroadCast (sibc).

Author:
Adam Dunkels<adam@sics.se >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.60 core/net/rime/sibc.h File Reference

262

Definition in file sibc.c
#include "net/rime/sibc.h"
#include "net/rime.h"

#include <string.h >

9.60 core/net/rime/sibc.h File Reference

9.60.1 Detailed Description

Header file for the Rime module Stubborn Identified BroadCast (sibc).

Author:
Adam Dunkels<adam@sics.se >
Definition in file sibc.h
#include "net/rime/uc.h"
#include "net/rime/ctimer.h"

#include "net/rime/queuebuf.h”

9.61 core/net/rime/suc.c File Reference
9.61.1 Detailed Description

Stubborn unicast.

Author:
Adam Dunkels<adam@sics.se >
Definition in file suc.c
#include "net/rime/suc.h"
#include "net/rime.h"

#include <string.h >

9.62 core/net/rime/suc.h File Reference
9.62.1 Detailed Description

Stubborn unicast header file.

Author:
Adam Dunkels<adam@sics.se >
Definition in file suc.h
#include "net/rime/uc.h"
#include "net/rime/ctimer.h"

#include "net/rime/queuebuf.h”

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.63 core/net/rime/tree.c File Reference

263

9.63 core/net/rime/tree.c File Reference
9.63.1 Detailed Description
Tree-based hop-by-hop reliable data collection.

Author:
Adam Dunkels<adam@sics.se >

Definition in filetree.c

#include "contiki.h"

#include "net/rime.h"
#include "net/rime/neighbor.h"
#include "net/rime/nf.h"
#include "net/rimeftree.h”
#include "dev/radio-sensor.h"
#include <string.h >
#include <stdio.h >
#include <stddef.h >

9.64 core/net/rime/tree.h File Reference
9.64.1 Detailed Description
Header file for hop-by-hop reliable data collection.

Author:
Adam Dunkels<cadam@sics.se >

Definition in filetree.h
#include "net/rime/ipolite.h"

#include "net/rime/ruc.h"

9.65 core/net/rimeltrickle.c File Reference
9.65.1 Detailed Description
Trickle (reliable single source flooding) for Rime.

Author:
Adam Dunkels<adam@sics.se >

Definition in file trickle.c.

#include "net/rime/trickle.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.66 core/net/rime/trickle.h File Reference

264

9.66 core/net/rimeftrickle.h File Reference
9.66.1 Detailed Description
Header file for Trickle (reliable single source flooding) for Rime.

Author:
Adam Dunkels<adam@sics.se >

Definition in file trickle.h.
#include "net/rime.h"

#include "net/rime/nf.h"

9.67 core/net/rime/uabc.c File Reference
9.67.1 Detailed Description
Unique Anonymous best effort local area BroadCast (uabc).

Author:
Adam Dunkels<adam@sics.se >

Definition in fileuabc.c
#include "net/rime.h"
#include "net/rime/uabc.h"
#include "lib/rand.h"

#include <string.h >

9.68 core/net/rime/uabc.h File Reference

9.68.1 Detailed Description

Header file for Unique Anonymous best effort local area BroadCast (uabc).

Author:
Adam Dunkels<adam@sics.se >

Definition in file uabc.h

#include "net/rime.h"

9.69 core/net/rime/uc.c File Reference
9.69.1 Detailed Description

Single-hop unicast.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.70 core/net/rime/uc.h File Reference

265

Author:
Adam Dunkels<cadam@sics.se >

Definition in fileuc.c
#include "net/rime.h"
#include "net/rime/uc.h"

#include <string.h >

9.70 core/net/rime/uc.h File Reference
9.70.1 Detailed Description
Header file for Rime’s single-hop unicast.

Author:
Adam Dunkels<adam@sics.se >

Definition in fileuc.h

#include "net/rime/ibc.h"

9.71 core/net/rimel/uibc.c File Reference

9.71.1 Detailed Description

Unique Identified best effort local area BroadCast (uibc).

Author:
Adam Dunkels<cadam@sics.se >

Definition in file uibc.c
#include "net/rime.h"
#include "net/rime/uibc.h”
#include "lib/rand.h"

#include <string.h >

9.72 core/net/rimel/uibc.h File Reference

9.72.1 Detailed Description

Header file for Unique Identified best effort local area BroadCast (uibc).

Author:
Adam Dunkels<adam@sics.se >

Definition in file uibc.h

#include "net/rime.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se
mailto:adam@sics.se

9.73 core/net/tcpip.h File Reference 266

9.73 core/net/tcpip.h File Reference
9.73.1 Detailed Description
Header for the Contiki/ulP interface.

Author:

Adam Dunkels<adam@sics.se >
Definition in file tcpip.h
#include "contiki.h"

#include "net/uip.h"

TCP functions

« CCIF voidtcp_attacHstructuip_connx«conn, voidxappstate)
Attach a TCP connection to the current process.

CCIF voidtcp_listen(ul6_t port)
Open a TCP port.

CCIF voidtcp_unlisten(ul6_t port)
Close a listening TCP port.

CCIF structuip_connx tcp_connecfuip_ipaddr_tripaddr, ul6_t port, voi¢appstate)
Open a TCP connection to the specified IP address and port.

« void tcpip_poll_tcp(structuip_connxconn)
Cause a specified TCP connection to be polled.

UDP functions

« #defineudp_bindconn, port) uip_udp_bind(conn, port)
Bind a UDP connection to a local port.

void udp_attachstructuip_udp_connconn, voidxappstate)
Attach the current process to a UDP connection.

CCIF structuip_udp_connx udp_new(constuip_ipaddr_t«ripaddr, ul6_t port, voidappstate)
Create a new UDP connection.

 uip_udp_connx udp_broadcast_neul6_t port, voidkappstate)
Create a new UDP broadcast connection.

CCIF voidtcpip_poll_udp(structuip_udp_conrconn)
Cause a specified UDP connection to be polled.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.74 core/net/uip-fw.c File Reference 267

TCP/IP packet processing

« CCIF voidtcpip_input(void)
Deliver an incoming packet to the TCP/IP stack.

Defines

* #defineUIP_APPCALL tcpip_uipcall
The name of the application function that ulP should call in response to TCP/IP events.

Typedefs

* typedef tcpip_uipstateip_udp_appstate_t
The type of the application state that is to be stored inuipe connstructure.

« typedef tcpip_uipstateip_tcp_appstate_t
The type of the application state that is to be stored inuipe connstructure.

Variables

» CCIF process_eventtdpip_event
The ulP event.

9.74 core/net/uip-fw.c File Reference
9.74.1 Detailed Description
ulP packet forwarding.

Author:
Adam Dunkels<adam@sics.se >

This file implements a number of simple functions which do packet forwarding over multiple network
interfaces with ulP.

Definition in file uip-fw.c.
#include <string.h >
#include "contiki-conf.h"
#include "net/uip.h"
#include "net/uip_arch.h"
#include "net/uip-fw.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.75 core/net/uip-fw.h File Reference 268

9.75 core/net/uip-fw.h File Reference
9.75.1 Detailed Description
ulP packet forwarding header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in file uip-fw.h.

#include "net/uip.h"

Defines

» #defineUIP_FW_NETIRip1, ip2, ip3, ip4, nm1, nm2, nm3, nm4, outputfunc)
Intantiating macro for a ulP network interface.

« #defineuip_fw_setipaddnetif, addr)
Set the IP address of a network interface.

« #defineuip_fw_setnetmagketif, addr)
Set the netmask of a network interface.

* #defineUIP_FW_LOCAL
A non-error message that indicates that a packet should be processed locally.

 #defineUIP_FW_OK
A non-error message that indicates that something went OK.

* #defineUIP_FW_FORWARDED
A non-error message that indicates that a packet was forwarded.

« #defineUIP_FW_ZEROLEN

A non-error message that indicates that a zero-length packet transmission was attempted, and that no packet
was sent.

* #defineUIP_FW_TOOLARGE

An error message that indicates that a packet that was too large for the outbound network interface was
detected.

* #defineUIP_FW_NOROUTE
An error message that indicates that no suitable interface could be found for an outbound packet.

 #defineUIP_FW_DROPPED
An error message that indicates that a packet that should be forwarded or output was dropped.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.76 core/net/uip-split.h File Reference 269

Functions

« void uip_fw_init (void)
Initialize the ulP packet forwarding module.

e u8 tuip_fw_forward(void)
Forward an IP packet in the uip_buf buffer.

e u8_tuip_fw_output(void)
Output an IP packet on the correct network interface.

« void uip_fw_registel(structuip_fw_netifxnetif)
Register a network interface with the forwarding module.

« void uip_fw_default(structuip_fw_netif xnetif)
Register a default network interface.

« void uip_fw_periodic(void)
Perform periodic processing.

9.76 core/net/uip-split.h File Reference
9.76.1 Detailed Description

Module for splitting outbound TCP segments in two to avoid the delayed ACK throughput degradation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file uip-split.h

Functions

« void uip_split_outpuivoid)
Handle outgoing packets.

9.77 core/net/uip.c File Reference
9.77.1 Detailed Description
The ulP TCP/IP stack code.

Author:
Adam Dunkels<adam@dunkels.com >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@dunkels.com

9.77 core/net/uip.c File Reference 270

Definition in file uip.c.
#include "net/uip.h"
#include "net/uipopt.h”
#include "net/uip_arp.h"
#include "net/uip_arch.h"

#include <string.h >

Functions

* void uip_setipid(ul6_tid)
ulP initialization function.

* void uip_init (void)
ulP initialization function.

 uip_udp_conrx uip_udp_newconstuip_ipaddr_t«ripaddr, ul6_t rport)
Set up a new UDP connection.

« void uip_unlisten(u16_t port)
Stop listening to the specified port.

« void uip_listen(ul6_t port)
Start listening to the specified port.

e ul6_thtons(ul6_tval)
Convert 16-bit quantity from host byte order to network byte order.

« void uip_sendconst void«data, int len)
Send data on the current connection.

Variables

e u8_tuip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

* void * uip_appdata
Pointer to the application data in the packet buffer.

ul6_tuip_len
The length of the packet in the uip_buf buffer.

* uip_connx uip_conn
Pointer to the current TCP connection.

* uip_udp_conrx uip_udp_conn
The current UDP connection.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.78 core/net/uip.h File Reference 271

* u8_tuip_acc344]
4-byte array used for the 32-bit sequence number calculations.

9.78 core/net/uip.h File Reference
9.78.1 Detailed Description
Header file for the ulP TCP/IP stack.

Author:
Adam Dunkels<adam@dunkels.com >

The ulP TCP/IP stack header file contains definitions for a number of C macros that are used by ulP
programs as well as internal ulP structures, TCP/IP header structures and function declarations.

Definition in file uip.h.
#include "net/uipopt.h”
#include "net/tcpip.h"

Defines

« #defineuip_sethostaddaddr)
Set the IP address of this host.

« #defineuip_gethostaddaddr)
Get the IP address of this host.

* #defineuip_setdraddaddr)
Set the default router’s IP address.

« #defineuip_setnetmagkddr)
Set the netmask.

* #defineuip_getdraddaddr)
Get the default router’s IP address.

« #defineuip_getnetmadladdr)
Get the netmask.

* #defineuip_input)
Process an incoming packet.

« #defineuip_periodi¢conn)
Periodic processing for a connection identified by its number.

« #defineuip_periodic_confconn)
Perform periodic processing for a connection identified by a pointer to its structure.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.78 core/net/uip.h File Reference 272

« #defineuip_poll_conifconn)
Reugest that a particular connection should be polled.

« #defineuip_udp_periodiconn)
Periodic processing for a UDP connection identified by its number.

« #defineuip_udp_periodic_cor{nonn)
Periodic processing for a UDP connection identified by a pointer to its structure.

* #defineuip_datale()
The length of any incoming data that is currently avaliable (if avaliable) in the uip_appdata buffer.

« #defineuip_urgdatale)
The length of any out-of-band data (urgent data) that has arrived on the connection.

* #defineuip_clos€)
Close the current connection.

« #defineuip_aborf)
Abort the current connection.

« #defineuip_stoyf)
Tell the sending host to stop sending data.

* #defineuip_stoppeftonn)
Find out if the current connection has been previously stoppeduwigthstop()

* #defineuip_restarf)
Restart the current connection, if is has previously been stoppediipitistop()

« #defineuip_udpconnectiaf)
Is the current connection a UDP connection?

* #defineuip_newdat§
Is new incoming data available?

« #defineuip_acked)
Has previously sent data been acknowledged?

« #defineuip_connecte()
Has the connection just been connected?

« #defineuip_closed)
Has the connection been closed by the other end?

« #defineuip_aborte()
Has the connection been aborted by the other end?

#defineuip_timedouf)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.78

core/net/uip.h File Reference 273

Has the connection timed out?

#defineuip_rexmi()
Do we need to retransmit previously data?

#defineuip_poll)
Is the connection being polled by ulP?

#defineuip_initialmsg)
Get the initial maxium segment size (MSS) of the current connection.

#defineuip_msg)

Get the current maxium segment size that can be sent on the current connection.

#defineuip_udp_removeonn)
Removed a UDP connection.

#defineuip_udp_bindconn, port)
Bind a UDP connection to a local port.

#defineuip_udp_sen(en)
Send a UDP datagram of length len on the current connection.

#defineuip_ipaddr_to_qua@)
Convert an IP address to four bytes separated by commas.

#defineuip_ipadd(addr, addr0, addr1, addr2, addr3)
Construct an IP address from four bytes.

#defineuip_ip6add(addr, addrO, addrl, addr2, addr3, addr4, addr5, addr6, addr7)
Construct an IPv6 address from eight 16-bit words.

#defineuip_ipaddr_copfdest, src)
Copy an IP address to another IP address.

#defineuip_ipaddr_cmfaddrl, addr2)
Compare two IP addresses.

#defineuip_ipaddr_maskcn{addrl, addr2, mask)
Compare two IP addresses with netmasks.

#defineuip_ipaddr_masdklest, src, mask)
Mask out the network part of an IP address.

#defineuip_ipaddrladdr)
Pick the first octet of an IP address.

#defineuip_ipaddrZaddr)
Pick the second octet of an IP address.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.78 core/net/uip.h File Reference 274

#defineuip_ipaddr@addr)
Pick the third octet of an IP address.

#defineuip_ipaddr4addr)
Pick the fourth octet of an IP address.

#defineHTONS(n)
Convert 16-bit quantity from host byte order to network byte order.

#defineUIP_APPDATA_SIZE
The buffer size available for user data in thip_bufbuffer.

Typedefs

« typedefuip_ip4addr_uip_ip4addr_t
Representation of an IP address.

Functions

* void uip_init (void)
ulP initialization function.

* void uip_setipid(ul6_tid)
ulP initialization function.

« void uip_listen(ul6 _t port)
Start listening to the specified port.

« void uip_unlisten(u16_t port)
Stop listening to the specified port.

* uip_connx uip_connec{uip_ipaddr_tripaddr, ul6_t port)
Connect to a remote host using TCP.

« CCIF voiduip_sendconst void«data, int len)
Send data on the current connection.

* uip_udp_conrx uip_udp_newconstuip_ipaddr_t«ripaddr, ul6_t rport)
Set up a new UDP connection.

e CCIF ul6_thtons(ul6_t val)
Convert 16-bit quantity from host byte order to network byte order.

e ul6_tuip_chksum(ul6_txbuf, ul6_tlen)
Calculate the Internet checksum over a buffer.

¢ ul6_tuip_ipchksum(void)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.79 core/net/uip_arp.c File Reference 275

Calculate the IP header checksum of the packet header in uip_buf.

¢ ul6_tuip_tcpchksumnfvoid)
Calculate the TCP checksum of the packet in uip_buf and uip_appdata.

e ul6_tuip_udpchksungvoid)
Calculate the UDP checksum of the packet in uip_buf and uip_appdata.

Variables

e CCIF u8_tuip_buf[UIP_BUFSIZE+2]
The ulP packet buffer.

» CCIF void* uip_appdata
Pointer to the application data in the packet buffer.

e CCIF ul6_tuip_len
The length of the packet in the uip_buf buffer.

e CCIF structuip_connx uip_conn
Pointer to the current TCP connection.

e u8_ tuip_acc374]
4-byte array used for the 32-bit sequence number calculations.

 uip_udp_conn uip_udp_conn
The current UDP connection.

* uip_statwuip_stat
The ulP TCP/IP statistics.

9.79 core/net/uip_arp.c File Reference
9.79.1 Detailed Description
Implementation of the ARP Address Resolution Protocol.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file uip_arp.c
#include "net/uip_arp.h"

#include <string.h >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.80 core/net/uip_arp.h File Reference

276

9.80 core/net/uip_arp.h File Reference
9.80.1 Detailed Description
Macros and definitions for the ARP module.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file uip_arp.h

#include "net/uip.h"

Defines

« #defineuip_setethaddeaddr)
Specifiy the Ethernet MAC address.

Functions

« void uip_arp_init(void)
Initialize the ARP module.

* void uip_arp_arpin(void)
ARP processing for incoming ARP packets.

« void uip_arp_ou{void)

Prepend Ethernet header to an outbound IP packet and see if we need to send out an ARP request.

« void uip_arp_timei(void)
Periodic ARP processing function.

9.81 core/net/uiplib.h File Reference
9.81.1 Detailed Description
Various ulP library functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in file uiplib.h.

Functions

e CCIF unsigned chariplib_ipaddrconcharxaddrstr, unsigned chaaddr)
Convert a textual representation of an IP address to a numerical representation.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@sics.se

9.82 core/net/uipopt.h File Reference 277

9.82 core/net/uipopt.h File Reference
9.82.1 Detailed Description
Configuration options for ulP.

Author:
Adam Dunkelscadam@dunkels.com >

This file is used for tweaking various configuration options for ulP. You should make a copy of this file
into one of your project’s directories instead of editing this example "uipopt.h" file that comes with the ulP
distribution.

Definition in file uipopt.h

#include "contiki-conf.h"

Defines

* #defineUIP_FIXEDADDR

Determines if ulP should use a fixed IP address or not.

« #defineUIP_PINGADDRCONF

Ping IP address asignment.

« #defineUIP_FIXEDETHADDR
Specifies if the ulP ARP module should be compiled with a fixed Ethernet MAC address or not.

 #defineUIP_TTL 64
The IP TTL (time to live) of IP packets sent by ulP.

 #defineUIP_ REASSEMBLY
Turn on support for IP packet reassembly.

» #defineUIP_REASS MAXAGE40
The maximum time an IP fragment should wait in the reassembly buffer before it is dropped.

* #defineUIP_UDP
Toggles wether UDP support should be compiled in or not.

 #defineUIP_UDP_CHECKSUMS
Toggles if UDP checksums should be used or not.

- #defineUIP_UDP_CONNS

The maximum amount of concurrent UDP connections.

* #defineUIP_ACTIVE_OPEN

Determines if support for opening connections from ulP should be compiled in.

« #defineUIP_CONNS

The maximum number of simultaneously open TCP connections.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.82

core/net/uipopt.h File Reference 278

#defineUIP_LISTENPORTS
The maximum number of simultaneously listening TCP ports.

#defineUIP_URGDATA
Determines if support for TCP urgent data natification should be compiled in.

#defineUIP_RTO3
The initial retransmission timeout counted in timer pulses.

#defineUIP_MAXRTX 8
The maximum number of times a segment should be retransmitted before the connection should be aborted.

#defineUIP_MAXSYNRTX 5

The maximum number of times a SYN segment should be retransmitted before a connection request should
be deemed to have been unsuccessful.

#defineUIP_TCP_MSSUIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
The TCP maximum segment size.

#defineUIP_RECEIVE_WINDOW
The size of the advertised receiver’s window.

#defineUIP_TIME_WAIT_TIMEOUT 120
How long a connection should stay in the TIME_WAIT state.

#defineUIP_ARPTAB_SIZE
The size of the ARP table.

#defineUIP_ARP_MAXAGE 120
The maxium age of ARP table entries measured in 10ths of seconds.

#defineUIP_BUFSIZE
The size of the ulP packet buffer.

#defineUIP_STATISTICS

Determines if statistics support should be compiled in.

#defineUIP_LOGGING

Determines if logging of certain events should be compiled in.

#defineUIP_BROADCAST
Broadcast support.

#defineUIP_LLH LEN
The link level header length.

#defineUIP_BYTE_ORDER
The byte order of the CPU architecture on which ulP is to be run.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.83 core/sys/arg.c File Reference 279

Functions

« void uip_log(charxmsg)
Print out a ulP log message.

9.83 core/sys/arg.c File Reference
9.83.1 Detailed Description

Argument buffer for passing arguments when starting processes.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in filearg.c
#include "contiki.h"

#include "sys/arg.h"

Functions

 charx arg_alloc(char size)
Allocates an argument buffer.

« void arg_free(charxarg)
Deallocates an argument buffer.

9.84 core/sys/cc.h File Reference
9.84.1 Detailed Description
Default definitions of C compiler quirk work-arounds.

Author:
Adam Dunkelscadam@dunkels.com >

This file is used for making use of extra functionality of some C compilers used for Contiki, and defining
work-arounds for various quirks and problems with some other C compilers.

Definition in file cc.h

#include "contiki-conf.h"

Defines

» #defineCC_REGISTER_ARG
Configure if the C compiler supports the "register" keyword for function arguments.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@dunkels.com

9.85 core/sys/dsc.h File Reference 280

#defineCC_FUNCTION_POINTER_ARGS
Configure if the C compiler supports the arguments for function pointers.

#defineCC_FASTCALL
Configure if the C compiler supports fastcall function declarations.

#defineCC_UNSIGNED CHAR_BUG®
Configure work-around for unsigned char bugs with sdcc.

#defineCC_DOUBLE_HASHO
Configure if C compiler supports double hash marks in C macros.

9.85 core/sys/dsc.h File Reference
9.85.1 Detailed Description
Declaration of the DSC program description structure.

Author:
Adam Dunkelscadam@dunkels.com >

Definition in file dsc.h
#include "ctk/ctk.h"

Defines

» #defineDSC(dscname, description, prgname, process, icon) CLIF const stsadscname = {de-
scription, prgname, icon}

Intantiating macro for the DSC structure.

9.86 core/sys/etimer.c File Reference
9.86.1 Detailed Description
Event timer library implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file etimer.c
#include "contiki-conf.h"
#include "sys/etimer.h"

#include "sys/process.h”

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com
mailto:adam@sics.se

9.87 core/sys/etimer.h File Reference

281

Functions called from timer interrupts, by the system

« void etimer_request_po(lvoid)
Make the event timer aware that the clock has changed.

« int etimer_pendingvoid)
Check if there are any non-expired event timers.

« clock_time_tetimer_next_expiration_timgoid)
Get next event timer expiration time.

Functions called from application programs

* void etimer_se{structetimerxet, clock_time_t interval)
Set an event timer.

« void etimer_resefstructetimerxet)

Reset an event timer with the same interval as was previously set.

« void etimer_restarfstructetimersxet)
Restart an event timer from the current point in time.

« void etimer_adjus{structetimersxet, int timediff)
Adjust the expiration time for an event timer.

* int etimer_expiredstructetimerxet)
Check if an event timer has expired.

« clock_time_tetimer_expiration_timéstructetimersxet)
Get the expiration time for the event timer.

 clock_time_tetimer_start_timéstructetimerxet)
Get the start time for the event timer.

* void etimer_stop(structetimersxet)
Stop a pending event timer.

9.87 core/sys/etimer.h File Reference
9.87.1 Detailed Description

Event timer header file.
Author:
Adam Dunkels<adam@sics.se >
Definition in file etimer.h
#include "sys/timer.h"

#include "sys/process.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.88 core/sys/Ic-addrlabels.h File Reference 282

9.88 core/sys/Ic-addrlabels.h File Reference
9.88.1 Detailed Description

Implementation of local continuations based on the "Labels as values" feature of gcc.

Author:
Adam Dunkels<adam@sics.se >

This implementation of local continuations is based on a special feature of the GCC C compiler called
"labels as values". This feature allows assigning pointers with the address of the code corresponding to a
particular C label.

For more information, see the GCC documentatiaiy://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
Thanks to dividuum for finding the nice local scope label implementation.

Definition in file lc-addrlabels.h

9.89 core/sys/Ic-switch.h File Reference
9.89.1 Detailed Description

Implementation of local continuations based on switch() statment.

Author:
Adam Dunkels<adam@sics.se >

This implementation of local continuations uses the C switch() statement to resume execution of a function
somewhere inside the function’s body. The implementation is based on the fact that switch() statements are
able to jump directly into the bodies of control structures such as if() or while() statmenets.

This implementation borrows heavily from Simon Tatham’s coroutines implementation in C:
http://www.chiark.greenend.org.uk/ ~sgtatham/coroutines.html

Definition in file lc-switch.h

Typedefs

* typedef unsigned shoid_t
The local continuation type.

9.90 core/sys/lc.h File Reference
9.90.1 Detailed Description

Local continuations.

Author:
Adam Dunkels<adam@sics.se >

Definition in file lc.h.

#include "sys/lIc-switch.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
mailto:adam@sics.se
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
mailto:adam@sics.se

9.91 core/sys/loader.h File Reference 283

Defines

« #defineLC_INIT(Ic)
Initialize a local continuation.

* #defineLC_SET(Ic)
Set a local continuation.

* #defineLC_RESUMEKE]Ic)
Resume a local continuation.

« #defineLC_END(Ic)
Mark the end of local continuation usage.

9.91 core/sys/loader.h File Reference
9.91.1 Detailed Description
Default definitions and error values for the Contiki program loader.

Author:
Adam Dunkels<adam@dunkels.com >

Definition in file loader.h

Defines

» #defineLOADER_OKO
No error.

#defineLOADER_ERR_READ1
Read error.

#defineLOADER_ERR_HDR2
Header error.

#defineLOADER_ERR_OS3
Wrong OS.

#defineLOADER_ERR_FMT4
Data format error.

#defineLOADER_ERR_MEM5
Not enough memaory.

#defineLOADER_ERR_OPENS
Could not open file.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@dunkels.com

9.92 core/sys/mt.c File Reference 284

#defineLOADER_ERR_ARCH?7
Wrong architecture.

#defineLOADER_ERR_VERSION8
Wrong OS version.

#defineLOADER_ERR_NOLOADERS
Program loading not supported.

#defineLOADER_LOAD(name, arg) LOADER_ERR_NOLOADER
Load and execute a program.

#defineLOADER_UNLOAD()
Unload a program from memory.

#defineLOADER_LOAD_DSCname) NULL
Load a DSC (program description).

#defineLOADER_UNLOAD_DSGdsq
Unload a DSC (program description).

9.92 core/sys/mt.c File Reference
9.92.1 Detailed Description

Implementation of the archtecture agnostic parts of the preemptive multithreading library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mt.c.
#include "contiki.h"
#include "sys/mt.h"

#include "sys/cc.h"

Functions

 void mt_init (void)
Initializes the multithreading library.

 void mt_removegvoid)
Uninstalls library and cleans up.

« void mt_start(struct mt_threadthread, void¢function)(voidx), void xdata)
Starts a multithreading thread.

» void mt_exeq(struct mt_threadthread)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.93 core/sys/mt.h File Reference

285

Execute parts of a thread.

« void mt_yield(void)
Voluntarily give up the processor.

« void mt_exit(void)
Exit a thread.

 void mt_stop(struct mt_threadthread)
Stop a thread.

9.93 core/sys/mt.h File Reference

9.93.1 Detailed Description

Header file for the preemptive multitasking library for Contiki.

Author:
Adam Dunkels<adam@sics.se >

Definition in file mt.h.
#include "contiki.h"

#include "mtarch.h"

Defines

» #defineMT_OK

No error.

Functions

« void mtarch_init(void)

Initialize the architecture specific support functions for the multi-thread library.

« void mtarch_removévoid)
Uninstall library and clean up.

« void mtarch_star{struct mtarch_threagthread, void¢function)(void«data), void«data)

Setup the stack frame for a thread that is being started.

« void mtarch_exe¢struct mtarch_threagthread)
Start executing a thread.

void mtarch_yield(void)
Yield the processor.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.94 core/sys/process.c File Reference

286

 void mtarch_stoggstruct mtarch_threagthread)
Clean up the stack of a thread.

 void mt_init (void)
Initializes the multithreading library.

 void mt_removegvoid)
Uninstalls library and cleans up.

 void mt_start(struct mt_threadthread, void¢function)(voidsx), void xdata)
Starts a multithreading thread.

« void mt_exedstruct mt_threadthread)
Execute parts of a thread.

 void mt_yield (void)
Voluntarily give up the processor.

« void mt_exit(void)
Exit a thread.

 void mt_stop(struct mt_threadthread)
Stop a thread.

9.94 core/sys/process.c File Reference
9.94.1 Detailed Description

Implementation of the Contiki process kernel.

Author:
Adam Dunkels<adam@sics.se >

Definition in file process.c
#include <stdio.h >
#include "sys/process.h"

#include "sys/arg.h"

Functions called from application programs

» process_eventprocess_alloc_eveffoid)
Allocate a global event number.

* void process_stafstruct processp, charxarg)
Start a process.

* void process_exifstruct processp)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.95 core/sys/process.h File Reference 287

Cause a process to exit.

* int process_pogstruct processp, process_event_t ev, process_data_t data)

Post an asynchronous event.

« void process_post_syndhtruct processp, process_event_t ev, process_data_t data)

Post a synchronous event to a process.

Functions called by the system and boot-up code

* void process_inifvoid)
Initialize the process module.

« int process_ruivoid)
Run the system once - call poll handlers and process one event.

* int process_neven({soid)
Number of events waiting to be processed.

Functions called from device drivers

« void process_pol(struct processp)
Request a process to be polled.

9.95 core/sys/process.h File Reference
9.95.1 Detailed Description

Header file for the Contiki process interface.

Author:
Adam Dunkels<adam@sics.se >

Definition in file process.h
#include "sys/pt.h"

#include "sys/cc.h"

Return values

 #definePROCESS_ERR_OR
Return value indicating that an operation was successful.

 #definePROCESS_ERR_FULL
Return value indicating that the event queue was full.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.95 core/sys/process.h File Reference

288

Process protothread functions

» #definePROCESS_BEGI
Define the beginning of a process.

» #definePROCESS_END
Define the end of a process.

 #definePROCESS_WAIT_EVENY)
Wait for an event to be posted to the process.

« #definePROCESS_WAIT_EVENT_UNTI(c)

Wait for an event to be posted to the process, with an extra condition.

 #definePROCESS_YIELD)
Yield the currently running process.

» #definePROCESS_YIELD_ UNTIKc)
Yield the currently running process until a condition occurs.

» #definePROCESS_WAIT_UNTIKc)
Wait for a condition to occur.

» #definePROCESS_EXIT)
Exit the currently running process.

 #definePROCESS_ PT_SPAW(L, thread)
Spawn a protothread from the process.

 #definePROCESS PAUSH
Yield the process for a short while.

Poll and exit handlers

 #definePROCESS_POLLHANDLEandler)
Specify an action when a process is polled.

» #definePROCESS_EXITHANDLERhandler)
Specify an action when a process exits.

Process declaration and definion

» #definePROCESS_THREAame, ev, data)
Define the body of a process.

» #definePROCESS_NAMEnhame)
Declare the name of a process.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.96 core/sys/pt-sem.h File Reference 289

 #definePROCES$ame, strname)
Declare a process.

Functions called from application programs

 #definePROCESS_CURRENT
Get a pointer to the currently running process.

. #definePROCESS_CONTEXT_BEGI(g)

Switch context to another process.

» #definePROCESS_ CONTEXT_EN(P) process_current = tmp_current; }
End a context switch.

9.96 core/sys/pt-sem.h File Reference
9.96.1 Detailed Description
Counting semaphores implemented on protothreads.

Author:
Adam Dunkels<adam@sics.se >

Definition in file pt-sem.h

#include "sys/pt.h"

Defines

 #definePT_SEM_INIT(s, ¢)
Initialize a semaphore.

» #definePT_SEM_WAIT(pt, s)
Wait for a semaphore.

 #definePT_SEM_SIGNAI(pt, s)
Signal a semaphore.

9.97 core/sys/pt.h File Reference
9.97.1 Detailed Description
Protothreads implementation.

Author:
Adam Dunkels<adam@sics.se >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.97 core/sys/pt.h File Reference

290

Definition in file pt.h.

#include "sys/lc.h"

Initialization

 #definePT_INIT(pt)
Initialize a protothread.

Declaration and definition

 #definePT_THREAD(name_args)
Declaration of a protothread.

« #definePT_BEGINpt)

Declare the start of a protothread inside the C function implementing the protothread.

« #definePT_END(pt)

Declare the end of a protothread.

Blocked wait

 #definePT_WAIT_UNTIL(pt, condition)
Block and wait until condition is true.

o #definePT_WAIT_WHILE(pt, cond)
Block and wait while condition is true.

Hierarchical protothreads

 #definePT_WAIT_THREAD(pt, thread)
Block and wait until a child protothread completes.

 #definePT_SPAWNpt, child, thread)
Spawn a child protothread and wait until it exits.

Exiting and restarting

» #definePT_RESTARTpt)
Restart the protothread.

* #definePT_EXIT(pt)
Exit the protothread.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

9.98 core/sys/timer.c File Reference

291

Calling a protothread

* #definePT_SCHEDULEf)

Schedule a protothread.

Yielding from a protothread

* #definePT_YIELD(pt)
Yield from the current protothread.

 #definePT_YIELD_UNTIL(pt, cond)

Yield from the protothread until a condition occurs.

9.98 core/sys/timer.c File Reference
9.98.1 Detailed Description
Timer library implementation.

Author:
Adam Dunkels<adam@sics.se >

Definition in file timer.c
#include "contiki-conf.h"
#include "sys/clock.h"

#include "sys/timer.h"
9.99 core/sys/timer.h File Reference
9.99.1 Detailed Description

Timer library header file.

Author:
Adam Dunkels<adam@sics.se >

Definition in file timer.h

#include "sys/clock.h"

Functions

« void timer_sef(structtimer «t, clock_time_t interval)

Set atimer.

* void timer_rese(structtimer xt)

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.100 platform/esb/dev/beep.h File Reference

292

Reset the timer with the same interval.

« void timer_restar{structtimer xt)
Restart the timer from the current point in time.

« int timer_expiredstructtimer xt)
Check if a timer has expired.

9.100 platform/esb/dev/beep.h File Reference
9.100.1 Detailed Description
Interface to the beeper.

Author:
Adam Dunkels<cadam@sics.se >

Definition in file beep.h

#include "sys/clock.h"

Functions

« void beep_beefint len)
Beep for a specified time.

« void beep_alarnfint alarmmode, int len)
Beep an alarm for a specified time.

« void beep(void)
Produces a quick click-like beep.

« void beep_dowr{int len)
A beep with a pitch-bend down.

* void beep_or(void)
Turn the beeper on.

« void beep_off(void)
Turn the beeper off.

« void beep_spinugvoid)
Produce a sound similar to a hard-drive spinup.

« void beep_longclock_time_t len)

Beep for a long time (seconds).

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se

9.101 platform/esb/dev/eeprom.c File Reference 293

9.101 platform/esb/dev/eeprom.c File Reference
9.101.1 Detailed Description
EEPROM functions.

Author:
Adam Dunkels<adam@sics.se >

Definition in file eeprom.c
#include <msp430x14x.h >
#include <io.h >

#include "dev/eeprom.h"

Defines

« #defineSDA_HIGH (P50UT|= 0x04)
EEPROM data line high.

 #defineSDA_LOW (P50UT &= 0xFB)
EEPROM data line low.

* #defineSCL_HIGH (P50UT |= 0x08)
EEPROM clock line high.

* #defineSCL_LOW (P50UT &= 0xF7)
EEPROM clock line low.

Functions

« void eeprom_rea@unsigned short addr, unsigned chauf, int size)
Read bytes from the EEPROM using sequential read.

 void eeprom_writgunsigned short addr, unsigned chauf, int size)
Write bytes to EEPROM using sequencial write.

9.102 platform/esb/dev/rs232.c File Reference
9.102.1 Detailed Description
RS232 communication device driver for the MSP430.

Author:
Adam Dunkels<adam@sics.se >

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

9.103 platform/esb/dev/rs232.h File Reference 294

This file contains an RS232 device driver for the MSP430 microcontroller.
Definition in filers232.c

#include <io.h >

#include <signal.lh >

#include <string.h >

#include "contiki-esb.h"

9.103 platform/esb/dev/rs232.h File Reference
9.103.1 Detailed Description

Header file for MSP430 RS232 driver.

Author:
Adam Dunkels<adam@sics.se >

Definition in filers232.h

Functions

* void rs232_init(void)
Initialize the RS232 module.

void rs232_set_inpuiint(xf)(unsigned char))
Set an input handler for incoming RS232 data.

void rs232_set_speddnsigned char speed)
Configure the speed of the RS232 hardware.

void rs232_printcharxstr)
Print a text string on RS232.

void rs232_sendchar c)
Print a character on RS232.

9.104 platform/esb/dev/tr1001.c File Reference
9.104.1 Detailed Description
Device driver and packet framing for the RFM-TR1001 radio module.

Author:
Adam Dunkels<adam@sics.se >

This file implements a device driver for the RFM-TR1001 radio tranciever.
Definition in filetr1001.c

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

mailto:adam@sics.se
mailto:adam@sics.se

10 Contiki 2.x Example Documentation 295

#include "contiki-esb.h"
#include "lib/me.h"
#include "lib/crc16.h"
#include "net/tr1001-drv.h"
#include <io.h >
#include <signal.lh >

#include <string.h >

10 Contiki 2.x Example Documentation

10.1 code-style.c

\defgroup coding-style Coding style

*

* This is how a Doxygen module is documented - start with a \defgroup
* Doxygen keyword at the beginning of the file to define a module,

* and use the \addtogroup Doxygen keyword in all other files that

* belong to the same module. Typically, the \defgroup is placed in

* the .h file and \addtogroup in the .c file.

*

@f{
/
/**
* \file
* A brief description of what this file is.
* \author
* Adam Dunkels <adam@sics.se>
* Every file that is part of a documented module has to have
* a \file block, else it will not show up in the Doxygen
* "Modules" * section.
*/

/* Single line comments look like this. */

/*

* Multi-line comments look like this. Comments should prefferably be
* full sentences, filled to look like real paragraphs.

*/

#include "contiki.h"

/*

* Make sure that non-global variables are all maked with the static
* keyword. This keeps the size of the symbol table down.

*/

static int flag;

/*

* All variables and functions that are visible outside of the file

* should have the module name prepended to them. This makes it easy
* to know where to look for function and variable definitions.

*

* Put dividers (a single-line comment consisting only of dashes)

* between functions.

*/

I* *

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.1 code-style.c

296

\brief Use Doxygen documentation for functions.
\param c Briefly describe all parameters.

\return Briefly describe the return value.

\retval O Functions that return a few specified values
\retval 1 can use the \retval keyword instead of \return.

Put a longer description of what the function does
after the preamble of Doxygen keywords.

This template should always be used to document
functions. The text following the introduction is used
as the function’s documentation.

Function prototypes have the return type on one line,
the name and arguments on one line (with no space
between the name and the first parenthesis), followed
by a single curly bracket on its own line.

code_style_example_function(void)

{

}

/*

* Local variables should always be declared at the start of the

* function.

*

int i; /* Use short variable names for loop
counters. */

/*

There should be no space between keywords and the first
parenthesis. There should be spaces around binary operators, no
spaces between a unary operator and its operand.

Curly brackets following for(), if(), do, and case() statements
should follow the statement on the same line.

EE

*
for(i = 0; i < 10; ++i) {
/*
* Always use full blocks (curly brackets) after if(), for(), and
* while() statements, even though the statement is a single line
* of code. This makes the code easier to read and modifications
* are less error prone.
*
/
ifi == c) {
return c; /* No parentesis around return values. */
} else { [* The else keyword is placed inbetween
curly brackers, always on its own line. */
c++;
}
}

I* */
1%

* Static (non-global) functions do not need Doxygen comments. The

* name should not be prepended with the module name - doing so would
* create confusion.

*

static void
an_example_function(void)

{
}

I* */

/* The following stuff ends the \defgroup block at the beginning of

the file: */

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.2 example-list.c

297

1 @}

10.2 example-list.c

#include "list.h"

struct example_list_struct {
struct *next;
int number;

h
LIST(example_list);

void
example_function(void)
{
struct example_list_struct *s;
struct example_list_struct elementl, element2;

list_init(example_list);

list_add(example_list, &elementl);
list_add(example_list, &element2);

for(s = list_head(example_list);
s != NULL;
s = s->next) {
printf("List element number %d\n", s->number);

}

10.3 example-packet-drv.c

~
*

This is an example of how to write a network device driver ("packet
driver") for Contiki. A packet driver is a regular Contiki process

that does two things:

Checks for incoming packets and delivers those to the TCP/IP stack
Provides an output function that transmits packets

The output function is registered with the Contiki TCP/IP stack,
whereas incoming packets must be checked inside a Contiki process.
We use the same process for checking for incoming packets and for
registering the output function.

%k kR ok ok ok %k Ok 3k

*
<

/*

* We include the "contiki-net.h" file to get all the network functions.
*/

#include "contiki-net.h"

I* */

/*
* We declare the process that we use to register with the TCP/IP stack,
* and to check for incoming packets.

*

/

PROCESS(example_packet_driver_process, "Example packet driver process");
I* *

/*

* Next, we define the function that transmits packets. This function
* is called from the TCP/IP stack when a packet is to be transmitted.
* The packet is located in the uip_buf[] buffer, and the length of the

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.3 example-packet-drv.c 298

* packet is in the uip_len variable.
*/

u8_t
example_packet_driver_output(void)

let_the_hardware_send_the_packet(uip_buf, uip_len);

/*
* A network device driver returns always zero.
*
return O;
}
I* *
/*
* This is the poll handler function in the process below. This poll
* handler function checks for incoming packets and delivers them to
* the TCP/IP stack.
*/
static void
pollhandler(void)

{

* We assume that we have some hardware device that notifies us when
* a new packet has arrived. We also assume that we have a function
* that pulls out the new packet (here called

* check_and_copy_packet()) and puts it in the uip_buf[] buffer. The

* function returns the length of the incoming packet, and we store

* it in the global uip_len variable. If the packet is longer than

* zero bytes, we hand it over to the TCP/IP stack.

uip_len = check_and_copy_packet();

/*
* The function tcpip_input() delivers the packet in the uip_buf(]
* puffer to the TCP/IP stack.
*/
if(uip_len > 0) {
tepip_input();

/*
* Now we'll make sure that the poll handler is executed repeatedly.
* We do this by calling process_poll() with this process as its
* argument.
*
* In many cases, the hardware will cause an interrupt to be executed
* when a new packet arrives. For such hardware devices, the interrupt
* handler calls process_poll() (which is safe to use in an interrupt
* context) instead.
*
process_poll(&example_packet_driver_process);
}
I* *
/*
* Finally, we define the process that does the work.
*
PROCESS_THREAD(example_packet_driver_process, ev, data)
{
/*

* This process has a poll handler, so we declare it here. Note that

* the PROCESS_POLLHANDLER() macro must come before the PROCESS_BEGIN()
* macro.

*

PROCESS_POLLHANDLER(pollhandler());

/*
* This process has an exit handler, so we declare it here. Note that

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.4 example-pollhandler.c 299

* the PROCESS_EXITHANDLER() macro must come before the PROCESS_BEGIN()
* macro.

*/

PROCESS_EXITHANDLER(exithandler());

/*

* The process begins here.
*/

PROCESS_BEGIN();

/*

* We start with initializing the hardware.
*

initialize_the_hardware();

/*

* Register the driver. This will cause any previously registered driver
* to be ignored by the TCP/IP stack.

*

tcpip_set_outputfunc(example_packet_driver_output);

/*
* Now we’ll make sure that the poll handler is executed initially. We do
* this by calling process_poll() with this process as its argument.
*
/
process_poll(&example_packet_driver_process);

/*
* And we wait for the process to exit.
*/
PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_EXIT);
/*
* Now we shutdown the hardware.
*/
shutdown_the_hardware();
/*
* Here ends the process.
*/
PROCESS_END();
}
I* */

10.4 example-pollhandler.c

#include “contiki.h"
PROCESS(example_pollhandler, "Pollhandler example");

static void
exithandler(void)

printf("Process exited\n");

}

static void
pollhandler(void)

printf("Process polled\n®);

}

PROCESS_THREAD(example_pollhandler, ev, data)
{

PROCESS_POLLHANDLER(pollhandler());

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.5 example-program.c 300

PROCESS_EXITHANDLER(exithandler());
PROCESS_BEGIN();

while(1) {
PROCESS_WAIT_EVENT();
}

PROCESS_END();

10.5 example-program.c

/*
This file contains an example of how a Contiki program looks.

*
*
* The program opens a UDP broadcast connection and sends one packet
* every second.

*

#include “contiki.h"
#include "contiki-net.h"

/*
* All Contiki programs must have a process, and we declare it here.
*
/
PROCESS(example_program_process, "Example process");

/*

* To make the program send a packet once every second, we use an
* event timer (etimer).

*/

static struct etimer timer;

I* *
/*
* Here we implement the process. The process is run whenever an event
* occurs, and the parameters "ev" and "data" will we set to the event
* type and any data that may be passed along with the event.
*/
PROCESS_THREAD(example_program_process, ev, data)
{
/*
* Declare the UDP connection. Note that this *MUST* be declared
* static, or otherwise the contents may be destroyed. The reason
* for this is that the process runs as a protothread, and
* protothreads do not support stack variables.
*
static struct uip_udp_conn *c;

/*

* A process thread starts with PROCESS_BEGIN() and ends with
* PROCESS_END().

*

PROCESS_BEGIN();

/*

* We create the UDP connection to port 4321. We don’t want to

* attach any special data to the connection, so we pass it a NULL
* parameter.

*/

¢ = udp_broadcast_new(HTONS(4321), NULL);

/*
* Loop for ever.
*/

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.6 example-psock-server.c 301

while(1) {

/*

* We set a timer that wakes us up once every second.
*

/
etimer_set(&timer, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&timer));

* Now, this is a the tricky bit: in order for us to send a UDP

* packet, we must call upon the ulP TCP/IP stack process to call
* us. (ulP works under the Hollywood principle: "Don’t call us,

* we'll call you".) We use the function tcpip_poll_udp() to tell

* ulP to call us, and then we wait for the ulP event to come.

*/

tcpip_poll_udp(c);

PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);

/*
* We can now send our packet.
*
/
uip_send("Hello", 5);
/*
* We're done now, so we'll just loop again.
*
}
/*

* The process ends here. Even though our program sits is a while(1)

* loop, we must put the PROCESS_END() at the end of the process, or
* else the program won’t compile.

*

PROCESS_END();

10.6 example-psock-server.c

* This is a small example of how to write a TCP server using

* Contiki's protosockets. It is a simple server that accepts one line

* of text from the TCP connection, and echoes back the first 10 bytes
* of the string, and then closes the connection.
*
*
*

The server only handles one connection at a time.

#include <string.h>

/*

* We include "contiki-net.h" to get all network definitions and
* declarations.

*/

#include "contiki-net.h"

/*
* We define one protosocket since we've decided to only handle one

* connection at a time. If we want to be able to handle more than one
* connection at a time, each parallell connection needs its own

* protosocket.

*

static struct psock ps;

/*

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.6 example-psock-server.c

302

* We must have somewhere to put incoming data, and we use a 10 byte
* puffer for this purpose.

*

static char buffer[10];

I* *
/*
* A protosocket always requires a protothread. The protothread
* contains the code that uses the protosocket. We define the
* protothread here.
*
/
static
PT_THREAD(handle_connection(struct psock *p))

{

/*
* A protosocket's protothread must start with a PSOCK_BEGIN(), with
the protosocket as argument.

Remember that the same rules as for protothreads apply: do NOT
use local variables unless you are very sure what you are doing!
Local (stack) variables are not preserved when the protothread
blocks.

EE I I

*
PSOCK_BEGIN(p);

/*

* We start by sending out a welcoming message. The message is sent

* using the PSOCK_SEND_STR() function that sends a null-terminated

* string.

*/

PSOCK_SEND_STR(p, "Welcome, please type something and press return.\n");

/*

Next, we use the PSOCK_READTO() function to read incoming data
from the TCP connection until we get a newline character. The
number of bytes that we actually keep is dependant of the length
of the input buffer that we use. Since we only have a 10 byte
buffer here (the buffer[] array), we can only remember the first

10 bytes received. The rest of the line up to the newline simply

is discarded.

L I T

*
PSOCK_READTO(p, \n);

/*

* And we send back the contents of the buffer. The PSOCK_DATALEN()
* function provides us with the length of the data that we've

* received. Note that this length will not be longer than the input

* buffer we're using.

*

PSOCK_SEND_STR(p, "Got the following data: ");

PSOCK_SEND(p, buffer, PSOCK_DATALEN(p));

PSOCK_SEND_STR(p, "Good byeh\r\n");

/*

* We close the protosocket.
*/

PSOCK_CLOSE(p);

/*
* And end the protosocket's protothread.
*/
PSOCK_END(p);
}
I* */
/*
* We declare the process.
*

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.6 example-psock-server.c

PROCESS(example_psock_server_process, "Example protosocket server");

/*
/*
* The definition of the process.
*/

*/

PROCESS_THREAD(example_psock_server_process, ev, data)

{

/*

* The process begins here.
*/

PROCESS_BEGIN();

/*

* We start with setting up a listening TCP port. Note how we're
* using the HTONS() macro to convert the port number (1010) to
* network byte order as required by the tcp_listen() function.

*

tcp_listen(HTONS(1010));

/*
* We loop for ever, accepting new connections.
*/
while(1) {
/*
* We wait until we get the first TCP/IP event, which probably
* comes because someone connected to us.
*
/
PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);
/*
* If a peer connected with us, we’'ll initialize the protosocket
* with PSOCK_INIT().
*
/
if(uip_connected()) {
/*
* The PSOCK_INIT() function initializes the protosocket and
* binds the input buffer to the protosocket.
*
PSOCK_INIT(&ps, buffer, sizeof(buffer));
/*
* We loop until the connection is aborted, closed, or times out.
*
while(!(uip_aborted() || uip_closed() || uip_timedout())) {
/*
* We wait until we get a TCP/IP event. Remember that we
* always need to wait for events inside a process, to let
* other processes run while we are waiting.
*
PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event);
/*
* Here is where the real work is taking place: we call the
* handle_connection() protothread that we defined above. This
* protothread uses the protosocket to receive the data that
* we want it to.
*
handle_connection(&ps);
}
}
}
/*

* We must always declare the end of a process.

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.7 test-abc.c

304

}

%
PROCESS_END():

/*

*

10.7 test-abc.c

~
T

<

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS *“AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$ld: test-abc.c,v 1.3 2007/03/25 12:10:29 adamdunkels Exp $

/**
* \file
* Testing the abc layer in Rime
* \author
* Adam Dunkels <adam@sics.se>
*
/
#include "contiki.h"

#in

#in

#in

#in
/*

clude "net/rime.h"

clude "dev/button-sensor.h"

clude "dev/leds.h"

clude <stdio.h>
*/

PROCESS(test_abc_process, "ABC test");
AUTOSTART_PROCESSES(&test_abc_process);

/*

static void
abc_recv(struct abc_conn *c)

}

printf("abc message received '%s’\n", (char *)rimebuf_dataptr());

const static struct abc_callbacks abc_call = {abc_recv};
static struct abc_conn abc;

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.8 test-meshroute.c

305

/*

*/

PROCESS_THREAD(test_abc_process, ev, data)

{

}
/*

PROCESS_EXITHANDLER(abc_close(&abc):)
PROCESS_BEGIN();
abc_open(&abc, 128, &abc_call);

while(1) {
static struct etimer et;

etimer_set(&et, CLOCK_SECOND * 2);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

rimebuf_copyfrom("Hej", 4);
abc_send(&abc);

}
PROCESS_END():;

*

10.8 test-meshroute.c

~
R T S

<

>
* %

*

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS *“AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$ld: test-meshroute.c,v 1.3 2007/03/25 12:10:29 adamdunkels Exp $

\file
A brief description of what this file is.

* \author

*

Adam Dunkels <adam@sics.se>

*

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.8 test-meshroute.c 306

#include “contiki.h"
#include "net/rime.h"
#include "net/rime/mesh.h"

#include "dev/button-sensor.h"
#include "dev/leds.h"
#include <stdio.h>

static struct mesh_conn mesh;

I* *
PROCESS(test_mesh_process, "Mesh test");
AUTOSTART_PROCESSES(&test_mesh_process);

I* */
static void

sent(struct mesh_conn *c)

printf("packet sent\n");

static void
timedout(struct mesh_conn *c)

printf("packet timedout\n");

static void
recv(struct mesh_conn *c, rimeaddr_t *from)

printf("Data received from %d: %.*s (%d)\n", from->ul6[0],
rimebuf_datalen(), (char *)rimebuf_dataptr(), rimebuf_datalen());

rimebuf_copyfrom("Hopp", 4);
mesh_send(&mesh, from);

}

const static struct mesh_callbacks callbacks = {recv, sent, timedout};
I* *
PROCESS_THREAD(test_mesh_process, ev, data)

{

PROCESS_EXITHANDLER(mesh_close(&mesh);)
PROCESS_BEGIN();

mesh_open(&mesh, 128, &callbacks);
button_sensor.activate();

while(1) {
rimeaddr_t addr;
static struct etimer et;

I* etimer_set(&et, CLOCK_SECOND * 4);*/
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et) ||
(ev == sensors_event && data == &button_sensor));

printf("Button\n");

/*
* Send a message containing "Hej" (3 characters) to node number
*
6.
*/

rimebuf_copyfrom("Hej", 3);
addr.u8[0] = 161;
addr.u8[1] = 161;
mesh_send(&mesh, &addr);

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.9 test-rudolphO.c

307

}
/*

PROCESS_END();

*/

10.9 test-rudolphO.c

~
T S

-

Vi
*

*

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$ld: test-rudolphO.c,v 1.5 2007/05/22 21:04:19 adamdunkels Exp $

\file
Testing the rudolphO code in Rime

* \author

*

Adam Dunkels <adam@sics.se>

*/

#include "contiki.h"
#include "net/rime/rudolph0.h"

#include "dev/button-sensor.h"

#include "dev/leds.h"

#include <stdio.h>

#define FILESIZE 200

/*

*/

PROCESS(test_rudolphO_process, "Rudolph0 test");
AUTOSTART_PROCESSES(&test_rudolphO_process);

/*

*/

static void
write_chunk(struct rudolphO_conn *c, int offset, int flag,

char *data, int datalen)

int fd;

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.9 test-rudolphO.c

308

if(flag == RUDOLPHO_FLAG_NEWFILE) {
I* printf("+++ rudolphO new file incoming at %lu\n", clock_time());*/
leds_on(LEDS_RED);
fd = cfs_open("codeprop.out’, CFS_WRITE);
} else {
fd = cfs_open(“codeprop.out”, CFS_WRITE + CFS_APPEND);
}

if(datalen > 0) {
int ret;
cfs_seek(fd, offset);
ret = cfs_write(fd, data, datalen);
* printf("write_chunk wrote %d bytes at %d, %d\n", ret, offset, (unsigned char)data[0]);*/

}
cfs_close(fd);

if(flag == RUDOLPHO_FLAG_LASTCHUNK) {
int i;
I* printf("+++ rudolphO entire file received at %lu\n”, clock_time());*/
leds_off(LEDS_RED);
leds_on(LEDS_YELLOW);
fd = cfs_open("hej", CFS_READ);
for(i = 0; i < FILESIZE; ++i) {
unsigned char buf;
cfs_read(fd, &buf, 1);
if(buf != (unsigned char)i) {

printf("error: diff at %d, %d != %d\n", i, i, buf);
break;
}
cfs_close(fd);
}
} . .
static int
read_chunk(struct rudolphO_conn *c, int offset, char *to, int maxsize)
{
int fd;
int ret;
fd = cfs_open("hej", CFS_READ);
cfs_seek(fd, offset);
ret = cfs_read(fd, to, maxsize);
/¥ printf("read_chunk %d bytes at %d, %d\n", ret, offset, (unsigned char)to[0]);*/
cfs_close(fd);
return ret;
}

const static struct rudolphO_callbacks rudolphO_call = {write_chunk,

read_chunk};

static struct rudolphO_conn rudolphO;

/*

*/

PROCESS_THREAD(test_rudolphO_process, ev, data)

{

static int fd;
PROCESS_EXITHANDLER(rudolphO_close(&rudolph0);)
PROCESS_BEGIN();

PROCESS_PAUSE();

rudolph0_open(&rudolphO, 128, &rudolph0_call);
button_sensor.activate();

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.10 test-rudolphl.c

309

while(1) {

PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&
data == &button_sensor);
{
int i

fd = cfs_open("hej’, CFS_WRITE);

for(i = 0; i < FILESIZE; i++) {
unsigned char buf = i;
cfs_write(fd, &buf, 1);

cfs_close(fd);
rudolph0_send(&rudolph0, CLOCK_SECOND / 4);
PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&

data == &button_sensor);
rudolph0_stop(&rudolph0);

}
PROCESS_END();

}

/*

*/

10.10 test-rudolphl.c

~
E ok Rk Rk ok ok ok ok ok % ok % ok % ok % ok % ok % ok % ok ok ok % ok % % T

<

=
* % % X

*

*

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS *“AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$ld: test-rudolphl.c,v 1.7 2007/05/15 08:10:32 adamdunkels Exp $

\file

Testing the rudolphl code in Rime
\author

Adam Dunkels <adam@sics.se>

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.10 test-rudolphl.c

310

#include "contiki.h"
#include "net/rime/rudolphl.h"

#include "dev/button-sensor.h"

#include "dev/leds.h"

#include "cfs/cfs.h"

#include "sys/rtimer.h"

#include <stdio.h>

#define FILESIZE 2000

I* */
PROCESS(test_rudolphl_process, "Rudolphl test");
AUTOSTART_PROCESSES(&test_rudolphl_process);

I* *
static void

write_chunk(struct rudolphl_conn *c, int offset, int flag,

char *data, int datalen)
{

int fd;
#if NETSIM

char buf[100];
sprintf(buf, "%d%%", (100 * (offset + datalen)) / FILESIZE);
ether_set_text(buf);

}
#endif /* NETSIM */

ifflag == RUDOLPH1_FLAG_NEWFILE) {
[*printf("+++ rudolphl new file incoming at %lu\n”, clock_time());*/
leds_on(LEDS_RED);
fd = cfs_open("codeprop.out’, CFS_WRITE);
} else {
fd = cfs_open("codeprop.out’, CFS_WRITE + CFS_APPEND);
}

if(datalen > 0) {
int ret;
cfs_seek(fd, offset);
ret = cfs_write(fd, data, datalen);

}
cfs_close(fd);

if(flag == RUDOLPH1_FLAG_LASTCHUNK) {
int i;
printf("+++ rudolphl entire file received at %d, %d\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1]);
leds_off(LEDS_RED);
leds_on(LEDS_YELLOW);

fd = cfs_open("hej", CFS_READ);
for(i = 0; i < FILESIZE; ++i) {
unsigned char buf;
cfs_read(fd, &buf, 1);
if(buf != (unsigned char)i) {
printf("%d.%d: error: diff at %d, %d != %d\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
i, 1, buf);
break;
}

}
#if NETSIM

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.10 test-rudolphl.c 311

ether_send_done();
#endif
cfs_close(fd);
}

static int
read_chunk(struct rudolphl_conn *c, int offset, char *to, int maxsize)
{

int fd;

int ret;

fd = cfs_open("hej", CFS_READ);

cfs_seek(fd, offset);

ret = cfs_read(fd, to, maxsize);

/¥ printf("%d.%d: read_chunk %d bytes at %d, %d\n",
rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
ret, offset, (unsigned char)to[0]);*/

cfs_close(fd);

return ret;

}
const static struct rudolphl_callbacks rudolphl_call = {write_chunk,
read_chunk};
static struct rudolphl_conn rudolphi;
I* */
static void
log_queuelen(struct rtimer *t, void *ptr)

{
#if NETSIM
extern u8_t queuebuf_len, queuebuf_ref_len;
node_log("%d %d\n",
queuebuf_len,
queuebuf_ref_len);
rtimer_set(t, RTIMER_TIME(t) + RTIMER_ARCH_SECOND, 1,
log_queuelen, ptr);
#endif /* NETSIM */

}
I* *

PROCESS_THREAD(test_rudolphl_process, ev, data)
{

static int fd;

static struct rtimer t;
PROCESS_EXITHANDLER(rudolphl_close(&rudolphl);)
PROCESS_BEGIN();

PROCESS_PAUSE();

rudolphl_open(&rudolphl, 128, &rudolphl_call);
button_sensor.activate();

rtimer_set(&t, RTIMER_NOW() + RTIMER_ARCH_SECOND, 1,
log_queuelen, NULL);

PROCESS_PAUSE();

if(rimeaddr_node_addr.u8[0] == 1 &&
rimeaddr_node_addr.u8[1] == 1) {
{

int i;

fd = cfs_open("hej", CFS_WRITE);

for(i = 0; i < FILESIZE; i++) {
unsigned char buf = i;
cfs_write(fd, &buf, 1);

}

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.11 test-treeroute.c

312

#if

cfs_close(fd);

}

rudolphl_send(&rudolphl, CLOCK_SECOND * 2);
NETSIM

ether_send_done();

#endif /* NETSIM */

}
while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&
data == &button_sensor);
rudolphl_stop(&rudolphl);
}
PROCESS_END();

*/

10.11 test-treeroute.c

~
T S

<

Vi
*
*
*

*

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS *“AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$Id: test-treeroute.c,v 1.5 2007/05/22 21:04:34 adamdunkels Exp $

\file

A brief description of what this file is.
\author

Adam Dunkels <adam@sics.se>

*/

#include "contiki.h"
#include "net/rime.h"
#include "net/rime/tree.h"
#include "dev/leds.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.11 test-treeroute.c 313

#include "dev/pir-sensor.h"
#include "dev/button-sensor.h"

#include <stdio.h>
static struct tree_conn tc;

I* */
PROCESS(test_tree_process, "Test tree process");
PROCESS(depth_blink_process, "Depth indicator");
AUTOSTART_PROCESSES(&test_tree_process, &depth_blink_process);
/* */
PROCESS_THREAD(depth_blink_process, ev, data)
{

static struct etimer et;

static int count;

PROCESS_BEGIN();

while(1) {
etimer_set(&et, CLOCK_SECOND * 1);
PROCESS_WAIT_UNTIL(etimer_expired(&et));
count = tree_depth(&tc);
if(count == TREE_MAX_DEPTH) {
leds_on(LEDS_RED);
} else {
leds_off(LEDS_RED);
while(count > 0) {
leds_on(LEDS_RED);
etimer_set(&et, CLOCK_SECOND / 10);
PROCESS_WAIT_UNTIL(etimer_expired(&et));
leds_off(LEDS_RED);
etimer_set(&et, CLOCK_SECOND / 10);
PROCESS_WAIT_UNTIL(etimer_expired(&et));
--count;
}
}
}

PROCESS_END();
}
I* *
static void
recv(rimeaddr_t *originator, u8_t segno, u8_t hops)

printf("Sink got message from %d.%d, seqno %d, hops %d: len %d '%s’\n",
originator->u8|[0], originator->u8[1],
seqno, hops,
rimebuf_datalen(),
(char *)rimebuf_dataptr());

}

/* *
static const struct tree_callbacks callbacks = { recv };
/* */

PROCESS_THREAD(test_tree_process, ev, data)
PROCESS_BEGIN();
tree_open(&tc, 128, &callbacks);
while(1) {
PROCESS_WAIT_EVENT();

iflev == sensors_event) {

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.12 test-trickle.c

314

if([data == &pir_sensor) {
rimebuf_clear();
rimebuf_set_datalen(sprintf(rimebuf_dataptr(),
"%d", pir_sensor.value(0)));
tree_send(&tc, 10);
}

if([data == &button_sensor) {
printf("Button\n");
tree_set_sink(&tc, 1);
}
}

}

}

PROCESS_END();

/*

*/

10.12 test-trickle.c

~
E Ok ok ok ok sk ok ok ok sk ok kb kb % ok % b % ok % ok ok ok ok ok o % % % T

<

Copyright (c) 2007, Swedish Institute of Computer Science.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the Institute nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS *“AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This file is part of the Contiki operating system.

$Id: test-trickle.c,v 1.5 2007/05/15 08:10:32 adamdunkels Exp $

/**
* \file
* Testing the trickle code in Rime
* \author
* Adam Dunkels <adam@sics.se>
*
/
#include "contiki.h"

#in

#in

clude "net/rime/trickle.h"

clude "dev/button-sensor.h"

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

10.13 test-uabc.c

315

#include "dev/leds.h"

#include <stdio.h>

I* */
PROCESS(test_trickle_process, "TRICKLE test");
AUTOSTART_PROCESSES(&test_trickle_process);

I* *
static void

trickle_recv(struct trickle_conn *c)

printf("%d.%d: trickle message received '%s’\n",

rimeaddr_node_addr.u8[0], rimeaddr_node_addr.u8[1],
(char *)rimebuf_dataptr());

}

const static struct trickle_callbacks trickle_call = {trickle_recv};

static struct trickle_conn trickle;

/* */

PROCESS_THREAD(test_trickle_process, ev, data)

{

PROCESS_EXITHANDLER(trickle_close(&trickle);)
PROCESS_BEGIN();

trickle_open(&trickle, CLOCK_SECOND, 128, &trickle_call);
button_sensor.activate();

while(1) {
PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&
data == &button_sensor);
rimebuf_copyfrom("Hello, world", 13);
trickle_send(&trickle);

}
PROCESS_END();

10.13 test-uabc.c

10.14 test-uibc.c

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

Index

abc_callbacks213
abc_close
rimeabc,161
abc_input_packet
rimeabc,162
abc_open
rimeabc,162
abc_send
rimeabc,162
active
ctk_window,217
Anonymous best-effort local area broadca$
Appication specific configuration§40
apps/ Directory Referenc205
apps/program-handler/ Directory Referer2@9
apps/program-handler/program-handle226

Architecture specific functionality for the ELF

loader.,70

Architecture support for multi-threading§4
arg

arg_alloc54

arg_freeb4
arg_alloc

arg,54
arg_free

arg,54
Argument buffer53
ARP configuration optiond,38

beep
beeper200
beep_alarm
beeper200
beep_beep
beeper201
beep_down
beeper201
beep_long
beeper201
beep_off
beeper201
beep_on
beeper202
beep_spinup
beeper202
beeper
beep,200
beep_alarm200
beep_bee®01
beep_down201
beep_long201

beep_off201

beep_on202

beep_spinup202
Beeper interface200

Best-effort multihop forwardingl 67
Best-effort network floodingl 67

Callback timer,163
cfs

CFS_APPENDg1

cfs_closegl

cfs_closedir82

cfs_open82

cfs_opendir82

CFS_READS81

cfs_readB2

cfs_readdir83

cfs_seek83

CFS_WRITES81

cfs_write,83
CFS_APPEND

cfs, 81
cfs_close

cfs, 81
cfs_closedir

cfs, 82
cfs_open

cfs, 82
cfs_opendir

cfs, 82
CFS_READ

cfs, 81
cfs_read

cfs, 82
cfs_readdir

cfs, 83
cfs_seek

cfs, 83
CFS_WRITE

cfs, 81
cfs_write

cfs, 83
clock

clock_init, 62

clock_time,62
Clock library,61
clock_init

clock, 62
clock_time

clock, 62
Communication stack4,1

INDEX

317

Configuration options for ulP,32
Contiki platforms,13

Contiki processes}9

Contiki system;12

core/ Directory Referenc05
core/cfs/ Directory Referenc205
core/cfs/cfs.h227

core/ctk/ Directory Referenc@06
core/ctk/ctk-draw.h229
core/ctk/ctk.c229
core/ctk/ctk.h232

core/dev/ Directory Referenc206
core/dev/eeprom.236
core/dev/radio.n236

corellib/ Directory Referenc@07
core/lib/crc16.c236
core/lib/crc16.h237
core/lib/ctk-textedit.c237
core/lib/ctk-textedit.h238
core/lib/list.c,239
core/lib/list.h,240
core/lib/me.c41
core/lib/me.h241
core/lib/memb.c242
core/lib/memb.h242
core/lib/mmem.c243
core/lib/mmem.h243
core/lib/petsciiconv.ni244
core/loader/ Directory Referencg)7
core/loader/elfloader-arch.p44
core/loader/elfloader.245
core/net/ Directory Referenc208
core/net/psock.i46
core/net/resolv.Q47
core/net/resolv.48
core/net/rime.h248
core/net/rime/ Directory Referenc2)9
core/net/rime/abc.@49
core/net/rime/abc.1249
core/net/rime/ctimer.@50
core/net/rime/ctimer.250
core/net/rime/ibc.c250
core/net/rime/ibc.i251
core/net/rime/mesh.@51
core/net/rime/mesh.1252
core/net/rime/mh.252
core/net/rime/mh.H252
core/net/rime/neighbor.@53
core/net/rime/neighbor.253
core/net/rime/nf.c253
core/net/rime/nf.h254
core/net/rime/queuebuf.254
core/net/rime/queuebuf.Bb4
core/net/rime/rimeaddr.255

core/net/rime/rimeaddr.255
core/net/rime/rimebuf.@56
core/net/rime/rimebuf.i£56
core/net/rime/route-discovery257
core/net/rime/route-discovery.h58
core/net/rime/route.@58
core/net/rime/route.l258
core/net/rime/ruc.@59
core/net/rime/ruc.H259
core/net/rime/rudolph0.259
core/net/rime/rudolph0.1259
core/net/rime/rudolph1.260
core/net/rime/rudolphl.1260
core/net/rime/sabc.260
core/net/rime/sabc.261
core/net/rime/sibc.@61
core/net/rime/sibc.62
core/net/rime/suc.@62
core/net/rime/suc.t£62
core/net/rime/tree.@63
core/net/rime/tree. 263
core/net/rime/trickle.c263
core/net/rime/trickle.n264
core/net/rime/uabc.264
core/net/rime/uabc.l264
core/net/rime/uc.264
core/net/rime/uc.l65
core/net/rime/uibc.65
core/net/rime/uibc.i265
core/net/tcpip.h266
core/net/uip-fw.c267
core/net/uip-fw.h268
core/net/uip-split.h269
core/net/uip.c269
core/net/uip.h271
core/net/uip_arp.@75
core/net/uip_arp.tR76
core/net/uiplib.h276
core/net/uipopt.hi277
core/sys/ Directory Referenc2]2
core/sys/arg.279
core/sys/cc.h279
core/sys/dsc.i80
core/sys/etimer.@80
core/sys/etimer.i81
core/sys/Ic-addrlabels.B82
core/sysl/lc-switch.R82
core/sys/lc.h282
core/sys/loader.1£83
core/sys/mt.c284
core/sys/mt.h285
core/sys/process.286
core/sys/process.Bg87
core/sys/pt-sem.289

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

318

core/sys/pt.h289
core/sys/timer.c291
core/sys/timer.h291
CPU architecture configuratiof40
crcl6é
crclé_addl95
crclé_add
crcl6,195
ctk
ctk_dialog_open100
ctk_menu_addl00
ctk_menu_removel01
ctk_mode_get1 01
ctk_mode_set]01
ctk_window_clear101
ctk_window_closel02
ctk_window_new;102
ctk_window_redraw102
CTK application functions34
CTK device driver functionsl 05
CTK events,103
CTK graphical user interfac€9
ctk-textedit.c
ctk_textedit_add237
ctk_textedit_eventhandle238
ctk-textedit.h
CTK_TEXTEDIT, 239
ctk_textedit_add239
ctk_textedit_eventhandle239
ctk_arch_key t
ctkdraw,107
CTK_BUTTON
ctkappfunc87
ctk_button_set_text
ctkappfunc88
ctk_desktop_height
ctkappfunc93
ctk_desktop_redraw
ctkappfunc93
ctk_desktop_width
ctkappfunc93
ctk_dialog_new
ctkappfunc93
ctk_dialog_open
ctk, 100
ctkappfunc94
ctk_draw_clear
ctkdraw,107
ctk_draw_clear_window
ctkdraw,108
ctk_draw_dialog
ctkdraw,108
ctk_draw_init
ctkdraw,108

ctk_draw_widget
ctkdraw,109
ctk_draw_window
ctkdraw,109
CTK_HYPERLINK
ctkappfunc88
CTK_ICON
ctkappfunc88
CTK_ICON_ADD
ctkappfunc89
ctk_icon_add
ctkappfunc94
CTK_LABEL
ctkappfunc89
ctk_label_set_height
ctkappfunc89
ctk_label_set_text
ctkappfunc89
ctk_menu214
titlelen, 214
ctk_menu_add
ctk, 100
ctkappfunc94
ctk_menu_new
ctkappfunc94
ctk_menu_remove
ctk, 101
ctkappfunc95
ctk_menuitem214
ctk_menuitem_add
ctkappfunc95
ctk_menus215
open,215
ctk_mode_get
ctk, 101
ctkappfunc95
ctk_mode_set
ctk, 101
ctkappfunc95
CTK_SEPARATOR
ctkappfunc90
ctk_signal_hyperlink_activate
ctkappfunc98
ctkevents103
ctk_signal_keypress
ctkappfunc98
ctkevents103
ctk_signal_menu_activate
ctkappfunc98
ctkevents104
ctk_signal_pointer_button
ctkappfunc98
ctkevents104
ctk_signal_pointer_move

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

319

ctkappfunc98
ctkevents 104
ctk_signal_widget_activate
ctkappfunc98
ctkevents104
ctk_signal_widget_select
ctkappfunc99
ctkevents,104
ctk_signal_window_close
ctkappfunc99
ctkevents104
CTK_TEXTEDIT
ctk-textedit.h239
ctk_textedit_add
ctk-textedit.c237
ctk-textedit.h,239
ctk_textedit_eventhandler
ctk-textedit.c238
ctk-textedit.h, 239
CTK_TEXTENTRY
ctkappfunc90
CTK_TEXTENTRY_CLEAR
ctkappfunc90
ctk_widget,215
CTK_WIDGET_ADD
ctkappfunc91
ctk_widget_add
ctkappfunc96
CTK_WIDGET_FOCUS
ctkappfunc91l
CTK_WIDGET_REDRAW
ctkappfunc91
ctk_widget_redraw
ctkappfunc96
CTK_WIDGET_SET_WIDTH
ctkappfunc91
CTK_WIDGET_SET_XPOS
ctkappfunc92
CTK_WIDGET_SET_YPOS
ctkappfunc92
CTK_WIDGET_TYPE
ctkappfunc92
CTK_WIDGET_XPOS
ctkappfunc92
CTK_WIDGET_YPOS
ctkappfunc92
ctk_window,216
active,217
inactive,218
owner,218
title, 218
ctk_window_clear
ctk, 101
ctkappfunc96

ctk_window_close
ctk, 102
ctkappfunc97
ctk_window_new
ctk, 102
ctkappfunc97
ctk_window_open
ctkappfunc97
ctk_window_redraw
ctk, 102
ctkappfunc97
ctkappfunc
CTK_BUTTON, 87
ctk_button_set_texg88
ctk_desktop_heighf3
ctk_desktop_redrav@3
ctk_desktop_width93
ctk_dialog_new93
ctk_dialog_open94
CTK_HYPERLINK, 88
CTK_ICON, 88
CTK_ICON_ADD, 89
ctk_icon_add94
CTK_LABEL, 89
ctk_label_set _heigh89
ctk_label_set tex89
ctk_menu_add4
ctk_menu_newQ4
ctk_menu_remove&5
ctk_menuitem_ad®5
ctk_mode_get95
ctk_mode_se®5
CTK_SEPARATORS0

ctk_signal_hyperlink_activat®8

ctk_signal_keypres$38
ctk_signal_menu_activateg
ctk_signal_pointer_butto®8
ctk_signal_pointer_mové&8
ctk_signal_widget_activat®8
ctk_signal_widget_selec®9
ctk_signal_window_clos€9
CTK_TEXTENTRY, 90

CTK_TEXTENTRY_CLEAR,90

CTK_WIDGET_ADD, 91
ctk_widget_add96
CTK_WIDGET_FOCUS91
CTK_WIDGET_REDRAW,91
ctk_widget_redrawQ6

CTK_WIDGET_SET_WIDTHO1
CTK_WIDGET_SET_XPOS92
CTK_WIDGET_SET_YPOS92

CTK_WIDGET_TYPE 92
CTK_WIDGET_XPOS92
CTK_WIDGET_YPOS92

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

320

ctk_window_clear96
ctk_window_close97
ctk_window_new97
ctk_window_open97
ctk_window_redraw97
ctkdraw
ctk_arch_key t107
ctk_draw_clear107
ctk_draw_clear_windowi,08
ctk_draw_dialog108
ctk_draw_init,108
ctk_draw_widget109
ctk_draw_window,109
ctkevents
ctk_signal_hyperlink_activaté03
ctk_signal_keypres4,03
ctk_signal_menu_activat&p4
ctk_signal_pointer_buttori,04
ctk_signal_pointer_mové,04
ctk_signal_widget_activaté04
ctk_signal_widget_select04
ctk_signal_window_closd,04
Cyclic Redundancy Check 16 (CRC16) calculca-
tion, 194

Device driver APIs12
DSC
loader,56
dsc,218
loadaddr219

eeprom
eeprom_initg7
eeprom_ready7
eeprom_writeg7
EEPROM API,66
eeprom_init
eepromg7
eeprom_read
eepromG7
eeprom_write
eepromG7
elfloader
elfloader_init,70
elfloader_load70
ELFLOADER_SYMBOL_NOT_FOUND,
70
elfloader_arch_allocate_ram
elfloaderarch71
elfloader_arch_allocate_rom
elfloaderarchy1
elfloader_arch_relocate
elfloaderarchyl
elfloader_arch_write_rom

elfloaderarchy2
elfloader_init
elfloader,70
elfloader_load
elfloader,70
ELFLOADER_SYMBOL_NOT_FOUND
elfloader,70
elfloaderarch
elfloader_arch_allocate_rail
elfloader_arch_allocate_roml
elfloader_arch_relocatél
elfloader_arch_write_ron72
ESB RS232202
eshrs232
rs232_init,203
rs232_print203
rs232_send203
rs232_set_inpuf03
rs232_set_speed)3
etimer,219
etimer_adjust50
etimer_expiration_time{0
etimer_expired51
etimer_next_expiration_timé1
etimer_pending51
etimer_request_polh1
etimer_reset;2
etimer_restart;2
etimer_set52
etimer_start_time53
etimer_stop53
etimer_adjust
etimer,50
etimer_expiration_time
etimer,50
etimer_expired
etimer,51
etimer_next_expiration_time
etimer,51
etimer_pending
etimer,51
etimer_request_poll
etimer,51
etimer_reset
etimer,52
etimer_restart
etimer,52
etimer_set
etimer,52
etimer_start_time
etimer,53
etimer_stop
etimer,53
Event timers49

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

321

General configuration option$38

HTONS
uipconvfunc,127
htons
uip, 32
uipconvfunc,131

ibc_callbacks219
ibc_close
rimeibc,164
ibc_open
rimeibc,164
ibc_send
rimeibc,164
Identified best-effort local area broadcalsi3
inactive
ctk_window,218
Introduction to Over The Air Reprogramming
under Windows198
IP configuration optionsl 34

Ic
LC_END,58
LC_INIT, 58
LC_RESUME,58
LC_SET,58
LC_END
Ic, 58
LC_INIT
Ic, 58
LC_RESUME
Ic, 58
LC_SET
Ic, 58
Libraries,13
Linked list library,188
LIST
list, 189
list
LIST, 189
list_ add,189
list_chop,190
list_copy,190
list_ head]190
list_init, 191
list_insert, 191
list_length,191
list_pop,192
list_ remove 192
list_tail, 192
list_add
list, 189
list_chop

list, 190
list_copy
list, 190
list_head
list, 190
list_init
list, 191
list_insert
list, 191
list_length
list, 191
list_pop
list, 192
list_remove
list, 192
list_tail
list, 192
loadaddr
dsc,219
loader
DSC,56
LOADER_LOAD, 56
LOADER_LOAD_DSC,57
LOADER_UNLOAD, 57
LOADER_UNLOAD_DSC/57
LOADER_LOAD
loader,56
LOADER_LOAD_DSC
loader,57
LOADER_UNLOAD
loader,57
LOADER_UNLOAD_DSC
loader,57
Local continuations;7

Managed memory allocatot85
me
me_decodel6,93
me_decode894
me_encodel 94
me_decodel6
me,193
me_decode8
me,194
me_encode
me,194
MEMB
memb,184
memb
MEMB, 184
memb_alloc,185
memb_free185
memb_init,185
memb_alloc

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

322

memb,185
memb_free
memb,185
memb_init
memb,185
Memory block management functioris33
Memory functions 12
Mesh routing, 165
mesh_callback19
mesh_close
rimemesh ;166
mesh_open
rimemesh ;166
mesh_send
rimemesh 166
Microsoft Windows 204
mmem
mmem_alloc,186
mmem_free 187
mmem_init,187
MMEM_PTR, 186
mmem_alloc
mmem,186
mmem_free
mmem,187
mmem_init
mmem,187
MMEM_PTR
mmem,186
mt
mt_exec63
mt_exit,63
mt_start,64
mt_stop,64
mt_yield,64
mt_exec
mt, 63
mt_exit
mt, 63
mt_start
mt, 64
mt_stop
mt, 64
mt_yield
mt, 64
mtarch
mtarch_exed$5
mtarch_init,65
mtarch_start66
mtarch_stop66
mtarch_yield 66
mtarch_exec
mtarch,65
mtarch_init

mtarch,65
mtarch_start
mtarch,66
mtarch_stop
mtarch,66
mtarch_yield
mtarch,66
Multi-hop reliable bulk data transfet83
Multi-threading library,62

NUM_PNARGS
program-handler.@27

open
ctk_menus215

owner
ctk_window,218

platform/ Directory Referenc&09
platform/esb/ Directory Referenc2)6
platform/esb/dev/ Directory Referen@f)6
platform/esb/dev/beep.B92
platform/esb/dev/eeprom.293
platform/esb/dev/rs232.293
platform/esb/dev/rs232.294
platform/esb/dev/tr1001.294
PROCESS
process42
process
PROCESS42
process_alloc_eventf
PROCESS_BEGIN42
PROCESS_CONTEXT_BEGIN2
PROCESS_CONTEXT_ENDI3
PROCESS_CURRENTH3
PROCESS_END43
PROCESS_ERR_FULI43
PROCESS_ERR_OHK3
process_exit6
PROCESS _EXITHANDLER44
process_init47
PROCESS_NAME44
process_neventd/
PROCESS_PAUSE4
process_poll47
PROCESS_POLLHANDLER44
process_posd7
process_post_synch3
PROCESS_PT_SPAWMA
process_rur48
process_star8
PROCESS_THREAD45
PROCESS_WAIT_EVENT45
PROCESS_WAIT_EVENT_UNTIL45

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

323

PROCESS_ WAIT_UNTILAS
PROCESS_YIELD_UNTIL46
process_alloc_event
process46
PROCESS_BEGIN
process4?2
PROCESS _CONTEXT_BEGIN
process42
PROCESS_CONTEXT_END
process43
PROCESS_CURRENT
process43
PROCESS_END
process43
PROCESS_ERR_FULL
process43
PROCESS_ERR_OK
process43
process_exit
process46
PROCESS EXITHANDLER
process44
process_init
process47
PROCESS_NAME
process44
process_nevents
process47
PROCESS_PAUSE
process44
process_poll
process47
PROCESS_ POLLHANDLER
process44
process_post
process47
process_post_synch
process48
PROCESS PT_SPAWN
process44
process_run
process48
process_start
process48
PROCESS_THREAD
process45
PROCESS_WAIT_EVENT
process45
PROCESS WAIT_EVENT_UNTIL
process45
PROCESS_WAIT_UNTIL
process45
PROCESS_YIELD_UNTIL
process46

program-handler.c
NUM_PNARGS,227
program_handler_ad@27
program_handler_loa@27
program_handler_add
program-handler.@27
program_handler_load
program-handler.@27
Protosockets libraryl49
Protothread semaphores§
Protothreads/2
psock,220
PSOCK_BEGINJ151
PSOCK_CLOSE]51
PSOCK_CLOSE_EXIT151
PSOCK_DATALEN,151
PSOCK_END/]151
PSOCK_EXIT,152
PSOCK_GENERATOR_SEND,52
PSOCK_INIT,152
PSOCK_NEWDATA,153
PSOCK_READBUF153
PSOCK_READTO,153
PSOCK_SEND153
PSOCK_SEND_STR154
PSOCK_WAIT_UNTIL,154
PSOCK_BEGIN
psock,151
PSOCK_CLOSE
psock,151
PSOCK_CLOSE_EXIT
psock,151
PSOCK_DATALEN
psock,151
PSOCK_END
psock,151
PSOCK_EXIT
psock,152
PSOCK_GENERATOR_SEND
psock,152
PSOCK_INIT
psock,152
PSOCK_NEWDATA
psock,153
PSOCK_READBUF
psock,153
PSOCK_READTO
psock,153
PSOCK_SEND
psock,153
PSOCK_SEND_STR
psock,154
PSOCK_WAIT_UNTIL
psock,154

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

pt
PT_BEGIN,76
PT_END,76
PT_EXIT, 77
PT_INIT, 77
PT_RESTART,/7
PT_SCHEDULE /7
PT_SPAWN,78
PT_THREAD,78
PT_WAIT_THREAD,78
PT_WAIT_UNTIL, 79
PT_WAIT_WHILE, 79
PT_YIELD, 79
PT_YIELD_UNTIL, 79
PT_BEGIN
pt, 76
PT_END
pt, 76
PT_EXIT
pt, 77
PT_INIT
pt, 77
PT_RESTART
pt, 77
PT_SCHEDULE
pt, 77
PT_SEM_INIT
ptsem,61
PT_SEM_SIGNAL
ptsem61
PT_SEM_WAIT
ptsem,61
PT_SPAWN
pt, 78
PT_THREAD
pt, 78
PT_WAIT_THREAD
pt, 78
PT_WAIT_UNTIL
pt, 79
PT_WAIT_WHILE
pt, 79
PT_YIELD
pt, 79
PT_YIELD_UNTIL
pt, 79
ptsem
PT_SEM_INIT,61
PT_SEM_SIGNAL61
PT_SEM_WAIT,61

Radio API,68
radio_driver,220
Reliable single-source multi-hop floodintg1

resolv_conf
uipdns,148
resolv_getserver
uipdns,148
resolv_lookup
uipdns,148
resolv_query
uipdns,148
rime
rime_driver_send37
rime_init, 37
rime_input,37
Rime addresse468
Rime buffer management,/1
Rime neighbor managemeni7
Rime queue buffer managemeh68
Rime route discovery protocdl,77
Rime route tablel77
rime_driver_send
rime, 37
rime_init
rime, 37
rime_input
rime, 37
rimeabc
abc_closel61
abc_input_packef,62
abc_openl62
abc_send]62
rimeaddr
rimeaddr_cmp169
rimeaddr_copy169
rimeaddr_node_addt,70
rimeaddr_null170
rimeaddr_set _node_add69
rimeaddr_cmp
rimeaddr,169
rimeaddr_copy
rimeaddr,169
rimeaddr_node_addr
rimeaddr,170
rimeaddr_null
rimeaddr,170
rimeaddr_set node_addr
rimeaddr,169
rimebuf
rimebuf_clear]172
rimebuf_compact] 72
rimebuf_copyfrom173
rimebuf_copyto]173
rimebuf_copyto_hdr173
rimebuf_datalen]174
rimebuf_dataptrl74
rimebuf_hdralloc,174

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

325

rimebuf_hdrlen175
rimebuf_hdrptr175
rimebuf_hdrreducel 75
rimebuf_is_referencd,76
rimebuf_referencel 76
rimebuf_reference_ptd,76
rimebuf_set dataler,76
rimebuf_totlen177
rimebuf_clear
rimebuf,172
rimebuf_compact
rimebuf,172
rimebuf_copyfrom
rimebuf,173
rimebuf_copyto
rimebuf,173
rimebuf_copyto_hdr
rimebuf,173
rimebuf_datalen
rimebuf,174
rimebuf_dataptr
rimebuf,174
rimebuf_hdralloc
rimebuf,174
rimebuf_hdrlen
rimebuf,175
rimebuf_hdrptr
rimebuf,175
rimebuf_hdrreduce
rimebuf,175
rimebuf_is_reference
rimebuf,176
rimebuf_reference
rimebuf,176
rimebuf_reference_ptr
rimebuf,176
rimebuf_set datalen
rimebuf,176
rimebuf_totlen
rimebuf,177
rimeibc
ibc_close 164
ibc_open]164
ibc_send164
rimemesh
mesh_closel66
mesh_openl 66
mesh_sendl.66
rimesabc
sabc_cancell79
sabc_openl79
sabc_send_stubborh79
sabc_set_timef, 79
rs232_init

esbrs232203
rs232_print
esbrs232203
rs232_send
esbrs232203
rs232_set_input
esbrs232203
rs232_set_speed
eshrs232203

sabc_cancel

rimesabc179
sabc_conn221
sabc_open

rimesabc179
sabc_send_stubborn

rimesabc179
sabc_set_timer

rimesabc179
Single-hop reliable bulk data transfé83
Single-hop unicast,82
Static configuration option4,33
Stubborn anonymous best-effort local area

broadcast178

Stubborn identified broadcadt80
Stubborn unicast.80

Table-driven Manchester encoding and decod-
ing, 193

TCP configuration optiond,35

tcp_attach
tcpip, 157

tcp_connect
tcpip, 157

tcp_listen
tcpip, 157

tcp_unlisten
tcpip, 158

tcpip
tcp_attach157
tcp_connectl57
tcp_listen,157
tcp_unlisten158
tcpip_event160
tcpip_input, 158
tepip_poll_tcp,158
tcpip_poll_udp159
udp_attach159
udp_bind,156
udp_broadcast_new59
udp_new,160

tcpip_event
tcpip, 160

tcpip_input

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

326

tcpip, 158
tcpip_poll_tcp

tcpip, 158
tcpip_poll_udp

tcpip, 159
The Contiki build system38
The Contiki ELF loader68
The Contiki file system interfac&0
The Contiki program loadeb4
The Contiki/ulP interfacel55
The ESB Embedded Sensor Boaté5
The Rime communication stack6
The Tmote Sky Boardl 95
The ulP TCP/IP stack,3
timer,221

timer_expired111

timer_reset111

timer_restart111

timer_set112
Timer library,110
timer_expired

timer,111
timer_reset

timer,111
timer_restart

timer,111
timer_set

timer,112
title

ctk_window,218
titlelen

ctk_menu214

TR1001 radio tranciever device driv04
Tree-based hop-by-hop reliable data collection,

181

UDP configuration options,35
udp_attach
tcpip, 159
udp_bind
tcpip, 156
udp_broadcast_new
tcpip, 159
udp_new
tcpip, 160
uip
htons,32
uip_appdata35
UIP_APPDATA_SIZE 31
uip_buf,35
uip_chksum32
uip_conn .35, 36
uip_init, 32
uip_ipchksum32

uip_len,36

uip_listen,32

uip_send33

uip_setipid,33

uip_stat,36

uip_tcpchksum33

uip_udp_new34

uip_udpchksum34

uip_unlisten34
ulP Address Resolution Protocd41
ulP application functionsl 19
ulP configuration functiong,12
ulP conversion functiong,26
ulP device driver functiong,15
ulP hostname resolver functioriis}7
ulP initialization functions114
ulP packet forwardingl 44
ulP TCP throughput booster had43
uip_abort

uipappfunc,121
uip_aborted

uipappfunc,121
uip_acked

uipappfunc121
UIP_ACTIVE_OPEN

uipopttcp,136
uip_appdata

uip, 35
UIP_APPDATA_SIZE

uip, 31
uip_arp_arpin

uiparp,142
UIP_ARP_MAXAGE

uipoptarp,138
uip_arp_out

uiparp,142
uip_arp_timer

uiparp,143
UIP_ARPTAB_SIZE

uipoptarp,138
UIP_BROADCAST

uipoptgeneral139
uip_buf

uip, 35

uipdevfunc,118
UIP_BUFSIZE

uipoptgeneral139
UIP_BYTE_ORDER

uipoptcpu,140
uip_chksum

uip, 32
uip_close

uipappfunc,121
uip_closed

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

327

uipappfunc121
uip_conn.221
uip, 35, 36
uip_connect
uipappfunc124
uip_connected
uipappfunc,121
UIP_CONNS
uipopttcp,136
uip_datalen
uipappfunc122
uip_eth_addr223
uip_eth_hdr223
UIP_FIXEDADDR
uipoptstaticconf133
UIP_FIXEDETHADDR
uipoptstaticconf133
uip_fw_default
uipfw, 146
uip_fw_forward
uipfw, 146
UIP_FW_NETIF
uipfw, 145
uip_fw_netif,223
uip_fw_output
uipfw, 146
uip_fw_register
uipfw, 147
uip_fw_setipaddr
uipfw, 145
uip_fw_setnetmask
uipfw, 146
uip_getdraddr
uipconffunc,113
uip_gethostaddr
uipconffunc,113
uip_getnetmask
uipconffunc,113
uip_init
uip, 32
uipinit, 115
uip_input
uipdevfunc,116
uip_ipdaddr_t223
uip_ip6addr
uipconvfunc,128
uip_ipaddr
uipconvfunc,128
uip_ipaddrl
uipconvfunc,128
uip_ipaddr2
uipconvfunc,128
uip_ipaddr3
uipconvfunc,129

uip_ipaddr4
uipconvfunc,129
uip_ipaddr_cmp
uipconvfunc,129
uip_ipaddr_copy
uipconvfunc,130
uip_ipaddr_mask
uipconvfunc,130
uip_ipaddr_maskcmp
uipconvfunc,130
uip_ipaddr_to_quad
uipconvfunc,131
uip_ipchksum
uip, 32
uip_len
uip, 36
uipdrivervars,132
uip_listen
uip, 32
uipappfunc,124
UIP_LISTENPORTS
uipopttcp,136
UIP_LLH_LEN
uipoptgenerall39
uip_log
uipoptgeneral139
UIP_LOGGING
uipoptgeneral139
UIP_MAXRTX
uipopttcp,136
UIP_MAXSYNRTX
uipopttcp,137
uip_mss
uipappfunc,122
uip_newdata
uipappfunc,122
uip_periodic
uipdevfunc,116
uip_periodic_conn
uipdevfunc,117
UIP_PINGADDRCONF
uipoptstaticconf134
uip_poll
uipappfunc,122
uip_poll_conn
uipdevfunc,117
UIP_REASSEMBLY
uipoptip,134
UIP_RECEIVE_WINDOW
uipopttcp,137
uip_restart
uipappfunc,122
uip_rexmit
uipappfunc,122

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

328

UIP_RTO
uipopttcp,137
uip_send
uip, 33
uipappfunc125
uip_setdraddr
uipconffunc,113
uip_setethaddr
uipconffunc,113
uip_sethostaddr
uipconffunc,114
uip_setipid
uip, 33
uipinit, 115
uip_setnetmask
uipconffunc,114
uip_split_output
uipsplit, 143
uip_stat
uip, 36
UIP_STATISTICS
uipoptgeneral139
uip_stats224
uip_stop
uipappfunc,123
uip_tcp_appstate_t
uipoptapp141
UIP_TCP_MSS
uipopttcp,137
uip_tcpchksum
uip, 33
UIP_TIME_WAIT_TIMEOUT
uipopttcp,137
uip_timedout
uipappfunc,123
UIP_TTL
uipoptip,134
uip_udp_appstate_t
uipoptapp,141
uip_udp_bind
uipappfunc,123
UIP_UDP_CHECKSUMS
uipoptudp,135
uip_udp_conn225
uip_udp_new
uip, 34
uipappfunc,125
uip_udp_periodic
uipdevfunc,117
uip_udp_periodic_conn
uipdevfunc,118
uip_udp_remove
uipappfunc123
uip_udp_send

uipappfunc,123
uip_udpchksum
uip, 34
uip_udpconnection
uipappfunc124
uip_unlisten
uip, 34
uipappfunc126
UIP_URGDATA
uipopttcp,137
uip_urgdatalen
uipappfunc,124
uipappfunc
uip_abort, 121
uip_aborted121
uip_acked121
uip_close 121
uip_closed121
uip_connectl24
uip_connected] 21
uip_datalen]22
uip_listen,124
uip_mss]122
uip_newdatal22
uip_poll, 122
uip_restart,122
uip_rexmit,122
uip_send]125
uip_stop,123
uip_timedout,123
uip_udp_bind123
uip_udp_new]125
uip_udp_removel23
uip_udp_sendl 23
uip_udpconnectior 24
uip_unlisten 126
uip_urgdatalen] 24
Uiparch,205
uiparp
uip_arp_arpinl42
uip_arp_out142
uip_arp_timer143
uipconffunc
uip_getdraddr113
uip_gethostaddi13
uip_getnetmaski 13
uip_setdraddr]13
uip_setethaddi]13
uip_sethostaddd, 14
uip_setnetmask,14
uipconvfunc
HTONS, 127
htons,131
uip_ip6addr128

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

INDEX

329

uip_ipaddr,128
uip_ipaddr1]128
uip_ipaddr2,128
uip_ipaddr3129
uip_ipaddr4,129
uip_ipaddr_cmp129
uip_ipaddr_copy130
uip_ipaddr_maskl30
uip_ipaddr_maskcmp,30
uip_ipaddr_to_quad,31
uiplib_ipaddrconv;131
uipdevfunc
uip_buf,118
uip_input,116
uip_periodic,116
uip_periodic_conn]17
uip_poll_conn117
uip_udp_periodicl117
uip_udp_periodic_conri,18
uipdns
resolv_conf148
resolv_getservef,48
resolv_lookup148
resolv_query148
uipdrivervars
uip_len,132
uipfw
uip_fw_default,146
uip_fw_forward,146
UIP_FW_NETIF,145
uip_fw_output, 146
uip_fw_register147
uip_fw_setipaddr145
uip_fw_setnetmask,46
uipinit
uip_init, 115
uip_setipid, 115
uiplib_ipaddrconv
uipconvfunc,131
uipoptapp
uip_tcp_appstate_141
uip_udp_appstate 141
uipoptarp
UIP_ARP_MAXAGE,138
UIP_ARPTAB_SIZE 138
uipoptcpu
UIP_BYTE_ORDER140
uipoptgeneral
UIP_BROADCAST,139
UIP_BUFSIZE,139
UIP_LLH_LEN, 139
uip_log,139
UIP_LOGGING,139
UIP_STATISTICS,139

uipoptip
UIP_REASSEMBLY,134
UIP_TTL, 134

uipoptstaticconf
UIP_FIXEDADDR, 133
UIP_FIXEDETHADDR,133
UIP_PINGADDRCONF134

uipopttcp
UIP_ACTIVE_OPEN,136
UIP_CONNS,136
UIP_LISTENPORTS136
UIP_MAXRTX, 136
UIP_MAXSYNRTX, 137
UIP_RECEIVE_WINDOW,137
UIP_RTO,137
UIP_TCP_MSS137
UIP_TIME_WAIT_TIMEOUT, 137
UIP_URGDATA, 137

uipoptudp
UIP_UDP_CHECKSUMS135

uipsplit
uip_split_output,143

Unique anonymous best effort local area broad-

cast,181
Unique identified best effort local area broadcast,
182

Variables used in ulP device driveds32

Generated on Mon Jul 2 14:14:41 2007 for Contiki 2.x by Doxygen

	The Contiki Operating System 2.x
	Contiki 2.x Module Index
	Contiki 2.x Directory Hierarchy
	Contiki 2.x Data Structure Index
	Contiki 2.x File Index
	Contiki 2.x Module Documentation
	Contiki 2.x Directory Documentation
	Contiki 2.x Data Structure Documentation
	Contiki 2.x File Documentation
	Contiki 2.x Example Documentation

