Domain Name System Security

T-110.4100 Tietokoneverkot

October 2009

Bengt Sahlin

<Bengt.Sahlin@tml.hut.fi>

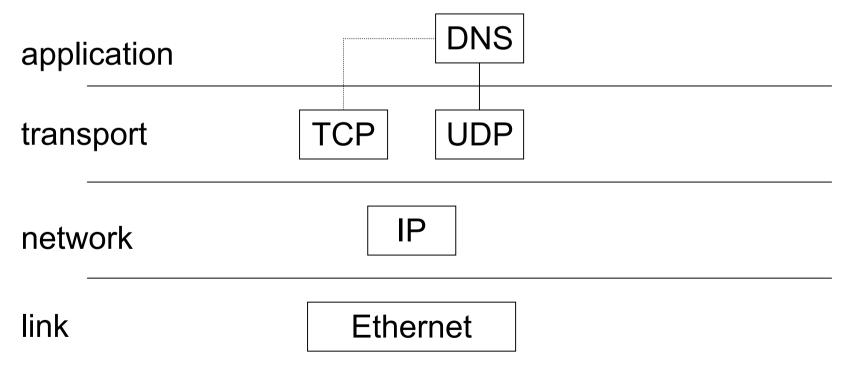
Objectives

- Provide DNS basics, essential for understanding DNS security
- Understand threats against DNS
- Provide examples of vulnerabilities and attacks
- Understand mechanisms in DNSSEC
- Understand effects of using DNSSEC
- Understand what can be done to improve security of DNS

Humans and Addresses

- Numeric addresses are used in the Internet
 - example: 10.0.0.1 (IPv4),fe80::a0a1:46ff:fe06:61ee (IPv6)
- Humans are better at remembering names than numbers
- In the Internet, names have been used from the start on

History


- In the beginning ... there was the file hosts
 - mapping between "hostname" and address
- Internet grew, one file was not a scalable solution
- A more scalable and automated procedure was needed

The Solution...

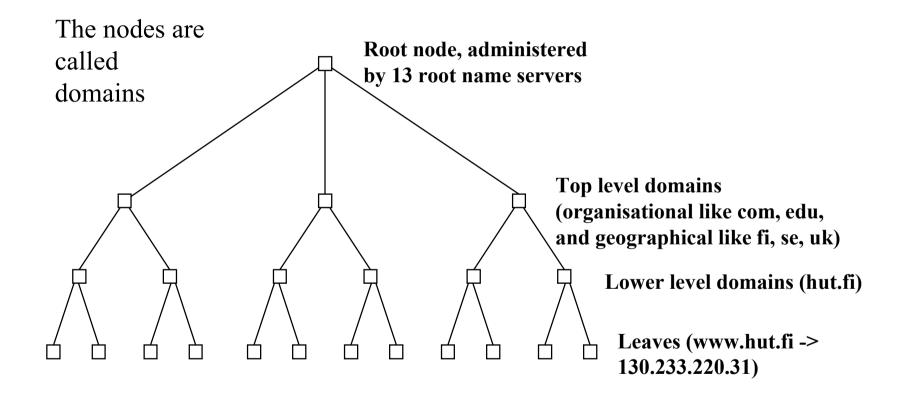
- DNS (Domain Name System)
- Main tasks
 - mapping between names and IP addresses, and vice versa
 - controlling e-mail delivery
- But today DNS is used to store a lot of other data also
 - for example DNS SRV record
 - specifying the location of services

Basic Internet Infrastructure

• DNS is a fundamental component of the Internet infrastructure

2009/10/08

Bengt Sahlin


Basic Characteristics (1/2)

- DNS is a database
- The three basic characteristics of the database:
 - -1) global
 - All the names need to be unique
 - 2) distributed
 - no node has complete information
 - an organisation can administer its own DNS information

Basic Characteristics (2/2)

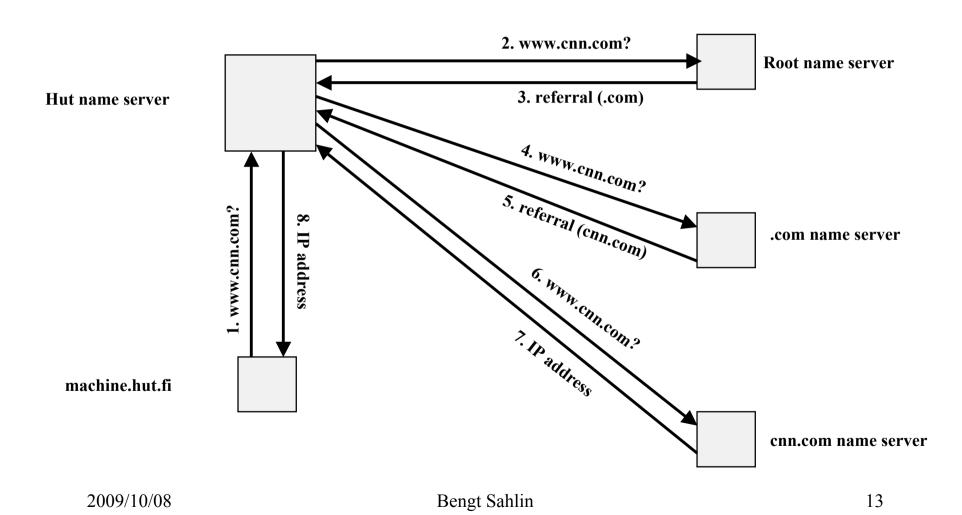
- 3) Hierarchical
 - the data is arranged in a tree structure with a single root node
 - the structure is similar to the Unix file system structure

DNS Structure

DNS Concepts (1/3)

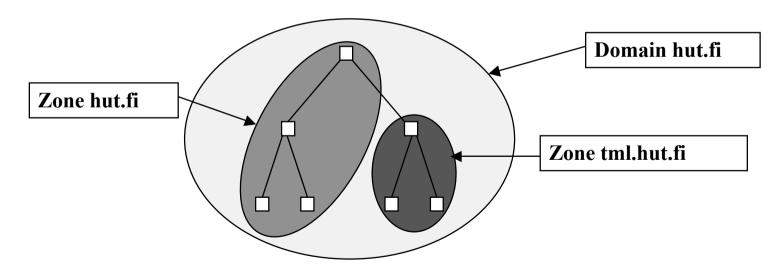
- The servers are called name servers
 - name server "roles"
 - master (primary)
 - the name server where the data is administered
 - is the ultimate authority for the data (authoritative)
 - slave (secondary)
 - is authoritative for a zone
 - gets the data from the master through a zone transfer
 - cache
 - a name server can store data DNS data (that it is not authoritative for) for a while

DNS Concepts (2/3)


- The client is called a resolver
 - can do name queries
 - Typically implemented with library functions that applications use
 - nslookup (looking at DNS data), dig (for serious debugging)
- Name resolution
 - the process of acquiring some data, possible by performing several name queries
- The name servers need to know ("are booted up with") the names and addresses of the root name servers (file root.cache)

DNS Concepts (3/3)

- Delegation
 - the authority for some sub-domain is given to another name server


12

Name resolution example

Zone vs. Domain

• Zone: a contiguous part of the DNS tree for which a name server has complete information

Resource Records

- The data in the DNS database is stored in entities called resource records
- The most common resource records:
 - A (name to address mapping)
 - PTR (address to name mapping
 - MX (Mail Exchanger record)
 - NS: name server record
 - CNAME: name alias
 - SOA: Start of authority

Master Zone File Example

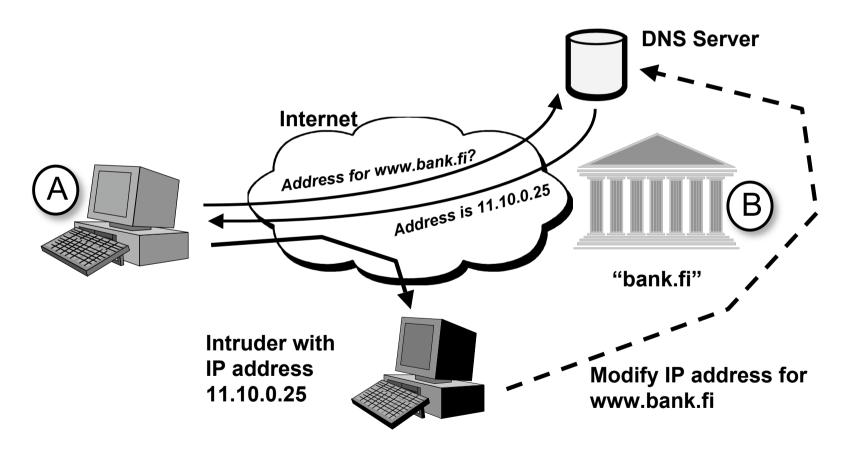
verkot.example.	IN	SOA	ns.verkot.example.	
dnsadmin.verkot.example. (Serial,
	0.00000 7000 004000 00400 \			refresh,
	IN	NS	ns.verkot.example.	·
	IN	MX	10 mail.verkot.example	retry,
\$ORIGIN verkot.example.				expiry,
localhost	IN	Α	127.0.0.1	minimum
ns	IN	Α	10.10.10.1	TT1
mail	IN	Α	10.10.10.2	IIL
WWW	IN	Α	10.10.10.3	
	IN	TXT	"Our web server"	Error, dot
ftp	IN	CNAME	mail	·
				missing

DNS Today

- DNS has served its purpose well
- Internet is evolving, and new requirements have been issued
 - Support for IPv6
 - DNS security extensions
 - Vulnerabilities in DNS used in many attacks (like DNS spoofing)
 - security needed
 - DNS dynamic update
 - International DNS
 - Other new requirements

DNS Threats (1/2)

- Threats to the protocol
 - Packet Interception
 - Eavesdropping, man-in-the-middle attacks, DNS spoofing
 - ID guessing and Query Prediction
 - Predict resolver behavior and send a bogus response
 - Could be a blind attack
 - Name-based attacks
 - For example cache poisoning (using packet interception attacks)


DNS Threats (2/2)

- DOS attacks
- Issues with authenticating non-existence of a DNS name
- Wildcard handling issues
- DNSSEC weaknesses
- DNS Software vulnerabilities

DNS Vulnerabilities

- Crackers often start planning attacks by collecting DNS information
 - many organizations try to make this harder by prohibiting zone transfers and by using split DNS
- Crackers try to use DNS vulnerabilities
 - Both for direct attacks against DNS or for mounting further attacks

Manipulating DNS

DNS Spoofing

- Three ways to manipulate DNS
 - answer to queries with a false reply before the actual name server answers
 - cache poisoning: send false data to a recursive name server with a long TTL
 - the data is cached for a long time
 - compromise the DNS server
 - Using DNS software vulnerabilities

DOS Attacks using Name Servers

- Send a large number of DNS queries (using UDP) to a name server or several name servers (DDOS), using a spoofed IP address
 - responses will be sent to the spoofed IP address
 - the spoofed IP address is the victim
 - hard to trace because of the spoofed IP address
- the responses can be significantly larger than the queries
- DOS possibly both on victim machine and name server

BIND Vulnerabilities (1/3)

- Use the BIND vulnerabilities to compromise the DNS server machine
- often BIND is run as superuser!!!!
- Examples of vulnerabilities
 - BIND Dynamic Update DoS (July 2009)
 - BIND denial of service (server crash) caused by receipt of a specific remote dynamic update message.
 - Fix: upgrade
 - CERT VU#800113 DNS Cache Poisoning Issue (Aug 2008)
 - Fix: DNSSEC, Query Port Randomization for BIND 9 (upgrade)

BIND vulnerabilities (2/3)

- BIND 8: cryptographically weak DNS query IDs (Aug 2007)
 - Consequence: remote attacker could predict DNS query IDs and respond with arbitrary answers, thus poisoning DNS caches.
 - Fix: Upgrade or Patch
 - Note that BIND 8.x.x is End of Life as of August 2007
- BIND 9: allow-query-cache/allow-recursion default acls not set (July 2007)
 - Consequence: The default access control lists (acls) are not being correctly set. If not set anyone can make recursive queries and/or query the cache contents.
 - Fix: configure BIND correctly
- BIND 9: cryptographically weak query ids (July 2007)
 - Consequence: DNS query id generation is vulnerable to cryptographic analysis which provides a 1 in 8 chance of guessing the next query id for 50% of the query ids. This can be used to perform cache poisoning by an attacker
 - Fix: upgrade

BIND vulnerabilities (3/3)

- "BIND: Remote Execution of Code" (Nov 2002)
 - Versions affected: BIND 4.9.5 to 4.9.10, 8.1, 8.2 to 8.2.6, 8.3.0 to 8.3.3
 - SIG RR code bug
 - Consequence: possibility to execute arbitrary code
 - Fix: upgrade
- Up-to-date information on BIND vulnerabilities
 - https://www.isc.org/advisories/bind

Attack on the DNS InfraStructure

- Distributed DOS attack against the DNS root servers 6 February 2007
 - six of the 13 root servers were affected, two badly
 - the two servers affected badly did not use anycast
 - Anycast
 - spread the load on several servers in different locations
 - Also measures to block the packets part of the DDOS
 - the packets had a larger size than 512 bytes
 - If the root servers do not function, eventually name resolution will not work
 - in this case, fast reaction and a new technology (anycast) lead to limited impact on the actual Internet users

DNS Security (1/3)

- Main documents
 - DNS security extensions
 - New RFCs approved 2005
 - DNS Security Introduction and Requirements, RFC 4033
 - Resource Records for DNS Security Extensions, RFC 4034
 - Protocol Modifications for the DNS Security Extensions, RFC 4035
 - new RFC in 2006
 - Minimally Covering NSEC Records and DNSSEC On-line Signing, RFC 4470
 - Protection of queries and responses
 - Secret Key Transaction Authentication for DNS (TSIG), RFC 2845
 - DNS Request and Transaction Signatures (SIG(0)s), RFC 2931
 - Secure Dynamic Update
 - Secure Domain Name System (DNS) Dynamic Update, RFC 3007
 - Storing Certificates in the Domain Name System (CERT RR), RFC 4398

DNS Security (2/3)

- Security services:
 - Data origin authentication and integrity
 - including ability to prove non-existence of DNS data
 - Transaction and request authentication and integrity
 - Means for public key distribution

DNS Security (3/3)

- DNS security does not offer:
 - confidentiality
 - access control
 - but often the DNS server implementations do
 - protection against attacks on the name server node itself
 - protection against denial of service attacks
 - protection against misconfiguration

DNSSEC Security Extensions (1/9)

- Signature record (RRSIG)
 - a record containing a signature for a DNS RR
 - contains the following information
 - type of record signed
 - algorithm number
 - Labels Field
 - Original TTL
 - signature expiration and inception
 - Key tag
 - signer name
 - Signature
 - replaces SIG record

DNSSEC Security Extensions (2/9)

Example

```
host.example.com. 86400 IN RRSIG A 5 3 86400 20030322173103 (
20030220173103 2642 example.com.
oJB1W6WNGv+ldvQ3WDG0MQkg5IEhjRip8WTr
PYGv07h108dUKGMeDPKijVCHX3DDKdfb+v6o
B9wfuh3DTJXUAfl/M0zmO/zz8bW0Rznl8O3t
GNazPwQKkRN20XPXV6nwwfoXmJQbsLNrLfkG
J5D6fwFm8nN+6pBzeDQfsS3Ap3o= )
```

DNSSEC Security Extensions (3/9)

- DNSKEY record
 - Stores public keys that are intended for use in DNSSEC
 - contains the following fields
 - flags (indicating a zone key, public key used for TKEY)
 - the protocol (DNS, value 3)
 - the algorithm (RSA, DSA, private)
 - the public key
 - replaces KEY record

DNSSEC Security Extensions (4/9)

• Example

```
example.com. 86400 IN DNSKEY 256 3 5 ( AQPSKmynfzW4kyBv015MUG2DeIQ3 Cbl+BBZH4b/0PY1kxkmvHjcZc8no kfzj31GajIQKY+5CptLr3buXA10h WqTkF7H6RfoRqXQeogmMHfpftf6z Mv1LyBUgia7za6ZEzOJBOztyvhjL 742iU/TpPSEDhm2SNKLijfUppn1U aNvv4w== )
```

DNSSEC Security Extensions (5/9)

- Delegation Signer record (DS)
 - Indicates which key(s) the child zone uses to sign its records.
 - Contains the following fields
 - Key tag
 - Algorithm
 - Digest type
 - Digest

DNSSEC Security Extensions (6/9)

Example

```
dskey.example.com. 86400 IN DNSKEY 256 3 5 (
AQOeiiR0GOMYkDshWoSKz9Xz fwJr1AYtsmx3TGkJaNXVbfi/
2pHm822aJ5iI9BMzNXxeYCmZDRD99WYwYqUSdjMmmAphXdvxegXd/
M5+X7OrzKBaMbCVdFLUUh6DhweJBjEVv5f2wwjM9Xzc
nOf+EPbtG9DMBmADjFDc2w/rljwvFw== ); key id = 60485
dskey.example.com. 86400 IN DS 60485 5 1 (
2BB183AF5F22588179A53B0A 98631FAD1A292118 )
```

DNSSEC Security Extensions (7/9)

- NSEC record
 - data origin authentication of a non-existent name or record type
 - implies a canonical ordering of records
 - NSEC records are created automatically when doing the signing process
 - replaces NXT records

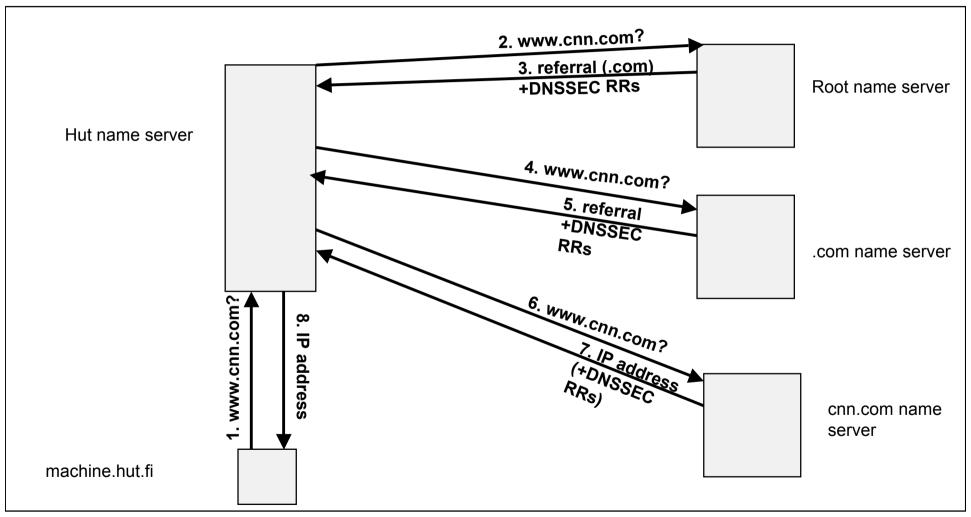
DNSSEC Security Extensions (8/9)

• Example:

```
ns 86400 IN A 10.10.10.1
```

ns 86400 IN NSEC www.example.com. (A NSEC)

www 86400 IN A 10.10.10.3


DNSSEC Security Extensions (9/9)

- CERT record
 - can contain different kinds of certificates
 (SPKI, PKIX X.509, PGP)
 - recommended to be stored under a domain
 named related to the subject of the certificate

Secure Name Resolution

- The resolver is statically configured with some keys (*key signing key*) it trusts
- the process involves verifying a chain of keys and signatures
 - a record retrieved will include a signature
 - the resolver needs to retrieve the corresponding *zone* signing key to be able to verify the signature
 - Verifications starts from the highest level RR and continues through a chain of verifications, until the zone signing key for the DNS data is verified
 - After that, the DNS data can be verified

Secure Name Resolution (Scenario)

Original Master Zone File

verkot.example. dnsadmin.verkot.ex	IN vample (SOA	ns.verkot.example.		
urisauriiir.verkut.ex	ampie. (0 00000	7000 004000 00400 \		
		6 28800	6 28800 7200 604800 86400)		
		IN	NS	ns.verkot.example.	
		IN	MX	10 mail.verkot.example.	
\$ORIGIN verkot.ex	ample.				
localhost	IN	Α	127.0.0.1		
ns		IN	Α	10.10.10.1	
mail		IN	Α	10.10.10.2	
WWW		IN	Α	10.10.10.3	
		IN	TXT	"Our web server"	
ftp		IN	CNAME	mail	
verkot.example. IN	DNSKEY 25	6 3 5			
AQOoIPWnXoZXU	I26cJmIWDN	lps+hes9uk	(t71+QzFiTc3	FB3xIUPd+nyjB	
hArle1HqcKW4+hE	8DtDI//zeVa	90LEid2Pvo	dP8Zy++tFZ7	Zyhg1lKglc	
TD8qA7DaqHa9Rw	vhtl9U=		-	-	

Zone File after Signing (1/4)

```
; File written on Wed Sep 28 16:17:16 2005
; dnssec signzone version 9.3.1
verkot.example.
                      86400
                                 IN SOA
                                             ns.verkot.example. dnsadmin.verkot.example.
                                           ; refresh (8 hours) 7200
                      (6
                             : serial 28800
                                                                   : retry (2 hours)
                      604800
                              ; expire (1 week) 86400
                                                      ; minimum (1 day))
86400
           RRSIG
                      SOA 5 2 86400 20051028121716 (
20050928121716 23576 verkot.example.
VZ92OWwT7rK5Ni9yksqdsWJ3GaNGp8tNAL7Bs2Vb8uB1+XN+EPHP4uwlDK43JyzlV0Vj0FHt7hmj9bqws
u6A3Mp332D7k+DRFmhfgHMRdXeMxSGrP+IB89f2BknCyoXQ)
86400
           NS
                      ns.verkot.example.
           RRSIG
                      NS 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.
86400
hXX6fGWcTI+q1NFWJznffkCYPg86wQyW7nwHcdKg0YF2FX57w12A1P9zUlxT8SJ5kJyAEAjBvaxbzKy3q
q3NiNq24vaaU0gjJFt7z+4ZgvVBjcGPq3owrlVX+ljlTCue)
                      10 mail.verkot.example.
86400
           MX
86400
           RRSIG
                      MX 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.
RgOyunvHTO1Rbuc/HNMe35kXNddlHGrtMubjra7CdO5mDrOJlQicdy7YSuyFfeUdZrF0+px8gv0x0daZabP
73zMNW2nKIRtuwDhoNIZLK+op3ycurZ38BR2s79JqfHyD)
                      ftp.verkot.example. NS SOA MX RRSIG NSEC DNSKEY
86400
           NSEC
86400
           RRSIG
                      NSEC 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.
Yi2YRyNpRCUujfWUt0TaG4zyHb1CTVr3BRXDU0JWvG9ECD6AYvpYpMrPUj4pN+gKa4v4MaXNaSKC4
XWsv8Hk/OJIf/BrgCK9OIrPMnPokSd/NSJYEGeTJoI38TZOQYBf)
86400
           DNSKEY
                      256 3 5
(AQQolP)//nXoZXUI26cJmlWDNps+hes9uKt71+QzFiTc3FB3xIUPd+nyjBhArle1HqcKW4+hE8DtDl//zeVa9
```

0LEid2PvdP8Zv++tFZ7Zvhg1lKglcTD8gA7DagHa9Rwhtl9U=); kev id = 23576

Zone File after Signing (2/4)

86400 RRSIG DNSKEY 5 2 86400 20051028121716 (20050928121716 23576 verkot.example.

EYhRu2WPmgjo8O1JelgTGgVJvLpExihk8ZDMENyBp5PI+/ioyFFnDeBbi7JtflMGtzHL5oi7yhTVebH5SXZxsxu/Xg6wVD9G6nQlx/19XNqP5RqMOjA9+z5l8mlye386)

ftp.verkot.example.

86400

IN CNAME mail.verkot.example.

86400

RRSIG

CNAME 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

JIVILtqKls8Km78rAIInGb7uwLF6SQxl7WjXHem6LJ/R2nemrPfpYml0YNXdeVGOTv3n+mRZK4Z/yTySflxckTqk666X8WYIs RMhwsvdljWHjlj2u4eArbYcdCLeO33s)

86400

NSEC

localhost.verkot.example. CNAME RRSIG NSEC

86400

RRSIG

NSEC 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

J3DgodgZgvbnnvZBWzgdJ2qrWjHg19d88Mwj6LiRP+Z8n7xFa9km8Dh/YT+MUWv10nd5b9qOzVYMqmPzxJ7EVd0LgTp09V3lgz7Ki7pZcflzNhnLHc+03racm5lmHf12)

localhost.verkot.example. 86400

IN A

127.0.0.1

86400

RRSIG

A 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

Uq0P6qTaT2sxSbXqZwqyKNEBUXNS49zUPAJxdcdwukcO3FyQYb6ld269Q7XAhVPVgxXCYOupcU47vWrPhb9C+/ymRh EYFKi/zXt+pNVQyedVKtLtTSqoLzcjsC7kbVXw)

86400

NSEC

mail.verkot.example. A RRSIG NSEC

86400

RRSIG

NSEC 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

M2009áB0€060lbE3k97kOBhltlp4dnVCZUrTQSZFr/hBeizgthSz40tx3NLAZdr3d55bNqGa75xPm+1Dg4igfQ/TZRK-4¢VlOplgCZz ggVlWbcTQkndifyHa8tF3mskekSii/)

Zone File after Signing (3/4)

mail.verkot.example.

86400

IN A

10.10.10.2

86400

RRSIG A 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

Nhk09EIqZAT/KOkfLtkf9S4IwI8dlxZHsDQFPuqRUP/riA8HAl1CzcBVZrZ19S8MNiJ6o22yFQp/0rzMfBnJD/0f0hLo2kaz7Zcsapk+mXd7vsf9Fpi2HrRrdMFWP6nt)

86400

NSEC

ns.verkot.example. A RRSIG NSEC

86400

RRSIG

NSEC 5 3 86400 20051028121716 (20050928121716

23576 verkot.example.

SxxQMF2soXT3gHrVV9TNEsA6zPXEifGynZ7eFi4/vGm12tkKzA3BTpkImRrLHTrxWuFHpvpUQHxvCxaO8ad3 oP6NCHesI1ICENkuUsFW3MMo7uXNZa3t3VxwOIjtVsw+)

ns.verkot.example.

86400

IN A

10.10.10.1

86400 RRSIG

A 5 3 86400 20051028121716 (

20050928121716 23576 verkot.example.

dQIY/CTSUMbPKKxv1DcN1osbAuEpjt5SWmgZgLYx3kpVAk4aSuCGdOWCylRoQdRs/MRx62K6dHhyDy7qtAyMM//NHwGUbnkrDoSurXsmDS2ud6JCfNyTCWJI+qK5MUKH)

86400

NSEC

www.verkot.example. A RRSIG NSEC

86400

RRSIG

NSEC 5 3 86400 20051028121716 (20050928121716

23576 verkot.example.

Ik+ovY4k2CFyX3vEo66N0HUHNgLmv7h2a7T08E/4FocQgKXhAv8LU4tG+437IEYxwfKo9/j2w5E9cjb+oikTqWqi3jPTD/Zi74wvVa1SHQR4Is6AMwE7DBdM1od3tSrY)

Zone File after Signing (4/4)

www.verkot.example.

86400

IN A

10.10.10.3

86400

RRSIG

A 5 3 86400 20051028121716 (20050928121716

23576 verkot.example.

bsxBpAxE7xw9uzV30kTjif7E6IMHHOsn17EZyDp+01dFR3zNv2Zcu6bvy+crnihJNzgzASeXYvnUq4JaJk0U0qGTDJSIEiDfti/XzflYH3sqDFjw1Yw+ykp4x+gwXOk6)

86400

TXT

"Our web server"

86400

RRSIG

TXT 5 3 86400 20051028121716 (

20050928121716 23576

verkot.example.

Spxg5Jly7vMK8co6hgFng1rlSRZENhxkD27jGPxOtH7wjd7wuuktvl2sNgkBo2dtNuAPVdh256jRe9Eo8xd3cP2 MG//NzLjhL05coelgKEpThHQ6orT2WE0FbN/FNxLW)

86400

NSEC

verkot.example. A TXT RRSIG NSEC

86400

RRSIG

NSEC 5 3 86400 20051028121716 (20050928121716 23576

verkot.example.

mgO9FlagQqRCmsGbKnBizkxHxUizPv79gclAl1eaoSAAFwciTWQpJ4hqrcE9MgS67K0qK/aouoLiNct966GlvKuk41HEIXaDDoCBQ2YJ+zA9 n9CGqRiO4NRY++eKN5AA)

Implications of the Security Extensions (1/2)

- the record number in the database grows roughly by a factor of three (NSEC, RRSIG records needed)
 - New records have a large size, so the actual database grows even more.
- NSEC records make it possible to list the complete contents of the zone (effectively do a zone transfer)
 - Some ideas
 - Minimally Covering NSEC Records and DNSSEC On-line Signing, RFC 4470
 - DNSSEC Hashed Authenticated Denial of Existence, RFC 5155

Implications of the Security Extensions (2/2)

- DNS UDP packets are limited to the size of 512 (RFC 1035)
 - answer packets including required signature records might exceed the limit
 - IPv6 support also increases DNS message sizes
 - Extension mechanism for DNS (EDNS)
 provides a solution
 - EDNS must be supported in DNSSEC

Transaction and Request Authentication and Integrity

- Secret Key Transaction Authentication for DNS (TSIG)
 - symmetric encryption
 - covers a complete DNS message with a Message Authentication Code (MAC)
 - signature calculation and verification relatively simple and inexpensive
- DNS Request and transaction signatures (SIG (0))
 - public key encryption, sign the message
 - offers scalability

DNS Dynamic Updates (1/2)

- Authorized clients or servers can dynamically update the zone data
 - zones can not be created or deleted
- example

prereq nxrrset www.example.com A prereq nxrrset www.example.com CNAME update add www.example.com 3600 CNAME test.example.com

DNS Dynamic Updates (2/2)

- Example of use
 - mechanism to automate network configuration even further
 - a DHCP server can update the DNS after it has granted a client a lease for an IP address
 - Can be protected with transaction protection methods
 - Secret Key Transaction Authentication for DNS (TSIG), RFC 2845
 - DNS Request and Transaction Signatures (SIG(0)s), RFC 2931

TKEY RR

- TKEY record
 - can be used for establishing a shared secret between the server and the resolver
 - negotiate a shared secret using Diffie-Hellman
 - Authentication using public keys (SIG (0)) or a previously established shared secret
 - The resolver or server generates the key and encrypts it with the server or resolver public key
 - meta-RR, not present in any master zone files or caches

DNSSEC Issues (1/2)

- DNSSEC is complex
- Significant increase of response packets
- Signature validation increases work load and thus increases response time
- Hierarchical trust model
- Key rollover at the root and TLD name servers
 - for example .com contains millions of RRs
- Strict time synchronization needed

DNSSEC Issues (2/2)

- TSIG
 - Keys need to be online
 - Fine grained authorization not possible
- Many workshops have been held to progress DNSSEC
 - Number of open issues decreasing
- Not much real deployment yet
 - Some secure islands exist
 - TSIG more common

Internationalized DNS (IDN)

- DNS originally designed to work with ASCII as the character set
- Internationalized DNS aims to provide support for other character sets.
 - An encoding from other character sets to ASCII is needed

Security Problems in Internationalized DNS (IDN)

- Phishing concerns known related to IDN
 - Idea: use a different characters set where a name looks the same, but translates to an entirely different domain name
 - Example: http://www.pàypal.com instead of www.paypal.com
- No technical solution has been found to the problems

DNS as a PKI? (1/3)

- Public keys of an entity can be stored under its domain name
 - not intended for personal keys
- DNS can be used to store certificates (CERT record)
 - can include personal keys

DNS as a PKI? (2/3)

- the public key or certificate will be bound to a domain name
 - search for a public key or a certificate must be performed on basis of the domain name
 - a convenient naming convention needs to be used
 - an efficient search algorithm is required

DNS as a PKI? (3/3)

- research on DNS as a certificate repository can be found from the Tessa project at Helsinki University of Technology
 - http://www.tml.tkk.fi/Research/TeSSA/

Conclusions: how to handle DNS Security (1/4)

- Basic security first!
 - Run latest version of the name server
 - Firewall protection
 - Don't run any other services on the machine
 - Run as non-root
 - Run in a sandbox: chroot environment ("jail")
 - Eliminate single points of failure
 - Redundancy, run at least two name servers
 - Put name servers in separate sub-networks and behind separate routers

Conclusions: how to handle DNS Security (2/4)

- Basic security (cont.)
 - Consider non-recursive behavior and restricting queries
 - To mitigate against cache poisoning
 - Use random message Ids
 - Hide version number
 - Prevent unauthorized zone transfer
 - TSIG can be used to authenticate zone transfers
 - Restrict DNS dynamic updates
 - TSIG can be used to authenticate dynamic updates

Conclusions: how to handle DNS Security (3/4)

- Split DNS (internal/external)
 - Useful when using private addresses in the internal network
 - Enhances overall security of the network, as only some nodes can connect to the external network directly
 - Firewalls between external and internal network
 - External DNS servers in the DMZ
 - Internal DNS servers in the internal network

Conclusions: how to handle DNS Security (4/4)

- Additional security measures
 - Secret Key Transaction Authentication for DNS (TSIG)
 - Can be used to ensure authentication and integrity for queries, responses, zone transfers, dynamic updates
 - The communication parties need a shared secret
 - Good performance
 - DNS Security Extensions (DNSSEC)
 - Public-key methods
 - Provides scalability but bad performance
- Security is a process
 - Monitor CERT and similar organizations, monitor relevant mailing lists

Some interesting books and links

- Cricket Liu, Paul Albitz, DNS & BIND
 - the DNS book
- http://www.ietf.org/html.charters/dnsextcharter.html
- www.dns.net/dnsrd
- www.menandmice.com