
User Datagram Protocol (UDP)
Transmission Control Protocol (TCP)

Matti Siekkinen

22.09.2009

22 September 2009

Outline

Background
UDP

Role and Functioning
TCP

Basics
Error control
Flow control
Congestion control

22 September 2009

Transport layer

Physical

Link

Network

Transport

Application

Physical

Link

Network

Transport

Application

Internet

TCP, UDP…

22 September 2009

Transport layer (cont.)

Offers end-to-end transport of data for
applications
Different characteristics

Reliable vs. unreliable
Forward error correction (FEC) vs. Automatic Repeat-
reQuest (ARQ)
TCP friendly or not
Structured vs. unstructured stream
…

22 September 2009

Reliable vs. best effort

TCP – reliable transport
Guarantees ordered delivery of packets
Important for e.g.

o Signaling messages
o File transfer

UDP – best effort transport
No guarantees of packet delivery
Non-critical data delivery, e.g. VoIP

22 September 2009

Encapsulation

do what
I mean

Ethernet CRC

IP

TCP

appl. data = payload

packet

segment

frame

headers

22 September 2009

Role of ports

Well-known port
numbers

RFC 2780 (&4443)
0-1023

Registered port
numbers

1024-49151
Other port numbers

49152-65535

DNS IRC xyz

Transport (TCP/UDP)

666753 65000

Applications

IP

22 September 2009

Checksums

For detecting damaged packets
Compute at sender, check at receiver

Computed from pseudo-header and transport
segment

Pseudo header includes
o source and destination IP addresses
o protocol number
o TCP/UDP length
o Slightly different method for IPv4 (RFC 768/793) and IPv6

(RFC 2460)
o Included for protection against misrouted segments

Divide into 16-bit words and compute one’s complement of
the one’s complement sum of all the words

Part 2: UDP - User Datagram
Protocol

22 September 2009

User Datagram Protocol (UDP)

Lightweight protocol
Just add port numbering and integrity checking
(checksums) to IP
No segmentation

Unreliable connectionless transport service
No acknowledgments and no retransmissions
Checksum optional in IPv4 and mandatory in IPv6

22 September 2009

UDP datagram

Source port and checksum are optional
Checksum mandatory with IPv6

Length: header and data in bytes
Ports provide application multiplexing within a host (single IP)

UDP SOURCE PORT UDP DESTINATION PORT
UDP MSG LENGTH UDP CHECKSUM

DATA ...

0 16 31 Part 3: TCP – Transmission Control
Protocol

22 September 2009

Outline

TCP general overview
TCP-header
Connection management
Error control
Flow control
Congestion control

22 September 2009

TCP properties

End-to-end
Connection oriented

State maintained at both ends
Identified by a four-tuple

o Formed by the two end point’s IP address and TCP port
number

Reliable
Try to guarantee in order delivery of each packet
Buffered transfer

Full Duplex
Data transfer simultaneously in both directions

22 September 2009

TCP properties

Three main functionalities for active connection

Application Application

TCP TCPNetwork

Sender Receiver

buffers

1. Error control
Deal with the best effort unreliable network

2. Flow control
Do not overload the receiving application

3. Congestion control
Do not overload the network itself

22 September 2009

TCP-header (RFC 793)
0 10 20 31

+-+
| Source port | Destination port |
+-+
| Sequence number |
+-+
| Acknowledgment number |
+-+
hdr		U	A	P	R	S	F	
length	Varattu	R	C	S	S	Y	I	Advertized receiver window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent-pointer							
+-+								
Options	Padding							
+-+								
data								
+-+

22 September 2009

TCP options

3 = window scaling
8,10 = Timestamp and echo of previous timestamp

Improve accuracy of RTT computation
Protect against wrapped sequence numbers

2 = Maximum Segment Size (MSS)
Negotiated while establishing connection
Try to avoid fragmentation

1 = No-operation
Sometimes between options, align option fields

0 = End of options
22 September 2009

Three-way handshake

<SEQ=100><SYN>

<SEQ=300><ACK=101><SYN><ACK>

<SEQ=101><ACK=301><ACK>

<SEQ=101><ACK=301><ACK><DATA>

Third packet may contain data:

do what
I mean

Connection establishment

22 September 2009

Terminating connection

Modified three-way handshake
If other end has no more data to send, can be
terminated one way:

Send a packet with FIN flag set
Recipient acks the FIN packet

After done with the data transfer to the other
direction

FIN packet and ack to the inverse direction

22 September 2009

Outline

TCP general overview
TCP-header
Connection management
Error control
Flow control
Congestion control

22 September 2009

Mechanisms to detect and recover from lost
packets

Positive acknowledgments (ARQ)
Retransmissions
Error detection

o Timers
o Checksums

Error control

22 September 2009

Sequence numbers

Used in acknowledgments
Identify the packets that are acknowledged

Marks the number of octets from the start value
Start value initiated at connection establishment

Distinct values to both directions

22 September 2009

Cumulative Acknowledgments
Acknowledge only the next expected packet in
sequence

E.g. received 1,2,3,4,6 -> ACK 5
Advantages

Single ACK for multiple packets
o Delayed ACKs scheme = one ACK for 2*MSS data

Lost ACK does not necessarily trigger retransmission
Drawback

Cannot tell if lost only first or all of a train of packets

22 September 2009

Retransmission timeout (RTO)

RTO associated to each transmitted packet
Retransmit packet if no ACK is received before RTO
has elapsed
RTO is adjusted based on observed delays between
sent packets and received ACKs

Round trip time (RTT)

22 September 2009

Computing RTO

Original algorithm:
RTT = (α*oldRTT)+((1-α)*newRTTsample) (recommeded α=0,9)
RTO: β*RTT, β>1 (recommended β=2)

Does not take into account large variation in RTT

22 September 2009

Modified algorithm

Initialize: RTO = 3
Two variables: SRTT (smoothed round-trip time) and
RTTVAR (round-trip time variation)

First measurement R:
o SRTT = R
o RTTVAR = R/2

For subsequent measurement R:
o RTTVAR = (1 - beta) * RTTVAR + beta * |SRTT - R|
o SRTT = (1 - alpha) * SRTT + alpha * R
o Use alpha=1/8, beta=1/4

RTO = SRTT + 4*RTTVAR
If computed RTO < 1s –> round it up to 1s

22 September 2009

Karn's algorithm

Receiving ACK for retransmitted packet
Is the ACK for original packet or retransmission??
No way to know...
Do not update RTO for retransmitted packets

Timer backoff also needed
At timeout: new_timeout = 2*timeout (exponential
backoff)

TCP timestamps can also help disambiguate ACKs

22 September 2009

Fast Retransmit

Introduced by Van Jacobson 1988
TCP always ACKs the next expected missing packet
Duplicate ACKs are a sign of lost packet(s)
Do not wait for timeout but retransmit after 3
duplicate ACKs

Wait for reordered packets, don’t do go-back-n

22 September 2009

Selective Acknowledgments (SACK)

RFC 2018
Helps recovery when multiple packets are lost
Receiver reports which segments were lost using TCP
SACK (Selective Acknowledgment) options
Sender can retransmit several packets per RTT

22 September 2009

Outline

TCP general overview
TCP-header
Connection management
Error control
Flow control
Congestion control

22 September 2009

Goal: do not overflow the receiving application
Window based mechanism to limit transmission rate
Receiver advertised window

Flow control

Application Application

TCP TCPNetwork

Sender Receiver

buffers

22 September 2009

Sliding Window

Multiple packets simultaneously ”in flight”, i.e.
outstanding

Improve efficiency
Buffer sent unacked packets

1 2 3 4 5 6 7 8 9 10 11 12 13 ...

Sending window

sent and
acked sent but

not acked

unsent

22 September 2009

Receiver advertised window

Receiver advertises the maximum window size the
sender is allowed to use
Enables receiver TCP to signal sending TCP to
backoff

Receiving application not consuming received data fast
enough

Value is included in each ACK
Can change dynamically

22 September 2009

Silly Window Syndrome (SWS)

Problem in worst case:
Receiver buffer between TCP and application fills
up
Receiving application read a single byte -> TCP
advertises a receiver window of size one
Sender transmits a single byte

Lot of overhead due to packet headers

22 September 2009

Avoiding SWS

Dave Clark’s solution
Window update only with significant size

At least MSS worth of data or
Half of its buffer

Analogy at sender side
Application gives small chunks of data to TCP -> send
small packets
Nagle’s algorithm: Delay sending data until have MSS
worth of it

o Does not work for all applications, e.g. delay sensitive apps
o Need also mechanism to tell TCP to transmit immediately

-> Push flag

22 September 2009

Outline
TCP general overview
TCP-header
Connection management
Error control
Flow control
Congestion control

Background and motivation
Evolution of congestion control in TCP
Most important mechanisms
Recent developments
Conclusions

22 September 2009

Why we need congestion control
Flow control in TCP prevents overwhelming the receiving
application
Problem: Multiple TCP senders sharing a link can still overwhelm
it

Congestion collapse due to:
Retransmitting lost packets

Further increases the load
Spurious retransmissions of packets
still in flight

Unnecessary retransmissions lead
to even more load!
Like pouring gasoline on a fire

th
ro

ug
hp

ut

load

packet losses

de
la

y

22 September 2009

Congestion control (cont.)
Principle:

Continuously throttle TCP sender's transmission rate
Probe the network by increasing the rate when all is fine
Decrease rate when signs of congestion (e.g. packet loss)

How?
Introduce congestion window (cwnd):

#outstanding bytes = min(cwnd, rwnd)
Adjust cwnd size to control the transmission rate

o Adjustment strategy depends on TCP version

flow control

22 September 2009

ARPAnet
TCP (Cerf et Kahn) RFC 793

198119741969 1983

TCP/IP

Only flow control (receiver advertised window)

− Link LBL to UC Berkeley
− throughput dropped from 32 Kbps

to 40 bps (factor of ~1000!)

1986

1st congestion
collapse

Main differences lie
in congestion control
mechanisms

CTCP

1988

TCP Tahoe

Congestion control included

1990

TCP Reno

1994 1999

- TCP Vegas
- ECN

TCP New
Reno

1996

SAC
K

-04 -05

CUBIC

- FAST
TCP
- BIC

-06

Glimpse into the past

22 September 2009

TCP Tahoe
1988 Van Jacobson
The basis for TCP congestion control
Lost packets are sign of congestion

Detected with timeouts: no ACK received in time
Two modes:

Slow Start
Congestion Avoidance

New retransmission timeout (RTO) calculation
Incorporates variance in RTT samples
Timeout really means a lost packet (=congestion)

Fast Retransmit

22 September 2009

Slow Start (SS)

In two cases:
Beginning of connection
After a timeout

On each ACK for new data, increase cwnd by one
packet

Exponential increase in the size of cwnd
Ramp up a new TCP connection fast (not slow!)
Kind of a misnomer...

22 September 2009

Congestion Avoidance (CA)

Approach the rate limit of the network more
conservatively

Easy to drive the net into saturation but hard for the
net to recover

AIMD (additive increase / multiplicative decrease)
On each ACK for new data: increase cwnd by 1/cwnd
On timeout: set cwnd to half the current window size

22 September 2009

Combining SS and CA

Introduce Slow start threshold (ssthresh)
On timeout:

ssthresh = 0.5 x cwnd
cwnd = 1 packet

On new ACK:
If cwnd < ssthresh: do Slow Start
Else: do Congestion Avoidance

22 September 2009

TCP Tahoe: adjusting cwnd

Timeouts

Slow Start

t
cw

nd

Congestion avoidance
after cwnd reaches

half of previous cwnd

Set ssthresh to
half of cwnd

22 September 2009

Van Jacobson 1990
Fast retransmit with Fast recovery

Duplicate ACKs tell sender that packets still go through
Do less aggressive back-off:

o ssthresh = 0.5 x cwnd
o cwnd = ssthresh + 3 packets
o Increment cwnd by one for each additional duplicate ACK
o When the next new ACK arrives: cwnd = ssthresh

TCP Reno

Nb of packets that
were delivered

Fast
recovery

22 September 2009

TCP Reno: adjusting cwnd

Timeout

Slow Start
t

cw
nd

Fast retransmit
with Fast recovery

3 dup ACKs

22 September 2009

TCP New Reno
1999 by Sally Floyd
Modification to Reno’s Fast Recovery phase
Problem with Reno:

Multiple packets lost in a window
Sender out of Fast Recovery after retransmission of only one
packet

cwnd closed up
no room in cwnd to generate duplicate ACKs for additional

Fast Retransmits
eventual timeout

New Reno continues Fast Recovery until all lost packets from
that window are recovered

22 September 2009

More recent developments
Delay-based congestion control

TCP Vegas
Wireless networks

Take into account random packet loss due to bit errors
(not congestion!)
E.g. TCP Veno

Paths with high bandwidth*delay
These “long fat pipes” require large cwnd to be
saturated
SS and CA provide too slow response
TCP CUBIC
Compound TCP (CTCP)

22 September 2009

TCP Vegas
1994 by Brakmo et Peterson
Issue: Tahoe and Reno RTO clock is very coarse grained

“ticks” each 500ms
Increasing delay is a sign of congestion

Packets start to fill up queues
Expected throughput = cwnd / BaseRTT
Compare expected to actual throughput
Adjust rate accordingly before packets are lost

Also some modifications to Slow start and Fast Retransmit
Potentially up to 70% better throughput than Reno
Fairness with Reno?

Reno grabs larger share due to late congestion detection

minimum of all
measured round
trip times

22 September 2009

BIC and CUBIC

2004, 2005 by Xu and Rhee
Both for paths with high (bandwidth x delay)

These “long fat pipes” lead to large cwnd
SS and CA provide too slow response
Scale up to tens of Gb/s

BIC TCP
No AIMD
Window growth function is combination of binary search
and linear increase
Aim for TCP friendliness and RTT fairness

22 September 2009

BIC and CUBIC

BIC window growth function

[3]

22 September 2009

BIC and CUBIC (cont.)

CUBIC TCP
Enhanced version of BIC
Simplifies BIC window control using a cubic function
Improves its TCP friendliness & RTT fairness

accelerate

accelerate

slow down

[3]

22 September 2009

Compound TCP (CTCP)
From Microsoft research, 2006
Tackles same problems as BIC and CUBIC

High speed and long distance networks
RTT fairness, TCP friendliness

Loss-based vs. delay-based approaches
Loss-based (e.g. HSTCP, BIC...) too aggressive
Delay-based (e.g. Vegas) too timid

Compound approach
Use delay metric to sense the network congestion
Adaptively adjust aggressiveness based on network congestion
level
Loss-based component: cwnd (standard TCP Reno)
Scalable delay-based component: dwnd
TCP sending window is Win = cwnd + dwnd

22 September 2009

Explicit Congestion Notification (ECN)

Routers flag packets upon congestion
Active queue management

TCP sender consequently reduces cwnd

22 September 2009

Deployment

Windows
Server 2008 uses Compound TCP (CTCP) by default
Vista, XP support CTCP, New Reno by default

Linux
TCP BIC default in kernels 2.6.8 through 2.6.18
TCP CUBIC since 2.6.19

22 September 2009

Conclusions
Transport layer

End-to-end transport of data for applications
Application multiplexing through port numbers
Reliable (TCP) vs. unreliable (UDP)

UDP
Unreliable, no state
Optionally integrity checking

TCP
Connection management
Error control: deal with unreliable network path
Flow control: Prevent overwhelming receiving application
Congestion control: Prevent overwhelming the network
Many TCP versions exist today

o Main differences in congestion control
o Loss-based and delay-based congestion detection
o More and less aggressive rate control
o Suitable for different network types

22 September 2009

References
[1] IETF’s RFC page: http://www.ietf.org/rfc.html
[2] V. Jacobson: Congestion Avoidance and Control. In proceedings of

SIGCOMM '88.
[3] L. Brakmo et al.: TCP Vegas: New techniques for congestion

detection and avoidance. In Proceedings of SIGCOMM '94.
[4] RFC2582/RFC3782 - The NewReno Modification to TCP's Fast

Recovery Algorithm.
[5] L. Hu et al.: Binary Increase Congestion Control for Fast, Long

Distance Networks, IEEE Infocom, 2004.
[6] S. Ha et al.: CUBIC: A New TCP-Friendly High-Speed TCP Variant,

ACM SIGOPS, 2008.
[7] K. Tan et al.: Compound TCP: A Scalable and TCP-friendly

Congestion Control for High-speed Networks, In IEEE Infocom,
2006.

[8] W. John et al.: Trends and Differences in Connection Behavior
within Classes of Internet Backbone Traffic, In PAM 2008.

[9] A. Medina et al.: Measuring the evolution of transport protocols in
the internet, SIGCOMM CCR, 2005.

