Multicast

TuomoKarhapää tuomo.karhapaa@otaverkko.fi OtaverkkoOy

Agenda

- Whymulticast?
- Theconceptofmulticast
- Multicastgroups
- Multicastaddressing
- Multicastroutingprotocols
- MBONE
- Multicastapplications
- Conclusions

©TuomoKarhapää

2

Why multicast?

- Unicastvs.multicast
- typicalmulticastapplicationsare
 - ◆ audioand
 - ◆ videotransmission
 - ◆ collaborating
- multicastingreducesnetwork bandwidthusage

©TuomoKarhapää

3

Why multicast?

- exampleofbandwidthusage:
 - ◆ MPEG1videostream1.5Mbps
 - ◆ 10receivers
- bandwidthneededatserversite with
 - ◆ unicast15Mbps
 - multicast1.5Mbps

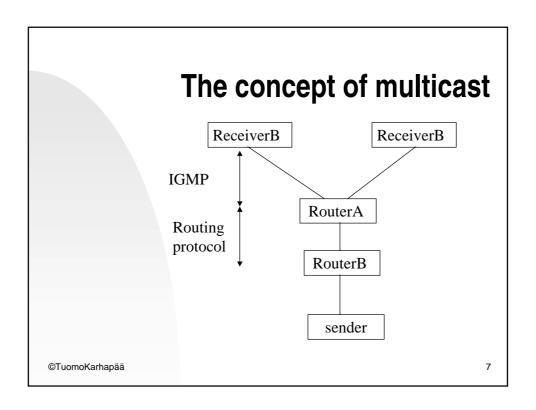
©TuomoKarhapää

4

The concept of multicast

- IPv4supportsthreetypesof addresses
 - unicast(point -to-point communication)
 - broadcast(sendapackettoentire subnet)
 - multicast(deliveryofpacketstoa setofhoststhathavejoinedto multicastgroup)

©TuomoKarhapää


5

The concept of multicast

- multicastisnotconnectionoriented
- multicastdatagramisdeliveredto destinationgroupmembersasa unicastlPdatagram(UDP)
- unicastIPusesclassA,BandC addresses
- multicastIPusesclassDaddress format(224.0.0.0. -239.255.255.255)

©TuomoKarhapää

6

Multicast groups

- hostsarefreetojoinandleave multicastgroups
- therearenorestrictionson physicallocations
- hostmaybeamemberofoneor moregroups
- senderneednottobeamemberof thegroup

©TuomoKarhapää

8

Multicast addressing

theformatofa32 -bitclassD address

1 1 1 0 MulticastGroupID(28bits)

- IANAmaintainsalistofregistered
 IPmulticastgroups
- thebaseaddress224.0.0.0is reserved

©TuomoKarhapää

9

Multicast addressing

- 224.0.0.1-224.0.0.255isreserved forrouting, discoveryand maintanance protocols
 - ◆ 224.0.0.1allsystemsonthis subnet
 - ◆ 224.0.0.2allroutersonthissubnet
 - ◆ 224.0.0.4allDVMRProuters
 - ◆ 224.0.0.5allOSPFrouters

©TuomoKarhapää

10

Multicast addressing

 routersshouldnotforwarda multicastdatagramwitha destinationaddressinthisrange

- groupsfrom224.0.1.0to
 239.255.255.255areassignedto
 variousmulticastapplicationsor
 remainunassigned
- 239.0.0.0-239.255.255.255are reservedforsite -localapplications, notforInternetwideapplications

©TuomoKarhapää

Multicast addressing

- whensenderandreceiversarein thesamesubnet,transmissionand receptionofmulticastframesare simpleprocesses
- sendertransmitstheIPpacketto themulticastgroup,theNICmaps classDaddresstonetworklevel multicastaddress

©TuomoKarhapää

12

Multicast addressing

- whensenderandreceiversare locatedtodifferentsubnets,things aremorecomplicated
- routersarerequiredtoimplementa multicastroutingprotocolfor
 - ◆ discoverdeliverytree
 - supportmulticastdatapacket forwarding
- eachrouterneedsalsoimplement agroupmembershipprotocolto learngroupmembersonitsdirectly attachedsubnetworks

©TuomoKarhapää

13

IGMP version 1

- InternetGroupManagement Protocol(RFC -1112)
- IGMPisusedtoregisterahostto multicastgroup
- routersperiodicallytransmitHost MembershipQuerymessagesto determinewhichgroupshave membersondirectlyattached networks

querymessagesaresenttoall hostgroup(224.0.0.1)withTTL=1

©TuomoKarhapää

Multicast 7

14

IGMP version 1

 whenhostreceivesaQuery messageitrespondswithHost Membershipreporttoinformwhich groupsitbelongs

- routersneednottomaintain detailedlistwhichhostbelongto eachmulticastgroup
- routersonlyneedtoknowthat thereisatleastonegroupmember

©TuomoKarhapää

15

IGMP version 2

- IGMP2(RFC -2236)isenhanced versionofIGMP1
- backwardcompatiblewithIGMP version1
- Group-SpecificQuery:Queryis senttospecificmulticastgroup ratherthanallgroups
- LeaveGroupmessage

©TuomoKarhapää

16

IGMP version 3

- draftspecification
- GroupSourceMessage;hostcan electtoreceivetrafficfromspecific sourcesofamulticastgroup
- thatwillhelptoreducebandwidth usagebecausemulticastrouting protocolsusethatinformation whenconstructingthemulticast deliverytrees

©TuomoKarhapää

17

Multicast forwarding algorithms

- IGMPisusedformulticastpacket deliveryfromlocalroutertodirectly connectedsubnetworks
- forInternet -widemulticastservice thereisaneedtousemulticast routingprotocols
- multicastroutingprotocolis responsiblefortheconstructing deliverytreesandmulticastpacket forwarding

©TuomoKarhapää

18

Multicast forwarding algorithms

- therearedifferentalgorithmsused bymulticastprotocols
 - ◆ Flooding
 - ◆ Spanningtrees
 - ◆ ReversePathBroadcasting(RPB)
 - ◆ TruncatedReversePath Broadcasting(TRPB)
 - ◆ ReversePathMulticasting(RPM)
 - ◆ Core-BasedTrees

©TuomoKarhapää

19

Flooding

- simplesttechniquefordelivering multicastdatagrams
- ifthepacketisseenfirsttime, routerforwardspackettoall interfaces
- ifrouterhasseenthepacket before,itdiscardspacket
- floodingisverysimpleto implement
- itgeneratesduplicatepacketsand usesresourcesinefficiently

©TuomoKarhapää

20

Spanning trees

moreefficientmethodthanflooding

- spanningtreeisastructureof activepaths
- packetsareforwardedtoactive pathsexcepttothepathwhich originatedthepacket
- powerfulmethodandquiteeasyto implement

©TuomoKarhapää

21

Reverse Path Broadcasting (RPB)

- source-rootedspanningtree
- routerforwardspackettoall interfaces(child)exceptincoming interface(parent)
- distance-vectorroutingprotocol's routingtablemaybeusedto determineshortestpathbackto thesource
- neednottoknowholetree structure

©TuomoKarhapää

22

Truncated Reverse Path Broadcasting (TRPB)

- RPBforwardspacketstoallleafs
- TRPBeliminatesunnecessary trafficonleafsubnetworksby determininggroupmembershipvia IGMP
- butitdoesnotconsidergroup membershipwhenbuildingthe distributiontree

©TuomoKarhapää

23

Reverse Path Multicasting (RPM)

- enhancementofRPBandTRPB
- distributiontreeconsistof
 - ◆ subnetworkswithgroupmembers
 - shortestpathtosubnetworkswith groupmembers
- prunemechanism;packetsare forwardedonlytobranchesthat leadtomembersofgroup

©TuomoKarhapää

24

Reverse Path Multicasting (RPM)

 notscalable;allroutersneedto maintainstateinformationofall groupsandsources

 multicastpacketsmustbe periodicallyforwardedtoevery routerintheinternetworkto maintainpruneinformation

©TuomoKarhapää

25

Core-Based Trees (CBT)

- RFC-2189
- source-rooted, shortest -path deliverytreeforeach source, grouppair
- similartothespanningtree algorithmexceptithasdifferent core-basedtreeforeachgroup
- itonlyrequiresaroutertomaintain stateinformationforeachgroup, notforgroup,sourcepair

©TuomoKarhapää

26

Core-Based Trees (CBT)

 conservebandwidthsinceitdoes nottoforwardmulticastpackets peridicallytoeveryrouter

 thebottleneckisnearacorerouter becausetrafficfromallsources traversesviasamelinks

©TuomoKarhapää

27

MOSPF

- RFC-1584
- multicastextensionstoOSPF version2
- MOSPFisdefinedinRFC -1584
- usesnetworktopologyconstructed byunicstOSPF
- donotsupporttunnels

©TuomoKarhapää

28

MBGP

MultiprotocolExtensionsforBGP -- (RFC-2283)

- supportsdifferentunicastand multicastroutingpolicies concurrently
- scalable

©TuomoKarhapää

29

DVMRP

- DistanceVectorMulticastRouting Protocol(RFC -1075)
- usesReversePathMulticasting protocol
- firstimplementationwasmrouted
- twotypesofinterfaces
 - physicalinterfacetoadirectly connectedsubnetworks
 - tunnelinterfacetoanother multicastisland

©TuomoKarhapää

30

DVMRP

 allinterfacesareconfiguredwith metricandTTLthreshold

InitialTTLScope	
0	Restrictedtothesamehost
1	Restrictedtothesamesubnet
32	Restrictedtosamesite
64	Restrictedtosameregion
128	Restrictedtosamecontinent
255	Unrestrictedinscope

©TuomoKarhapää

31

DVMRP

- multicastpacketisforwardedifthe TTLvalueintheIPheaderis greaterthantheTTLthreshold assignedtotheinterface
- theinitialpacketisforwardedtoall interfacestodetermineprune information
- iftherearenomembersoncertain leaf,thatbranchisremovedfrom deliverytree

©TuomoKarhapää

32

DVMRP

 ifprunedbranchdiscoversnew groupmemberitsendsgraft messagetoupstreamtocancel prunestate

- upstreamrouterrestoredthat branchtodeliverytree
- DVMRPmaintainsroutingand forwardingtableswithintegrated routingprotocol

©TuomoKarhapää

33

PIM

- ProtocolIndependentMulticasting
- PIMisindependentonthe mechanismprovidedbyany particularunicastroutingprotocol
- itrequiressomeunicastrouting protocoltodeterminenetwork topologyandtopologychanges
- twomodes:denseandsparse

©TuomoKarhapää

34

PIM-DM

- PIM-DMusesReversePath Multicasting
- quitesimilartoDVMRP
- usesReversePathMulticasting (RPM)
- PIM-DMisdevelopedforcampus LANswheregroupmembershipis usuallydenseandthereisalso morebandwidthavailablethan WANs

©TuomoKarhapää

35

PIM-DM

- differencesbetweenPIMand DVMRP
 - usesexistingunicastrouting protocol
 - simplyforwardsallmulticast packetstodownstreamuntilprune messageisarrived

©TuomoKarhapää

36

PIM-SM

- RFC-2362
- PIM-SMprovidesaefficient multicastroutingmechanismfor communicationbetweensparsely distributedgroups
- solvesdensemodeprotocols' scalingproblemsbylimiting multicastpacketstorouterswhich areinterestedinreceivingtraffic

©TuomoKarhapää

37

PIM-SM

- PIM-SMdiffersfromexisting dense-modealgorithmsby followingways
 - routersarerequiredtojointo sparse-modedistributiontreeby transmittingjoinmessages
 - ifrouterisnotpartofthat distributiontree,itwillnotreceive multicasttraffic

©TuomoKarhapää

38

PIM-SM

PIM-SMusesconceptof RendezvousPoints(RP)

- attheRPreceiversmeetsources
- theinitiatorofgroupselectsthe primaryRPandalternativeRPs
- onlyoneRPisactive
- thehostwhichwantstojointothe groupsendsjoinmessagetolocal routerwhichsendsexplicitjoin messagetogroup'sprimaryRP

©TuomoKarhapää

39

MBONE

- MulticastbackboneontheInternet
- firsttransmissionwasIETF meeting"audiocast"1992
- MBONEisavirtualnetworkonthe topofInternet
- usedforaudioandvideo transmissionsandforcollaborating
- smallpartofInternet'sbackbone routerssupportsmulticasting

©TuomoKarhapää

40

MBONE

typicalsessionsare

- ◆ IETFmeetings
- ◆ radiostations
- ♦ NASAshuttlemissions
- ◆ eventslikerockconcerts
- typicalbandwidthusage
 - ♦ foraudio13kbps 64kbps
 - ◆ forvideoupto128kbps

©TuomoKarhapää

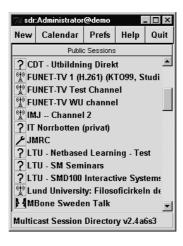
41

MBONE

- mostlyusedbyuniversitiesand researchinstitutes
- mostofthecommercialoperators donotsupportmulticasting
- problemswithfirewalls,one solutionisatunnelinterface
- usuallylowbandwidthtransmission

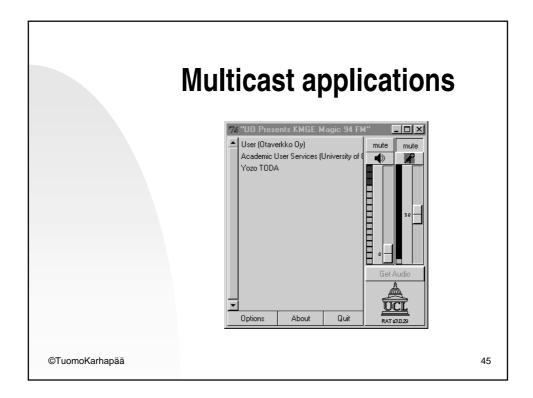
©TuomoKarhapää

42


Multicast applications

- atthemomentdifferentUNIX systemsandalsoWindowsOS supportmulticasting
- mainroutervendorssupport multicasting
- thereisfreeclientsoftware available
- the "killer" application is still missing

©TuomoKarhapää


43

Multicast applications

©TuomoKarhapää

44

Multicast applications

- MP3multicasting
 - offersreasonablequalityforaudio streaming
 - ◆ RTPusedforpayloadformat
 - ◆ mightbe"killerapplication"

©TuomoKarhapää

46

Conclusions

multicastingreducesbandwidth usage

- noteasytoimplement
- needsprotocoldevelopmentwork forInternet -wideusage

©TuomoKarhapää

47

More information

- www.ietf.org
- www.mbone.com

©TuomoKarhapää

48