
Introduction
Join calculus
Actor model

Data-�ow programming

Explicit concurrent programming in high-level

languages

Kari Kähkönen

March 19, 2009

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Outline

1 Introduction

2 Join calculus
Overview
JoCaml
Other languages

3 Actor model
Overview
Erlang

4 Data-�ow programming
Overview
Flow-Java
Oz

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Explicit parallelism

In languages that use explicit parallelism the programmer must
explicitely de�ne which parts should be executed as
independent parallel tasks

The programmer has complete control over the parallel
execution

This is opposite to implicit parallelism where the system
decides automatically which parts to run in parallel

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Join calculus

Join calculus aims to support asynchronous, distributed and
mobile programming

Join operational semantics are speci�ed as a re�exive chemical
abstract machine (CHAM)

Using CHAM the state of a system is represented as a
�chemical soup�

active de�nitions

running processes

a set of reduction rules

Join calculus can be seen as a functional language with Join
patterns (provides synchronization between elements in the
�soup�)

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

CHAM example

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

JoCaml

JoCaml = Objective Caml + Join calculus

The programs are made of processes and expressions

Channels (also called port names) are the main new primitive
values compared to Objective Caml

Processes can send messages on channels

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Channels and processes

Channels are created with a def binding

#def echo(x) = print_int x; 0

echo is an asynchronous channel → sending a message on it is
a nonblocking operation and it cannot be said when the
printing actually happens

Processes are created with a keyword spawn

There can be concurrency inside processes as well

#spawn echo(1) & echo(2)

#spawn begin

print_int 1; print_int 2; 0

end

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Channels and processes

The process created by sending messages are called guarded
processes and they can spawn new messages

#def echo_twice(x) = echo(x) & echo(x)

Channels can take tuples as arguments and even other
channels as well

#def foo(x,y) = echo(x) & echo(x+y)

#def twice(f,x) = f(x) & f(x)

#spawn twice(echo, 5)

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Synchronous channels

Synchronous channels can be used to de�ne processes that
return values

Synchronous channels use reply/to constructs

#def fib(n) =

if n <= 1 then reply 1 to fib

else reply fib(n-1) + fib(n-2) to fib

#print_int (fib 10)

>89

In the example above the synchronous channel behaves like a
function but the real value of them comes apparent when used
with join patterns

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Join patterns

Join patterns de�ne multiple channels and speci�es a
synchronization pattern between them

#def foo() & bar(x) = do_something(x) ; 0

In the example above messages to both foo and bar must be
sent before the guarded process is executed

#def a() & c() = print_string "ac" ; 0

or b() & c() = print_string "bc" ; 0

#spawn a() & b() & c()

The example above illustrates a composite join de�nition

Channel c is de�ned only once and can take part in either
synchronizations

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Mutual exclusion example

Using both asynchronous and synchronous channels allows us
to de�ne many concurrent data structures such as the counter
bellow

#def count(n) & inc() = count(n+1) & reply to inc

or count(n) & get() = count(n) & reply n to get

#spawn count(0)

A safer way to de�ne a counter would be:

#let create_counter () =

def count(n) & inc0() = count(n+1) & reply to inc0

or count(n) & get0() = count(n) & reply n to get0 in

spawn count(0) ;

inc0, get0

#let inc,get = create_counter()

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Control structures

Many common synchronization primitives can be expressed
with Join patterns

Locks:

#let new_lock () =

def free() & lock() = reply to lock

and unlock() = free() & reply to unlock in

spawn free() ;

lock, unlock

#let my_lock,my_unlock = new_lock()

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Control structures

Barriers:

#def join1 () & join2 () = reply to join1 & reply to join2

#spawn begin

(print_int 1 ; join1 (); print_string "a" ; 0)

& (join2() ; print_string "b" ; 0)

end

Asynchronous loops:

#def loop(a,x) = if x > 0 then (a() & loop(a,x-1))

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Timeouts

The following example illustrates how we do not have to wait
for a result of some computation if it takes too long

#let timeout t f x =

def wait() & finished(r) = reply Some r to wait

or wait() & timeout() = reply None to wait in

spawn begin

finished(f x) &

begin Thread.delay t; timeout() end

end ;

wait()

In this example the computation of f does not stop after the
timeout. Exceptions could be used to archieve this.

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
JoCaml
Other languages

Other languages

Join calculus has been incorporated into other languages as
well, e.g., Join Java and Polyphonic C#
Join Java adds Join patterns and a new signal return type to
Java

final class SimpleJoinPattern {

int A() & B() & C(int x) {

return x;

}

}

final class SimpleJoinThread {

signal athread(int x) {

...

}

}

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Actor model

In Actor model all the computation is done by actors.

Actors can concurrently

send messages to other actors

create new actors

designate the behavior that is used when the next message is

received

All communication is done asynchronously

Actors are identi�ed by addresses and messages can only be
sent to known addresses

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Actor model

There is no requirement that the messages arrive in the order
they are sent

In this sense sending messages is similar to sending IP packets

As di�erent processes communicate only using message
passing, there is no need for locks

Actor model (or some of its variations) is employed in multiple
programming languages

Erlang

Act 1, 2 and 3

ActorScrip

etc.

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Erlang

Erlang is a general purpose functional programming language
that uses Actor model for concurrency

It was designed by Ericsson to support distributed,
fault-tolerant, soft-real-time, non-stop applications

Erlang processes are lightweight processes (not operating
system processes or threads) that have no shared state
between them

Supports hot code loading

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Processes

A process is a complete virtual machine

A process can create another one using keyword spawn

Pid2 = spawn(Mod, Func, Args)

Pid2 is the identi�er of the new process and it is known only
to the creating process

self() can be used to return the identi�er of the executing
process

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Message passing

In the example bellow, Msg is a variable and is bound when a
message is received

Variables can be bound only once

Note that Pid2 in receive part has already been bound

-module(echo).

-export([go/0], loop/0).

go() ->

Pid2 = spawn(echo, loop, []),

Pid2 ! {self(), hello},

receive

{Pid2, Msg} ->

io::format("P1 ~w~n", [Msg])

end,

Pid2 ! stop.

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Message passing

[example continued from the previous slide]

loop() ->

receive

{From, Msg} ->

From ! {self(), Msg},

loop();

stop ->

true

end.

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

More on message passing

Lets assume that two processes send messages a and b to a
third process (a and b are atoms, Msg is a variable)

To receive a before b (regardless of the send order):

receive

a -> do_something(a);

end,

receive

b -> do_something(b);

end

To process the �rst message to arrive:

receive

Msg -> do_something(Msg);

end

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Registered processes

Keyword register can be used to register a process identi�er
with an alias

Any process can send messages to a registered process

start() ->

Pid = spawn(num_anal, server, [])

register(analyser, Pid).

analyse(Seq) ->

analyser ! (self(), {analyse,Seq}},

receive

{analysis_result, R} ->

R

end

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Erlang

Timeouts

The example bellow performs do_something if a message is
received before T ms has elapsed

time_example(T) ->

receive Msg -> do_something(Msg);

after T -> do_something_else();

end.

The message bu�er can be �ushed followingly

flush ->

receive Any -> flush();

after 0 -> true

end.

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Data-�ow programming

Data-�ow programming provides automatic synchronization by
introducing (concurrent) logic variables and futures (the
names may vary from one language to another)

Logic variables are initially unbound

Accessing an unbounded logic variable automatically suspends
the executing thread

It is not possible to change the value of a logic variable after it
has been bound

A future is a read only capability of a logic variable

Data-�ow programming allows programmers to focus on what
needs to be synchronized

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Flow-Java

Flow-Java is a conservative extension of Java

Adds single assignment variables (variant of logic variables)
and futures

Overhead for the runtime is in most cases between 10% and
40%

Single assignments are introduced with the type modi�er single

A single assignment variable can be bound by using @=

Aliasing is possible and equality testing has also been extended

single Object s;

Object o = new Object();

s @= o;

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Example

class Spawn implements Runnable {

private single Object result;

private Spawn(single Object r) {

result = r;

}

public void run() {

result @= computation();

}

}

public static void main (String[] args) {

single Object r;

new Thread(new Spawn(r)).start();

System.out.println(r);

}

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Futures

In the previous example, the main thread can unintentionally
bind the result

To prevent this, futures can be used

The future of a single assignment variable is obtained by a
conversion from single t to t

Implicit conversion allows integration with normal Java

public static Object spawn() {

single Object r;

new Thread(new Spawn(r)).start();

return r;

}

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Barrier example

class Barrier implements Runnable {

private single Object left;

private single Object right;

private Barrier(single Object l, single Object r) {

left = l; right = r;

}

public void run() {

computation();

left @= right;

}

[continues on the next slide...]

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Barrier example

public static void spawn(int n) {

single Object first; single Object prev = first;

for(int i = 0; i < n; i++) {

single Object t;

new Thread(new Barrier(prev, t)).start();

prev = t;

}

first == prev;

}

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Oz

All variables in Oz are logic variables (also called data�ow
variables)

Executing a statement in Oz proceeds only when all real
data�ow dependencies on the variables involved are resolved

Oz is a concurrency-oriented language

Threads are cheap to create in Mozart (60 times faster than in
Java 1.2)

All threads are run by Oz emulator (the main system thread of
the process)

Mozart Programming System is an implementation of Oz

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

A simple example

thread ... end forks a new thread

declare X0 X1 X2 X3 in

thread

local Y0 Y1 Y2 Y3 in

Y0 = X0+1

Y1 = X1+Y0

Y2 = X2+Y1

Y3 = X3+Y2

{Browse [Y0 Y1 Y2 Y3]}

end

end

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

A concurrent map function

The following function generates a new list by mapping
function F to its each element

Each element is processes in a new thread

fun {Map Xs F}

case Xs

of nil then nil

[] X|Xr then thread {F X} end | {Map Xr F}

end

end

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Streams

Threads can communicate through streams in a
producer-consumer way

fun {Generator N}

if N > 0 then N|{Generator N-1}

else nil end

end

local

fun {Sum1 L A}

case L

of nil then A

[] X|Xs then {Sum1 Xs A+X}

end

end

in fun {Sum L} {Sum1 L 0} end

end

{Browse thread {Sum thread {Generator 100} end} end}

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Synchronizing the streams

In the previous example the communication was asynchronous

If the producer works faster than the consumer, more and
more memory is needed for the bu�ering

One way to solve this is to use futures and ByNeed primitive

ByNeed takes a one-argument procedure as argument and
returns a future

If this future is accessed, the procedure given for ByNeed is
used to bind a value to the future

Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Example with futures

local

proc {Producer Xs}

Xr in

Xs = volvo|{ByNeed {Producer Xr} $}

end

proc {Consumer N Xs}

if N>0 then

case Xs of X|Xr then

if X==volvo then

{Consumer N-1 Xr}

else {Consumer N Xr} end

end

end

end

in

{Consumer 1000000 thread {Producer $} end}

end
Kari Kähkönen Explicit concurrent programming in high-level languages



Introduction
Join calculus
Actor model

Data-�ow programming

Overview
Flow-Java
Oz

Questions?

Kari Kähkönen Explicit concurrent programming in high-level languages


	Introduction
	Join calculus
	Overview
	JoCaml
	Other languages

	Actor model
	Overview
	Erlang

	Data-flow programming
	Overview
	Flow-Java
	Oz


