
Flexible Single Sign-On for SIP: Bridging the

Identity Chasm

Pin Nie, Juha-Matti Tapio, Sasu Tarkoma, Jani Heikkinen

Helsinki University of Technology

Telecommunications Software and Multimedia Laboratory

niepin@cc.hut.fi, jmtapio@verkkotelakka.net

sasu.tarkoma@tml.hut.fi, jani.heikkinen@tml.hut.fi

Abstract—Identity federation is a key requirement for today’s
distributed services. This technology allows managed sharing of
users’ identity information between identity providers (IDP), and
subsequently, the use of federated identities to access service
providers (SP). Single Sign-On (SSO) is a core feature provided
by these systems.

The Session Initiation Protocol (SIP) is a signaling framework
for session call control. It is becoming a widely accepted layer
for applications and services, especially in the telecommunications
and multimedia domain.

In this paper, we explore solutions to incorporate SSO process
into the SIP framework in order to simplify the services and
resources access. Our design leverages the Liberty Alliance
specifications and extends the existing SIP standards to support
SSO functionality. We also present a prototype implementation
at the end of this paper.

Keywords: Identity Federation, Single Sign-On, SIP,

SAML, authentication

I. INTRODUCTION

In recent years, the emergence of distributed services has

given momentum for simplifying client authentication and

authorization. Ideally, clients would be required to prove their

identities only once and free to access subsequent services

without authentication anymore. This feature is well known as

single sign-on (SSO) which enables users to access multiple

services and resources with one-time login. Essentially, it is

a collaboration form enabling access control over multiple

software systems.

Single sign-on systems require a special trusted entity,

namely the identity provider (IDP), which coordinates and

manages the underlying authentication session. One big benefit

it brings is a simple form of bootstrapping authentication over

multiple sessions for users. With SSO, a user doesn’t need to

memorize many accounts’ information when visiting different

services. Instead, the IDP can handle service establishment

on behalf of the end user. Consequently, less configuration is

required at the user end, security communication efficiency

is improved, and seamless service sequence is possible. Up to

date, many SSO solutions have been proposed on HTTP-based

platforms [1] [2].

SIP (Session Initiation Protocol) [3] [4] is an application-

layer signaling protocol for creating, modifying and termi-

nating sessions with one or more participants. The first goal

for SIP was to provide a signaling and call setup protocol

for IP-based communications that can support a superset of

the call processing functions and features presented in the

Public Switched Telephone Network (PSTN). Later, additional

enhancements and extensions were proposed to build more

features and functions on SIP networks, such as SIMPLE (Ses-

sion Initiation Protocol for Instant Messaging and Presence

Leveraging Extensions) [5]. So far, SIP protocols family can

support a variety of communication services, like VoIP (Voice

over IP), SIP conferencing and Instant Messaging (IM).

As the number of SIP-based applications and services grows

rapidly, they face the same dilemma that has been solved

in SSO for HTTP-based web services, namely complicated

authentications. SSO is also preferred especially for mobile

services due to the input limits. Meanwhile, SIP is leading

a big trend in mobile service creation in IP Multimedia

Subsystem (IMS). Consequently, the existing SIP architecture

has to be modified to enable SSO. At the same time, the

design should consider compliance with existing standards

while imposing minimum cost.

In this paper, we build SSO capabilities to the SIP frame-

work on the basis of the Liberty Alliance specifications [6].

We provide extensions for both SIP HTTP mixed situation,

e.g. Internet, and SIP native environment. We also consider

using terminal-based credentials to bootstrap SSO from device

startup.

The rest of the paper is organized as follows: In Section II

architecture design and extensions are described. A prototype

and evaluation are provided in Section III. In Section IV,

we discuss future work to improve our design for better

performance. Finally, Section V gives the conclusions.

II. ARCHITECTURES

Among different Single Sign-On solutions, we chose Lib-

erty Alliance project as the basis of our SIP SSO design.

Liberty Alliance is one of the most popular industrial open

standards specifying identity management issues. Single Sign-

On process is defined in Liberty Identity Federation Frame-

work, known as ID-FF [7], [8], [9]. ID-FF takes the Security

Assertion Markup Language (SAML) [10] as the protocol

reference, which is an XML standard for exchanging au-

thentication and authorization data between security domains.

SAML is also adopted in some other identity federation



projects besides Liberty Alliance, such as Shibboleth [11] and

WS-Federation.

We consider two different application scenarios. The first

scenario happens in a mixed environment in which both HTTP

and SIP services are involved, for example, the Internet. It is

the primary scenario where users often operate on multiple

services or systems at the same time. The other case takes

place when only SIP is applied, for example, the IP Multime-

dia Subsystem (IMS) [12]. In the following sections, we first

examine the mixed environment and provide an alternative

design for the SIP native environment.

A. Pipeline Architecture

In the mixed environment with HTTP and SIP, a unified

and seamless authentication process is required to combine

HTTP-based services and SIP-based services. ID-FF already

provides support for HTTP-based SSO. To leverage this exist-

ing mechanism and integrate to the standard SIP framework,

SIP user agent and proxy are extended to do authentication

based on the Liberty Alliance framework. The design is named

Pipeline for the fact SIP elements concatenate two different

communication protocols.

Figure 1 illustrates the message flow during SIP registration

in the pipeline approach. A SIP proxy generates response

UNAUTHORIZED 401 with its authentication request (Authn-

Request) enclosed when receiving an unauthenticated REGIS-

TER. The user agent (UA) extracts the authentication request

from the response and forwards it to the Identity Provider

(IDP). Based on a predefined agreement with the service

provider (SP), IDP will issue a corresponding assertion for the

authentication request and return the artifact (like a pointer) of

the assertion to the user agent. By encapsulating the artifact,

user agent resends REGISTER to the proxy, which verifies

the artifact with IDP for the actual assertion. Note that the

single sign-on and the verification stages (dashed lines) are

carried out in HTTP protocol. If the verification passes, the

proxy returns the response OK 200 and a shared secret will

be exchanged between the caller and SIP proxy for subsequent

sessions. The verification is defined in the Liberty Single

Sign-On and Federation Protocol, with respect to the ID-FF

Liberty Artifact Profile. The REGISTER can be replaced by

any other SIP request, like INVITE and SUBSCRIBE. The

authentication requiring response could be either UNAUTHO-

RIZED 401 and PROXY AUTHENTICATION REQUIRED

407, depending on SIP elements, namely registrar or proxy.

Shown in the message sequence diagram above, new logic

and process are added. In order to indicate single sign-on

capability and convey SAML contents, such as AuthnRequest

and artifact, we design a new protocol feature following the

extension service instruction in SIP specification [3].

At first, we propose a new option tag in the Proxy-Require

header to designate liberty Single Sign-On authentication. It

is ”liberty-id-ff”. ”liberty” implies the liberty compliant im-

plementation, and ”id-ff” implies the ID-FF compliant Single

Sign-On process, which expects artifact header in the SIP

request and AuthnRequest header in the SIP response.

UA(1) AS(IdP) SIP Registrar

Unauthorized 401

REGISTER

Authentication Request

SAML Artifact

REGISTER (with SAML artifact)

Artifact Resolution

SAML Assertion

OK 200

Fig. 1. Pipeline SSO on SIP REGISTER, solid lines are SIP messages and
dashed lines stand for HTTP communications.

Second, two new SIP headers are proposed for SSO. They

are AuthnRequest header and artifact header. AuthnRequest

header contains the SP’s authentication request and is added

in the SIP response 401 or 407. Artifact header contains the

artifact and is added in the SIP requests. It is removed after

the artifact resolution once the verification is done.

As a result of HTTP communications, an interface must be

built in SIP UA and proxy. On the UA side, it enables UA

to extract artifact from HTTP message and encapsulate into

SIP request. On the proxy side, it connects SIP registar/proxy

with IDP, fulfilling artifact resolution based on the ID-FF

specification.

Since Proxy-Require header is always checked at the be-

ginning (during the request validation), our single sign-on

procedure would be processed between SIP elements if the

new headers are supported and interfaces are implemented.

Otherwise, the SIP request would be abandoned and an error

response 420 (Bad Extension) is replied. As a result, a client

must switch to another authentication method, e.g. SIP digest.

Therefore, our design also provides backward compatibility

for existing authentication methods in case our SIP SSO is

not supported by the proxy.

At the end of SSO, a shared secret should be agreed

between SIP UA and proxy to provide security provisioning

for subsequent messages. Any symmetric security protocol

can be employed here. For example, the response 200 OK

from the SIP proxy initiates a shared secret to SIP UA.

By holding this secret, subsequent SIP calls from the UA

can be accepted by the proxy bypassing the authentication.

To provide stronger security association, a more complex

computation is recommended to bind with secret. Usage of

a hash function with a timestamp and a nouce is a popular

example. Furthermore, expiration settings are required as well.

As a result, session hijack, replay attack, and eavesdropping

are prevented.

There are two benefits in Pipeline architecture. First, there



Fire−

fox

UA1 UA3 UA4

IE
SIP

UA

UA2

Cross−UA

capability

Terminal

Session 4

Session 3

Session 2

Session 1

B
o

o
tstra

p
p

in
g

Time/App

Wiki

VoIP

Zimbra

Serweb

Fig. 2. Identity Agent provides a common interface and Single Sign-On
provides bootstrapping authentication

is no need to modify existing IDP servers. The IDP server

keeps all HTTP features and logic modules intact. Second, SIP

UA and other HTTP-based agents (e.g. web browser) in the

terminal can apply a unified authentication service with a com-

mon interface. The user profile is shared and the workload on

the user is minimized. In our implementation of the common

interface, we propose Identity Agent to communicate with the

IDP on behalf of SIP elements. It bootstraps the single sign-on

for the terminal, and is responsible for providing authentication

service to the browser, SIP UA and other client applications.

Figure 2 illustrates the idea of this interface.

B. SIP Native Architecture

In contrast to the Pipeline architecture for HTTP and SIP

mixed environment, SIP Native architecture considers SSO

only in the SIP domain. Specifically, both SAML assertion

request and artifact resolution stages are executed in SIP

protocol. In this model, one primary task is to carry SAML

protocols with SIP framework. An IETF draft on SIP SAML

profile and binding [13] has been proposed. However, it relies

on HTTP URI in the SAML HTTP-URI-based SIP Binding.

In our assumption of a pure SIP world, it does not work.

We propose to use SAML SIP-URI-based Binding (SSUB)

and SAML SOAP Binding over SIP (SSSB) to solve the

problem. SSUB binding extends the ”SAML URI Binding”

specified in the SAML binding standard [14]. The general

form of SIP URI follows [3]:

sip:user:password@host:port;uri-parameters?headers

Assume that an IDP’s SIP address is ”sip:idp@tml.tkk.fi”,

SAML assertion URI uses the parameter ”assertion”, the

assertion is issued for the caller ”niepin”, a request for the

assertion can be sent to following SIP address:

sip:idp@tml.tkk.fi;transport=tcp&assertion=id?

from=niepin%40tml.tkk.fi

SSSB binding keeps SAML SOAP binding [14] and uses

SIP to transport SOAP messages. An IETF draft [15] proposed

a new SIP request method, named SERVICE to carry SOAP

message as its payload. Since SAML negotiation may contain

Fig. 3. Organization of the SIP Single Sign-On testbed

a lot of data that often results in large messages to transport,

connection-oriented protocol like TCP should be used to

transmit. The parameter is specified in the field ”transport”.

More parameters can be appended.

However, in SIP native architecture, IDP must provide

authentication service on the top of SIP framework. Actually,

Identity Provider, a.k.a Authentication Server, is a special SIP

proxy in our model. It provides authentication service to UAs

and is trusted by other proxies. The underlying single sign-

on function and ID-FF profile remains the same, but with a

different protocol binding.

III. EVALUATION

We implemented the SIP Single Sign-On based on the

Pipeline architecture to demonstrate the benefits of our design.

A general test was conducted to evaluate the feasibility.

A. Testing Platform

In order to simulate the SIP SSO with Pipeline architecture,

we used four machines, two SIP user agents, one SIP Proxy

and one IDP server. For clear evaluation of the interface,

we separated Identity Agent to a different machine. Figure

3 shows the deployment of our testbed.

Hardware and software of each elements in our testbed are

listed below:

• UA-1 (192.168.0.2): AMD Athlon(tm) 64 X2 Dual, Core

Processor 3800+ 2.0GHz, 1GB RAM; MS Windows XP

Professional, Version 2002 Service Pack 2

• UA-2 (192.168.0.3): Intel(R) Pentium(R), D CPU

2.8GHz, 1GB RAM; MS Windows XP Professional,

Version 2002 Service Pack 2

• SIP proxy (192.168.0.1): Intel(R) Pentium(R), D CPU

2.8GHz, 1GB RAM; Linux 2.6.16-1-686-smp SMP i686

GNU/Linux

• IDP server (87.108.30.129): Intel(R) Xeon(TM) CPU

3.00GHz, 3GB RAM

• Identity Agent (tapio.tml.hut.fi): Mac G4 1.3GHz, Linux

Debian



Unsigned Signed

avg ops/min 98 ops 74 ops

Speed 1.68 ops/sec 1.23 ops/sec

TABLE I
SEQUENTIAL TEST OF SIP SINGLE SIGN-ON

B. Measurements

Our first step measurement derives from two research ques-

tions:

1) Is it possible to extend Liberty single sign-on solution

to the SIP framework?

2) What is the baseline performance of SIP single sign-on?

To answer the first question, the real experience of seamless

access with both SIP and HTTP applications appeals to us.

We integrated multiple services in our single sign-on imple-

mentation, including web applications and SIP proxy. Web

services include Serweb, Mediawiki, Zimbra Collaboration

Suite and NEON Indoor location. SIP proxy is a modified

copy of JAIN-SIP-PRESENCE-PROXY, which can provide

instant messaging, presence and voice call services. According

to our test, the user firstly logs into the IDP, then can browse

integrated web services and enjoy call services without any

more authentication. The first time to visit a service is a

bit slow, because the web application server (or SIP proxy)

needs to verify user’s identity from the IDP and negotiates a

shared secret with the client. After that, subsequent accesses

are smooth, like usual. Related resources and documentation

are available on our website [16].

Concerning the second question, we make use of existing

SIP applications from two open source projects, NIST sip

proxy [17] and SIP Communicator [18]. Both are developed in

Java language, providing ordinary performance. We used 4096

bits long key for cryptography in signing and ssl (HTTPS con-

nection). Signing is a recommended process on AuthnRequest

at the SIP proxy, a.k.a digital signature. It can protect the

IDP from DoS attack. In the sequential test, table I shows the

average performance of SIP SSO from the user’s perspective.

The operation is the session establishment and iterates for 60

seconds. The test was repeated 10 times to provide enough

samples to minimize possible errors.

In order to get the peak performance, we separate request

sending process and artifact fetching process. INVITE sending

speed is controlled in milliseconds. A new thread of artifact

fetching process is created every time when a new AuthnRe-

quest is received. All threads work in parallel and do not wait

the completion of others.

The concurrent test executed 60 seconds and was repeated

under different INVITE sending speeds to find the endurance

variation and maximum threshold of our SIP SSO system.

It ran separately in signed and unsigned AuthnRequest cases

to find out the overhead imposed by the signing process.

In unsigned tests, we increased the INVITE sending speed

by reducing the interval from 500 milliseconds to 100 mil-

liseconds, while in signed tests it is from 600 milliseconds

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

S
u
c
c
e
s
s
fu

l 
a
u
th

e
n
ti
c
a
ti
o
n
s
 p

e
r 

m
in

u
te

Session request interval (ms)

Authentication Speed Under Load

Signed
Unsigned

Fig. 4. SIP Single Sign-On stress loading performance

to 200 milliseconds, due to the extra computing overhead of

the signing process. By recording the timestamp of INVITE

request, 407 response with AuthnRequest, re-INVITE with

artifact and the response OK 200, the speed of each phase

during SSO can be roughly measured. The results are shown

in Fig. 4.

Figure 4 shows that the signed and unsigned curves merge

at the beginning when the INVITE sending interval is big

enough. Hence, the SIP proxy is capable to consume all

incoming requests and complete sessions. When the speed

grows, two curves reach their summits at the values slightly

over 150 (Signed) and 200 (Unsigned), and drop down sharply.

We believe the drop is caused by the code flaws when

overloaded, such as faulty buffering policy or memory leaking.

C. Results Analysis

Based on the measurements above, we have the answers

to our questions. Liberty single sign-on solution is feasible

in SIP framework with our modified design. It does simplify

the user authentication process and provide the same security

level, which is guaranteed by Liberty alliance specifications.

Our SIP SSO design provides reasonable performance. It

can achieve much better benchmarks with some improvements.

First, if the key length is shortened from 4kb to 2kb or 1kb,

the speed would increase a lot. It is because the cryptography

in signing and ssl requires intensive CPU computing and

consumes much time. In our script test, 2kb long key offers

as seven times speed as 4kb length on the same machine. In

practice, 1kb key is applied most and breakable at the current

state of arts. 2kb is recommended.

Second, if our SIP SSO is used in SIP registration phase

instead of session establishment, The load can be greatly

reduced because all subsequent sessions benefit from the

registration at the beginning. Usually, one registration covers

many sessions before expiration.

Third, it is better to integrate the single sign-on function

directly into the SIP stack, other than the application logic. It

would provide much faster response.



IV. DISCUSSION

The most intuitive advantage of our Single Sign-On solution

is the release of ”passwords fatigue” on the user, when

operating on multiple services. In our trial, we first log into the

IDP and access all ID-FF enabled services including making

SIP call without any further authentication. We believe this

happy experience would motivate people to try more services

in a consecutive switching. While unit-by-unit login in the old

fashion will be obsolete in the future.

To further simplify the authentication process in SIP do-

main, we plan to extend our single sign-on design in two

aspects. First, it can be expanded by sharing the account on a

group of devices. By taking advantage of the Contact header

list in SIP, the initiator could append all trusted devices’ SIP

addresses into the list. The initiator is treated as the owner

of the account and all other grouped device are considered

as guests. The initiator can specify the expiration for each

guest in the corresponding contact header. The authorization

policy of the guest is also configurable in the preferences of

the resource.

Second, we believe the ultimate form of SSO is to integrate

with local account on the operating system. Once the user logs

in to the system, authentication is completed for SSO enabled

services. In mobile device, it is considered to bind with the

credential in SIM card. As a result, Single Sign-On will be

a bootstrapping service on the user end. GBA/GAA (Generic

Bootstrapping Architecture and Generic Authentication Archi-

tecture) [19], accepted in 3GPP (3rd Generation Partnership

Project), is a good example. It also provides a interface [20] to

cooperate with Liberty Alliance Project (LAP). Consequently,

our SIP SSO design may achieve wider application.

Meanwhile, we also need to keep up with other related

work. For example, SIP-SAML Profile and Binding [13], the

first IETF draft introducing SAML assertion concepts to SIP

networks, is a big help and important reference to our design.

Since SAML v2.0 is coming up, our design based on SAML

v1.1 has to be updated.

V. CONCLUSIONS

This paper explored the solutions to introduce Single Sign-

On to the SIP domain with the liberty ID-FF specifications

as the starting point. In addition to the architectural design,

two new SIP SAML bindings were introduced. Tests and

measurements were carried out to show the feasibility of

the proposed architecture. Our demo shows the significant

improvement on users’ impression of services access in the

presence of SSO system. In other words, the efficiency of

the services is enhanced. Applications at the upper layer are

becoming more friendly and easier to operate. In addition to

JAIN SIP Proxy, we have also implemented SSO extension for

OpenSER SIP proxy. Future work would include evalution of

this extension, investigation of native SIP SSO functionality

and combination with local account in operating system.

VI. ACKNOWLEDGEMENTS

We would like to thank Pekka Laitinen, Prof. Antti Yla-

Jaaski, Prof. Jukka Manner, Annu Myllyniemi, Hannu Flinck,

Hannes Tschofenig and Gang Lian for their valuable com-

ments and suggestions on the paper. The research is funded

by NOKIA NEON programme.

REFERENCES

[1] Henri Mikkonen and Mika Silander, “Federated Identity Management for
Grids,” in International conference on Networking and Services, 2006.

ICNS ’06. Helsinki, Finland: IEEE computer society, July 2006, pp.
69–69.

[2] A. Myllyniemi, “Identity Management Systems: A Comparison of
Current Solutions,” At http://www.tml.tkk.fi/Publications/C/22/papers/
Myllyniemi final.pdf.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, J. Peterson, A. Johnston,
and E. Schooler, “RFC 3261: SIP: Session Initiation Protocol,” June
2002, status: IETF Standard Track.

[4] Henry Sinnreich and Alan B. Johnston, Internet Communications Using

SIP: Delivering VoIP and Multimedia Services with Session Initiation

Protocol. New York, USA: John Wiley and Sons, Inc., 2001.
[5] “SIP for Instant Messaging and Presence Leveraging Extensions (sim-

ple),” At http://www.ietf.org/html.charters/simple-charter.html, IETF
simple working group.

[6] “Liberty specs tutorial,” At http://www.projectliberty.org/liberty/content/
download/423/2832/file/tutorialv2.pdf, 2004, Liberty Alliance specifica-
tion.

[7] Scott Cantor, John Kemp, Jeff Hodges, and Peter Thompson, “Liberty
ID-FF Architecture Overview,” 2005, Liberty Alliance specification.

[8] Scott Cantor, John Kemp, and Darryl Champagne, “Liberty id-ff bind-
ings and profiles specification,” 2005, Liberty Alliance specification.

[9] Scott Cantor and John Kemp, “Liberty id-ff protocols and schema
specification,” 2005, Liberty Alliance specification.

[10] Scott Cantor, John Kemp, Rob Philpott, and Eve Maler, “Assertions and
Protocols for the OASIS Security Assertion Markup Language(SAML)
V2.0,” March 2005, oASIS standard specification.

[11] M. A. C. for Education (MACE), “Shibboleth (Internet2),” At http://
shibboleth.internet2.edu/.

[12] Miikka Poikselka, Aki Niemi, Hisham Khartabil, and Georg Mayer, The

IMS: IP Multimedia Concepts and Services. New York, USA: John
Wiley and Sons, Inc., 2006.

[13] H. Tschofenig, J. Peterson, J. Polk, D. Sicker, and J. Hodges, “SIP
SAML Profile and Binding,” Oct 2006, status: IETF Draft Standard.

[14] Scott Cantor, Frederick Hirsch, John Kemp, Rob Philpott, and Eve
Maler, “Bindings for the OASIS Security Assertion Markup Lan-
guage(SAML) V2.0,” March 2005, oASIS standard specification.

[15] N. Deason, “SIP and SOAP,” June 2000, status: IETF Draft Standard.
[16] “Neon wiki website,” At https://trustinet.hiit.fi/neon/index.php/, 2007.
[17] “Nist sip project,” At http://snad.ncsl.nist.gov/proj/iptel/, 2007.
[18] “Sip communicator project,” At http://sip-communicator.org/, 2007.
[19] “Generic Authentication Architecture (GAA); Generic bootstrapping

architecture,” 3GPP, TS 33.220 3436, Dec 2006.
[20] “Liberty Alliance and 3GPP security interworking,” 3GPP,” TS 33.980,

Sep 2006.


