
AI Communications 26 (2013) 99–131 99
DOI 10.3233/AIC-2012-0547
IOS Press

WeCoTin – A practical logic-based
sales configurator

Juha Tiihonen a,∗, Mikko Heiskala a, Andreas Anderson b and Timo Soininen a

a School of Science, Department of Computer Science and Engineering, Aalto University, Aalto, Finland
E-mails: {juha.tiihonen, mikko.heiskala, timo.soininen}@aalto.fi
b Variantum Oy, Espoo, Finland
E-mail: Andreas.Anderson@variantum.com

Abstract. Configurable products can realize the ideal of mass-customization by satisfying individual customer requirements
efficiently. IT support provided by configurators enables adapting such products for individual customers efficiently and without
errors. Few of numerous configurators have been evaluated with respect to modeling efficacy and performance on several product
domains, and few evaluation methods exist. Applying the Design Science method, we describe and evaluate a novel configurator
called WeCoTin. WeCoTin is based on a high-level object oriented modeling conceptualization and corresponding modeling
language with clear formal semantics. WeCoTin consists of a semi-visual Modeling Tool and a web-based Configuration Tool. It
applies an inference engine that follows the logic-based answer set programming paradigm. A way to characterize configuration
models is proposed and applied to characterize over 20 real-world configuration models, and to evaluate utility of modeling
mechanisms. Furthermore, performance is evaluated with real-world products using a developed method, and found adequate.

Keywords: Knowledge-based configuration, evaluation of configurators, configuration knowledge characterization, integrated
development environment

1. Introduction

1.1. Background

Mass-customization [34] aims to provide products
or services that closely match the individual needs of
customers while retaining mass-production-like effi-
ciency. Mass-customizers need three fundamental ca-
pabilities [37]. First, solution space development is re-
quired to identify the product attributes for which cus-
tomer needs diverge. Second, a robust process enables
reuse or recombining of existing organizational and
value-chain resources to fulfill a stream of differenti-
ated customer needs. Finally, choice navigation capa-
bility is required to support customers in identifying
their own solutions while minimizing complexity and
the burden of choice.

Business based on configurable products is one
way of achieving mass-customization. A configurable

*Corresponding author: Juha Tiihonen, School of Science, De-
partment of Computer Science and Engineering, Aalto University,
P.O. Box 19210, FIN-00076, Aalto, Finland. E-mail: juha.tiihonen@
aalto.fi.

product is the result of solution space development, an
in advance provided design of a family of products that
can be adapted to meet customer requirements within
the scope of designed variability. A configuration task
produces a specification of a product individual that
meets customer requirements and conforms to rules of
the configurable product. A specification of a product
individual based on a configurable product is called a
configuration. The product family description contain-
ing all the information on the possibilities of adapting
the product to customer needs is called a configuration
model. A configuration model specifies the entities that
can appear in a configuration, their properties, and the
rules on how the entities and their properties can be
combined. The configuration model is an abstraction
of a real-world product family specifically constructed
for configuration purposes [57].

There are significant potential benefits and chal-
lenges related to mass-customization and configurable
products, as summarized in [18]. Practical challenges
include incomplete or inconsistent configurations cre-
ated during the sales process, which causes lengthy it-
erations in the sales-delivery process and dispropor-
tionate quality control costs. Lead times in the config-

0921-7126/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved

100 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

uration process may be excessive, and many practical
configuration models are poorly documented, incom-
plete, difficult to understand and outdated. Many of the
challenges can be addressed with Information Technol-
ogy (IT) support due to the well-defined nature of the
configuration task.

1.2. Configurators

A class of systems, configurators, makes it possible
to represent the variability of configurable products by
creation and management of configuration models and
to support users in performing the configuration task.
Customer needs are represented as requirements, and
variability of the product is captured in a configuration
model. Based on requirements and the configuration
model, the configuration engine produces a configura-
tion, which specifies a product individual that meets
the customer’s needs and that can be delivered to the
customer. Thus, a configurator can form a basis for the
choice navigation capability of a company.

Numerous configurators have been developed both
as research prototypes and as commercial software.
The landmark R1/XCON was deployed at Digital
Equipment Corporation in early 1980s [23], and expe-
riences, benefits and challenges of using it are widely
documented, see, e.g., [24].

Major research efforts have been undertaken to de-
velop configurators applicable to solving general con-
figuration tasks instead of a specific domain, e.g.,
[4,13,47]. A large number of commercial general-
purpose knowledge-based configurators exist; Ander-
son [1] identified 30 vendors based on their web pages.
In addition, it is a norm that prominent enterprise re-
source planning systems include a configurator mod-
ule, e.g., [6,14].

Configurators are deployed relatively widely. For
example, 580 web-based configurators were listed in
the International Configurator Database [5].

1.3. Problem solving in configurators

Numerous problem solving methods have been ap-
plied to configuration tasks, and several overviews
exist. In their taxonomy of the types of problem
solving methods used for design and configuration,
Wielinga and Schreiber [62] divide configuration prob-
lem solving methods to knowledge-intensive meth-
ods and uniform methods. Uniform methods apply
the same reasoning methods to all problems, while
knowledge-intensive methods use explicitly modeled

knowledge to constrain and direct the problem solving.
Knowledge-intensive methods (propose, critique, and
modify; case based; and hierarchical) are not consid-
ered further in this work, because uniform methods are
mature enough to support the configuration tasks in the
sales configuration of many products or services.

Uniform methods include constraint solving and
logic-based methods. Constraint satisfaction (CSP)
and its extensions have gained significant popularity
[12,22,26]. Many consider constraint-based methods
ideal for solving configuration problems, e.g., Gartner
Group and Haag [7,16]. Several logic-based methods
have been applied to configuration, including direct
programming in Prolog or through a higher-level mod-
eling layer, see, e.g., [38]. Description logics (DLs),
e.g., [2,25], and constraint logic programming have
also been applied [39]. Weight Constraint Rules have
been applied to directly model configuration problems
in research systems [49], and a method has been pro-
posed to translate configuration domain modeling con-
cepts into Weight Constraint Rules [43].

1.4. Configuration knowledge modeling

Many problem solving methods provide an explicit
or implicit conceptual model for representing con-
figuration models, requirements, and configurations,
i.e., configuration knowledge. A straightforward ap-
proach to configuration knowledge modeling is to ex-
press knowledge directly in the language of the prob-
lem solving method to which the configurator applies.
Rule-based approaches, constraint satisfaction and its
dynamic extensions, several logic-based approaches,
and different formalisms of propose-and-revise meth-
ods have been applied. For summaries, see [36,45].

We argue that a more practical approach in terms
of configurator maintainability is to provide a configu-
ration-specific modeling conceptualization that can be
applied to express configuration knowledge. The task
of the configuration system is to map this knowledge
into a form that can provide the inference required to
support the configuration task.

Several configuration domain-specific conceptual-
izations exist that are independent of problem solving
methods. These can be roughly classified as connec-
tion-based [27], resource-based [17], structure-based,
e.g., [4] and function-based [28] approaches. The con-
ceptualizations have little in common, other than the
central notion of a component. A synthesis and gener-
alization of the previously mentioned approaches has
been presented [44]. A similar synthesis based on more

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 101

concrete representation that employs the Unified Mod-
eling Language (UML) [35] with specific stereotypes
and Object Constraint Language (OCL) has been pro-
posed, e.g., [10].

1.5. Research questions, method and outline of the
paper

This paper describes and evaluates a configurator
implementation, claiming contributions that justify yet
another scientifically relevant configurator construc-
tion effort.

We believe that the synthesis of [44] covers a broad
range of configuration problems. However, in many
companies that we visited during several research
projects, order forms for sales configuration were rel-
atively simple, typically a page or two in A4 format.
This relative simplicity of the methods used in prac-
tice raised several questions. Would it be the case that
many elements of the generalized conceptual model
are needed only in complex configuration tasks? Could
a significantly reduced subset of the conceptualiza-
tion support a practical and relevant set of sales con-
figuration tasks? Would it be useful and practical to
include only compositional structure, taxonomic con-
cepts (classification and inheritance), attributes, and
constraints? Do these concepts provide benefits for
modeling?

In our view, the idea of translation of configura-
tion knowledge into Weight Constraint Rules (a form
of logic programs) [43] provides an interesting basis
that deserves empirical validation of feasibility as an
alternative to the nearly dominant constraint-solving
based approaches. Given an efficient implementation
of Weight Constraint Rules [30], would it be feasible to
build a configurator that provides a high-level concep-
tual model for the modeler and applies this alternative
problem solving method?

Most configurators have been described and evalu-
ated in the context of individual domains, the charac-
terizations of configuration models are relatively thin,
and runtime performance has been reported in ad-hoc
manner, if at all. This makes it difficult to evaluate the
applicability of general purpose configurators to vari-
ous domains. Could some light be shed on this aspect?

This work aims answer the following research ques-
tions:

• Q1: Is a function-oriented subset of a configura-
tion conceptualization [44] useful for modeling
configuration knowledge?

• Q2: Can the translation of configuration knowl-
edge into Weight Constraint Rules [43] provide a
practical and feasible basis for a product configu-
rator?

• Q3: Can industrially relevant configuration prob-
lems be effectively modeled and configured with
a configurator constructed based on the concep-
tual model of Q1 and the logic-based approach of
Q2?

• Q4a: How should configuration models be char-
acterized? Q4b: What modeling mechanisms are
useful? Q4c: How should performance of a con-
figurator be evaluated?

We approach these research questions through the
Design Science approach [19], a research method that
creates and evaluates IT artifacts intended to solve
identified organizational problems. Design Science re-
search is conducted through building and evaluation of
artifacts designed to meet the identified business need,
with the ultimate goal being utility. Artifacts can be
constructs (vocabulary and symbols), models (abstrac-
tions and representations), methods (algorithms and
practices), or instantiations (implemented or prototype
systems). Evaluation of an artifact often leads to the
need to refine it. Contributions are assessed through ap-
plying them to the identified business need in the ap-
propriate environment.

In Fig. 1 the path of research is explained. Rectan-
gles and rounded rectangles representing units of re-
search in Fig. 1 are referred to as shapes; each has a
numeric identifier. It was necessary to acquire an un-
derstanding of the business context of configurators
(shape 1): interviews in 10 companies provide working
knowledge on configuration-related process practices
and problems, a general understanding of configurable
products and their long-term management, and a de-
scription of models and tools in use [52,56,58]. This
foundation enabled an understanding of the require-
ments for configurators (shape 2). An additional con-
tribution to understanding requirements comes from
experiences in building a single-purpose configurator
prototype with an “Intelligent CAD” tool [51] and
close co-operation with half a dozen other compa-
nies that used or planned to use configurators. To save
space, only a summary of main requirements is dis-
cussed; see Section 2.

A generalized conceptualization for configuration
knowledge [44] (shape 3) provides a conceptual ba-
sis for this work. The Product Configuration Model-
ing Language (PCML) (shape 4, see Section 3.3) [33]
gives a syntax for a subset of the conceptual model. It

102 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Fig. 1. Units of research, artifacts and their dependencies.

includes taxonomy, compositional structure, attributes
and constraints. Semantics of PCML are provided by
mapping PCML to Weight Constraint Rule Language
(WCRL) (shape 6), applying the idea of [41]. The
Smodels system (shape 5) provides an efficient in-
ference engine for WCRL [30,50]. Development of
WCRL and Smodels took into account configuration
as a potential application domain.

The main construct in this work, a domain-inde-

pendent configurator called the WeCoTin configura-
tor (shape 7), is described in Section 3, along with a
running example. An overview of WeCoTin is given
in [60]. Direct foundations of WeCoTin include work
described above (shapes 3–6).

WeCoTin is evaluated in Section 4. Applicability of
WeCoTin and its modeling capabilities to industrial
problems are verified by modeling and configuring the
sales view of 22 real-world products or services, 14
in a complete way and 8 partially (shape 10). These
and some additional configuration models are charac-
terized by size and application of modeling constructs
[54], summarized in Section 4.1. Experiences with
modeling capabilities are described in Section 4.2.
Run-time performance of WeCoTin is evaluated with
a developed method (shape 8) for performance test-
ing of configurators based on real-world configuration
models and random requirements [59], as discussed
in Section 4.3. As a whole, evaluation of WeCoTin
(shapes 10, 11) is more multifaceted than any other
general purpose configurator of which the authors are
aware.

Discussion in Section 5 analyzes previous work,
provides results of this work, and identifies future
work. Finally, Section 6 points out answers to research
questions and represents conclusions.

2. Configurator requirements

In this section, we present central requirements
specific to a practical web-based configurator. The
requirements were identified in joint projects with
the manufacturing industry and our previous work,
e.g., [56].

A modeler creates and maintains configuration mod-
els and related information, and an end-user (or user)
configures a product.

Products evolve over time as new features are in-
troduced and designs are improved or corrected. Prod-
uct evolution inevitably leads to new configuration
model versions. Long-term management of configura-
tion models has often been problematic; an extreme ex-
ample is the R1/XCON system [24].

To facilitate long-term management, product experts
such as product managers should be able to model the
products. This avoids the cost of experts such as knowl-
edge engineers or programmers who are traditionally
needed to maintain configurators and eliminates the
error-prone communicating of product knowledge to
separate modelers who are not product experts. Mod-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 103

eling should be easy for product experts to under-
stand and declarative, allowing the modeler to spec-
ify what kind of product individuals are valid, instead
of procedural, requiring specification of how to cre-
ate them. The modeling language should be object-
oriented to divide configuration models into relatively
independent pieces with low complexity and to exploit
their common characteristics. Furthermore, the model-
ing language should be straightforward to model typi-
cal configuration phenomena such as alternative com-
ponents in a product structure.

The user interface for end-users should require lit-
tle work and no programming to create and maintain
when products change. In addition to effortless mod-
eling, advanced long-term management requires sup-
port for modeling the evolution of products, compo-
nents, and their interdependencies in a way that resem-
bles configuration management (CM) and product data
management (PDM). Moreover, it should be possible
to efficiently deploy configuration models to salespeo-
ple and customers without the risk of using outdated
versions, and multiple users should be able to config-
ure products simultaneously. Configurations should be
exportable to e-commerce, ERP, or PDM systems, etc.
for further order processing.

Fundamentally, a configurator must check a config-
uration for completeness (i.e., that all the necessary se-
lections are made) and consistency (i.e., that no rules
are violated) with respect to the configuration model. It
should be impossible to order an inconsistent or incom-
plete configuration. The user should be further sup-
ported by fully deducinges the consequences of previ-
ous selections. This means, e.g., automatically making
selections implied by the previous selections, identi-
fying alternatives incompatible with them, and ensur-
ing at each stage of the configuration task that the user
does not end up in a “dead-end” that cannot be com-
pleted into a consistent configuration. In addition, ex-
planations for incompatibility of selections should be
available. This helps users learn the product and its re-
strictions. However, it should be possible to make in-
compatible selections, which can help an expert user to
quickly modify the configuration. Ease and flexibility
of use for non-expert users of a web-based configura-
tor implies a number of specific requirements. The user
should be kept aware of selections that have been made
and that must still be made, and the state of complete-
ness (complete, incomplete) and consistency (consis-
tent, inconsistent) of the configuration. It should be
possible to guide a non-expert user through selections,
but allow experts to make selections in different order.

Further, the configurator should be accessible to any
customer who can use a web-browser, preferably in his
own language.

Finally, an interactive configurator should provide
adequate performance in terms of length and pre-
dictability of response time. According to [29], about
0.1 s is the limit that allows the user to feel that the
system is reacting instantaneously, and about 1 s is
the limit for the user’s flow of thought to stay uninter-
rupted.

3. WeCoTin configurator

In this section, we describe the web-based config-
urator prototype WeCoTin (an acronym for Web Con-
figuration Technology). We show how its high-level
architecture and main functionality meet the high-
level requirements on practical configurators identified
above, and we describe the subset of the conceptual
model of [44] that has been implemented. We also
show how the conceptualization was extended with
practical and necessary constructs such as default val-
ues, pre-selection packages, price and delivery time de-
termination mechanisms.

WeCoTin consists of two main components:
a graphical modeling environment The Modeling Tool
(Fig. 2, right) and the web-based Configuration Tool
that supports the configuration task (Fig. 2, left). These
components are detailed after presentation of a running
example.

WeCoTin is implemented using the Java 2 Platform
and Java programming language, except for the com-
ponent Inference Engine, which consists of smodels
and lparse programs of the Smodels system that are
implemented in C++, and user interface components
that employ some JavaScript a.k.a. ECMAScript [8].

3.1. Running example

A subset of variation offered by a real car form the
basis for a running example.

• The basic variation concerns the Motor and Trans-
mission.

– The Motor of the car is selected from 5 types –
a 2.0, 2.5, or 3.0 l petrol engine, or a 2.5 or 3.0 l
diesel engine.

– The type of Transmission is ‘Manual 6-speed’,
‘Sequential manual’, or ‘Automatic’.

104 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Fig. 2. WeCoTin architecture overview: Configuration Tool on the
left and Modeling Tool on the right.

• Safety and Security equipment has the following
two variation points:

– Headlights are either ‘standard’ or ‘Bi-Xenon’
type. The Bi-Xenon Headlights can optionally
be specified as ‘Adaptive Headlights’.

– Headlight Washer System is an optional feature
that can be included or left out.

• Comfort equipment has two variation points:

– A Cruise Control System is always included,
but the variation to be selected is either ‘stan-
dard’ or ‘active’.

– A Navigation System is optional – the user
can specify a car without a Navigation System,
or select a ‘Business Navigation System’ or a
‘Professional Navigation System’. A Naviga-
tion System comes with an electronic map that
covers Finland, Germany, Spain, Sweden, or
the United Kingdom. The Navigator Map area
should only be selected if ordering a navigator.
In the context of ‘Professional Navigation Sys-
tem’, the user must specify if an optional voice
input is wanted.

• Accessories are included for demonstrating
higher cardinalities:

– Accessories of types ‘A1’, ‘A2’ and ‘A3’ are
available. One, three, or four accessories are to
be selected for each car.

A number of constraints restrict the set of consistent
configurations:

• ‘Manual 6-speed’ Transmission is incompatible
with 3.0 l Motors.

• ‘Active’ Cruise Control requires ‘Bi-Xenon’
Headlights.

• ‘Adaptive Headlights’ requires ‘Headlight Wash-
er System’.

In addition, prices are specified for most selections.
Listing 1 represents the corresponding configuration
model in PCML (PCML is discussed in Section 3.3).

Listing 1

Sample configuration model in PCML

01 configuration model WecotinCar
02
03 feature WeCoTinCar
04 attribute Motor value type string
05 constrained by $ in list ("20i", "25i",
06 "25d","30i","30d") no default
08
09 attribute Transmission value type string
10 constrained by $ in list("Automatic",
11 "Sequential_Manual","6-speed")
12
13 attribute Cruise_control value type
14 Boolean proper default false
16
17 subfeature Headlights allowed features
18 BiXenon_Headlights, Standard_headlights
19 cardinality 1
20 proper default @Standard_headlights
22

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 105

23 attribute Headlight_Washer_System
24 value type Boolean proper default false
26
27 subfeature Navigator allowed features
28 Navigation_System cardinality 0 to 1
29 proper default none
31
32 subfeature Accessories allowed features
33 Accessory cardinality 1,3 to 4
34 proper default @A1(Attr_a1=true)
36
37 constraint
38 Manual_6_speed_Incompatible_with_3Litre
39 not ((Transmission = "6-speed") and
40 ((Motor = "30i") or (Motor = "30d")))
41
42 constraint
43 Active_Cruise_Control_Requires_BiXenon_
Headlghts
44 (Cruise_control = true) implies
45 ($config.Headlights individual of
46 BiXenon_Headlights)
47
48 feature BiXenon_Headlights
49 attribute Adaptive_headlights
50 value type Boolean proper default false
51
52 constraint Adaptive_Headlights_Require_
Headlamp_Washer_System
53 (Adaptive_headlights = true) implies
54 ($config.Headlight_Washer_System=true)
55
56 feature Standard_headlights
57
58 feature Navigation_System abstract
59
60 attribute Navigator_Map value type string
61 constrained by $ in list("Finland",
62 "Germany","Spain","Sweden","United
Kingdom")
63
64 feature Business_Navigation_System subtype
65 of Navigation_System
66
67 feature Professional_Navigation_System
68 subtype of Navigation_System
69
70 attribute Voice_navigation_input
71 value type Boolean proper default false
72
73 feature Accessory abstract
74
75 feature A1 subtype of Accessory
77 attribute Attr_a1 value type Boolean
79
80 feature A2 subtype of Accessory
82
83 feature A3 subtype of Accessory
85
86 configuration feature WeCoTinCar

3.2. WeCoTin Configuration Tool

WeCoTin enables users to configure products over
the web using a standard browser. A web-based sys-
tem architecture was selected for several reasons. Suit-
ability for e-commerce of configurable products is an
important design criterion. Thus, end-users should be
able to access the configurator through the Internet,
which makes stand-alone, separately installed appli-
cations impractical. Multiple simultaneous users and
multiple simultaneous configuration models are sup-
ported on the server side.

An important problem of companies without a con-
figurator is ensuring that up-to-date configuration mod-
els and prices are used when selling products [58].
Because WeCoTin is accessed through the web, it
provides centralized configuration model management
without the need to replicate or otherwise arrange con-
figuration models to be available in local computers.
WeCoTin’s web-based architecture makes it possible
to deploy changes by updating a central database with-
out the need to replicate information on client comput-
ers. When a server’s product and price database is up-
dated, it is immediately available for use.

The component WebUI servlet (Fig. 2, upper-left)
acts as a presentation layer that dynamically gener-
ates the user interface for end-users, employing HTML
and JavaScript. The interface consists of several parts;
these are indicated with a letter and description in
Fig. 3. The configuration tree (Fig. 3, B) gives an
overview of the configuration: compositional structure
is shown, along with attributes and their values. Se-
lections already made and selections still to be made
are shown, and links facilitate a free order of making
selections. The status area (top-left, Fig. 3, C) indi-
cates the status of the configuration in terms of consis-
tency and completeness, and shows calculation results
such as price and estimated delivery. The three possi-
ble states of a configuration and corresponding sym-
bols are shown in bottom right, Fig. 3, D.

A group of questions related to a product individual,
derived from the configuration model and user inter-
face generation information (see Section 3.4) is repre-
sented in the Question area (Fig. 3, A). The 6-Speed
Transmission in Fig. 3 is incompatible with cur-
rent selections. The user is free to make incompatible
selections. This informs users of what is available in
the configuration model, and does not prevent users
from selecting an interesting alternative, even if previ-
ous choices are incompatible with the desired alterna-
tive.

106 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Fig. 3. WeCoTin Configuration Tool user interface for end users.
A: questions to answer and wizard-style ‘Next’ button; B: Config-
uration tree gives an overview and free order of navigation; C: sta-
tus, usually price and one of alternatives in D; E: toolbar for other
actions. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/AIC-2012-0547.)

The user is informed about inconsistencies by col-
lecting error messages of violated constraints on top of
the Question area, area F of Fig. 3 shows an example.
The continuous display of error messages relieves bur-
den on user’s memory compared to pop-ups.

Configuration in a wizard-style pre-determined or-
der is available through the “Next” – button at the
bottom of the Question area. It traverses the configura-
tion tree in pre-order. The “Show summary” – but-
ton displays a summary page. The toolbar (Fig. 3, E)
provides actions such as multi-step undo and redo, pro-
ceeding to buying a consistent and complete configu-
ration (shopping basket icon), saving a configuration,
and for terminating the configuration session.

3.3. The Modeling Tool and configuration modeling

The Modeling Tool is used for creating and editing
configuration models and information needed to gener-
ate a user interface for end-users. The “Modeling Envi-
ronment User Interface” in the Modeling Tool (Fig. 2)

displays the current configuration model and facilitates
editing it. Data structures representing the configura-
tion model in the “Configuration modeling core” are
modified through the “Model management interface”
as the result of modeler’s actions.

Configuration models are expressed in Product Con-
figuration Modeling Language (PCML) described be-
low. A save operation stores the configuration model as
PCML. The tool also compiles the configuration mod-
els for use in WeCoTin Configuration Tool by utilizing
the “Inference Engine interface” and the compilation
component lparse in the “Inference Engine”. This cre-
ates additional compiled representations of the config-
uration model, discussed in Section 3.5.

The following subsections describe the modeling
language used to represent configuration models, and
aspects of the Modeling Tool that facilitate semi-
graphical editing of configuration models without the
need for knowing the syntax of the modeling lan-
guage. We follow a pattern where the first subsec-
tion describes central modeling language concepts, and
the following subsection describes the corresponding
Modeling Tool support.

3.3.1. PCML overview
Modeling in WeCoTin is based on a function-

oriented subset of the configuration knowledge ontol-
ogy [44]. Functions of the ontology are called features
in the implementation. For historical reasons, the orig-
inal WeCoTin implementation used the concept prop-
erty to designate attributes. Originally, WeCoTin was
developed with component-oriented modeling instead
of feature-oriented. The decision to focus WeCoTin
purely on sales configuration caused the renaming of
concepts. Feature types were called component types
and subfeatures were called parts.

PCML, Product Configuration Modeling Language
[33], is used in the WeCoTin configurator as the lan-
guage for representing configuration models. PCML is
object-oriented, declarative, and has formal implemen-
tation-independent semantics. The semantics of PCML
are provided by mapping it to Weight Constraint Rules
[43]. The basic idea is to treat the sentences of the
modeling language as shorthand notations for a set
of sentences in the Weight Constraint Rule Language
(WCRL). However, some important extensions to the
conceptualization, most notably defaults, do not have
formal semantics.

The main concepts of PCML are feature types, their
compositional structure, attributes and constraints.
Feature types define the subfeatures (parts) and at-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 107

tributes of their individuals that can appear in a config-
uration.

A configuration is always based on a particular con-
figuration model, and it represents the current (possi-
bly incomplete or inconsistent) state of the configura-
tion session. A configuration is a non-empty tree of
feature individuals. Each feature individual is a direct
individual of a single feature type. There is exactly one
feature type (configuration type) whose only individ-
ual (the configuration individual) serves as the root of
the compositional structure.

3.3.2. Taxonomic hierarchy and attributes in PCML
Feature types are organized in a class hierarchy

where a subtype inherits the attribute and subfeature
definitions of its supertypes. A predefined root feature
type with the name ‘Feature’ serves as the root of the
class hierarchy. A feature type is either abstract or con-
crete. Only an individual directly of a concrete type can
be used in a configuration. Multiple inheritance among
feature types is allowed.

A feature type may define attributes that parame-
terize or otherwise characterize its type. An attribute
definition consists of an attribute name, an attribute
value type, and a necessity definition indicating if the
attribute must be assigned a value in a complete con-
figuration. Base types of supported value types are
Boolean, integer, and string with provisions for floats.
Through necessity definition (or refinement, discussed
below), an attribute is obligatory, optional, or forbid-
den. In a complete configuration, optional and oblig-
atory attributes have a value, or a special value none
that designates an explicit assignment of no value to
an optional attribute. A value cannot be assigned to a
forbidden attribute.

When a type inherits data from a supertype, the type
can use the inherited data as such or it can modify the
inherited data by means of refinement. Refinement is
semantically based on the notion that the set of poten-
tial valid individuals directly of the subtype is smaller
than the set of valid individuals directly of the su-
pertype. Optionality Refinement can explicitly specify
an optional attribute as obligatory or forbidden. Value
Type Refinement restricts possible values, Fixed Value
Refinement gives a fixed value to an attribute, and a
Default Value Refinement specifies a different default
value.

There are three ways for a feature individual to have
a value for an attribute. First, if a feature type defines
a fixed value for an attribute, all direct and indirect in-
dividuals of the feature type have this value for the at-
tribute. Second, the individual can assign a value to

the attribute. Third, a feature type can specify a de-
fault value. If there is no fixed value or assignment, the
default value is used, unless maintaining consistency
of the configuration requires (possibly temporary) re-
moval of the default value.

Constants and value types can be defined. For ex-
ample, attributes that share a domain could all use a
common value type. Value types whose base value type
is integer can be flexibly constructed with individual
values, ranges, enumerated lists, constants, and tests
based on functions. String value types are based on
enumeration; free domains are possible, but such at-
tributes are not usable in inference.

In the running example, lines 58–62 in Listing 1 de-
fine an abstract feature type Navigation_System
with attribute Navigator_Map. It has concrete sub-
types Business_Navigation_System (lines
64–65), and Professional_Navigation_
System (lines 67–71) that inherit the attribute from
their supertype. Further, Business_Navigation_
System defines a new Boolean attribute Voice_
navigation_input.

3.3.3. Taxonomic hierarchy and attributes in the
Modeling Tool

The Modeling Tool provides full editing of fea-
ture types, their class hierarchy, and attributes. This
includes creating, removing, renaming (maintaining
model consistency) and changing of subclass hierar-
chies. The Feature type tree displays the class hierar-
chy (Fig. 4, A) and serves as a starting point for editing
all aspects of the types. A type that is a direct subtype
of several types (multiple inheritance) would appear in
the tree as a subtype of all its direct supertypes. Editing
the selected object takes place in the right side of the
display or sometimes in pop-up windows. In the Fea-
ture type tree (Fig. 4, A), colored squares differentiate
between concrete (blue) and abstract (red) types and
the configuration type (green).

Feature type overview (Fig. 4, C) allows adding or
removing attributes, and changing the concreteness or
the name of the currently selected type. The tab At-
tributes shows an overview of the attributes of
the selected feature type (WeCoTinCar). Special sup-
port is provided for defining enumerated attributes.
The enumeration attribute editor in Fig. 4, D displays
lines 4–6 of the running example.

3.3.4. Compositional structure in PCML
A feature type defines its compositional structure

through a set of subfeature definitions. A subfeature
definition specifies a subfeature name, a non-empty set

108 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Fig. 4. Configuration model in the Modeling Tool showing attributes of feature type WeCoTinCar and the enumeration attribute editor for
attribute Motor. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-2012-0547.)

of possible subfeature types (allowed types for brevity)
and a cardinality indicating the valid number of sub-
features.

In a configuration, subfeatures (parts) of a feature in-
dividual are realized with feature individuals. The re-
alizing feature individual(s) “fill the role” created by
the effective subfeature definition. We say that feature
type X has subfeature definition with part name P, with
allowed types T, cardinality C, and (optionally) a de-
fault/fixed realization D. The cardinality is specified as
a set of non-negative integers or integer ranges (e.g.,
1, 3 to 5). The realization of a subfeature cannot be
valid unless the number of feature individuals realizing
a subfeature is a member of the effective cardinality
of the subfeature. For example, subfeature with name
Navigator of feature individual WeCoTinCar_1
could be realized by a feature individual Busi-
ness_Navigation_System_1 of type Busi-
ness_Navigation_System. In other words, We-
CoTinCar_1 has Business_Navigation_
System_1 as part with subfeature name Naviga-
tor. An explicit empty realization is possible, when
cardinality 0 is allowed. An “optional part” common
in industrial products is modeled as a subfeature that
allows an empty realization. A default realization can
include attribute values and subfeature realizations of
arbitrary depth. In addition, an empty realization (spe-

cial value none) can be set as the default realization.
Inherited subfeatures can be refined by restricting al-
lowed types, cardinality, or by modifying or hiding de-
fault subfeature realizations.

Similar to attributes, there are three ways for a fea-
ture individual to have a realization for a subfeature.
First, a fixed realization applies to all direct and in-
direct individuals of the feature type. Second, a real-
ization can be assigned to the subfeature. Third, a de-
fault realization can apply. During the configuration
process, it is possible that a subfeature does not have
any realization. However, in a complete configuration,
all subfeatures must be realized.

3.3.5. Compositional structure in the Modeling Tool
The compositional structure is shown in the subfea-

ture hierarchy tree (Fig. 4, B). Drag & Drop from the
feature type tree enables adding allowed feature types
and subfeature definitions. An overview of the sub-
features of the active type WeCoTinCar is shown in
Fig. 5, A; the tab ‘Subfeatures’ is a part of the Feature
type overview shown in Fig. 4, C.

In the running example, lines 32–34 specify that fea-
ture type WeCoTinCar has a subfeature definition
with subfeature name Accessories, allowed fea-
ture type Accessory, and cardinality 1, 3 to 4. The
definition is shown open in (Fig. 5, B). When active in

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 109

Fig. 5. Subfeatures of WeCoTinCar, and the subfeature editor for
Accessories. (Colors are visible in the online version of the ar-
ticle; http://dx.doi.org/10.3233/AIC-2012-0547.)

the Modeling Tool, this editor (Area B) occupies the
area of Feature type overview (Fig. 4, C).

3.3.6. Constraints in PCML
A feature type can define constraints. PCML has two

types of constraints: soft and hard. Hard constraints
define conditions that a correct configuration must sat-
isfy. A configuration is considered consistent if and
only if no hard constraint in any feature individual is
violated. If any hard constraint is broken, the purchase
process cannot be completed, e.g., placing the config-
uration to the shopping cart is prevented.

In contrast, a violated soft constraint issues a warn-
ing to the user, who can suppress or “silence” the warn-
ings at will. However, depending on the modeler de-
cision, the user may be required to review or even ex-
plicitly accept all warnings before proceeding in the
acquisition process.

Constraints are expressed in a constraint language
and named uniquely within a feature type. The first-
level building blocks of the constraint language are
references to access subfeatures, attributes of features,
and constants such as integers or strings. References
can be used in succession, e.g., to access an attribute
of an individual realizing a subfeature. Tests returning
Boolean values are constructed using references, con-
stants, and arithmetic expressions. Tests include pred-
icates for checking if a particular referenced individ-
ual exists or is of a given type. Attribute references can
be used with constants in arithmetic expressions that
can be compared with the usual relational operators to

create a test. Tests can be further combined into ar-
bitrarily complex Boolean expressions using the stan-
dard Boolean connectives.

In the running example, constraints are defined on
lines 37–46 in feature type WeCoTinCar, and on
lines 52–54 in feature type BiXenon_Headlights.
The latter uses a special variable $config to access
the configuration individual and its attribute value.

3.3.7. Constraints in the Modeling Tool
The Modeling Tool provides several ways to define

constraints: textually, graphically, and as table con-
straints. Tab Constraints (Fig. 5, B) in Feature
type overview lists the constraints of the active fea-
ture type in textual form and facilitates adding new
constraints. Next, graphical and table constraints in the
Modeling Tool are discussed in detail.

Graphical constraints. Many existing constraints are
relatively simple, often in the form of requires- and
incompatible- relationships. To make entering and
modifying simple constraints easier, a graphical con-
straint editor was developed [61]. It is possible to
use the ‘and’ and ‘or’ – connectives to create sub-
expressions. These sub-expressions can be used, e.g.,
as requiring, required, or incompatible factors in more
complex graphical expressions.

Figure 6 illustrates graphically adding a hard con-
straint. First, the constraint is named, and the incom-
patible symbol is brought to the canvas; the resulting
placeholders are shown in Fig. 6, A. Drag & Drop sup-
port frees the user from tedious and error-prone typing
of object names and values. The placeholders are filled
by dragging from the Feature tree. By default, drag-
ging an allowed type creates a test for checking to en-
sure the subfeature is realized by an individual of the
dragged type. Dragging an attribute value creates by
default an equality test.

Accepting the defaults leads to the state of Fig. 6, B,
and the following constraint:

constraint Sequential_transmission_
incompatible_with_Standard_headlights
not ((Headlights individual of

Standard_headlights) and
(Transmission = "Sequential_Manual"))

Table constraints. Often configuration and engineer-
ing information is represented in tables, where each
row of the table corresponds to a viable combination
of subfeature selections, parameter values, etc.

The Modeling Tool provides a user interface for eas-
ily constructing such tables. The example of Fig. 7

110 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Fig. 6. Creating a graphical constraint (incompatible-with). (Col-
ors are visible in the online version of the article; http://dx.doi.org/
10.3233/AIC-2012-0547.)

Fig. 7. A table constraint. (Colors are visible in the online version of
the article; http://dx.doi.org/10.3233/AIC-2012-0547.)

comes from a real-world compressor family (several
rows and extra space were removed). The fifth row
(with the active cell) specifies that a 60 Hz 2.90 ca-
pacity compressor with nominal power of 22 and pres-
sure 10 is available with voltages of 230 V and 400 V.

Checkboxes enable including possible values of an at-
tribute or allowed types of a subfeature quickly and
without typing errors. Relevant attributes or subfea-
tures can be added to a table by browsing the config-
uration model. Additional flexibility is offered by the
possibility to add textual sub-expressions.

3.3.8. Default values and realizations
In PCML, a default value is either proper or ten-

tative. Both are considered when determining the va-
lidity of a feature individual, but only proper default
values contribute to completeness. WeCoTin supports
proper defaults with provisions for tentative defaults.

A default value can be reinforced with a soft con-
straint. If the subfeature realization or attribute assign-
ment is changed from the default, the user receives a
warning message.

WeCoTin has a mechanism for specifying different
sets of default values that capture market-area specific
defaults and “customer standards” specifying combi-
nations of selections that have been agreed with a cus-
tomer. A default value package (a.k.a. pre-selection
package) [32] assigns a set of values to attributes and
realizations to subfeatures. A default can be reinforced
with a soft or even hard constraint – a corresponding
automatically generated constraint will be broken if an
attribute value or subfeature realization other than the
default is assigned. A spreadsheet-like editor is pro-
vided to edit and compare several default value pack-
ages simultaneously.

Default values in WeCoTin do not have clear seman-
tics. Proper defaults reduce the number of selections
that a user must make. Often in practical models, op-
tional elements are deselected by default or the cheap-
est alternative is set as the default.

3.4. User interface modeling and generation

3.4.1. Layouts
A web-based user interface for the end-user is gener-

ated without programming. The user makes selections
on an HTML form; for example, see the right side of
Fig. 3. The general idea is that each selectable attribute
or subfeature of a feature individual being configured
generates a question. The modeler creates a layout to
define how questions related to a feature individual are
divided into pages, the order of questions, and, option-
ally, the type of input control used for a question. An
ordered list of questions to be shown on a single page is
a group. By default, questions of a group are answered
before consequences are deduced. The modeler can

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 111

Fig. 8. Layout editor for Feature type WeCoTinCar. Group ‘Basic’
defines the Question area of Fig. 3. (Colors are visible in the online
version of the article; http://dx.doi.org/10.3233/AIC-2012-0547.)

specify that inference is triggered immediately after a
user responds to a question (submit-on-change
= true). By default, all the questions are placed in
a special group default. Questions can be hidden;
helper variables can be applied without informing the
user, for example.

The configurator automatically chooses a suitable
input control type for each question (e.g., radio but-
tons, list box, checkbox). However, the modeler can
override the selection, e.g., forcing radio buttons in-
stead of a list box. When selecting one of several alter-
natives, Maximum Radiobutton Alternati-
ves determines a threshold: how many alternatives are
shown as radio buttons before switching to a list box.
This can be overridden, as in the example of Fig. 8 for
attribute Motor of WeCoTinCar. The user interface
of the example in Fig. 3 reflects this layout.

Several layouts can be associated with a configura-
tion model: to provide alternative views to a config-
uration model for different users, for summarizing a
configuration, or for exporting to other systems. Order,
grouping and visible objects can be varied as required.

3.4.2. Resources
In principle, the language of a configuration model

is independent of the language(s) of the end-user inter-
face. A resource file defines display names of objects
of the configuration model to be shown to end-users
and their optional descriptions. In addition, resources

define links to web pages providing additional infor-
mation, messages for broken constraints, etc. Multiple
resources support multiple languages for end-users.

Configuration model objects can be named in a pri-
mary language, e.g., English. To help model mainte-
nance, default display names are generated. For exam-
ple, underscores in identifiers are replaced with spaces.
Thus, creating a model with a suitable terminology fa-
cilitates near-automatic user interface generation in the
primary language.

3.4.3. UI-models – Resource and layout bundles
A bundle of a resource file, a layout file, and a gen-

eral user interface localization resource file comprises
a UI-model. A configuration session is associated with
three UI models: for configuring, for displaying a sum-
mary of the configuration and for exporting configu-
rations. A separate UI model for exporting facilitates,
e.g., a different language of an order specification to
be sent into own organization. In our example integra-
tions, see Section 3.7, export resources were used to
map feature individuals to item codes (material num-
bers), and export layouts were used to specify a suit-
able ordering of exported items. Layouts, resource and
UI-models are stored as XML files.

3.4.4. Other user interface aspects
Web-page templates define the general look of the

user interface. They support maintainability of a con-
figurator through separating the definition of visual ap-
pearance from the product-dependent parts of the user
interface. Customized and shared templates provide
the visual appearance of a company, and carry the vi-
sual appearance over to new products or product gener-
ations. Templates provide frames for dynamically gen-
erated contents (areas A, B, C and E of Fig. 3). HTML,
ECMAScript [8] and Cascading Stylesheets (CSS) [3]
are applied.

The user interface of the running example (Fig. 3)
contains the WeCoTin logo and a static car picture as
decorative visual elements.

3.5. Determining price and delivery time

WeCoTin has two mechanisms for determining prices.
The basic pricing mechanism suits simple additive
prices, while the more complex advanced calculation
mechanism enables freely specifiable calculations.

The basic pricing mechanism is simple: each feature
individual has the price specified by its type; the de-
fault is no price (0). In addition, each attribute value
can be given a price. Prices of feature individuals and

112 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

prices of attribute values in a configuration are summed
in the web browser after each selection. The user in-
terface displays prices in the context of selecting a re-
alizing feature type or an attribute value. For example,
Fig. 3 shows prices of two attributes. Prices are speci-
fied in XML format price lists. Several price lists can
be created, enabling support for several market areas,
currencies, or special offers. A configuration session is
associated with a single price list.

The advanced calculation mechanism [31] can per-
form calculations as a function of the current con-
figuration, configuration model, and data in specific
databases or XML files when contacting the Configu-
rator Server. Typical uses are determining price, deliv-
ery time and possibly cost.

The mechanism processes calculation items, each
equipped with a condition expression examining the
configuration and a set of assignments. Assignments
from calculation items whose condition expression
evaluates to true provide values to value sets. Con-
crete values to assign can be retrieved from a database.
Value sets are used as inputs to calculation func-
tions that output other value sets. When calculat-
ing prices, the sum of items in a value set such as
“list_price” is often calculated. Others functions
include multiplication (e.g., to calculate discounts),
subtraction, minimum and maximum. Furthermore,
user-defined functions can be defined with Java. A cal-
culation result (e.g., price) to be shown is selected from
a template.

For determining delivery time, specific configura-
tion decisions cause assignment of the whole configu-
ration or a subsystem to a specific delivery time class,
whose current lead times are maintained by, e.g., the
production control function. The total delivery time
is calculated, e.g., through maximum and sum opera-
tions.

3.6. Relationship to configuration ontology

The modeling concept ‘feature’ of PCML corre-
sponds to the modeling concept ‘function’ of [44].
Functions and features are identical with respect to tax-
onomy, compositional structure and attributes. Neither
features nor functions have ports or resources. How-
ever, PCML simplifies the conceptual model of [44]
significantly. All subfeatures and feature types are con-
sidered exclusive – sharing of individuals as parts is
thus not permitted. Has-part inheritance definitions
are not supported – these special constraints allow the
model to specify that certain properties of individuals

of whole types are dependent on the properties of parts
and vice versa. A straightforward example is a part that
inherits the color of the whole, or an attribute value
like width of a conveyor belt system being inherited
by components. Further, all feature types are depen-
dent, except the configuration type, which is indepen-
dent. The configuration type has exactly one individ-
ual that serves as a root of the compositional structure.
Because topological concepts and resources are ex-
cluded, contexts are excluded as redundant. WeCoTin
does not support two-level configuration with separate
sales configuration (features/functions) and technical
configuration (components) views. Thus, implementa-
tion constraints are also excluded. Furthermore, con-
straint sets are not implemented.

3.7. Applying weight constraint rules and Smodels to
provide inference

In this subsection, we describe how inference is pro-
vided for PCML configuration models. Three issues
important for efficiency of the system are addressed
in the implementation: off-line compilation of config-
uration models, limiting a configuration to a finite size
in a semantically justified way, and symmetry break-
ing. First, Smodels and its language Weight Constraint
Rule Language (WCRL) are summarized. These pro-
vide inference of WeCoTin and declarative semantics
to PCML. We proceed by showing how PCML pro-
grams are compiled into WCRL, and then outline how
WeCoTin uses Smodels to provide complete and sound
computation of configurations satisfying requirements.

3.7.1. Smodels, WCRL and BCRL
Smodels is a system that follows the answer set

programming paradigm, in which the problem is ex-
pressed as a theory consisting of logic program rules
with clear declarative semantics, and the stable mod-
els of the theory correspond to the solutions (answer
sets) to the problem [30]. The theories are expressed
in WCRL. WCRL is equipped with weight constraints
for representing weighted choices with lower and up-
per bounds and with conditional literals restricted by
domain predicates to encode sets of atoms over which
the choices are made [30]. By default, atoms have a
weight of one. WeCoTin applies these default weights.

Smodels is a state-of-the-art implementation of
Weight Constraint Rules. The Smodels system is based
on a two-level architecture where, in the first phase,
a front-end component, lparse, compiles a WCRL pro-
gram with variables into programs in Basic Constraint

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 113

Rule Language (BCRL) that contain no variables. This
provides a pre-compilation approach where some work
is performed off-line. Lparse exploits efficient database
techniques but does not resort to search.

The main functionality of the Smodels system is
to compute a desired number of stable models for a
BCRL program. Smodels allows a user to provide re-
quirements (through so-called compute statements) to
constrain the stable models to be computed. The search
for models of BCRL programs is handled using a spe-
cial purpose search procedure, smodels, taking advan-
tage of special features of BCRL. The search proce-
dure is Davis–Putnam like, works in linear space, and
employs efficient search-space pruning techniques and
a powerful, dynamic, application-independent search
heuristic. In addition, an efficiently computable ap-
proximation provides a set of atoms that must hold in
any stable model if one exists, a set of atoms that can-
not hold, and a set of unknown atoms. Smodels is im-
plemented in C++ and offers APIs through which it
can be directly integrated into other software.

3.7.2. Configuration model and configuration
representation overview

Semantics of the PCML modeling language are pro-
vided by mapping configuration models expressed in
PCML to Weight Constraint Rules. In addition, the
mapping provides inference by making it possible to
deploy Smodels as the configuration engine.

The configurator compiles a PCML program into
WCRL, then into BCRL. The basic idea is to treat the
sentences of the modeling language as shorthand nota-
tions for a set of sentences in WCRL. A configuration
model thus corresponds to a set of Weight Constraint
Rules consisting of ontological definitions defining the
semantics of the modeling concepts and a set of rules
representing the configuration model.

A configuration with respect to a configuration
model is defined as a subset of the Herbrand base of the
configuration model. A requirement is for simplicity
defined as an atomic fact. A correct configuration is a
stable model of the set of rules representing the config-
uration model and a suitable configuration is a correct
configuration that also satisfies the set of requirements.

3.7.3. Compilation process and WCRL program
overview

Compilation of PCML to WCRL follows the idea
represented in [43]. The compilation process is sum-
marized in Fig. 9. Here, Configuration modeling core
in Model Manager loads a PCML configuration model
and checks it for consistency. This includes parsing the

Fig. 9. Information flow of PCML compilation. First, the Model
manager generates a WCRL program and serialized PCML data
structures. WCRL is grounded to BCRL by lparse. BCRL and the
serialized PCML data structures are used by the Configurator Server
for repetitive configuration tasks.

PCML file, type checking expressions, and checking
the configuration model for validity with respect to the
language specification. The Inference Engine Interface
in Model manager translates the configuration model
to a WCRL program. Data structures representing the
PCML configuration model are saved for later use as
serialized Java objects. The generated WCRL program
includes sentences for:

• a set of standard axioms, called the ontological
definitions,

• a set of sentences representing the configuration
model, without constraints, including feature type
hierarchy, compositional structure and attributes,

• a set of sentences representing the constraints in
the configuration model,

• a set of ground facts representing the individuals
out of which a configuration can be constructed,

114 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

and
• sentences for symmetry breaking.

Finally, the WCRL program is translated to BCRL
using the ‘lparse’ component of the Smodels system.

In the following, these sentence categories are dis-
cussed, and the running example is used to give con-
crete examples. Table 1 summarizes the predicates re-

Table 1

Predicates resulting from WCRL compilation

Predicate Explanation

in (c) True iff feature individual c is included in the
configuration.

pa (c1, t1, c2, pn) True iff feature individual c2 is in the
configuration realizing part pn of feature
individual c1 that is directly of type t1.

ppa (t, c1, c2, pn) A domain predicate enumerating the possible
part individuals for a part. Feature individual
c2 is a possible part for realizing pn of
feature individual c1 directly of type t.

pan(x) x is a part name. Domain predicate pan(x)
enumerates all part names.

compT_x(c) Feature individual c is of the feature type x.
x is replaced with the actual name of the
feature type.

for (wt, c1, c2, pn) Individual c2 is allocated for use in part pn
for feature individual c1 of type wt. for is a
symmetry breaking predicate, effective ppa
atoms are generated through for-atoms.

prio (X, Y) Individual X has priority over individual Y. In
other words, in(Y) is possible only if
in(X) is true. Used for symmetry breaking.

emptyPart (c, pn) Helper predicate that is true iff feature
individual c is in the configuration, and part
{pn} has an empty realization.

prop_x (c, t, v) True iff feature individual c of type t is in
the configuration and has an assignment to
attribute X with value v. x is replaced with
the name of the attribute.

prSpec _n(v) Domain predicate that enumerates possible
value types for value type n. A new n is
generated as new value types are
encountered. Several attributes of the same
value type can share the domain.

sat (t, c, cn) A head for a constraint with the name cn in
the feature individual c of type t, which is
true iff the constraint cn is satisfied for
individual c.

sc(t, c, cn) A head for a soft constraint with the name cn
in the feature individual c of type t, which is
true iff the soft constraint cn is satisfied in
individual c.

compTDom(c) Domain predicate that enumerates all feature
type names. c is a feature type.

isa(X, Y) Feature type X is a subtype of feature type Y.

sulting from the compilation.

3.7.4. Ontological definitions
The set of ontological definitions remains the same

in all configuration models. The following ontological
definitions are created:

(1) Require that each feature individual in a configu-
ration, except the root individual, is a part of an-
other feature individual (line 001).

(2) Require exclusive parthood – a feature individual
can be included as a part in at-most one feature
individual with a given subfeature name (002).

(3) Specify transitivity of the is-a relation (004–005).
(4) Specify reflexivity of the is-a relation (006).
(5) Require that exactly one individual of the config-

uration type must be in the configuration (039).

001 in(C2) :- pa(C1,T,C2,Pn), ppa(T,C1,
C2,Pn).
002 :- 2{pa(C1,T,C2,Pn):ppa(T,C1,C2,
Pn)},
003 compT_Feature(C2).
004 isa(X,Z):- isa(X,Y), isa (Y,Z),
005 compTDom(X), compTDom(Y),
compTDom(Z).
006 isa(X,X):- compTDom(X).
039 1{in(C):compT_WeCoTinCar(C)}1.

3.7.5. Sentences representing feature types
Primarily, types are represented by unary domain

predicates ranging over their individuals. Further,
isa(X,Y) predicates are generated to represent the
type hierarchy and to specify that individuals of a type
are also individuals of its supertypes. In the exam-
ple, lines 086–088 represent individuals of types Pro-
fessional_Navigation_System and Busi-
ness_Navigation_System. Further, Feature,
Navigation_System, and Business_
Navigation_System belong to the domain of
feature types (compTDom) (007, 008, 032), Navi-
gation_System is-a Feature, and Business_
Navigation_System is-a Navigation_
System. Feature individuals of these types are as-
signed also to their supertypes (033, 009). Generation
of individuals is discussed in Section 3.6.9.

086 compT_Professional_Navigation_System
087 (ind_compT_Professional_Navigation_
System_1).
088 compT_Business_Navigation_System
088b (ind_compT_Business_Navigation_
System_1).
007 compTDom(compT_Feature).

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 115

008 compTDom(compT_Business_Navigation_
System).
032 compTDom(compT_Navigation_System).
034 isa(compT_Navigation_System,compT_
Feature).
010 isa(compT_Business_Navigation_
System,
011 compT_Navigation_System).
033 compT_Feature(C) :-
034 compT_Navigation_System(C).
009 compT_Navigation_System(C):-
009b compT_Business_Navigation_
System(C).

3.7.6. Sentences representing subfeature definitions
For each subfeature definition, sentences are gener-

ated that allow the correct number of possible individu-
als as subfeature, determined by the cardinality. For ex-
ample, subfeature (part) name Accessories of the
running example (line 053) allows 1 to 4 individuals as
part (line 054). All individuals have the implicit weight
of 1. Possible individuals for realizing the subfeature
are indicated with possible-part predicates (ppa) de-
fined through symmetry breaking for-predicates (line
057), discussed in Section 3.6.10. If intermediate car-
dinalities are not allowed (such as 2 in the example)
appropriate conflict sentences are generated (line 055).
Further, individuals that are not possible parts are de-
nied to be parts, line 056. In case of an optional sub-
feature (allowing cardinality 0) such as Navigator
(lines 041–045), an emptyPart predicate is gener-
ated to make it easier to recognize and require (in a
compute statement) an empty realization. For exam-
ple, line 045 shows the emptyPart predicate of the
Navigator subfeature.

Individuals that can realize each subfeature are gen-
erated separately, and they are allocated to each sub-
feature instance by symmetry breaking predicates dis-
cussed in Section 3.6.10.

053 pan(part_Accessories).
054 1{pa(C1,compT_WeCoTinCar,C2,
054b part_Accessories):
054c ppa(compT_WeCoTinCar,C1,C2,
054d part_Accessories)}4 :-
054e in(C1),compT_WeCoTinCar(C1).

055 :- 2{pa(C1,compT_WeCoTinCar,C2,
055b part_Accessories): ppa(compT_
WeCoTinCar,
055c C1,C2,part_Accessories)}2,
055d in(C1), compT_WeCoTinCar(C1).

056 :- compT_WeCoTinCar(C1), pa(C1,

056b compT_WeCoTinCar,C2, part_
Accessories),
056c ppa(T,C1,C2,part_Accessories),
056d not ppa(compT_WeCoTinCar,C1,C2,
056e part_Accessories).

057 ppa(compT_WeCoTinCar,C1,C2,
057b part_Accessories) :-
057c compT_WeCoTinCar(C1),compT_
Accessory(C2),
057d for(compT_WeCoTinCar,C1,C2,
057e part_Accessories).

041 pan(part_Navigator).

042 0{pa(C1,compT_
WeCoTinCar,C2,
042b part_Navigator) :ppa(compT_
WeCoTinCar,
042c C1,C2,part_Navigator)}1 :-
042d in(C1),compT_WeCoTinCar(C1).

043 :- compT_WeCoTinCar(C1),pa(C1,
043b compT_WeCoTinCar,C2,part_
Navigator),
043c ppa(T,C1,C2,part_Navigator), not
ppa(
043d compT_WeCoTinCar,C1,C2,part_
Navigator).

044 ppa(compT_WeCoTinCar,C1,C2,part_
Navigator)
044b :- compT_WeCoTinCar(C1),
044c compT_Navigation_System(C2), for(
044d compT_WeCoTinCar,C1,C2,part_
Navigator).

045 emptyPart(ind_compT_WeCoTinCar_1,
045b part_Navigator) :-
045c in(ind_compT_WeCoTinCar_1), not
045d pa(ind_compT_WeCoTinCar_1,
045e compT_WeCoTinCar,ind_compT_
045f Professional_Navigation_System_1,
045g part_Navigator), not
045h pa(ind_compT_WeCoTinCar_1,
045i compT_WeCoTinCar,ind_compT_
Business_
045j Navigation_System_1, part_
Navigator).

3.7.7. Sentences representing attributes
An attribute having a specific value in a feature indi-

vidual is represented as a tertiary predicate specifying
the feature individual, its direct type, and the attribute
value. An attribute of a feature type is required to have

116 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

exactly 1 value from its domain (or 0 to 1 in case of
an optional attribute) when an individual of the type is
in a configuration. Line 121 specifies attribute Motor
of WeCoTinCar. Possible attribute values are repre-
sented as object constants, and all possible values of
an attribute are designated to a domain. Each possible
value has the default weight 1. Domains can be shared
among different attributes, and named domains gener-
ate similar domains. Possible values of obligatory at-
tribute Motor of WeCoTinCar are specified in lines
122–126.

121 1{prop_WeCoTinCar_Motor(X,compT_
WeCoTinCar,
121b Y): prSpec_5(Y)}1:- in(X),
121c compT_WeCoTinCar(X).
122 prSpec_5("20i").
123 prSpec_5("25i").
124 prSpec_5("25d").
125 prSpec_5("30i").
126 prSpec_5("30d").

3.7.8. Constraints
Constraints expressed in PCML are translated to

equivalent constraints in WCRL in a manner that en-
sures constraints defined at type level apply separately
to each individual of the type. A constraint is only re-
quired to apply when the individual bound to it is in-
cluded in the configuration. The translated constraints
do not provide groundedness to individual atoms. Ad-
ditional details are beyond the scope of this paper.

3.7.9. Facts for representing individuals
We took the approach that the set of individuals out

of which the configuration can be constructed is pre-
defined. This limits the configuration to a finite size.
We decide in advance in a semantically justified way
the number of individuals of each concrete type: The
configuration individual serves as the root of the com-
positional structure. Because a maximum cardinality is
defined for every subfeature definition, we can calcu-
late an upper bound of the number of needed individu-
als. First, the configuration individual is generated. For
each subfeature definition of the configuration type, the
number of individuals defined by the maximum cardi-
nality of the subfeature definition is generated for each
allowed concrete subfeature (part) type. This is per-
formed recursively to generate subfeature individuals
for all subfeature definitions of the types of the newly
generated individuals.

The number of needed individuals can grow expo-
nentially. For example, increasing the number of lev-
els in the compositional hierarchy leads to exponential

growth in the number of generated individuals when
maximum cardinality at each level is at least 2. The
implementation does not try to optimize the number of
individuals based on constraints or mutually exclusive
branches of the compositional structure. For example,
a subfeature definition with maximum cardinality of N
with M allowed types generates N*M individuals, al-
though at maximum N can ever be used.

The available individuals are represented as ob-
ject constants with unique names. Two individuals
(ind_compT_ A1_1 and ind_compT_A1_2) of
type A1 for part Accessories of the running ex-
ample are shown below. They are listed with for-
predicates used for symmetry breaking, discussed in
the next subsection. Individuals ind_compT_ A1_3
and ind_compT_A1_4 are defined similarly.

069 compT_A1(ind_compT_A1_1).
069b for(compT_WeCoTinCar,
069c ind_compT_WeCoTinCar_1,ind_compT_
A1_1,
069d part_Accessories).

070 compT_A1(ind_compT_A1_2).
070b for(compT_WeCoTinCar,
070c ind_compT_WeCoTinCar_1,
070d ind_compT_A1_2,part_Accessories).

3.7.10. Symmetry breaking sentences
Individuals of a concrete type are equivalent except

for their names. Equivalent configurations, i.e., config-
urations identical except for naming, can be created by
selecting different individual(s) of a concrete type as a
part. Next, we describe two forms of unwanted symme-
tries and present a method used by WeCoTin to break
them.

The first form of symmetry arises when several in-
dividuals directly of a type are possible parts with a
subfeature name for an individual. For example, in
Fig. 10(a) type A has subfeature definition P with car-
dinality 1 to 2, with type B as the only allowed type.
There are two individuals, b-1 and b-2, of type B.
They can both realize subfeature (part) P of individ-
ual a-1. More precisely, individuals b-1 and b-2 can
be a subfeature with subfeature name P in a-1. The
configurations in Fig. 10(b) and (c) are equivalent. In
general, individuals can be picked in a combinatorial
number of ways, creating a potentially huge number
of symmetries. The idea of symmetry breaking is that
the possible subfeature individuals directly of the same
type are always used in a fixed order. The individuals
are ordered by giving them priority rankings. A lower

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 117

Fig. 10. Symmetry breaking in WeCoTin.

priority individual is not allowed in the configuration
if all the higher priority individuals are not included in
the configuration. Symmetry breaking would thus al-
low only the configuration in Fig. 10(b).

The second form of symmetry is shown in
Fig. 10(d)–(f). Without symmetry breaking, any indi-
vidual of type B could realize any subfeature (part)
where type B is as an allowed type. For example, indi-
viduals b-1 and b-2 of type B could both realize ei-
ther P1 or P2 in individual a-1. We break this form of
symmetry by allocating each part individual to a spe-
cific whole individual and subfeature name. After allo-
cation, either (e) or (f) is allowed.

Lines 69–70 (and 71–72, not shown) above showed
facts representing individuals of Accessory-type A1,
and their allocation via for-predicates. Priorities of
individuals of type A1 are defined below (lines 79–81).
Denial to use lower priority individuals before higher
priority ones is specified on line 89. Transitivity of pri-
ority is specified on line 90.

079 prio(ind_compT_A1_1,ind_compT_A1_2).
080 prio(ind_compT_A1_2,ind_compT_A1_3).
081 prio(ind_compT_A1_3,ind_compT_A1_4).
089 :- prio(X,Y), compT_A1(X),
compT_A1(Y),
089b in(Y), not in(X).
090 prio(X,Z) :- compT_A1(X),
compT_A1(Y),
090b compT_A1(Z),prio(X,Y), prio(Y,Z).

3.7.11. Overview of inference
The configuration engine smodels uses the compiled

BCRL form of the configuration model. At the be-
ginning of a configuration session, the Configurator
Server loads the data structures representing the con-

figuration model into the configuration modeling core
and the corresponding BCRL program into smodels.
See Fig. 9.

A compute statement representing current require-
ments is set through the smodels API; a compute state-
ment requires a relevant set of atoms to be true and
another set of atoms to be false in an answer set repre-
senting the configuration. Consistency of the require-
ments is checked by constructing a suitable configura-
tion, enabling early detection of a possible dead end.

Deducing the consequences of requirements is based
on computing an efficient approximation (well-founded
approximation) of the set of configurations satisfying
the requirements. Intuitively, the approximation con-
tains a set of atoms that must be true in a configuration
satisfying the requirements, a set of atoms that cannot
be true, and a set of unknown atoms [30].

There are several “levels” of requirements that the
configurator uses: user-confirmed selections are the
lowest level (i.e., the highest priority) and they will
always be respected; user-confirmed selections aug-
mented with defaults enforced with soft constraints
form the next level; finally, the most comprehen-
sive requirements include additionally proper defaults.
A maximum level of requirements where a configura-
tion can be found is determined. On this level, con-
sequences are deduced to support the user. With the
aid of the well-founded approximation, most conse-
quences of current requirements are detected. For ex-
ample, the only compatible remaining alternative is
selected automatically. If this results in new conse-
quences, they are taken into account as well, due to
fixpoint semantics of the approximation. Finally, if de-
faults have been removed, an attempt is made to re-
store defaults that are not in direct conflict of deduced
consequences. If successful, a configuration including
those defaults is returned. Otherwise, defaults remain
discarded until the next contact with the Configurator
Server.

Based on this approximation, the Smodels interface
generates a new configuration and hands it to Config-
urator Server. Configurator Server uses its calculation
subsystem to compute results such as price or deliv-
ery time before the configuration is returned to WebUI
servlet, which shows it to the user.

WeCoTin uses significant effort to “gray out” in-
compatible alternatives. The idea is simple: assume
that a question that will be shown next has no answer,
and set other previous answers as requirements. Atoms
related to the question that are on the list of necessarily
false atoms of the well-founded approximation are not

118 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

compatible with current user inputs and will be grayed
out. This process is repeated for all questions that will
be visible on the next set of questions. Haag [15] doc-
umented the same process for determining graying in-
formation for next visible questions (calculating “Dy-
namic User Domains”). An explanation for graying is
available by selecting the grayed out selection – some
constraint(s) will be broken, and corresponding mes-
sages explain the reason.

3.8. Set-up of configurator and configuration model

The process to set-up a configurator does not require
programming. On an installed system set-up, one or
more configuration models and corresponding layouts
and resources are created and deployed. In addition, a
web page or site providing a link to invoke the We-
bUI servlet (see Fig. 2) with the desired configuration
model and other configuration session invocation pa-
rameters is required. The parameters include UI mod-
els for configuring, showing a summary, and export-
ing the finished configuration. Further, a price list for
the basic price mechanism and an exporter (see the
next paragraph) are specified. Optionally, it is possible
to specify a configuration to load and a pre-selection
package to use, and to define the calculations of the
advanced calculation mechanism (Section 3.5).

An exporter (implementable in JAVA) delivers a
configuration to external system(s); an API provides
access to relevant information such as the configura-
tion, UI models, and the configuration model. A default
exporter creates an XML representation of the con-
figuration and stores the configuration summary page.
A tailored exporter can transfer a finished configura-
tion to an ERP, PDM, or e-commerce system. Imple-
mented exporters include Intershop 4 e-commerce sys-
tem, EDMS2 product data management system, and
Vertex G4 3D CAD. The CAD exporter generates a 3D
visualization during the configuration process.

The remaining activities for creating a configura-
tor include customizing the templates and style sheets
to give the desired company look. A full e-commerce
system requires functionalities outside the scope of
WeCoTin, including customer account management
(e.g., volume and customer dependent discounts, in-
tegration of personal saved configurations), buying
and order tracking functionality, and ordering of non-
configurable items such as spare parts.

4. Evaluation: Characterization of practical cases,
modeling and configuration support, and
performance

According to the third guideline of Design Science
Research [19], the utility, quality, and efficacy of a de-
sign artifact must be rigorously demonstrated via well-
executed evaluation methods. IT artifacts can be eval-
uated in terms of functionality, completeness, consis-
tency, accuracy, performance, reliability, usability, fit
with the organization and other relevant quality at-
tributes. The scope of this work allows only an evalua-
tion of a subset of these criteria. The views chosen for
evaluation are high-level efficacy and performance.

Configuration models, related configuration tasks,
and their IT support (configurators) could be character-
ized from several perspectives. These include the size
of the models, computational performance and com-
plexity, and effectiveness of specific modeling tech-
niques related to specific configuration tasks as defined
by the company offering. Less technical views cover
aspects of practical interest such as the proportion of
cases covered by the configuration models, complete-
ness of the models in terms of business requirements,
usability, and different aspects of utility provided and
sacrifices required.

High-level efficacy of the main artifact WeCoTin
was demonstrated by showing that practical configu-
ration problems could be solved [53]. 26 configura-
tion models were created to evaluate and demonstrate
the applicability of WeCoTin and PCML to real-world
industrial configuration problems, which demonstrates
the high-level efficacy of the constructs. The mod-
els were characterized with numerous indicators of
size and degree of application of different model-
ing constructs. All modeling was performed by re-
searchers who developed this system. Due to limita-
tions of space, in this paper we show only the main
characterizations and provide extended conclusions.

Empirical performance evaluation of WeCoTin with
four real-world products has been conducted, as orig-
inally presented in [59]. Evaluating configurator per-
formance is important because of at least NP complex-
ity class of configuration problems [41]. To quantify
the performance challenge, a method was developed
that allows run-time performance testing of configura-
tors based on real-world products and random require-
ments. We summarize the method and key results.

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 119

4.1. Characterization of modeled cases

WeCoTin configurator can model and support con-
figuration tasks of several industrial domains. This was
verified by modeling the sales view of 14 real-world
products in their entirety (some with extra demonstra-
tion features, one in 2 variants) and 8 partial products
or concepts. Configuration sessions were performed
with each model. In this subsection, configuration
models created with WeCoTin will be characterized.
The Modeling Tool was instrumented to provide the
characterizing metrics based on static configuration
model analysis. The configuration models come from
the following domains:

• Machine industry: 8 models from 3 companies;
6 compressors (1 twice), 1 undisclosed vehicle
and 1 military vehicle.

• Healthcare: 3 models from 2 companies; 2 den-
tist’s equipment and 1 hospital bed.

• Telecommunications: 4 models from 2 compa-
nies; 3 mobile and 1 broadband subscription.

• Insurance services: 3 models from 1 company; in-
surance products.

• Maintenance services: 2 models from 1 company;
2 generations of elevator maintenance contracts.

• Software configuration: 1 model; Debian Linux
with package versions.

• Construction: 1 model; modular fireplace.
• Demonstration models: 3 cars, 2 based on a subset

of a real-world car and 1 fictional.

This subsection is structured as follows. Section 4.1.1
gives an overview of the configuration models, their
background, and validation. Section 4.1.2 describes
component type hierarchy, overall configuration model
size, and price modeling. Section 4.1.3 details the
compositional structure of the models, Section 4.1.4
describes attributes, and Section 4.1.5 identifies con-
straints.

4.1.1. Model background, status and validation
In most cases, material from case companies, such

as order forms, brochures, and other documentation,
were used as a basis for configuration modeling. Com-
pany experts were often contacted for additional infor-
mation. In some cases, we re-engineered configuration
model information from company websites.

Five models from three companies were test-used
by company representatives. In addition, configura-
tion demonstrations and immediately-following focus
groups were used to validate an additional seven con-

Table 2

Main characterizations of the configuration models. TT = Total
number of Types, AT = Total number of Abstract types, CT = Total
number of Concrete types, ST = Total number of types as Subtypes,
%S = % of types as Subtypes, QU = total number of QUestions,
%R = % of questions in Root of compositional hierarchy

Model TT AT CTs ST %S QU %R

1 C FM 9 2 7 4 44 31 58

2 CFm sc 9 2 7 4 44 31 58

3 C FS 3 0 3 0 0 24 88

4 C FX 1 0 1 0 0 20 100

5 C FL 9 2 7 4 44 28 64

6 C M 3 0 3 0 0 23 91

7 KO old 5 0 5 0 0 28 79

8 KO new 15 3 12 7 47 77 4

9 Bed 31 8 23 27 87 34 76

10 Firepl 7 1 6 4 57 4 75

11 Pasi 5 1 4 2 40 79 95

12 Dental 64 11 53 43 67 109 3

13 X-ray 11 2 9 4 36 37 41

14 Vehicle 28 4 24 9 32 24 75

15 Ins 1 8 2 6 5 63 30 20

16 Ins 2 62 13 49 56 90 49 20

17 Ins 3 11 3 8 5 45 41 29

18 Ins 4 37 11 26 34 92 242 5

19 Mob 1 4 0 4 0 0 18 56

20 Mob 2 39 9 30 38 97 65 25

21 Mob 3 5 1 4 3 60 21 38

22 Broad 66 15 51 64 97 485 1

23 Linux 626 1 625 624 100 4369 14

24 Iced 8 2 6 5 63 4 75

25 Wcar 6 1 5 2 33 10 60

26 CarDis 10 2 8 5 50 12 58

Total 1082 96 986 949 5985

Total no Linux 456 95 361 325 1526

Average 18 4 14 13 48 227 50

Avg no Linux 24 5 19 18 59 61 52

Median 9 2 7 5 46 31 58

Min 1 0 1 0 0 4 1

Max 626 15 625 624 100 4369 100

figuration models. One model (23, Linux) was signifi-
cantly larger than others and semi-automatically gener-
ated. Discussions on model characterizations exclude
this model, but averages and totals were calculated
with and without it (see Tables 2 and 3).

4.1.2. Taxonomy, model size and pricing
Numbers of abstract (AT), concrete (CT) and to-

tal feature types (TT) contribute to the size of a con-
figuration model and are shown in the corresponding
columns of Table 2. The total number of feature types

120 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Table 3

Main characterizations of the configuration models. CO = total
number of constraints, PR = PRice calculation mechanism, EA =
total number of Effective Attributes, %IA = % of Inherited At-
tributes, ES = total number of Effective Subfeatures, %IS = % of
Inherited Subfeatures

Model CO PR EA %IA ES %IS

1 C FM 17 adv 27 22 4 50

2 CFm sc 17 adv 27 22 4 50

3 C FS 14 adv 23 0 1 0

4 C FX 23 adv 20 0 0 –

5 C FL 13 no 24 17 4 50

6 C M 14 no 22 0 1 0

7 KO old 13 no 26 0 2 0

8 KO new 1 no 58 81 19 47

9 Bed 10 basic 31 0 3 0

10 Firepl 0 no 2 0 2 0

11 Pasi 13 no 77 3 2 0

12 Dental 36 no 76 70 33 79

13 X-ray 3 no 32 44 5 40

14 Vehicle 7 basic 8 0 16 0

15 Ins 1 4 no 20 10 10 0

16 Ins 2 0 no 19 58 30 27

17 Ins 3 14 no 29 0 12 0

18 Ins 4 84 no 189 26 53 51

19 Mob 1 6 basic 15 0 3 0

20 Mob 2 28 basic 52 29 13 0

21 Mob 3 6 no 20 60 1 0

22 Broad 43 no 453 89 32 6

23 Linux 2380 no 3745 67 624 0

24 Iced 3 basic 2 0 2 0

25 Wcar 3 basic 8 25 2 0

26 CarDis 3 basic 9 22 3 0

Total 2755 5014 881

Total no Linux 375 1269 257

Average 106 193 25 34 16

Avg no Linux 15 51 23 10 17

Median 13 25 19 4 0

Min 0 2 0 0 0

Max 2380 3745 89 624 79

varied from 1 to 626, the median was 9 and the av-
erage was 24. The number of direct subtypes of ab-
stract types (excluding root of the feature type hierar-
chy Feature) (ST) characterizes application of the
taxonomical hierarchy. As a percentage “%S” the fig-
ure varied from 0% to 100%, with the average without
Linux being 59% and the median being 46%.

A selectable attribute or subfeature of a feature in-
dividual being configured generates a question during
a configuration process. The number of questions in a

configuration model (“QU”) roughly characterizes the
size of each configuration model and the related con-
figuration task. In a typical configuration model with-
out redundant concrete feature types, each question
might need to be answered while configuring a prod-
uct. All possible questions may not be asked during a
configuration session, because an individual of a spe-
cific type is not necessarily selected into a configura-
tion, or if some attributes or parts are defined to be in-
visible to the user or to have a fixed value. However, if
several individuals of a feature type are included in a
configuration, the number of questions may be multi-
plied. The average was 61 questions per configuration
model and 5.4 questions per concrete type.

Especially simpler models focused on the config-
uration type, the root of the compositional structure.
The degree of such concentration is characterized by
the proportion of questions defined in the configuration
type (“%R”). On average about half (50%), and median
58%, of questions were in the root feature type, with a
large scale of variation. The average percentage of sub-
feature definitions in the configuration type was 70%.
In 12 models, all subfeatures were defined in the con-
figuration type. On average 46% of effective attributes
were defined in the configuration type.

Column (“PR”) in Table 3 specifies the applied price
calculation mechanism. The “basic” price calculation
mechanism (Section 3.5) with only additive prices was
applied to four real-world products and three demon-
stration models. The “advanced” calculation mecha-
nism [31] was used to determine the price for three
products. Prices were often omitted either due to in-
dicated sensitivity or to constrain modeler resource
usage. The basic price calculation mechanism would
have been sufficient for products other than compres-
sors and insurance products.

4.1.3. Compositional structure
An indication of the use of compositional structure

is given by the number of effective (inherited and lo-
cally defined) subfeatures in concrete types (“ES”), see
Table 3. The average was 10 and the median was 4 for
effective subfeatures (parts) per configuration model.
The average number of effective subfeatures per con-
crete feature type was 0.7, which indicates relatively
moderate usage of the compositional structure.

The compositional structure was mainly defined
through subfeature definitions in concrete types; inher-
itance was used less frequently: 8 models (31%) ap-
plied inheritance of subfeatures whereas at least one
subfeature was defined in 25 models (96%). The per-
centage of inherited subfeatures of all effective subfea-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 121

tures is shown in column (“%IS”). On average, a model
had 7 subfeature definitions in concrete types and one
in abstract types. However, 4 of the effective 10 sub-
feature definitions in concrete types were inherited. Of
these, 3 were applied as such and one was refined,
e.g., to restrict the set of allowed types. Some mod-
els applied inheritance in compositional structure sig-
nificantly more. For example, in a dentist’s equipment
configuration model, 79% of effective subfeature defi-
nitions were inherited (26 of 33) and 6 were refined. In
the 8 models applying subfeature inheritance, 31% of
effective subfeature definitions were inherited.

On average, 6 subfeature definitions were optional,
that is, with cardinality 0–1, and 2 subfeature defini-
tions were obligatory with cardinality 1–1. Only one
demonstration model (the running example of this pa-
per) contained a subfeature definition with a larger
maximum cardinality than one.

The number of allowed types in subfeature defini-
tions characterizes available variation of the compo-
sitional structure. On average, an effective subfeature
definition had two effective allowed feature types. This
relatively low number is partially explained by op-
tional subfeatures with only one effective allowed type.
The maximum number of effective allowed types of a
model was on average 4 types, and maximally 15.

4.1.4. Attributes
All 26 models defined attributes. Attributes were

the main mechanism for modeling variability; on av-
erage 83% of questions originated from attributes and
the remaining 17% from parts. The number of effec-
tive attributes of the configuration model (“EA”) is the
sum of inherited and locally defined attributes in con-
crete types. The average was 51 effective attributes per
model and 3.5 per concrete feature type.

Applying attribute inheritance can be quantified as
follows. 16 (62%) models applied inheritance of at-
tributes. Of the 1269 effective attributes, 51% origi-
nated from local attribute definitions in concrete types.
The remaining 49% of effective attributes were inher-
ited, see column (“%IA”) in Table 3. 122 attribute def-
initions in abstract types were inherited as such into
537 attributes in subtypes, and into 168 attributes in re-
fined form, for a total of 705 inherited attributes.1 On
average, a model contained 26 attribute definitions in
concrete types. The average 5 attribute definitions in
abstract types expanded to an average of 25 effective
attributes in concrete types. The average percentage of

1705 inherited attributes include 78 (= 705 − 627) attributes in-
herited to abstract types.

inherited attributes in a concrete type was 23%. Some
models applied attribute inheritance more significantly,
e.g., 44–89% of effective attributes were inherited in
some larger models.

Attribute value types were distributed as follows:
56% Boolean, 29% enumerated string, 9% integer, and
6% unconstrained string attribute definitions. Uncon-
strained strings specified additional details such as cus-
tomer names, addresses, and other aspects that do not
require inference.

Attribute domain sizes remained quite small. The
most common domain size was 2–3 possible values in
82% of 717 attribute definitions with a fixed domain.
14% of attribute domains were of size 4–10. About 4%
of attribute definitions had a domain size of at least 11
possible values. 1% of domains were of size 1, mostly
created through attribute value refinements. The maxi-
mum domain size of a model varied significantly – the
largest domain was 436 possible values, with an aver-
age of 41 and a median of 11 possible values.

One attribute per model (20 m 3%) was defined as
optional; it is possible to specify in a complete config-
uration that no value will be assigned to the attribute.

4.1.5. Constraints
The number of constraints, column (“CO”) in Ta-

ble 3, varied from 0 to 84 (up to 2380 with Linux), an
average of 15 and a median of 13 per model. On av-
erage, 2 of the constraints were soft, and the rest were
hard. Inheritance of constraints was applied to some
extent, because abstract feature types defined 44 con-
straints. Of these, 40 were hard and 4 soft.

It is not trivial to characterize complexity of con-
straints. We apply a simple syntactic metric: parse tree
size of the constraint expression. For example:

Active_Cruise_Control_Requires_BiXenon
(Cruise_control = true) implies
($config.Headlights individual of
BiXenon)

The “complexity” of the example constraint is seven.
Complexity of a literal, a constant, a variable, a feature
type or attribute reference, or other basic expression
building blocks is one unit. Each operator application
counts as one unit in addition to argument complexity.

Typical constraints were small. Almost half (45%)
of the constraints were of roughly the same complexity
(6–10) as the example constraint, and 36% were a bit
more complex (11–20).

• 12% of constraints had complexity 0–5.
• 45% of constraints had complexity 6–10.
• 36% of constraints had complexity 11–20.

122 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

• 4% of constraints had complexity 21–50.
• 1% of constraints had complexity 51–100.
• 1% of constraints had complexity 101–1000.
• 1% of constraints had complexity over 1000.

Maximum constraint complexity varied significantly.
The median was as low as 13 and the average without
Linux was 235. The maximum complexity was 1319.
All the compressor models had a large table constraint
specifying feasible combinations of values of 5 at-
tributes, each with a relatively large number of rows,
which explains the unexpectedly high average.

4.2. Evaluation of modeling and configuration task
support

This subsection contains evaluation of available
modeling mechanisms, the Modeling Tool and Config-
uration Tool. First modeling efficacy is discussed, fol-
lowed by estimates of modeling and potential integra-
tion effort. Next, modeling capabilities are discussed
in relation to those encountered in our cases. Finally,
the WeCoTin Configuration Tool is discussed from the
end-user’s point of view.

4.2.1. Evaluation of modeling mechanisms
Capabilities of PCML or WeCoTin did not limit the

scope of modeling, despite the relatively small sub-
set of modeling concepts available. In other words, the
subset of modeling concepts of PCML was adequate
for modeling the case products.

Attributes were the main mechanism for capturing
the variability of the modeled products. Application of
the compositional structure was important but perhaps
less frequent than anticipated. A partial explanation is
that often alternative or optional features were mod-
eled as enumeration or Boolean attributes if configur-
ing details of the selected feature was not needed. This
saves the creation of feature types corresponding to the
alternatives and joining them as allowed types.

Subfeature (part) definitions with cardinality were
useful and convenient for modeling either an optional
or alternative realization of a role in the compositional
structure. This prevents the need for a number of ex-
tra constraints. For example, some commercial sys-
tems require that each alternative is specified as op-
tional, and a mutual exclusivity constraint is required
[6]. However, a minor inconvenience was apparent in
the case of an optional subfeature (cardinality 0–1),
and exactly one allowed type: it was difficult to invent
a name for the feature type and for the subfeature (e.g.,
an optional radio would be described with a subfeature

definition radio and a feature type radio). A bit
surprisingly, large cardinalities were not needed.

Inheritance significantly saved modeling effort nec-
essary for larger models. Almost half (49%) of effec-
tive attributes were inherited, and one definition in a
supertype created on average 4.4 of effective attributes.
Refinement was useful for limiting the domain of al-
lowed values or allowed types in subtypes. Inheri-
tance of the compositional structure was also useful, al-
though it was applied only in about 31% of the models
because the compositional structure was shallow and
often concentrated on the configuration type. In larger
models, about half of effective subfeatures were inher-
ited.

Floating or fixed-point numbers or integers with
very large domains would have been useful in the
insurance and compressor domains. The domains al-
lowed, e.g., free specification of monetary insurance
coverage, or the calculated capacity of a compressor.

Neither explicit resource modeling nor topologi-
cal modeling, e.g., ports [55], were needed. However,
when modeling services and their delivery processes
[55], there was a need to assign different stakeholders
as resources that participate in different service activi-
ties. This assignment can be somewhat clumsily mod-
eled with attributes. However, allocation of responsi-
bilities to different, dynamically defined stakeholders
could be more naturally modeled as connections be-
tween the activities and stakeholders.

4.2.2. Evaluation of the Modeling Tool
The researchers creating configuration models with

the Modeling Tool considered the editing facilities
generally very adequate. The visual type and part struc-
ture hierarchies, fluent attribute domain editing, and
the graphical constraint editor all facilitated efficient
modeling. After the graphical constraint editor became
available, most constraints were created and edited
with it. Global renaming support of objects without the
need for text-based search-and-replace was convenient
and likely to reduce potential for errors. Table con-
straints were very useful in the cases where they were
applied.

User interface development was rapid due to dy-
namic generation of product dependent parts. Drag &
Drop layout definition, and resources with automati-
cally generated default display names were effective.

Some useful basic functionalities were not im-
plemented, which created extra effort and potential
sources of error. Most prominently, lack of inheritance
of layouts and resources caused, e.g., the need to enter
attribute display names or order of questions several

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 123

times. There was no editor for price lists and calcula-
tions, and related XML-editing was considered error-
prone and not very convenient.

In some cases, it would have been useful to include
questions related to several feature individuals to a sin-
gle end-user interface question form. In some contexts,
it would also have been useful to be able to hide some
alternatives dynamically instead of graying them.

4.2.3. Modeling and integration effort
No reliable statistics on the total effort expended to

create configuration models was gathered, but some es-
timates (subject to author bias) are provided.

WeCoTin lacks an integrated wizard for creating all
aspects of a new empty configuration model and its de-
ployment into a web-based application. Therefore, set-
ting up a new model for a new company would require
an experienced person (someone who occasionally cre-
ates these models) to spend roughly an hour or even
two. Adapting templates to provide a distinct company
look would necessitate similar effort.

The amount of work required to create a configura-
tion model was dominated by knowledge acquisition
and validation. Initial versions representing configura-
tion options and rules of a well-documented order form
(an A4 or so) can be performed in a matter of hours.
A working configurator demonstration with a company
look can be provided in a day, if based on readily avail-
able information. In the other extreme, the most often
edited model (1 Compr FM) was checked in 24 times
in our revision control system, and it was edited by
six different researchers. The total effort was several
person-weeks.

Two custom exporters were created for the com-
pressors – one to export configurations to Intershop e-
commerce system, and one to export them to EDMS2
product data management system. The EDMS 2 ex-
porter took an experienced persona a few person-days
to design, implement, and demonstrate with sample
data. The Intershop integration and demonstration was
implemented in about three person-months by a sum-
mer trainee who was neither familiar with Intershop
nor any configurator. The effort included system in-
stallation, becoming familiar with the e-commerce sys-
tem and WeCoTin, the design of the integration prin-
ciple, implementation, and setting up a demonstration
site with the visual look of the company.

4.2.4. Configuration Tool – End-user view
WeCoTin has not been in production use. However,

a number of experiences have been gained in test-use
by company representatives in three cases, and through
numerous demonstrations.

The general reception of WeCoTin and its usabil-
ity has been positive in companies where test-use has
been arranged or where demonstrations have been per-
formed. In one company, the Configuration Tool was
considered better than the commercial product they ap-
plied. In the second company, there was a desire to
model all products and plans to deploy the configura-
tor to production use. These plans were ceased due to
non-technical reasons.

The wizard-style user interface is relatively intuitive.
The multi-step undo functionality is very useful, and
error messages generated directly from PCML (with
descriptions in resources) are often sufficient.

However, significant room for improvement exists.
Active support for restoring the consistency of a con-
figuration should be offered, e.g., with better explana-
tory facilities or through diagnoses and active fix pro-
posals for an inconsistent configuration. These could
be provided, e.g., by model-based diagnosis techniques
[9,11]. Requirements are specified by direct selection
of an attribute value or a feature type to realize a sub-
feature. It is not possible to specify a set (or a range)
of satisfactory attribute values, or to select a supertype
for later specialization. The possibility of navigating
through the configuration tree may not be obvious, and
the configuration tree of a large model may not fit on
one screen. Further, automatic completion of configu-
rations is not provided, although defaults typically pro-
vide a satisfactory form of automatic completion.

4.3. Empirical evaluation of performance

In [59], a method for empirical performance test-
ing of configurators was described along with its ap-
plication to four real-world products described above.
This subsection provides a summary and adds some
new results. First, the need for performance testing is
briefly described and insight of the basic idea of the test
method is given. Next, the test setup and main results
are presented. Finally, a number of additional perfor-
mance indications are offered. Discussion is presented
at the end of this paper.

4.3.1. Motivation and potential approaches
Performance testing of configurators is important, as

the configuration task is at least NP-hard in most for-
malisms, including the one in this work [21,41–43,49].
However, conventional wisdom in the configuration
community is that solving typical configuration prob-
lems is relatively easy and does not exhibit this kind
of exponential behavior. There are some documented

124 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

results on the efficiency of configurators [22,25,46,
49], but systematic and wide range empirical testing of
configurators on real-world products that would show
whether the wisdom is, indeed, wisdom, is still lack-
ing.

A method was developed that allows performance
testing of configurators. We measure performance us-
ing execution time due to its practical importance for
users and its suitability to searching for phase transi-
tion behavior. It would be useful to use metrics that
are independent of processor power, efficiency of im-
plementation tools, and the technology used. Unfortu-
nately, such metrics are difficult to define. For example,
the number of consistency checks is not commensu-
rate between different technologies such as CSP and
logic-based approaches. Compromises between propa-
gation and search also significantly affect the number
of needed consistency checks.

In principle, one could test configurator perfor-
mance by using real-world configuration models or
randomly generated configuration models. Random
configuration model generation could be synthetic or
use real-world products as a seed. Another dimen-
sion is the selection between fixed or randomly gener-
ated requirements. Our method is based on real-world
configuration models with random requirements. As a
motivation for using real-world configuration models,
there is a risk that random models without a large set of
real-world products as a seed do not reflect the struc-
tured and modular nature of products designed by engi-
neers. In addition, it is hard to attain a level of difficulty
representative of real-world problems. Knowledge ac-
quisition and modeling for a sufficient and justified
seed of real-world models for random model genera-
tion would be a major task.

4.3.2. Test method: Simulate naïve user requiring
attribute values or specific subfeature
realizations

The idea of the test method is simulating a naïve
user inputting random requirements when configuring
a real-world product. For generating random sets of re-
quirements, we consider how the configuration model
appears to the user. There are menus (possibly multi-
choice), radio buttons, and check boxes allowing the
user to select between different alternatives. These rep-
resent specific attribute values or selection(s) of al-
lowed type(s) to realize a subfeature. Guided by these,
it is probable that the user will not break the “local”
rules of the configuration model, e.g., by requiring al-
ternatives that do not exist or by selecting a wrong
number of alternatives. However, a naïve user can eas-

ily break the rules of the configuration model that refer
to the dependencies of several selections.

We follow this idea by considering the configura-
tion model as consisting of a set of “local” require-
ment groups. A requirement group (group for brevity)
represents the set of potential requirements that a user
could state related to an attribute or a subfeature of
an individual. With respect to the running example
of Listing 1, a group could represent the selection of
a value for the Cruise_control attribute or the
selection of a type to realize subfeature Naviga-
tion_System in an individual of type WeCoTin-
Car. Each group has a number of requirement items,
each representing a potential requirement, that is, a
possible selection (an attribute value, an individual of
allowed type, or selection of no alternative (none)
if the selection is optional). The number of require-
ments that can be generated from a group is defined
by minimum and maximum cardinality; both are one
in case of an attribute definition. A group representing
a subfeature definition has the maximum cardinality
of the subfeature definition. The minimum cardinality
is the maximum of one and the minimum cardinality
of the subfeature definition. To sum up, requirement
groups and requirement items represent all individual
requirements one could state related to a configuration
model by direct selections of possible answers, includ-
ing deselecting optional elements.

A test case contains a specific number of require-
ment items. When generating a test case, a group is
randomly selected to generate the number of require-
ments specified by the minimum cardinality. A require-
ment is generated from a group representing an at-
tribute by choosing randomly one requirement item.
Generating a requirement for a subfeature is slightly
more complex. In WeCoTin, the order in which the in-
dividuals of a given type may be chosen as require-
ments is important due to the symmetry breaking.
Therefore, a requirement is generated by randomly se-
lecting the direct type of the allowed type (or the re-
quirement item that denies all part individuals). If a
type is chosen, the highest priority individual of that
type that has not been required yet is set as the re-
quirement. A group can be selected again to generate
a new requirement, if the maximum cardinality allows.
Group selection is repeated until the desired number of
requirements has been generated.

4.3.3. Test setup
Performance tests were performed with 4 first-

modeled real-world products. The models were
1 Compr FM, 3 Compr FS, 4 Compr FX and 14 Ve-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 125

hicle, coming from two domains and characterized
above.

We generated with a Java-based test generator ran-
dom test cases that each contained a number of require-
ments. Each requirement specified a value for an at-
tribute (including none, if allowed), or realization of a
part with a specific individual (or no realization, if car-
dinality includes 0). For each configuration model, we
generated 100 test cases with 2 requirements, 100 test
cases with 4 requirements, etc., for each even num-
ber of requirements up to the total number of ques-
tions in each configuration model (see Table 2). Ran-
dom requirement generation with progressively larger
and thus more restrictive sets of requirements allows
one to investigate how well the configurator performs
with varying sizes of requirement sets. A dramatic in-
crease in time to find a configuration with some re-
quirement size indicates that the problem becomes crit-
ically constrained at that point. The existence of hard
configuration problems would then be revealed.

The test setup is illustrated in Fig. 11. The tests
were run on a laptop PC with a 1 GHz Mobile Pen-
tium III processor, 512 MB RAM, and Windows 2000
Professional. A WCRL program was generated off-
line for each PCML configuration model using the nor-
mal model compilation facilities of WeCoTin. A Java-
based test driver executed each test case in sequence.
A new process was created to execute a batch file that
executed lparse (version 1.0.4) to generate a BCRL
program with a compute statement with the require-
ments of the test case. The compute statement con-
tained as a requirement an atom corresponding to each
requirement item of the test case. The output of lparse
was piped to smodels version 2.26 with modifications
that suppressed the output of found configurations.
Suppressing the output was needed to avoid the config-
uration task to become I/O bound due to a large num-
ber of atoms printed for each configuration. Instead,
just the number of found configurations was reported.
The test driver captured and analyzed smodels output
and performed timings. If a configuration was found
with the requirements of the test case, the test case was
considered satisfiable; otherwise, it was considered un-
satisfiable.

4.3.4. Test results
We briefly explain the measurements before pro-

ceeding to the results. Time to translate PCML to
WCRL includes the time needed by a running Model
Manager process to load and translate a PCML config-
uration model to WCLR and to save the output.

Fig. 11. Test setup. A PCML configuration model is compiled into
WCRL off-line. A test case and the compiled program are grounded
(lparse), and the test is run with the smodels inference engine.

Total duration of a test case includes creating the
smodels process for the test case, extracting the num-
ber of found answers and the duration reported by
smodels, and writing the output log. Smodels dura-
tion includes the time the smodels executable program
uses for reading the BCRL program and the time used
for computation. Non smodels time includes the time
to start a test case, to run lparse and start smodels,
and to gather the results from smodels output (= total
duration − smodels duration).

Run time characteristics of the configuration mod-
els without the effect of test cases are given in Ta-
ble 4. The time needed to translate PCML to WCRL
is shown (“PCML to WCRL (s)”). In addition, all con-
figuration models were run once on smodels to find
all configurations of each model without any require-
ments. The number of configurations (“#Configs”) af-

126 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

Table 4

Run time characteristics of configuration models

Model PCML to WCRL (s) #Configs Smodels (s) Configs (1/s) Non Smodels (s)

Compr FM 8.2 1,841,356,800 184,01.4 100,066 0.12

Compr FS 8.0 36,106,560 377.1 95,748 0.13

Compr FX 5.0 1,136,160 17.0 66,833 0.14

Vehicle 1.3 268,800,000 2,537.2 105,944 0.12

Table 5

1 Compr FM compressor results with test cases

#req #sat Find first (s) #cfgs/case #cfgs (1/s) Unsat (s)

2 89 0.37 189,441,067 88,238 0.30

4 61 0.35 18,987,439 76,849 0.28

6 25 0.34 2,234,799 72,687 0.29

8 9 0.33 211,432 19,957 0.28

10 4 0.31 1,920 263 0.29

12 1 0.32 15,552 526 0.29

14–28 0 – – – 0.30

Table 6

Vehicle results with test cases

#req #sat Find first (s) #cfgs/case #cfgs (1/s) Unsat (s)

2 95 0.05 37,317,928 98,238 0.04

4 85 0.05 5,855,831 88,913 0.04

6 59 0.05 747,205 84,642 0.05

8 33 0.05 108,638 71,394 0.05

10 22 0.09 29,136 54,358 0.07

12 8 0.07 9,526 42,361 0.08

14 4 0.06 289 3,853 0.08

16 0 0.08

18 2 0.06 9 140 0.07

20–24 0 0.06

ter symmetry breaking matches the manually analyzed
expected number of configurations. Further, the smod-
els duration (“Smodels (s)”) and the rate of configu-
rations found per second (“#Configs (1/s)”) are given.
“Non smodels (s)” is averaged non smodels time from
running the test cases.

Tables 5 and 6 show our main results from running
the generated random test cases regarding the largest
compressor model and the vehicle. The first run of the
test cases evaluated the performance of finding one
configuration that satisfies the requirements. The sec-
ond run evaluated the performance of finding all the
configurations that satisfy the requirements. Each row
lists the number of requirements (“#req”) and the num-
ber of satisfiable cases (“#sat”). Note that the sum of
satisfiable and unsatisfiable cases is 100. “Find first
(s)” gives the average smodels duration of finding one

configuration that satisfies the requirements, and “Un-
sat (s)” gives the average smodels duration to deter-
mine unsatisfiability, taken from the second run. “Find
all” gives the average number of configurations per
satisfiable case (“#cfgs/case”) and the average rate of
configurations found per second (“#cfgs (1/s)”). Non
Smodels time from Table 4 can be added to get the av-
erage total duration of finding the first configuration or
determining unsatisfiability.

The test arrangement caused occasional random de-
lays of approximately 1

2 s, possibly due to garbage col-
lection in the Java environment, the functions of the
operating system, or the virus scanner. Therefore, max-
imum durations are not shown. The maximum Smod-
els time for finding one configuration or determining
unsatisfiability was still below 0.7 s. When repeated,
the times were close to the average – typically, approx-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 127

imately within 20% of the average, except for the ve-
hicle model, where average duration was always less
than 0.1 s, causing small absolute errors to show major
relative differences.

4.3.5. Additional performance evaluations
The first author of this work has configured all the

characterized products using the WeCoTin user inter-
face (Linux only partially). Performing the configura-
tion with the all configuration models except Linux is
of acceptable speed. The web interface is slowest on
the Broadband model before an attribute “area” with
436 possible values was fixed. A 2.4 GHz Intel Core 2
duo laptop responds in slightly over 3 s, reducing to
less than a second after setting the largest domain at-
tribute. All other configuration models can be config-
ured with a feeling of instant response.

Compilation time from PCML to WCRL and then to
BCRL is also acceptable. A script that compiles all the
mentioned configuration models, except Linux, and a
few additional test and sample models runs in 32 s with
the above-mentioned laptop.

5. Discussion

5.1. Logic-based configurators in previous work

Previous work includes configurators applying nu-
merous problem solving methods (see Section 1.3).
This work showed that Weight Constraint Rules and
the answer set programming paradigm are a feasi-
ble alternative to constraint satisfaction in general
purpose configurators. Previously Weight Constraint
Rules were applied to directly model individual config-
uration problems [49]. WeCoTin differs due to the gen-
eral purpose, multi-domain approach, and high-level
configuration specific modeling concepts with corre-
sponding tools for modeling.

Numerous other logic-based methods have been ap-
plied in configurators. These include description log-
ics (DLs), e.g., [2,25]. The role of description logics
as an inference engine for supporting the actual con-
figuration task is not completely clear. According to
[25], the CLASSIC system was used to deduce logi-
cal implications (deductive closure) of the basis user
inputs. According to [63], this has been augmented in
case of larger products with external search algorithms
and special purpose algorithms, and description logic
was used to perform integrity checking of the results.

Constraint logic programming has been applied
for configuration problems [39]. The implementation

was based on the ECLiPSe constraint logic program-
ming environment using the Finite Domains (FD) li-
brary. A high-level language for modeling configura-
tion knowledge based on concepts similar to a sub-
set of [44] was developed. Taxonomical hierarchy of
component types, their attributes, ports and part rela-
tionships were included in the language. Configura-
tion models expressed in this language were then trans-
lated into CLP programs, which enabled configuration
based on expressed requirements. Results indicative of
adequate performance in automatic configuration were
achieved. This work bears many similarities to our ap-
proach. However, detailed comparison is difficult due
to a lack of details. We go further with our empirical
evaluation of the system and efficacy of modeling.

Most configurators infer consequences of configura-
tion decisions and check consistency during the config-
uration process. WeCoTin checks “behind the scenes”
during the configuration process that there exists a way
to complete the configuration. We are not aware of
other configurators that provide this functionality.

5.2. Configuration modeling and performance testing

Modeling efficacy results are subject to author bias,
because modeling has only been performed by re-
searchers involved in WeCoTin development.

When configuration models are characterized in pre-
vious work, usually the number of component types
and/or connections is specified, e.g., [12,22,39,49]. We
are not aware of previous work with deeper charac-
terization of configuration models, such as application
of inheritance, characterization of compositional struc-
ture, and other modeling mechanisms.

We are only aware of limited configurator perfor-
mance testing in previous work; Syrjänen [49] con-
figured the main distribution of Debian GNU/Linux
using configuration models expressed using an exten-
sion of normal logic programs. The configuration task
was to select a maximum set of mutually compati-
ble software packages satisfying random user require-
ments that excluded or included some packages. Av-
erage Smodels time for configuration was 1.06 s for
Debian 2.0 with 1526 packages and 1.46 s for De-
bian 2.1 with 2260 packages on a 233 MHz Intel Pen-
tium II. The configuration duration was approximately
the same as in our largest tested model (Compr FM)
(adjusted for our roughly four times faster processor).
Syrjänen’s approach seems to perform better than ours,
as the Debian configuration models are substantially
larger. However, our modeling was performed on a

128 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

higher-level conceptual model that does not offer op-
portunities for manual tweaking of performance.

Sharma and Colomb [39] developed a constraint
logic programming (CLP) based language for config-
uration and diagnosis tasks. Experimental results stem
from a thin Ethernet cabling configuration. The largest
12-node configuration included 126 port connections
and required 12 s of CPU time on a dual 60 MHz
SuperSparc processor-based system to find a config-
uration [39]. Direct performance comparison to our
work is difficult due to port and connection oriented
domain, different processor power, and missing details.

Mailharro [22] used the Ilog system to configure the
instrumentation and control hardware and software of
nuclear power plants. Several thousand component in-
dividuals were created and interconnected in about an
hour of execution time on a Sun Sparc 20. The case
product is larger and more complex than ours. Direct
performance comparison is not possible due to limited
details available.

Our work differs from previous work because we ap-
plied configuration models of several products for test-
ing and generated varying numbers of random require-
ments that could reveal phase transition behavior. Fur-
thermore, some previous work conducted performance
evaluation with significantly larger products than our
systematically tested products.

Systematic testing and ad-hoc results indicate ade-
quate performance with the case products. There were
no test cases with repeatable significantly inferior per-
formance. In addition, there was no significant change
of performance as a function of the number of require-
ments. The average configurations per second results
weaken with increasing number of requirements. How-
ever, this is mostly illusory because the number of con-
figurations with many requirements is small – Smod-
els duration comes mostly from reading the BCRL pro-
gram and from setting up the computation.

No critically constrained problems were found and
no phase transition behavior was apparent. As ex-
pected, the number of configurations decreases expo-
nentially as the number of requirements increases. Mi-
nor exceptions due to random requirements were en-
countered in the two models discussed above.

The CLib configuration benchmarks library contains
21 configuration problems [48]. These benchmarks in-
clude our systematically tested cases. We selected to
test performance only on our own models whose se-
mantics we know and that are expressed in a form that
facilitates PCML modeling with the original problem
structure. This is not the case for problems expressed
in conjunctive normal form, such as those integrated to
cLib based on [40].

5.3. Future work

Modeling more challenging configuration tasks such
as telecommunications networks would enhance eval-
uation of WeCoTin. However, adequate modeling sup-
port for such cases would probably require exten-
sions for WeCoTin to support connection and resource
oriented configuration modeling concepts. Significant
user interface changes would result, both in the Mod-
eling Tool and especially in the Configuration Tool.

Systematic performance testing with a larger set of
configuration models remains future work, although
even this subset is larger than in most previous work.
However, we do not expect phase transition behavior
in already modeled cases – one reason why system-
atic tests were omitted for all but the first four finalized
configuration models.

Modeling by product experts would significantly en-
hance the evaluation of practicality of the Modeling
Tool. Further, it would be interesting to analyze how
the application of more advanced mechanisms such as
inheritance would change according to the background
of the modelers.

Numerous potential system extensions would en-
hance the practicality of WeCoTin. These include
maintenance interfaces for price lists (editing, import-
ing, updating) and calculations, system setup wizards,
extensions to the table constraint editor to support
more complex expressions and ordered tables, imple-
mentation of resource and layout inheritance, advanced
document generation facilities, and generic support for
visualization of a configuration.

From the end-user point of view, numerous en-
hancements are possible. Optimization support, e.g.,
towards price, would be useful. Enhanced ways to ex-
press requirements such as acceptable ranges, mini-
mums and maximums of attribute values, or spaci-
fying an abstract type for later specialization would
also be helpful. In addition, active personalized rec-
ommendations and suggestions for fixing an inconsis-
tent configuration could be provided. Further, manage-
ment of defaults could be improved in several ways,
including dynamic defaults and optimization to mini-
mize the number or utility of violated soft constraints
or the number of removed defaults to restore the con-
sistency of a configuration. Explicit automatic com-
pletion of a configuration could sometimes be useful,
although completion achieved via defaults is often ap-
propriate. Further, ability to trigger informative mes-
sages based on the state of a configuration would be
valuable. Finally, some configurators apply user inter-

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 129

faces where separate phases of configuration tasks are
clearly named and the current phase is clearly identi-
fied. Such a mechanism could be an addition or alter-
native to the configuration tree.

The Configuration Tool interface should be more
flexible. Primarily, it should be possible to include
questions related to several feature individuals on a
question page. Further, formulating a dynamic se-
quence of questions depending on previous answers
could be useful. Here, hiding questions or alternatives
dynamically would be helpful. If individual questions
become irrelevant due to some selections, it would be
beneficial to be able to dynamically exclude them from
the evaluation of completeness of a configuration.

Adding support and calculation mechanisms for
floating point numbers would extend the scope of con-
figuration tasks that could be supported. However, we
are not aware of methods that would retain sound and
complete inference when such facilities are exploited.

6. Answers to research questions and conclusions

The main contribution of this work is the instantia-
tion type artifact WeCoTin configurator. It incorporates
a number of novel technical aspects, including sound
and complete inference, high-level, object-oriented
modeling based on a well-founded conceptual model,
semi-automatic generation of user interfaces, and sev-
eral aspects that ease long-term management. The con-
struction and its evaluation provide positive answers to
research questions Q1–Q3.

We conclude, based on modeling (and configuring)
without difficulties and with an acceptable concep-
tual match using the sales view of real-world products
(14 fully, 8 partially), that the function-oriented sub-
set of the configuration conceptualization [44] is useful
for modeling configuration knowledge (Q1). However,
our current view is that given otherwise the same mod-
eling mechanisms (compositional structure, taxonomy
including inheritance, attributes, and constraints), it is
largely irrelevant what the basic objects are called:
‘features’ as in WeCoTin, ‘components’ as in an earlier
version of WeCoTin, ‘functions’ as in the conceptual
model, or just ‘objects’.

A configurator was constructed based on the idea
of translation of configuration knowledge into Weight
Constraint Rules [41,43]. It was applied to model
and configure a number of real-world cases from sev-
eral domains, including demonstrably adequate per-
formance with the systematically tested models and

ad-hoc manual configuration with other configuration
models. Therefore, the approach can provide a prac-
tically feasible basis for a product configurator (Q2).
Thus, industrially relevant configuration problems can
be effectively modeled and configured with a con-
figurator constructed based on the conceptual model
and the Weight Constraint Rule based approach (Q3).
However, an exception to sufficient performance is the
very large Linux model, where achieving sufficient
performance would require at least the capability to
control when full inference is performed, and possibly
other optimizations. We expect that the adequate per-
formance of WeCoTin could be generalized to many
other products suitable for web-based sales configura-
tion. As a side-result, suitability of Smodels to work
as an efficient inference engine for a general-purpose
configurator was demonstrated.

Inference based on the stable models semantics of
logic programs can provide a basis for constructing
a practical and applicable configurator. The compi-
lation of configuration models to Weight Constraint
Rules is modular so that a small change to a con-
figuration model causes only a small change to the
Weight Constraint Rule representation. In addition, it
follows a general groundedness principle of configu-
ration knowledge representation: anything that is not
allowed by the configuration model cannot hold in a
correct configuration. In WCRL, there is no need to
add so-called “completion” or “frame” axioms that for-
bid any other state of affairs from holding in a config-
uration other than those allowed by the configuration
model, such as extra objects. This leads to a compact
formalization of the configuration knowledge.

The characterizations provided in Section 4.1 form a
proposal for basic static configuration model character-
ization (Q4a). Modeling mechanisms including com-
positional structure with cardinality and named parts
(subfeature definitions), and explicit allowed types was
useful. Attributes of feature types were the main mod-
eling mechanism. Surprisingly, there was no use for
large cardinalities in our modeled cases, although it is
easy to imagine cases where large cardinalities can be
applied, e.g., elevator doors or signaling equipment for
different floors. There was no use for multiple inheri-
tance, resource-based modeling or topological model-
ing, such as ports (Q4b). A method was developed that
simulates a naïve user entering random requirements
to a configurator equipped with a real-world configu-
ration model (Q4c). The method could be applied to
other types of configurator implementations.

Finally, WeCoTin has been commercialized, which
constitutes market-based validation of pragmatic rel-

130 J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator

evance (“weak market test”) [20] of a construction.
Kasanen et al. view that ideas and constructs com-
pete in markets, and commercial adoption contributes
to their significance. In their view “. . . even the weak
market test is relatively strict – it is probably not often
that a tentative construction is able to pass it”.

Acknowledgements

This work has been supported by Technology De-
velopment Centre of Finland. We thank Asko Mar-
tio, Ilkka Niemelä, Juha Nurmilaakso, Mikko Pasa-
nen, Hannu Peltonen, Kati Sarinko and Reijo Sulonen
for their valuable efforts and co-operation. Finally, we
thank Gardner Denver Oy for sharing the configuration
knowledge.

References

[1] A. Anderson, Towards tool-supported configuration of ser-
vices, M.Sc. thesis, Department of Computer Science and En-
gineering, Helsinki University of Technology, Espoo, Finland,
2005.

[2] F. Baader, Description logics, in: Reasoning Web. Semantic
Technologies for Information Systems, S. Tessaris, E. Franconi,
T. Eiter, C. Gutierrez, S. Handschuh, M. Rousset and R.A.
Schmidt, eds, Springer, 2009, pp. 1–39.

[3] B. Bos, H.W. Lie, C. Lilley and I. Jacobs, Cascading style
sheets, level 2, CSS2 Specification, 1998, retrieved 2010-
03-30, available at: http://www.w3.org/TR/2008/REC-CSS2-
20080411.

[4] R. Cunis, A. Günter, I. Syska, H. Peters and H. Bode,
PLAKON – An approach to domain-independent construction,
in: Proceedings of the Second International Conference on In-
dustrial and Engineering Applications of Artificial Intelligence
and Expert Systems (IEA/AIE-89), 1989, pp. 866–874.

[5] cyLEDGE, International configurator database, cyLEDGE
Media GmbH, Retrieved 2009-11-27, available at: http://www.
configurator-database.com/services/configurator-database.

[6] S.R. Damiani, T. Brand, M. Sawtelle and H. Shanzer, Ora-
cle Configurator Developer User’s Guide, Release 11i, Oracle
Corporation, 2001.

[7] R.P. Desisto, Constraints still key for product configurator de-
ployments, Gartner Research Report, T-22-9419, Gartner, Inc.,
2004.

[8] ECMA, ECMAScript language specification – Standard
ECMA-262, 3rd edn, 1999.

[9] A. Felfernig, G. Friedrich, D. Jannach and M. Zanker, Intelli-
gent support for interactive configuration of mass-customized
products, in: Proceedings of 14th International Conference on
Industrial and Engineering Applications of Artificial Intelli-
gence and Expert Systems, IEA/AIE 2001, 2001, pp. 746–756.

[10] A. Felfernig, G.E. Friedrich and D. Jannach, UML as domain
specific language for the construction of knowledge-based con-
figuration systems, International Journal of Software Engi-
neering and Knowledge Engineering 10 (2000), 449–469.

[11] A. Felfernig, M. Schubert and M. Mandl, Personalized diag-
noses for inconsistent user requirements, AI EDAM 25 (2011),
175–183.

[12] G. Fleischanderl, G.E. Friedrich, A. Haselböck, H. Schreiner
and M. Stumptner, Configuring large systems using generative
constraint satisfaction, Intelligent Systems and Their Applica-
tions, IEEE 13 (1998), 59–68. (See also IEEE Intelligent Sys-
tems.)

[13] F. Frayman and S. Mittal, COSSACK: A constraint-based ex-
pert system for configuration tasks, in: Knowledge-Based Ex-
pert Systems in Engineering: Planning and Design, 1987,
pp. 143–166.

[14] A. Haag, Sales configuration in business processes, IEEE In-
telligent Systems and Their Applications 13 (1998), 78–85.

[15] A. Haag, “Dealing” with configurable products in the SAP
Business Suite, in: Papers from the Configuration Workshop at
IJCAI’05, D. Jannach and A. Felfernig, eds, 2005, pp. 68–71.

[16] A. Haag, U. Junker and B. O’Sullivan, Explanation in product
configuration, IEEE Intelligent Systems 22 (2007), 83–85.

[17] M. Heinrich and E.W. Jüngst, A resource-based paradigm for
the configuring of technical systems from modular compo-
nents, in: Proceedings of Seventh IEEE Conference on Artifi-
cial Intelligence Applications, 1991, pp. 257–264.

[18] M. Heiskala, K. Paloheimo and J. Tiihonen, Mass customiza-
tion with configurable products and configurators: A review of
benefits and challenges, in: Mass Customization Information
Systems in Business, 1st edn, T. Blecker and G. Friedrich, eds,
IGI Global, 2007, pp. 1–32.

[19] A.R. Hevner, S.T. March, J. Park and S. Ram, Design science
in information systems research, MIS Quarterly 28 (2004),
75–105.

[20] E. Kasanen, K. Lukka and A. Siitonen, The constructive ap-
proach in management accounting research, Journal of Man-
agement Accounting Research 5 (1993), 243–264.

[21] A.K. Mackworth, Consistency in networks of relations, Artifi-
cial Intelligence 8 (1977), 99–118.

[22] D. Mailharro, A classification and constraint-based framework
for configuration, AI EDAM 12 (1998), 383–397.

[23] J. McDermott, R1: A rule-based configurator of computer sys-
tems, Artificial Intelligence 19 (1982), 39–88.

[24] J. McDermott, R1 (“XCON”) at age 12: Lessons from an el-
ementary school achiever, Artificial Intelligence 59 (1993),
241–249.

[25] D.L. McGuinness and J.R. Wright, An industrial-strength de-
scription logic-based configurator platform, IEEE Intelligent
Systems and Their Applications 13 (1998), 69–77.

[26] S. Mittal and B. Falkenhainer, Dynamic constraint satisfaction
problems, in: Proceedings of the Eighth National Conference
on Artificial Intelligence (AAAI-90), 1990, pp. 25–32.

[27] S. Mittal and F. Frayman, Towards a generic model of con-
figuration tasks, in: Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (IJCAI), 1989,
pp. 1395–1401.

[28] O. Najmann and B. Stein, A theoretical framework for configu-
ration, in: Proceedings of the IEA/AIE’92, 5th Int. Conf. on In-
dustrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Belli, ed., 1992, pp. 441–350.

[29] J. Nielsen, Usability engineering, in: Anonymous, 1993.
[30] I. Niemelä, P. Simons and T. Soininen, Extending and im-

plementing the stable model semantics, Artificial Intelligence
138(1-2) (2002), 181–234.

J. Tiihonen et al. / WeCoTin – A practical logic-based sales configurator 131

[31] J. Nurmilaakso, WeCoTin.calc documentation, Unpublished
project documentation, Espoo, Finland, 2004.

[32] M. Pasanen, Warnings and pre-selection packages in a
weight constraint rule based configurator, M.Sc. (Eng.) thesis,
Helsinki University of Technology, Department of Computer
Science and Engineering, 2003.

[33] H. Peltonen, J. Tiihonen and A. Anderson, Configurator tool
concepts and model definition language, Unpublished work-
ing document of Helsinki University of Technology, Software
Business and Engineering Institute, Product Data Management
Group, Espoo, Finland, 2001.

[34] B.J. Pine, Mass Customization: The New Frontier in Business
Competition, Harvard Business School Press, 1993.

[35] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, Reading, MA,
1999.

[36] D. Sabin and R. Weigel, Product configuration frameworks –
A survey, IEEE-Intelligent-Systems 13 (1998), 42–49.

[37] F. Salvador, P.M. de Holan and F.T. Piller, Cracking the code
of mass customization, MIT Sloan Management Review 50
(2009), 71–78.

[38] D.B. Searls and L.M. Norton, Logic-based configuration with
a semantic network* 1, The Journal of Logic Programming
8(1-2) (1990), 53–73.

[39] N. Sharma and R. Colomb, Mechanising shared configuration
and diagnosis theories through constraint logic programming,
The Journal of Logic Programming 37 (1998), 255–283.

[40] C. Sinz, A. Kaiser and W. Kuchlin, Formal methods for the
validation of automotive product configuration data, AI EDAM
17 (2003), 75–97.

[41] T. Soininen, An approach to knowledge representation and rea-
soning for product configuration tasks, Ph.D. thesis, Helsinki
University of Technology, Department of Computer Science
and Engineering, 2000.

[42] T. Soininen, E. Gelle and I. Niemelä, A fixpoint definition
of dynamic constraint satisfaction, in: Proceedings of the 5th
International Conference on Principles and Practice of Con-
straint Programming, J. Jaffar, ed., Springer-Verlag, London,
UK, 1999, pp. 419–433.

[43] T. Soininen, I. Niemelä, J. Tiihonen and R. Sulonen, Repre-
senting configuration knowledge with weight constraint rules,
in: Proceedings of the AAAI Spring Symposium on Answer
Set Programming: Towards Efficient and Scalable Knowledge,
2001, pp. 195–201.

[44] T. Soininen, J. Tiihonen, T. Mannisto and R. Sulonen, Towards
a general ontology of configuration, AI EDAM 12 (1998),
357–372.

[45] M. Stumptner, An overview of knowledge-based configura-
tion, AI Communications 10 (1997), 111–125.

[46] M. Stumptner, G. Friedrich and A. Haselböck, Generative
constraint-based configuration of large technical systems, AI
EDAM 12 (1998), 307–320.

[47] M. Stumptner, A. Haselbock and G. Friedrich, COCOS –
A tool for constraint-based, dynamic configuration, in: Pro-
ceedings of the Tenth Conference on Artificial Intelligence for
Applications, 1994, pp. 373–380.

[48] S. Subbarayan, CLib: Configuration benchmarks library, avail-
able at: http://www.itu.dk/research/cla/externals/clib.

[49] T. Syrjänen, Including diagnostic information in configuration

models, in: Proceedings of the First International Conference
on Computational Logic, 2000, pp. 837–851.

[50] T. Syrjänen, Software/smodels/lparse.ps.gz, Lparse 1.0 User’s
Manual, 1.0, Espoo, Finland, 2002.

[51] J. Tiihonen, Computer-assisted elevator configuration, M.Sc.
(Eng.) thesis, Department of Computer Science, Helsinki Uni-
versity of Technology, Espoo, Finland, 1994.

[52] J. Tiihonen, National product configuration survey – Customer
specific adaptation in the Finnish industry, Licentiate of Tech-
nology Thesis, Helsinki University of Technology, Department
of Computer Science, Laboratory of Information Processing
Science, Espoo, 1999.

[53] J. Tiihonen, Characterization of 26 configuration models,
in: Proceedings of the IJCAI-09 Workshop on Configura-
tion (ConfWS-09), M. Stumptner and P. Albert, eds, 2009,
pp. 69–76.

[54] J. Tiihonen, Characterization of 26 configuration models,
in: Proceedings of the IJCAI-09 Workshop on Configuration
(ConfWS-09), M. Stumptner and P. Albert, eds, pp. 69–76.

[55] J. Tiihonen, M. Heiskala, K. Paloheimo and A. Anderson, Ap-
plying the configuration paradigm to mass-customize contract
based services, in: Extreme Customization: Proceedings of the
MCPC 2007 World Conference on Mass Customization & Per-
sonalization, W.J. Mitchell, F.T. Piller, M. Tseng, R. Chin and
B.L. McClanahan, eds, 2007, Paper ID MCPC-134-2007, Sec-
tion 7.5.3.

[56] J. Tiihonen and T. Soininen, State-of-the-practice in product
configuration – A survey of 10 cases in the Finnish industry,
in: Knowledge Intensive CAD, T. Tomiyama, M. Mäntylä and
S. Finger, eds, London, 1996, pp. 95–114.

[57] J. Tiihonen and T. Soininen, Product configurators – Infor-
mation system support for configurable products, Tech. Rep.
TKO-B137, Helsinki University of Technology, Espoo, 1997.

[58] J. Tiihonen, T. Soininen, T. Mannisto and R. Sulonen, Config-
urable products – Lessons learned from the Finnish industry,
in: Proceedings of the 2nd International Conference on Engi-
neering Design and Automation (ED&A’98), 1998 (CD).

[59] J. Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, Empirical
testing of a weight constraint rule based configurator, in: Pro-
ceedings of the Configuration Workshop, 15th European Con-
ference on Artificial Intelligence, 2002, pp. 17–22.

[60] J. Tiihonen, T. Soininen, I. Niemelä and R. Sulonen, A prac-
tical tool for mass-customising configurable products, in: Pro-
ceedings of the 14th International Conference on Engineering
Design, 2003, paper number 1290 (CD).

[61] J. Tikkala, S. Ailus, P. Hakkarainen, M. Koskimäki,
J. Parviainen and P. Ranta, Final Report, T-76.115: Dot-
comrades (In Finnish: Loppuraportti, T-76.115: Dotcom-
rades), Espoo, Finland, Retrieved 2009-10-12, available at:
http://www.soberit.hut.fi/T-76.115/02-03/palautukset/groups/
Dotcomrades/de/loppuraportti.html.

[62] B. Wielinga and G. Schreiber, Configuration-design problem
solving, Expert, IEEE [See also IEEE Intelligent Systems and
Their Applications] 12 (1997), 49–56.

[63] J.R. Wright, D.L. McGuinness, C.H. Foster and G.T. Vesonder,
Conceptual modeling using knowledge representation: Con-
figurator applications, in: Proceedings of the Workshop on
Artificial Intelligence in Distributed Information Networks,
IJCAI-95, 1995.

