
TKK Research Reports in Computer Science and Engineering B
Espoo 2009 TKK-CSE-B7

AUTOMATIC GENERATION OF ALGORITHM VI-
SUALIZATIONS FOR LECTURES

Ville Karavirta (vkaravir@cs.hut.fi)
Department of Computer Science and Engineering, Helsinki University of Technology

Guido Rößling (roessling@acm.org)
CS Department, Technische Universität Darmstadt

Otto Seppälä (oseppala@cs.hut.fi)
Department of Computer Science and Engineering, Helsinki University of Technology

ISBN: 978–952–60–3251–1 (electronic)
ISSN: 1797–6944 (electronic)

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos



Automatic Generation of Algorithm Visualizations for

Lectures

Ville Karavirta∗, Guido Rößling†, and Otto Seppälä‡

June 7, 2010

Abstract

Algorithm animations and visualizations (AVs) aim at making program code or
algorithms more understandable by providing a view of the code on a higher level
of abstraction. Despite the demonstrated benefits, algorithm visualizations have not
been widely adopted in teaching. Presentation tools such as Microsoft PowerPoint
and OpenOffice.org Impress are often used by instructors, and algorithm animations
are added to the lecture slides. The generation of animations with these tools can be
awkward and time-consuming. In this paper, we present a set of tools that allows easy
generation of algorithm animations to be used in lecture slides.

Keywords: Algorithm Animation, Animal, Xaal, Lecture Slides, Presen-
tation

1 Introduction

Helping students to understand difficult pieces of code remains a challenge in
Computer Science education. By providing a view of the code on a higher level
of abstraction, algorithm animations and visualizations (AVs) aim at making
the code more understandable. Despite the demonstrated benefits, algorithm
visualizations have not been widely adopted in teaching [13]. The integration
of visualization in self-study material has been studied in the context of HTML-
based hypertextbooks [21]. HTML allows integrating animations in a variety
of formats, including Java applets, Flash animations and videos.

One often overlooked way of using algorithm animation is to accompany
animations with presentation slides. However, the problem of integrating vi-
sualizations in lecture material has not been studied extensively. In a survey
∗vkaravir@cs.hut.fi, Department of Computer Science and Engineering, Helsinki University of Tech-

nology
†roessling@acm.org, CS Department, Technische Universität Darmstadt
‡oseppala@cs.hut.fi, Department of Computer Science and Engineering, Helsinki University of Tech-

nology

2



study performed by an ITiCSE 2002 Working Group, 79% of the educators
listed the “time it takes to adapt visualizations to teaching approach and/or
course content” as a substantial impediment for adopting new visualizations
to be used on a course [13]. The same difficulties were also found in a recent
international survey [10]. Ben-Bassat Levy and Ben-Ari argue that tool devel-
opers often do not invest enough research in how pedagogical software can be
embedded into a curriculum [1]. While the most commonly used presentation
tools (PowerPoint, OpenOffice.org Impress and Keynote) support embedding
materials such as video into the lecture slides, the lecturer cannot adapt the
animation to the specific lecture case.

For lecture use, the development in AV systems has focused on systems that
can be used to give presentations. For example, Alvis [5], Animal [18] and
MatrixPro [9] all have features to support their use in lectures (see Section 5).
However, in most cases, animations created with AV tools cannot be embedded
into the lecture materials since they are implemented as independent appli-
cations. Instead, they require the educator to switch between a number of
programs during classroom presentation. Some algorithm visualization tools
may allow overcoming this limitation by designing the lecture slides inside the
algorithm visualization system. But in most cases, this is not desired, feasible
or attractive, as the regular presentation tools are far more sophisticated than
the AV authoring tools.

In this paper, we present a process to easily generate algorithm animations
in lecture slide format with an existing AV system. The paper is organized
as follows. In Section 2, we will explain the rationale behind this research.
Section 3 introduces the systems used in our approach and Section 4 describes
our chosen solution. Section 5 discusses related work, followed by a presen-
tation of the benefits of the solution and outlines areas of future research in
Section 6.

2 Motivation

Let us regard a typical scenario in a data structures and algorithms course
discussing a new algorithm. In order to use an existing visualization for this
algorithm, a suitable presentation must first be found. Here, the teacher can
already run into problems. Recent research shows that existing algorithm
visualization are often not pedagogically effective and concentrate on simpler
algorithms [23]. Even if the teacher finds an existing visualization, there are
also other problems that the teacher has to face:

• Visualizations often concentrate on certain features of the algorithm and



ignore others. The information selected to be shown and the way it is
depicted are chosen to emphasize certain points and ignore others. There
might be a pedagogical reason for not showing a piece of information, or
it might be hidden in order to reduce visual complexity. The skill level
and background of the audience also plays a big role and affects what
works and what does not.

As research suggests, the pedagogical style of the visualization might not
match the style of the teacher [1]. The final choice of the visualization is
likely to be a compromise which contains most of the points the teacher
wants to address during the lecture. In some cases, the lecture slides may
also have to address limitations of the visualization, as the visualizations
themselves can typically not be altered.

• A different problem is that visualizations often use topic-specific tools.
For a complete course, the teacher might have to use several such vi-
sualizations tools. This can result in visualizations that do not share a
uniform look and can lead to unnecessary confusion for teachers and stu-
dents. Additional confusion can be caused by (even subtle) variations in
terminology.

• According to results of an international survey, the classroom set-ups vary
a lot, with the most typical set-up being a class with a computer and a
ceiling-mounted projector [13]. Thus, the teacher has to make prepara-
tions before the lecture. Applets should be downloaded and local web-
pages created to account for problems in network connections. In some
cases, the visualization software has to be installed, which might even be
impossible in some lecture hall set-ups. The safest alternative is often to
use a personal laptop for giving the presentations. In contrast, Power-
Point or PDF slides typically work with whatever computer is available.

• Finally, visualizations often use hard-coded input data. To illustrate a
problem and stimulate self-study, teachers and learners should be able to
provide the input data for the algorithm.

Many teachers use generic presentation tools, such as Microsoft PowerPoint,
OpenOffice.org Impress or Keynote, for animations of a given algorithm or set
of algorithms. These animations are usually created manually for a fixed set
of input data. Changing the input presented in one slide may thus require a
manual correction of all subsequent slides. Manual generation is very time-
consuming and does not scale to other input sets or similar (but slightly differ-
ent) algorithms, such as a different approach for choosing the pivot element in
Quicksort. Additionally, the lack of support for the data structures typically
used in computer science makes even the animation of a list- or array-based



algorithm very difficult and time-consuming [18].
In a study of the technology and learning expectations of the ”net gener-

ation”, students ”praised PowerPoint’s ability to help faculty members con-
vey specific information when used appropriately” [15]. However, in the same
study, students ”expressed significant frustration with faculty members who
simply transferred their lecture notes to PowerPoint slides and expected qual-
ity learning to occur”. We expect animations in lecture slides to promote
learning through increasing student motivation.

3 Background

This work is a continuation of a previous research prototype [22]. We will
provide a brief overview of the previous system and point out its limitations
and problems. Next, we will introduce the technologies behind the solution
described in the rest of the paper, namely the animation generators and pro-
gramming API in Animal, and an XML-based algorithm animation language,
Xaal.

3.1 First Prototype Implementation

A first prototype implementation of an automatic generation of lecture slides
was presented in [22]. The solution, as illustrated in Figure 1, was based
on a Java program generating graph descriptions in the GraphViz dot for-
mat [4]. The graph descriptions were transformed to Scalable Vector Graphics
(SVG) using GraphViz. The SVG files were then converted to Open Docu-
ment Format (ODF) format using XSLT stylesheets. The ODF file could then
be opened in OpenOffice.org Impress. More specifically, the Java program
generated example cases of the Kruskal algorithm.

Figure 1: Architecture of the prototype solution

The prototype solution was successful in that it showed this kind of slide
generation is possible. It could also automatically generate questions as notes
on the slides that a teacher can use to make lectures more interactive. Alas,
the approach taken had several problems:

• The use required the installation of third-party tools such as GraphViz



and Saxon. This makes it unlikely that teachers adopt it, since cumber-
some installation is one of the reasons for not using visualization tools [16].

• In addition to the graph descriptions, the Java program generated other
files used in the construction of the ODF slides. This made the XSLT
stylesheets quite specific for this use-case; they would not be easy to use
in other examples.

• The use of XSLT to generate the slides limited the applicability to simple
cases due to the nature and limitations of XSLT.

• Most importantly, the approach supported no reuse of existing anima-
tions. As there were a number of animations in repositories for the exist-
ing systems, teachers should be able to benefit from those.

3.2 Animal Generators and API

Animal is a system for animating algorithms and data structures. Content
can be generated manually using drag and drop in the graphical front-end,
using the built-in scripting language AnimalScript [19], and the AlgoAnim
Java API. The tool home page provides more than 60 hand-made animations
covering most of the basic algorithms and data structures for a typical CS2
course.

Animal also provides a set of animation content generators [17]. Each
generator addresses one specific instance of a given algorithm and can be used
to generate an animation of that algorithm on-the-fly with only a few mouse
clicks. First, the user has to choose an output language, e.g., English, and
a programming language, e.g. Java. The former language defines the output
language for texts in the animation, while the latter determines the source- or
pseudocode shown below the algorithm during the animation.

The user can then choose the concrete type of algorithm, e.g., sorting al-
gorithms, followed by the algorithm, e.g. Bubble Sort. If there are multiple
generators for the same algorithm, for example displaying different variants of
Bubble Sort, the user has to decide on the best fit. He or she can then con-
figure the generator by providing the input data set. The user can also adjust
the visual appearance of the content, for example by changing the color or font
settings for the visible elements. After choosing a filename, the animation is
created and can be viewed in Animal.

Implementing a new generator is easy to do if one has programming expe-
rience in Java. Essentially, the Generator interface has to be implemented,
which contains mostly methods that specify metadata, such as the content
author, output or programming language. The content generation is triggered
by a single method that will typically use the AlgoAnim API [20] for creating



the actual animation contents. This is a Java API that is easy to use and sup-
ports a large set of primitives and data structures and operations thereon. In
addition to primitives and operations, the API also supports the integration of
interactive elements, especially questions asked to predict the future behavior
or characterize the current state of the algorithm.

The AlgoAnim API was designed to be able to produce output in a va-
riety of formats, although currently only back-ends for the scripting language
AnimalScript used by Animal and Xaal (described in the next section)
have been implemented.

3.3 Xaal (eXtensible Algorithm Animation Language)

Xaal is an XML language specified for describing algorithm animations. The
design of Xaal (eXtensible Algorithm Animation Language) was based on a
report of an ITiCSE Working Group [14]. The following will briefly introduce
the most important features of Xaal. The reader should note that this text is
merely an overview of the language. For a more detailed discussion, see [7, 6],
and for the actual XML schemas, see the Xaal website1.

Graphical Primitives are the basic graphical components that can be com-
posed to represent arbitrarily complex objects, such as a tree data struc-
ture. Xaal supports the graphical primitives point, polyline, line, poly-
gon, arc, ellipse, circle and circle segment, square, triangle, rectangle, and
text.

Data Structures can be used to specify the visualizations, lowering the effort
needed to produce the visualizations. The set of structures in Xaal is:
array, graph, list, and tree. To support the different approaches of existing
algorithm animation languages, all structures support an optional graph-
ical presentation indicating how the structure should be visualized. This
allows even simple viewing software to display complex data structures
and correspondingly allows using native visualizations when available.

Animation operations in Xaal have been divided in three groups: graphi-
cal primitive transformations (for example, rotate), elementary data struc-
ture operations (for example, replace), and abstract data structure opera-
tions (for example, insert). Each abstract operation can contain the same
operation on a lower level of abstraction as graphical primitive transfor-
mations and as elementary data structure operations. However, these are
both optional.

1http://xaal.org/

http://xaal.org/


In addition to the language specification, Xaal comes with a set of tools
that ease enabling the import/export of Xaal in existing algorithm anima-
tion systems. These tools allow transforming Xaal animations into other
algorithm animation languages. The tools can also be used to add missing
information to the animation, for example, instructions on how to render data
structures for systems capable of using only graphical primitives.

4 Slide Generation

We envisioned a process where the lecture slides could be generated directly
from a visualization system. For this, Animal [18] with its collection of anima-
tion generators on various topics seemed a suitable choice. The final process
is illustrated in Figure 2. The Xaal language implementation in Animal
is used to allow generation of Xaal animations using the existing Animal
generators. The resulting Xaal document is transformed to lecture slides in
ODF format. These slides can then be opened in OpenOffice.org Impress, as
illustrated in Figure 3.

Figure 2: Architecture of our solution

4.1 Animal language for Xaal

As described in Section 3, adding a new language to Animal is done by
implementing the AlgoAnim API. This was done to a certain extent to have
Animal generators output Xaal. The implementation consists of a number of
Java classes that generate the required Xaal output for the different primitives
and operations of the API, such as graphical primitives and move and scale
operations on them.

At its current state, the Animal language for Xaal implements the graphi-
cal primitives and operations on them, as well as the generation of source code
and interactive elements. Of the data structures in Animal, we have only
implemented arrays, and implementation of the other structures remains as a
task for the future. However, the implemented features already cover a large
portion of the generators available in Animal.



4.2 Transforming Xaal to ODF

In the first prototype, we decided to generate the XML used in ODF docu-
ments using a XSL stylesheet. This proved to be more difficult than antici-
pated. Since we are now transforming Xaal animations and there already is
Java support for the language, we decided to generate the ODF contents from
Xaal using Java.

For this transformation, we use the ODFDom library, a part of the ODF
Toolkit2. This library provides a Java API for creating the different elements
in the ODF document. Essentially, there is a corresponding Java class for each
of the XML elements in an ODF document.

One limitation of our system is the use of discrete steps to show the
keyframes in the animation. Although smooth animation is possible in ODF,
we did not feel that the benefit of this would be worth the difficulty of imple-
menting it.

Another lack is that we currently lose the information of interactive ques-
tions created by the Animal generators. These are questions that, when
viewed in Animal, are presented to the student. Our original idea was to
include the questions in the lecture notes for the teacher to ask during the
lecture, as done in the first prototype. Alas, the version of ODFDom we have
used does not support presentation notes and we therefore had to leave this
feature open for future development.

4.3 Slides in OpenOffice.org Impress

Our solution provides an effortless way to create customized and customizable
lecture animations. They can be customized in the sense that the content
generators provided by Animal can be configured in a graphical user interface,
allowing the user to adapt the visual appearance and the input data for the
algorithm. The lecture animations are also customizable in the sense that the
generated slides can be easily modified in OpenOffice.org Impress.

In the resulting slides, it is easy to change things such as the used template
or the fonts and colors used for different objects in the animation. Some things
are more difficult to change. For example, moving one node in a graph requires
moving it in all slides showing that node. However, node styles can be changed
so that the node is changed on all slides.

Although we used Animal, one could also use the same Xaal2ODF transfor-
mation to export lecture slides from a different tool, for example MatrixPro [9].
Hopefully, this will create a sufficiently easy option for many visualization sys-

2http://odftoolkit.org/

http://odftoolkit.org/


Figure 3: An example of an algorithm animation from the bubble sort generator in Animal
transformed to a set of OpenOffice.org Impress slides.

tem developers to include lecture slide generation on the feature list of their
system.

5 Related Work

Although the lecture use of algorithm animations has not been studied as in-
tensely as the student use of animations, some relevant related work exists. We
introduce the work done on the two approaches taken to integrate algorithm
animations to lectures: lecture support offered by AV systems, and slides gen-
erated from AV systems. There are also several tools that make it easier to
generate lecture slides in OpenOffice.org Impress, PowerPoint or PDF format.
However, as they are not concerned with visualizing algorithms, discussing
them is beyond the scope of this article.

5.1 Lecture Support in Algorithm Animation Systems

The first approach is to add features to AV systems that support their use
in lectures. This approach can be seen especially in ALVIS, Animal, and
MatrixPro, all tools that have been used on numerous courses.

ALVIS [5] includes several features that support giving presentations using
the tool. First, the tool has a presentation pointer which allows pointing to



objects in the animation while giving a presentation. Second, the markup pen
can be used to dynamically annotate the animation. Finally, the presenter can
dynamically change the animation as it is executing.

Animal [18] offers a set of features for easy incorporation into the class-
room. The generators mentioned before enable animation creation on-the-fly,
based on user input. Both the animation speed and the magnification factor
can be adapted fluently to the lecture environment. A slider allows fast naviga-
tion inside an animation. A table of contents view for animations can be used
to quickly jump to points of interest, if these were defined by the animation
generator. Finally, Animal was one of the AV pioneers in unbounded bidi-
rectional navigation, enabling lecturers and students to arbitrarily skip ahead
or step backwards in the animation.

MatrixPro [9] was originally designed to be used in lectures to demonstrate
data structures and algorithms. Features supporting this are the possibility
of on-the-fly use, automatic node labeling in data structures, and a library of
ready-made data structures such as binary search trees, B-trees, AVL-trees,
and red-black-trees.

5.2 Slides from AV systems

We are only aware of one visualization system that is able to export lecture
slides. The Leonardo Web builder [3] is a visualization editor that allows
generating animation scripts for the Leonardo Web [2] visualization system.
Leonardo Web builder can export the animations as PowerPoint slides. In
addition, it can export Adobe Flash and animated GIFs. The main difference
to our approach is that the created animation scripts can only be used with
Leonardo Web, whereas Xaal animations can be used and created with several
tools.

6 Discussion

With the approach presented in this article, many of the more than 100 content
generators provided in Animal are readily usable to generate lecture slides
for the algorithms they cover. We feel that this, in itself, is a valuable asset
for educators. Note that the generators also support custom input and look-
and-feel customization by the teacher.

The parts of the process presented can be used together or separately. This
means that the Animal generators can be used to output any language sup-
ported by the API. Xaal animations generated from Animal can, for exam-
ple, be integrated into hypertext using the JSXaal viewer [8]. Furthermore,



any existing Xaal animation can be transformed to ODF slides. In general,
when combining the generation of Xaal from Animal generators with the
rest of the Xaal tools, many more options are available:

• JHAVÉ The latest version of JHAVÉ [12] includes a Xaal visualizer, en-
abling it to visualize Xaal animations. Animations in the GaigsXML [11]

language used by JHAVÉ can also be transformed into Xaal.

• JSXaal The JavaScript Xaal viewer [8] is a JavaScript+HTML im-
plementation of an algorithm animation viewer allowing integration of
Xaal animations into HTML.

• MatrixPro An extended version of MatrixPro [9] can be used to create
animations simply by dragging and dropping keys and nodes into various
data structures. It can also export the animation as Xaal, and can
import Xaal animations that use data structures.

In Section 2 we discussed problems a teacher faces when finding visualiza-
tions for lectures. The approach presented here addresses most of the issues.
Neither Animal nor Xaal restrict the use on the scope of data structures and
algorithms. Thus, the same approach could be used to generate animations
on arbitrary other topics. The ODF slides should open in various classroom
set-ups, or PDF version of slides can be generated using OpenOffice.org Im-
press. Finally, the Animal generators allow changing the input data for the
algorithm as well as changing the visual properties of different elements in
the visualization. Thus, certain elements can be, for example, hidden by the
teacher.

There are still some open issues with our current system. One of them
concerns the loss of semantic data in the transformation process. For exam-
ple, source code lines in Animal are normal text primitives in Xaal (and
subsequently in ODF). In addition, all data structures are described using
graphical primitives in ODF. Another problem is that the customization of
the ODF slides is not very simple for some parts.

In the future, we aim for a more complete Xaal implementation in Ani-
mal. Furthermore, the plan is to create more Animal generators, especially
for the difficult topics as suggested by Shaffer et al. [23]. Another direction is
to create a web application for producing the animations where a teacher could
provide input for the Animal generators and get the output in a user-preferred
format all within a browser. This would hopefully make the generation of an-
imations easy enough for teachers to use, and it could be used by students as
well. It should be noted that the same approach could be taken to generate
slides for Microsoft PowerPoint using, for example, the OpenXML4J library3.

3http://openxml4j.org/

http://openxml4j.org/


Finally, we encourage visualizers to create their animations as Animal
generators to allow for the reusability of the animations. Furthermore, AV
system developers are urged to add Xaal support for their AV system.

References

[1] R. Ben-Bassat Levy and M. Ben-Ari. We work so hard and they don’t use
it: acceptance of software tools by teachers. In ITiCSE ’07: Proceedings
of the 12th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 246–250, New York, NY, USA, 2007.
ACM.

[2] V. Bonifaci, C. Demetrescu, I. Finocchi, G. F. Italiano, and L. Laura.
Portraying algorithms with Leonardo Web. In M. Dean, Y. Guo, W. Jun,
R. Kaschek, S. Krishnaswamy, Z. Pan, and Q. Z. Sheng, editors, Web
Information Systems Engineering / WISE 2005 Workshops, volume 3807
of Lecture Notes in Computer Science, pages 73–83. Springer, 2005.

[3] V. Bonifaci, C. Demetrescu, I. Finocchi, and L. Laura. Visual editing of
animated algorithms: the Leonardo Web builder. In AVI ’06: Proceedings
of the working conference on Advanced Visual Interfaces, pages 476–479,
New York, NY, USA, 2006. ACM.

[4] J. Ellson, E. Gansner, L. Koutsofios, N. S. C., and G. Woodhull. Graphviz
open source graph drawing tools. Lecture Notes in Computer Science,
2265/2002:594–597, 2002.

[5] C. D. Hundhausen and S. A. Douglas. Low-fidelity algorithm visualiza-
tion. Journal of Visual Languages and Computing, 13(5):449–470, Oct.
2002.

[6] V. Karavirta. XAAL – extensible algorithm animation language.
Master’s thesis, Department of Computer Science and Engineering,
Helsinki University of Technology, December 2005. Available online at
http://www.cs.hut.fi/Research/SVG/publications/karavirta-masters.pdf.

[7] V. Karavirta. Integrating algorithm visualization systems. In Proceed-
ings of the Fourth Program Visualization Workshop (PVW 2006), volume
178 of Electronic Notes in Theoretical Computer Science, pages 79–87,
Amsterdam, The Netherlands, 2007. Elsevier Science Publishers B. V.

[8] V. Karavirta. Seamless merging of hypertext and algorithm animation.
ACM Transactions on Computing Education (TOCE), 9(2):1–18, 2009.

[9] V. Karavirta, A. Korhonen, L. Malmi, and K. St̊alnacke. MatrixPro –
A tool for on-the-fly demonstration of data structures and algorithms.



In Proceedings of the Third Program Visualization Workshop, pages 26–
33, The University of Warwick, UK, July 2004. Department of Computer
Science, University of Warwick, UK.

[10] E. Lahtinen, H.-M. Järvinen, and S. Melakoski-Vistbacka. Targeting pro-
gram visualizations. In ITiCSE ’07: Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Computer Science
Education, pages 256–260, New York, NY, USA, 2007. ACM.

[11] T. Naps, M. McNally, and S. Grissom. Realizing XML-driven algorithm
visualization. In Proceedings of the Fourth Program Visualization Work-
shop (PVW 2006), volume 178 of Electronic Notes in Theoretical Com-
puter Science, pages 129–135, Amsterdam, The Netherlands, 2007. Else-
vier Science Publishers B. V.

[12] T. L. Naps. JHAVÉ: Supporting Algorithm Visualization. Computer
Graphics and Applications, IEEE, 25(5):49–55, 2005.

[13] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-

hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement
in computer science education. SIGCSE Bulletin, 35(2):131–152, June
2003.

[14] T. L. Naps, G. Rößling, P. Brusilovsky, J. English, D. Jarc, V. Karavirta,
C. Leska, M. McNally, A. Moreno, R. J. Ross, and J. Urquiza-Fuentes. De-
velopment of XML-based tools to support user interaction with algorithm
visualization. SIGCSE Bulletin, 37(4):123–138, December 2005.

[15] G. R. Roberts. Technology and learning expectations of the net gener-
ation. In D. G. Oblinger and J. L. Oblinger, editors, Educating the Net
Generation, chapter 3, pages 3.1–3.7. Educause, 2005.

[16] R. J. Ross and M. T. Grinder. Hypertextbooks: Animated, active learn-
ing, comprehensive teaching and learning resource for the web. In S. Diehl,
editor, Software Visualization: International Seminar, pages 269–283,
Dagstuhl, Germany, 2002. Springer.

[17] G. Rößling and T. Ackermann. A Framework for Generating AV Content
on-the-fly. In Proceedings of the Fourth Program Visualization Workshop
(PVW 2006), volume 178, pages 23–31, Amsterdam, The Netherlands,
2007. Elsevier Science Publishers B. V.

[18] G. Rößling and B. Freisleben. ANIMAL: A system for supporting multiple
roles in algorithm animation. Journal of Visual Languages and Comput-
ing, 13(3):341–354, 2002.



[19] G. Rößling, F. Gliesche, T. Jajeh, and T. Widjaja. Enhanced Expres-
siveness in Scripting Using AnimalScript 2. In Proceedings of the Third
Program Visualization Workshop, pages 10–17, The University of War-
wick, UK, July 2004.

[20] G. Rößling, S. Mehlhase, and J. Pfau. A Java API for Creating (not
only) AnimalScript. In Proceedings of the Fourth Program Visualization
Workshop (PVW 2006), volume 224, pages 15 – 25, Amsterdam, The
Netherlands, 2009. Elsevier Science Publishers B. V.

[21] G. Rößling, T. Naps, M. S. Hall, V. Karavirta, A. Kerren, C. Leska,
A. Moreno, R. Oechsle, S. H. Rodger, J. Urquiza-Fuentes, and J. A.
Velázquez-Iturbide. Merging interactive visualizations with hypertext-
books and course management. SIGCSE Bulletin, 38(4):166–181, 2006.

[22] O. Seppälä and V. Karavirta. Work in progress: Automatic generation
of algorithm animations for lecture slides. In Proceedings of the Fifth
Program Visualization Workshop (PVW 2008), volume 224, pages 97–
103, Amsterdam, The Netherlands, 2009. Elsevier Science Publishers B.
V.

[23] C. A. Shaffer, M. Cooper, and S. H. Edwards. Algorithm visualization: a
report on the state of the field. In SIGCSE ’07: Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education, pages
150–154, New York, NY, USA, 2007. ACM Press.


	Introduction
	Motivation
	Background
	First Prototype Implementation
	Animal Generators and API
	Xaal (eXtensible Algorithm Animation Language)

	Slide Generation
	Animal language for Xaal
	Transforming Xaal to ODF
	Slides in OpenOffice.org Impress

	Related Work
	Lecture Support in Algorithm Animation Systems
	Slides from AV systems

	Discussion

