An Evaluation Framework for middleware approaches on Wireless
Sensor Networks

Shuai Tong
Helsinki University of Technology
tonglcc.hut.fi

Abstract

This paper presents an evaluation framework for middleware
designs on wireless sensor networks (WSNs). There is lots
of existing middleware solutions for WSNs; we introduced
middleware approaches and classified them into logical cat-
egories according to mechanisms. Based on our evaluation
criteria, existing middleware solutions are compared and an-
alyzed in this paper. The evaluation result shows experiences
and ideas about middleware solutions regarding to different
usages, and also present open issues for further research and
study about middleware solutions in WSN.

KEYWORDS: middleware, WSN, sensor network, evalua-
tion framework

1 Introduction

Wireless sensor networks consist of a lot of sensor nodes,
which are low cost, small size and low power supply. This
kind of networks has some advantages than traditional net-
work, such as easy to deploy, wide scalability, mobility, easy
to use in different complicated environments for some spe-
cial purpose[19]. For instance, WSNs can be widely use for
environment monitoring, structure health monitoring, object
tracking system, industrial process control and so on[1, 20].
Due to the lack of structure and resource, WSNs also have
some limitation compared to traditional network. For ex-
ample, complicated structure topology when sensor nodes
are added or removed; overhead communications needed be-
tween nodes and gateway; limitation of node physical re-
sources. Middleware solutions are developed to solve those
problems in application. There are lots of existing middle-
ware solutions with different features and mechanisms. We
will explain briefly middleware advantages and weaknesses,
and reason of why middleware and WSNs suitable to each
other. After that we will introduce exist middleware solu-
tions, and classified them into categories, make a comparison
and analyze. Finally we give some suggestions about mid-
dleware models in different WSN environments and make a
table to present conclusion[5].

Middleware solutions are developed as the link between
application and low level operating system to solve many
wireless sensor network issues, and enhanced application
development[8]. It also can act as a layer between sensor
nodes and user side server. The middleware support some
work phases of WSNs, such as development, maintenance,

deployment and data execution[17]. The different types of
middleware solutions can provide one or more additional
features related to WSNs. For example, abilities of power
saving, openness, scalability, mobility and heterogeneity.
Those features can improve the performance of WSNs, and
solve some practical problems of WSNs[11, 10]. In this pa-
per, we will evaluate and try to march the middleware solu-
tions in various WSNs.

2 An Overview of Existing Middle-
ware on WSN

There are many research groups present a lot of middleware
approaches both on theoretical ideas and practical projects.
They mainly can be classified into 7 classes according to
middleware architectures and approach mechanisms[8], we
list them below.

1. Distributed database

This kind of middleware approaches treats the whole
sensor network as a distributed database. Usually it
has a friendly and easy to use interface, using SQL-
like queries to collect target data. It is good at regularly
queries, but lacks to support real time applications, so
sometimes it only provides approximate results.

2. Mobile agents

The main feature of mobile agent middleware is the ap-
plications are treat as modules for injection and distri-
bution through the network using mobile codes. The
sensor network can implements tasks by transmitting
application modules, and transmitting modules could
consumes less power than transmitting big applications.
It is efficient approach to support multi purpose WSNs
and update dynamic applications.

3. Virtual machine

Virtual machine middleware approach is used to de-
crease overall power and resource consumption. The
system consists of virtual machines and interpreters.
Developers write applications into small modules, and
injecting and distributing modules through network,
and finally virtual machines interpret the modules to im-
plement application.

4. Application driven

TKK T-110.5190 Seminar on Internetworking

2009-04-27

For some specified purpose, application driven middle-
ware could adjusts network configurations according to
application requirements. It has a structure that supplies
multiple network configurations by choosing suitable
protocol in its network protocol stack. Different sen-
sors combinations and network configurations provide
different performance of QoS to meet related applica-
tion requirements

. Message-oriented

Message-oriented middleware implements the commu-
nications using publish/subcribe mechanism between
node applications to user side. The publish/subcribe
service in the middleware is used to exchange messages
between message sender and related receiver, it re-
duced unnecessary communications when applications
collecting data based on specified purpose and events.

. Component-based

Component-based middleware implements applications
by binding components. By using middleware API, the
cross-platform components can be used in the different
platform environments, and it allows applications run
on various types of devices.

. Macroprogramming

Macroprogramming middlewares treat the sensor net-
work as a whole, rather then writing low level software
to drive individual nodes. The network behavior is pro-
grammed at a high-level specification, and generating
node behaviors automatically[9].

For each of category, we will give some existing middle-
ware solutions, and describe theirs mechanisms and features

2.1 Distributed database

e TinyDB

TinyDB is designed and implemented as Acquisitional
Query Processing (ACQP) system for collecting data in
a sensor network. Comparing to traditional technology,
it is featured such as low power consumption and ac-
curate query results, those are important advantages in
the resource limited network environment. TinyDB is
a distributed system, it runs on the top of TinyOS op-
erating system, with SQL like interface to execute data
from sensor nodes[15].

For example:

SELECT nodeid,temp

FROM sensors

SAMPLE PERIOD 60s FOR 3600s

It required reporting collected temperature data from
each node in every minute for one hour. The database
table in TinyDB is called sensors, it is an unbounded,
continuous data stream of values.[15] User could ac-
quire target data by inputting queries from sensors
table.[15]

e Cougar

Cougar is another middleware applying database pat-
tem in sensor network. In Cougar system, there are two
types of data: stored data and sensor data. Signal pro-
cessing functions in each sensor node generate the sen-
sor data, and date are communicated or stored in local
as relations in database system[3]. Signal processing
functions are modeled by using Abstract Data Type in
Cougar. In object-relational database, an ADT repre-
sents a same type of sensors in the real world. Cougar
also uses SQL like language to implement queries.

DsWare

Data Service Middleware (DSWare) is a event-based
data centric service middleware. It consists of some
services components such as data subscription, event
detection, data storage, group management, scheduling
and data caching. It uses SQL like language for event
registration and cancellation. DSWare has good per-
formance for real time event detection and reduction
of overhead network communications, and it also im-
proves the response performance[13].

2.2 Mobile agents
o Agilla

Agilla is mobile agent based middleware run on
TinyOS. Application programs are composed of agents,
which be transmitted across the nodes. Each node could
support multiple autonomous agents and maintains a
neighbor list and tuple space. The agents are trans-
mitted to build an application by following neighbor
list. With multiple autonomous agents, it allows mul-
tiple users from different applications share the net-
work simultaneously. Agilla has good performance on
reliability[6]

Impala

Impala is a middleware system using modular program-
ming approach. The whole architecture includes two
level layers: upper layer contains all the necessary pro-
tocols and application programs. The lower layer con-
tains middleware agents such as Application Updater,
Application Adapter, and Event Filter. Impala can sup-
port multiple different applications which located in up-
per layer by adapting, updating and event filtering data
from lower layer. The Impala is original designed in
ZebraNet Project, which focus on wildlife tracking in
large area with few communications devices[14]. It has
good performance on mobility, lower event processing
time and lower application data transmission volume.

2.3 Virtual machine

e Mate

Mate is a middleware solution with communication-
centric virtual machine for sensor network. It runs on
the top of TinyOS operating system, and works as a byte
code interpreter. Mate has high level user interface, and
it allow using large program by breaking the code into

TKK T-110.5190 Seminar on Internetworking

2009-04-27

24

2.5

2.6

multiple small pieces: called Capsules. Each capsule
contains 24 instructions, and length of each instruction
is a byte. The program is injected into sensor network
faster and easily by using Mate. It also avoid to produce
message buffering, do not need large storage, because
sending few byte of data to virtual machine have same
effect as sending a large program. [12]

Magnet

Magnet is another system-level middleware solution for
WSNs and ad hoc networks. MagnetOS is developed
as a distributed, power-aware, adaptive operating sys-
tem. It provides a single system image of a unified Java
virtual machine for the nodes in WSN. [2] MagnetOS
can divides application into small components automat-
ically, and transmitted them to most suitable nodes in
the network. The automatic object replacement poli-
cies: NetPull and NetCenter can help to save energy
and increase system lifecycle.

Application driven

MiLAN

MiLan for WSNs means Middleware Linking Applica-
tions and Networks, it provides the solution that spe-
cific applications are allowed to affect the performance
of entire network. MiLAN contains network protocol
stack to configuration and manage network. It use graph
based approach to allow application to know how it per-
forms collected data from different combinations of low
level components, and how to choose combination of
sensors to satisfy its quality of service requirements.
MiLAN is originally designed for medical advising and
monitoring, so it have good performance on application
reliable[16].

Message-oriented

Mires

Mires is middleware solution runs on TinyOS , and
it uses publish/subscribe mechanism to exchange data
between nodes and sink nodes. It consists of pub-
lic/subscribe service, routing components and addi-
tional services. The key component is the pub-
lic/subscribe service. it act as middle layer to transfer
publish/subscribe message, and further more to estab-
lish communications between local nodes to user appli-
cations. Each node advertises the data topics available
by its sensors, user applications receives the topics and
selects desired data topic which need to be monitored,
and after that nodes collect target data and publish them
back to user side. In this way, it only transmits target
data between target nodes and user side, so it reduced
amount of data transmission, and save the energy[18].

Component-based

Runes

. Scalability.

Runes means Reconfigurable Ubiquitous Networked
Embedded Systems. It is components based middle-
ware solution. Runes middleware consists of Compo-
nents Frameworks (CFs), which have reusable and dy-
namic deployable architectures. The high customize
services and specific applications can be built by using
different components. There is a cross-platform com-
ponents under layer of middleware API, so Runes solu-
tion can be deployed on devices with different platform,
from PCs to sensor node with Contiki OS[4].

2.7 Macro programming

e Kairos

Kairos allows programmer to programming whole sen-
sor network, make a high level specification, and deal-
ing with low-level concerns at each node in network. At
beginning, developers write a centralized program for
whole application, Kairos preprocessor divided it into
subprograms and Kairos compiler compiled them into
annotated binary codes. After that the binary codes are
distributed to sensor nodes. Annotated binary code is
node-specific version contains code to control behavior
of each single node. A set of nodes work together to ex-
press as a macro level program abstraction. Kairos can
decide to use loose node synchronization or tight node
synchronization base on programmer’s purpose[7].

3 Evaluation and Analyze

3.1 Evaluation Framework

We will evaluate the existing middleware solutions men-
tioned above base on following evaluation criteria: power
saving, scalability, mobility, heterogeneity, and usability.[9]

1. Power saving. Due to the limited power resource of

the electrical devices and sensors in WSNs, middle-
wares should have techniques and mechanisms to man-
age electrical devices and reduce sensor power con-
sumption. For example, sensors are turned off after
use by middleware controlling. In general, sensors use
sleep mode to implement basic power saving function.
Data transmission overhead is another important fac-
tor for power saving, because less data transmission
through the network would have less energy consump-
tion. So we determined middlewares which have mech-
anisms to reduce data transmission through the network
as strong support on power saving. For example, Mag-
net and Mires considered as strong support on power
saving.

“If an application grows, the network
should be flexible enough to allow this growth any-
where and anytime without affecting network perfor-
mance.”[8] When network topology is dynamic, mid-
dleware should support sensor nodes maintenance and
reconfiguration. For the middlewares which have mech-
anisms for protocols updating or switching to ensure
network performance, we determined them as strong

TKK T-110.5190 Seminar on Internetworking

2009-04-27

support on scalability. For the middlewares which have
to update routing information in each sensor, and have
effect on network performance, we determined them are
weak support on scalability. For example, Mate has
strong support on scalability, and cougar is weak on
scalability.

3. Mobility. It is middleware ability to keep the commu-
nications with mobile sensor nodes in WSNs. Connec-
tivity between the mobile nodes is considered as most
important factor. It is related with tracking applications
in real world. Some middlewares have special routing
protocols and algorithms to implement and improve its
mobility. We determined the middlewares which has
a set of efficiency ad hoc routing protocols are strong
support on mobility. For middlewares which have ba-
sic mechanisms for mobility, such as Semantic Root-
ing Tree, multi-hop routing protocol and so on, we de-
termined them are medium support on mobility. For
others middleware which do not have efficiency mech-
anisms for mobility, we determined them are weak sup-
port on mobility. For example, Impala and Mate are de-
termined as strong on mobility, TinyDB is determined
as medium, and Milan is determined as weak.

4. Heterogeneity. Middlewares should provide interface to
meet various types of hardware and network conditions.
When we evaluate heterogeneity in this paper, we deter-
mined some middlewares whose have techniques to im-
plement cross-platform applications as providing strong
support to heterogeneity, because those middlewares
are available for a range of different hardwares and de-
vices. For the middlewares which run on single operat-
ing system or virtual machine, we determined them as
medium supporting. For the middlewares which only
designed for certain hardwares, we determined them as
weak supporting. For example, Runes is determined as
strong support on heterogeneity, virtual machine based
middlewares and middlewares run on the top of TinyOS
are determined as medium, and Impala is determined as
weak.

5. Usability. It related to whether middleware is easy to
use or not. Especially for some complicated WSNs
with different sensor types, middlewares should pro-
vide friendly user interface according to the usabil-
ity. Database middlewares use query systems, which
use high-level language to implement applications, and
SQL like interfaces are easy to use. We determined
middlewares which use high-level abstractions and im-
plement GUI are strong support on usability. For the
middleware which use instruction set and need to have
deep understand on structure, we determined them are
weak support on usability. For example, TinyDB is con-
sidered as strong support on usability, and Kairos is de-
termined as weak support on usability.

Base on the middleware descriptions in previous section,
we will make a general evaluation with evaluation criteria,
results are shown in table 1. We will mark them with 3 lev-
els: Strong means selected middleware is strongly support on

criteria, Medium means partly support on criteria, and Weak
means weak support on criteria.

3.2 Analyze and Application Suggestions

The WSN are widely used in 4 kinds of applications nowa-
days: Surveillance, Objective Tracking, Industrial Control-
ling and Data collecting in special purpose.

Surveillance tasks need to work continuously during the
work process, and usually it spends a long time. It also
could uses various types of devices, so surveillance appli-
cations need to pay attention to criteria of power saving and
usability. Objective tracking tasks have similar requirements
with surveillance tasks. Besides, both objectives and track-
ing nodes could be mobile, and nodes network could be
changed, so the middleware features of mobility and scala-
bility are important. Totally, Objective tracking applications
need abilities of power saving, scalability and mobility. For
industrial controlling purpose, the nodes in network usually
are static, and power supply is stable. Industrial controlling
applications need abilities of scalability and heterogeneity.
For general data collecting, usability and heterogeneity are
considered because of the general purpose.

We would like to give some middleware suggestions ac-
cording to the result of criteria evaluation in previous section.
The suggestion results are shown in table 2. If middleware
strongly support on all the related criteria of applications,
the middleware is determined as strong support on applica-
tions. If one or two of criteria of applications is medium
support by middleware, but others criteria are strongly sup-
ported, the middleware is determined as medium support on
applications. If more than two criteria of applications are
medium support or at least one of criteria is weak support by
middleware, the middleware is determined as weak support
on applications.

4 Conclusion

As the active research area of computer science and telecom-
munications, middleware solutions in wireless sensor net-
work always be discussed in worldwide and more new de-
signs and projects are under research. In this paper, we de-
scribed a list of typical existing middleware solutions, give a
evaluation according to their features and WSNs applications
requirements. Our contribution is to make an evaluation for
various middleware solutions, and present middleware sug-
gestions for different types of WSN applications. We hope
those ideas and experiences care helpful for further middle-
ware designing and researching in the future.

References

[1] L. F. Akyildiz, Y. S. Weilian Su, and E. Cayirci. A
survey on sensor networks. 40, 2002.

[2] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. D. Kim,
B. Zhou, and E. G. Sirer. On the need for system-
level support for ad hoc and sensor networks. In ACM
SIGOPS Operating Systems Review, volume 36, 2002.

TKK T-110.5190 Seminar on Internetworking 2009-04-27
| Middleware | Power Saving | Scalability Mobility Heterogeneity | Usability
| Distributed database \
TinyDB Strong Medium Medium Medium Strong
Cougar Medium Weak Weak Weak Strong
DSWare Strong Medium Weak Weak Strong
’ Mobile agents \
Agilla Strong Strong Medium Medium Weak
Impala Strong Strong Strong Weak Strong
’ Virtual machine \
Mate Strong Strong Strong Medium Weak
Magnet Strong Strong Strong Medium Strong
’ Application driven \
’ MiLAN \ Medium \ Strong \ Weak \ Weak \ Strong ‘
| Message-oriented \
| Mires | Strong | Strong | Medium | Medium | Medium \
’ Component-based \
’ Runes \ Medium \ Strong \ Strong \ Strong \ Medium ‘
| Macro-programming |
| Kairos | Medium | Medium | Medium | Medium | Medium \

(3]

[4]

(5]

[6]

[9]

[10]

Table 1: Middleware features table

P. Bonnet, J. Gehrke, and P. Seshadr. Towards sensor
database systems. In Proceedings of the Second Inter-
national Conference on Mobile Data Management.

P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and
S. Zachariadis. The runes middleware: A reconfig-
urable component-based approach to networked em-
bedded systems. Technical report, 2005.

D. Culler, D. Estrin, and M. Srivastava. Overview of
wireless sensor networks. IEEE Computer Special Is-
sue in Sensor Networks, 8 2004.

C.-L. Fok, G.-C. Roman, and C. Lu. Rapid develop-
ment and flexible deployment of adaptive wirelesssen-
sor network applications. In Proceedings of the 25th
IEEE International Conference on Distributed Com-
puting Systems, 2005.

S. Hadim and N. Mohamed. Macro-programming
wireless sensor networks using kairos. In International
Conference on Distributed Computing in Sensor Net-
works, 2005.

S. Hadim and N. Mohamed. Middleware challenges
and approaches for wireless sensor networks. 7, March
2006.

S. Hadim and N. Mohamed. Middleware for wireless
sensor networks: A survey. In First International Con-
ference on Communication System Software and Mid-
dleware. IEEE computer Society, 2006.

W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and
M. A. Perillo. Middleware to support sensor network
applications. 18, 2004.

[11]

[19]

K. Henricksen and R. Robinson. A survey of middle-
ware for sensor networks: state-of-the-art and future
directions. In ACM International Conference Proceed-
ing Series, volume 218, 2005.

P. Levis and D. Culler. Mate: A tiny virtual machine
for sensor networks. 2002.

S. Li, Y. Lin, S. H. Son, J. A. Stankovic, and Y. Wei.
Event detection services using data service middleware
in distributed sensor networks. In Telecommunication
Systems, volume 26, pages 351-368, 2004.

T. Liu and M. Martonosi. Impala: A middleware sys-
tem for managing autonomic, parallel sensor systems.
In Proceedings of the ninth ACM SIGPLAN symposium
on Principles and practice of parallel programming.
ACM Press.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: An acquisitional query process-
ingsystem for sensor networks. 6, 2005.

A. Murphy and W. Heinzelman. Milan: Middleware
linking applications and networks. Technical report,
2002.

K. Romer, O. Kasten, and F. Mattern. Middleware chal-
lenges for wireless sensor networks. 6, 2002.

E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira,
N. Rosa, C. Ferraz, and J. Kelner. Mires: a pub-
lish/subscribe middleware for sensor networks. 10,
2005.

Wikipedia. en.wikipedia.org/wiki/wsn.

TKK T-110.5190 Seminar on Internetworking

2009-04-27

’ Middlewares\ Surveillance \ Objective Tracking \ Industrial Controling \ Data collecting
Distributed
database
TinyDB Strong Medium Medium Medium
Cougar Medium Weak Weak Weak
DSWare Strong Weak Weak Weak
Mobile
agents
Agilla Weak Medium Medium Weak
Impala Strong Strong Weak Weak
Virtual ma-
chine
Mate Strong Medium Weak
Magnet Strong Strong Medium Medium
Application
driven

’ MiLAN \ Medium \ Weak \ Strong \ Weak
Message-
oriented

| Mires | Medium | Medium | Medium | Medium
Component-
based

’ Runes \ Medium \ Medium \ Strong \ Medium
Macro-
programming

| Kairos | Medium | Medium | Medium | Medium

Table 2: Middleware suggestion for WSNs

[20] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues
in designing middleware for wireless sensor networks.
IEEE Network, 18:15-21, 2004.

