
A Survey of Software as a Service Delivery Paradigm

Peilin Guo
Helsinki University of Technology

pguo@cc.hut.fi

Abstract

Software as a Service (SaaS) is a novel model of soft-
ware delivery. It has been gaining momentum in recent
years. More and more SaaS adoption succeeds. This pa-
per presents an overview of this emerging model. I com-
pare SaaS with legacy software delivery model, and also with
Service-oriented architecture (SOA). I investigate SaaS from
different perspectives, from development to business model,
analyze the competition between SaaS and legacy software,
and discuss possible challenges and subsequences. After the
survey, I conclude that SaaS could gradually take over the
whole market. However, the integration, configuration and
customization capability will decide whether a SaaS solution
is successful or not.

KEYWORDS: Software as a service, software business,
software development.

1 Introduction

Software as a Service (SaaS) is a novel concept of deliver-
ing software applications. Some of its early work was car-
ried out as a joint project among the universities of Durham,
Keele, and UMIST in 1999 [11, 21]. Traditonally, users pur-
chase and install the software application on their premise.
In contrast to the perpetual licensing used by traditional soft-
ware, SaaS adopts a subscription pricing policy, charges on
a per-use basis. Hence, SaaS is also known as "subscription
software" [21].

SaaS is rapidly growing. Its market was estimated to grow
about 25% per year from 2006 and was expected to reach
$ 10 billion in annual revenue by 2009 [17]. Well-known
SaaS products include Salsforce.com, Employease.com [5,
1]. The content of these products varies, including Customer
Relationship Management (CRM) service, Human Resource
Management (HRM) service, desktop functionality, email,
and supply chain and inventory control [22].

This paper aims to draw a big picture of the novel SaaS de-
livery model by analyzing it from different perspectives. The
rest of this paper is organized as follows. Section 2 compares
SaaS with its counterparts. Section 3 analyzes the develop-
ment of SaaS applications. Section 4 introduces a business
model of SaaS proposed by researchers, and evaluates the
competition in software market. The last section summarizes
the discussion and reaches the final conclusion.

2 Comparisons between SaaS and its
counterparts

2.1 SaaS and legacy software

There are three primary differences between SaaS and legacy
software: delivering different products, adopting distinct
pricing modes, and employing different delivery methods
[16].

First, they deliver different products. SaaS provides the
subscribers with a collection of standard applications and
services; legacy software provides customized applications
to its users.

Second, they adopt distinct pricing modes. Legacy soft-
ware users purchase the application; SaaS subscribers pay
for each time they use the services.

Third, they employ different delivery methods. Legacy
software applications are installed on users’ premise; SaaS
applications are located in services provider’s central server
and the services are delivered via the Internet or an intranet.

2.2 SaaS and SOA

Many people find it difficult to distinguish between Software
as a Service (SaaS) and Service-oriented architecture (SOA).
Even IT professionals also often consider them the same con-
cept. The misunderstanding of these two terms might causes
various problems, from confusion to poor designs. Laplante
et al. (2008) [14] states that "the difference between SaaS
and SOA is that the former is a software-delivery model
whereas the latter is a software-construction model". Both
SaaS and SOA are only conceptual level models. Implemen-
tation of their features needs support of concrete technology.

SaaS delivers software as utility services and charges on
a per-use basis. It separates software ownership from the
user. The SaaS providers own the software, store the soft-
ware system and users’ data in a central server, and provide
on-demand service to users via the Internet or an intranet.

In a SOA model, the constituent components of the soft-
ware system are reusable units or services [23]. Functions
are separated into distinct units or services [9]. Develop-
ers are allowed to access to the SOA services framework,
combine and reuse available components of the system to
construct their new software applications [12]. Today’s ma-
jor SOA products include IBM WebSphere, Microsoft .NET,
Oracle Web Services Manager, and Sun Java Composite Ap-
plication Platform Suite.

Despite the differences, SaaS and SOA complement each
other in the large-scale information systems. Laplante et al.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

(2008) [14] concludes that "SaaS helps to offer components
for SOA to use, and SOA helps to quickly realize SaaS".

3 Development of SaaS applications
Many different issues have to be considered when develop-
ing SaaS applications. This section mainly opens the discus-
sion from the integration, configuration and customization
perspectivess.

3.1 Integration
A SaaS subscriber usually deploys on-premises legacy soft-
ware as well. This requires integration between on-premises
applications and SaaS solutions. Furthermore, if the user
subscribes to more than one SaaS solutions simultaneously,
integration between different SaaS solutions is also desired.
The integration happens in three major layers of SaaS appli-
cations, i.e. user interface, business logic, and data [19].

According to a study on SaaS solution adoption trend by
IDC in 2004, more than 50% of the survey respondents em-
phasized "better integration with in-house applications" [7].
An AMR research report in 2005 pointed out that more than
70% of the total 639 respondents in the survey expect that
the SaaS solution can be integrated with their on-premises
legacy software and other SaaS solutions they subscribed or
plan to subscribe [8].

Some of the industrial products addressing the SaaS in-
tegration issues are Salesforce.com AppExchange [5], IBM
SaaS showcase [2], Jamcracker [3], and OpenKapow [4].

Sun et al. (2007) [19] proposes a hybid model of SaaS
integration, in which SaaS solutions and on-premises legacy
software applications integrate on three major layers: user
interface, business logic (process), and data. In User Inter-
face Integration, first, Single Sign On enables users to access
all the authorized user interfaces after a single unified sign
on; second, Mash-up [6] enables users to access one SaaS so-
lution or legacy software application’s data from another. In
Process Integration, four patterns are proposed: Push, Sched-
uled Pulling, Receive, and Workflow. In Data Integration,
data is categorized into two types (master data and transac-
tional data), proposed patterns are Batch Data Migration and
Batch Data Synchronization.

In Sun et al. (2007) paper [19], the authors treate SaaS
services as web services and state that most non-functional
requirements of web services also exist in SaaS. Most impor-
tant ones are security and privacy, bill reporting and manage-
ment, and Quality of Service (QoS) reporting and reconcili-
ation with Service Level Agreement (SLA). The authors de-
fine the development process of SaaS integration design and
development as business process review, integration design,
integration implementation, data migration, testing, and fi-
nally production and monitoring. In their paper, the authors
also introduced a SaaS integration framework reference ar-
chitecture as an extension of web service description named
SaaS-DL, and built a SaaSia prototype. The authors con-
cluded that in SaaS integration, most funcional requirements
can be fulfilled by existing SOA integration technologies,
non-functional requirements should be fulfilled by extending
existing integration technologies.

3.2 Configuration and Customization

Configuration and customization is another crucial issue in
SaaS development. SaaS services are usually designed and
developed as standardized functionalities. However, users
always request function variants to fulfill their own unique
business need. This should be done through easy configu-
ration and customization. Sun et al. (2008) [20] clarify the
definitions and meanings of configuration and customization
of SaaS solutions. In addition to that, the authors develop a
competency model of configuration and customization, and
build a methodology framework for it.

Configuration and customization is not a new thing. Most
enterprise software applications face this problem. They
should be tailored so as to fulfill requirements’ variance due
to customers’ significantly different background. However,
it is obviously that SaaS providers cannot afford to develop
and maintain a version of application code for each individ-
ual customer. Therefore, a good or poor solution to this prob-
lem influences the success of a SaaS product much. The
more complex a SaaS service is, the more potential tailor-
ing efforts is needed. This is why the most successful SaaS
solutions are CRM, HRM, email services, etc [18].

Two major approaches to solve the requirements variance
problem are configuration and customization, which often
make people confused. The major differences between them
are that configuration does not involve source code changes,
whereas customization does. Configuration uses pre-defined
parameters to change software functions. For functionali-
ties beyond the pre-defined scope, customization will then
occur. Customization causes source code changes, thus re-
quires more resources, increases development expense, and
prolongs the lifecycle. As a result, according to Sun et al.
(2008) [20], SaaS development should "avoid customiza-
tion by using configuration to meet clients’ tailoring require-
ments and enlarge configurable limit as far as possible to-
ward client’s unique requirements."

In Sun et al. (2008) paper, the authors introduce a SaaS
Configuration Competency Model. In the model, compe-
tency of SaaS configuration is devided into 5 levels: En-
try, Aware, Capable, Mature, and World Class. The variance
level supported are none, low, medium, high, and extremely
high, accordingly, which transforms from completely stan-
dardized offering to fully tenantized offering. The authors
also build a methodology framework to plan and execute
configuration and customization strategy. The process of
this framework involves five steps: 1)understanding environ-
ment, 2)defining strategy, 3)assessing competency, 4)identi-
fying gap and actions, and 5)prioritizing and executing.

In the first step, vendors should investigate the envi-
ronment of SaaS service configuration and customization,
mainly focus on client requirements and market leader com-
petency level. In the second step, vendors make their plan
to fulfill targeted customers’ configuration and customiza-
tion requirements. In the third step, vendors assess their own
competency level of SaaS configuration and customization.
In the fourth step, the competency gaps can be identified to
guide the actions’ definition. In the final step, vendors prior-
itize and excute the actions.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

4 Business Model and Competition
Analysis

4.1 Business Model
This section introduces a business model of SaaS proposed
by Dan Ma in 2007 [15]. In the software market, the three
major parties are software users, legacy software providers,
and SaaS providers. Software users have different demands
in terms of their expected usage volume. This model as-
sumes users are uniformly distributed over [0,1].

4.2 Competition Analysis
[10, 15, 16, 13]

5 Conclusion
In this survey paper, I describe a novel software delivery
model SaaS. This model differs from legacy software ap-
plication by delivering different products, adopting distinct
pricing modes, and employing different delivery methods.
SaaS and SOA should not be misunderstood. SaaS is a soft-
ware delivery model, whereas SOA is a software construc-
tion model.

Many different issues have to be taken into account in the
process of developing SaaS application. Integration, con-
figuration and customization are among the most important
ones. Strong integration capability enables a SaaS service
work well in conjunction with other SaaS services as well
as legacy software applications. Excellent configuration and
customization capabilities increase the product’s competitive
advantages on the market.

I review business model of SaaS proposed by researchers.
By analyzing different competition scenarios, I conclude that
SaaS and legacy software would coexist in the market in a
long run, but the former one could gradually take over the
whole market.

References
[1] EmployEase Website, http://www.employease.com/.

[2] IBM SaaS Showcase website, http://www-
19.lotus.com/wps/portal/showcase/SaaS.

[3] Jamcrack website, http://www.jamcracker.com/.

[4] OpenKapow website, http://www.openkapow.com/.

[5] Salesforce Website, http://www.salesforce.com/.

[6] Website: Mashups and the Web as Platform,
http://www.programmableweb.com/.

[7] IDC report: Software as a Service in the Mid-market:
Adoption Trends and Customer Preferences, 2004.

[8] AMR Research Report: Software as a Service: Manag-
ing Buyer Expectations as We Pass the Tipping Point
from Novelty to Necessity, 2005.

[9] Bell, M. Service-Oriented Modeling: Service Analysis,
Design and Architecture. John Wiley & Sons, 2008.

[10] Choudhary, V. Software as a Service: Implications for
Investment in Software Development. In Proceedings
of the 40th Hawaii International Conference on System
Sciences - 2007, pages 209a–209a, January 2007.

[11] Elfatatry, A. and Layzell, P. Software As A Service:
A Negotiation Perspective. In Proceedings of the 26th
Annual International Computer Software and Applica-
tions Conference, pages 501–506, August 2002.

[12] Erl, T. Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall Professional Techni-
cal Reference, 2005.

[13] Fan, M., Kumar, S. and Whinston, A. B. Short-term
and long-term competition between providers of shink-
wrap software and software as a service. European
Journal of Operational Research, 196:661–671, 2009.

[14] Laplante, P. A., Zhang, J. and Voas, J. Distinguishing
between Software Oriented Architecture and Software
as a Service: What’s in a Name? IEEE IT Professional,
10:46–50, May/June 2008.

[15] Ma, D. The Business Model of "Software-As-A-
Service". In 2007 IEEE International Conference on
Services Computing (SCC 2007), pages 701–702, July
2007.

[16] Ma, D. and Seidmann, A. The Pricing Strategy Anal-
ysis for the "Software-as-a-Service" Business Model.
GECON 2008, Lecture Notes in Computer Science,
5206:103–112, 2008.

[17] Pallatto, J. IBM Recruiting ISVs, Partners to SAAS,
February 2006.

[18] Summit Strategy Inc. Software-Powered Services Net-
Native Software-as Services Transforms the ISV Busi-
ness Model.

[19] Sun, W., Zhang, K., Chen, S., Zhang, X., and Liang,
H. Software as a Service: An Integration Perspec-
tive. ICSOC 2007, Lecture Notes in Computer Science,
4749:558–569, 2007.

[20] Sun, W., Zhang, X., Guo, C., Sun, P., and Su, H. Soft-
ware as a Service: Configuration and Customization
Perspectives. In Congress on Services Part II, 2008.
SERVICES-2. IEEE, pages 18–25, September 2008.

[21] Turner, M., Budgen, D. and Brereton, P. Turning Soft-
ware into a Service. Computer, 36:38–44, 2003.

[22] Weier, M. H. and Smith, L. Businesses Get Serious
about Software as a Service. Information Week, pages
46–48, 2007.

[23] Zhang, L.-J., Zhang J. and Cai, H. Services Computing.
Tsinghua University Press and Springer, 2007.


