
Congestion Control Mechanisms of Transport Protocols

Jiawei Chen
Helsinki University of Technology

jichen@cc.hut.fi

Abstract

Existing network transport protocols such as TCP and UDP
have limitations when fitting into new technologies, in-
cludes, e.g., increased heterogeneity and mobility. In or-
der to solve this problem, our attempt is to design a self-
adaptive transport protocol, which can fit into the network
condition dynamically according to the parameters given by
upper layer and the network layer.

This paper analyzes the congestion control mechanisms
of nowadays transmission protocols, and does comparison
among them in many different aspect. I first describe the
congestion control mechanism of traditional TCP, and then
give out an overview and list the congestion function of
nowadays transport protocols (such as TCP, UDP, DCCP,
SCTP, CUBIC-TCP and CTCP). In the end, I do a simple
comparison among all the protocols above, and point out
the possible advantages and limitations of these protocols
under different transport performances (RTT Fairness, TCP
Fairness, Utilization Ratio, Packet Loss Rate, Smoothness of
throughput, Convergence Time, etc.),

Future work will focus on applying our theoretical as-
sumption into experimentation. We will decide the self-
adaptive parameters of the protocol as well as further per-
formance optimizations.

KEYWORDS: DCCP, SCTP, CUBIC-TCP, CTCP, Conges-
tion Algorithm, RTT Fairness, TCP Fairness

1 Introduction

The traditional transport protocols such as Transmission
Control Protocol (TCP) have served the Internet well for
decades. Though it still works fine nowadays and proba-
bly will carry on in near future,it appears more strained to fit
into the new environment [3]. For example, the congestion
control mechanisms in TCP work well in wired networks but
often over-react in wireless networks where packets can be
lost due to factors other than congestion. Another example is
in multimedia applications sharing networks, we need con-
gestion control without ordered reliable delivery, which is
not implemented by TCP or User Datagram Protocol (UDP).
Such defects appear more and more obviously since new en-
vironment coming and being used, includes, e.g., increased
heterogeneity and mobility [5][2]. The lack of appropriate
guarantees or specific features has led to the widespread de-
velopment of specialized protocols used in conjunction with
or instead of standard transport protocols.

Traditional transport protocols that operate over unreliable

battlefield networks provide an "all-or-nothing" choice for
transport Quality of Service (QoS); either total order and re-
liability (e.g., TCP) or no guarantees at all (e.g., UDP) [10].
One attempt to overcome this is to combine some features of
the two protocols together, for example, the Datagram Con-
gestion Control Protocol (DCCP). DCCP is an unicast trans-
port protocol that provides built-in congestion control. It is
basically based on UDP but it offers applications a choice
of modular congestion control mechanisms among a set of
standardized algorithms, which orchestrates both TCP and
UDP mechanisms. DCCP satisfies the real-time needs of
various multimedia applications like video conferencing, IP
telephony, audio and video streaming modifies the Internet
network foundation.

Traditional TCP works well on the commodity Internet,
but has been found to be inefficient and unfair to concur-
rent flows as bandwidth and delay increase[7]. Its congestion
control algorithm needs a very long time to probe the band-
width and recover from loss in high bandwidth delay product
(BDP) links. Moreover, the existence of random loss on the
physical link, the possible lack of a buffer on routers, and the
existence of concurrent bursting flows all prevent TCP from
utilizing high bandwidth. Furthermore, it exhibits a fairness
problem for concurrent flows with different round trip times
(RTT Fairness). Researchers have proposed a number of so-
lutions to remedy the aforementioned problem. The most
common way is to change its congestion window function,
for example, Stream Control Transmission Protocol (SCTP),
CUBIC Transmission Control Protocol (CUBIC TCP), and
Compound Transmission Control Protocol (CTCP). These
new solutions promise to improve TCP performance on high-
speed networks significantly and are hence usually called
high speed TCP variants.

In this project, our attempt to improve the performance
of transport protocols is to turn it into an adaptive ser-
vice, which can dynamically configure itself according to
the policies given by the upper application layer and the con-
text retrieved from the underlying network layer [3]. How-
ever,before being able to orchestrate such transport service,
the components (quality attributes such as reliability, flow
control, congestion control, etc.) to be orchestrated need to
be understand first. Among them, congestion control algo-
rithm seems to be the most important factor. This survey
paper aims at doing a pre-analysis of the exiting transport
protocols and finding out the effects that different conges-
tion algorithms have on the performance issues.

In this paper, our main objective is to identify the differ-
ent congestion control mechanisms of the existing protocols
and finding out how they affect the performance in differ-



TKK T-110.5190 Seminar on Internetworking 2009-04-27

ent aspects. In section 2, the traditional transmission con-
trol protocol (TCP) would be presented as an example to ex-
plain how congestion control mechanism works. Section 3 to
section 6 list some other transport protocols used nowadays
and describes their main features,including the motivation,
congestion algorithm, advantages and limitations. As I had
qualitative analysis and novel insights into the mechanisms
utilized by those protocols, the comparison of these trans-
port protocols would be discussed in Section 7. The future
research and conclusion is given in Section 8.

2 Congestion Control Mechanism of
TCP

In this section, the congestion control mechanism of tra-
ditional transmission control protocol would be discussed,
which helps us to have a better understanding over other pro-
tocols.

First, we define transport layer flow control as any scheme
by which the transport sender limits the rate at which data is
sent over the network [10]. The goals of flow control may
include one or both of the following:

(1) preventing a transport sender from sending data for
which there is no available buffer space at the transport re-
ceiver, or

(2) preventing too much traffic in the underlying network.
Flow control for (2) also is called congestion control, or

congestion avoidance. Congestion is essentially a network
layer problem, and dozens of schemes are discussed and
classified.

In TCP, there is a congestion window (cwnd) which deter-
mines the number of bytes that can be sent out at any time.
This is used to prevent the physical link between two end
points from getting overloaded with too much traffic. The
sending rate should always be under the size of the conges-
tion window.

TCP uses a slow-start mechanism at the beginning when
connection established. For initializing the connection, ev-
ery Route Trip Time, cwnd = cwnd + 1, which is expo-
nential growth. Suppose the bandwidth is W , then it just
takes RTT ∗ log2 W to fully occupy the bandwidth. Al-
though it’s called slow-start, actually it is not slow anymore.
As we can see, through slow-start, the congestion window
can reach to a large value quickly, but obviously it cannot
keep growing. TCP set a threshold for the slow-start session.
When the size of congestion window has reached the value,
it comes into the congestion control session. In this session,
if all segments are received and the acknowledgments reach
the sender on time, the window size will increase steadily but
slowly. The window keeps growing linearly until a timeout
occurs or the receiver reaches its limit. If a timeout occurs,
the window size will drop dramatically. For congestion con-
trol algorithm, TCP use:

Ack : cwnd = cwnd +
a

cwnd

Loss : cwnd = cwnd− b× cwnd

among them, a = 1; b = 0.5. It is additive increase and

multiplicative decrease (AIMD) algorithm [1]. This conges-
tion control algorithm works well in low-RTT network. But
with the development of long distance network, if RTT is
high, the utilize of the whole network is quite low. Another
important requirement is RTT fairness. It means, in a certain
bandwidth network environment, different connections with
different RTT should share approximately the same band-
width utilization ratio, but TCP is not a good solution. Nowa-
days, people are already trying to find a solution to improve
TCP.

3 Datagram Congestion Control Pro-
tocol (DCCP)

Many other transport protocols appear in order to fit into dif-
ferent usages and varies of network physical conditions, es-
pecially for the high bandwidth delay product network. In
the following sections I list and analyze some of the most
well-known protocols so as to do the comparison in the dis-
cussion part.

3.1 Motivation
Fast-growing Internet applications including streaming me-
dia, telephony and interactive games need new requirements
of network protocols. Most of them prefer timeliness to re-
liability. One special requirement of those applications is
that they are extremely sensitive to delay and quality fluctu-
ation. On the other hand, losing a certain number of pack-
ages would not affect they quality of service. This special
characteristic of real-time application decides that TCP is
not suitable for them, because TCP rather focuses on ensur-
ing data transmission. In this case, retransmission of data
packets is not need, and so does the order of packets’ arrival.
Most of these applications currently use UDP. Through the
analysis of UDP traffic, UDP’s lack of explicit connection
setup and teardown presents unpleasant difficulties to net-
work address translators and firewalls. Furthermore, because
of UDP’s lacking of congestion control, competing traffic
problem would be caused. In this circumstance, Datagram
Congestion Control Protocol appears.

3.2 Overview
DCCP is a unicast, connection-oriented transport protocol
with bidirectional data flow. It provides built-in congestion
control, including Explicit Congestion Notification (ECN)
support [12]. DCCP offers a choice of modular congestion
control mechanisms among a set of standardized algorithms
for real-time applications. For the moment, two mechanisms
are currently specified, TCP-like and TCP-Friendly Rate
Control (TFRC) congestion control. These algorithms aim
different applications. For instance, on-line games which
want to make quick use of any available bandwidth might
use TCP-Like; while streaming media applications trade off
this responsiveness for a steadier, less bursty rate might use
TFRC.

Different from UDP, DCCP connections start and end with
three-way handshakes, and the 16-byte generic header which



TKK T-110.5190 Seminar on Internetworking 2009-04-27

Figure 1: DCCP Header

datagrams begin with is shown in Figure 1. The Type field
gives the type of packet. Even the acknowledgement number
is optional, potentially reducing header overhead for unidi-
rectional flows of data. Normally sequence and acknowl-
edgement numbers are 48 bits long, but end points can set it
to 24 bits while in the session negotiation period.

3.3 congestion Control algorithm

For congestion control algorithm, DCCP gives the applica-
tion some choices of congestion control mechanisms. The
choice is made via Congestion Control IDs (CCIDs). A
connection’s CCIDs can be negotiated when establishing the
connection.

DCCP’s CCID2 provides a TCP-like congestion control
mechanism. Its congestion control algorithms are quite sim-
ilar with TCP: a congestion window cwnd, a slow-start
threshold, and an estimate of the number of data packets out-
standing [15]. To reduce Ack load, it is set to at least two
for a congestion window of four or more packets. However,
to ensure that feedback is sufficiently timely, it is capped at
cwnd/2, rounded up. Within these constraints, the sender
changes Ack Ratio as follows. Let R equals the current Ack
Ratio.

(1) For each congestion window of data where at least one
of the corresponding Acks was lost or marked, R is doubled;

(2) For each cwnd/(R2−R) consecutive congestion win-
dows of data whose Acks were not lost or marked, R is de-
creased by 1.

The second formula is used to increase the number of
Acks per congestion window, namely cwnd/R, by one for
every congestion-free window that passes. However, since R
is an integer, we instead find a k so that, after k congestion-
free windows, cwnd/R + k = cwnd/(R− 1).

TFRC congestion control in DCCP’s CCID3 uses a dif-
ferent approach. Instead of a congestion window, a TFRC
sender uses a sending rate. The receiver sends feedback to
the sender roughly once per round trip time (RTT) report-
ing the loss event rate. The sender uses this loss event rate
to determine its sending rate; if no feedback is received for
several round-trip times, the sender halves its rate.

Regulate Sending rate is set by a Markov Model. The
model is described as:

X is the transmit rate in bytes/second s is the packet size
in bytes p is the loss event rate T0 is the TCP retransmission
time in seconds.

X(p) =
s

RTT
√

2bp/3 + T0(3
√

3bp/8)p(1 + 32p2)

This is reasonably straightforward, and does not require
reliable delivery of feedback packets, as long as the sender
trusts the receiver’s reports of the loss event rate. However,
a mere loss event rate is ripe for abuse by misbehaving re-
ceivers.

3.4 Advantages
DCCP is a nice solution for real-time application. It avoids
Internet congestion caused by package loss like UDP usu-
ally do. With the unreliable feature of UDP, it also wastes
the traffic of networks. DCCP is a low-expense, unreli-
able congestion control protocol. In all the control packets,
DCCP can send data messages simultaneously. The header
of DCCP is changeable, the most common one only use 12
bytes. DCCP have two kinds of congestion control mecha-
nism, and may adding new ones now. DCCP have 9 kinds of
packets, more than TCP and UDP. This increases its flexibil-
ity and expand ability. Such as the DCP-Mov packets helps
it to be adapted to mobile devices [4].

3.5 Limitations
Until now, DCCP also has some problems. DCCP should
support both IPv4 and IPv6 at the same time. Whether
DCCP is secure enough is still under consideration. Fur-
thermore, applications generally do not want to implement
TCP-friendly congestion control themselves. This is not
only because congestion control can constrain performance,
but also because properly implementing congestion control
is very hard, as the long history of buggy TCP implemen-
tations makes clear [4]. Applications might be willing to
subject themselves to congestion control, not least for the
good of the network, as long as it was easy to use and met
their needs. A modular congestion control framework would
also make it easier to develop new applications, and to de-
ploy congestion control advances across many applications
at once.

4 Stream Control Transmission Pro-
tocol (SCTP)

4.1 Motivation
Telephony, video conferences and many other telecommu-
nication applications appears in the modern Internet. It is
necessary to transfer signalling messages over it. But TCP
and UDP is not a good solution for those telecommunica-
tion network applications. SCTP is a general purpose uni-
cast transport protocol for IP network data communications,
which has been recently standardized by the IETF [16]. It
was initially introduced as a means to transport telephony
signaling messages in commercial systems, but has since
evolved for more general use to satisfy the needs of appli-
cations that require a message-oriented protocol with all the



TKK T-110.5190 Seminar on Internetworking 2009-04-27

necessary TCP-like mechanisms. Traditional TCP protocol
has the problems of Head Of Line blocking, bad real time
support, vulnerable to Denial of Service attack and so on
[14]. SCTP is a better solution under this circumstance.

4.2 Overview

SCTP provides sequencing, flow control, reliability and full-
duplex data transfer like TCP. However, it also enhances a set
of capabilities not in TCP that make applications less suscep-
tible to loss. Like UDP, SCTP is message-oriented and sup-
ports the framing of application data. Meanwhile like TCP,
SCTP is session-oriented and communicates by establishing
an association between two endpoints. Different with TCP,
in SCTP, it is possible to have multiple logical streams within
an association where each is an independent stream of mes-
sages and delivered in-order. Some of the important feature
of SCTP is: Multi-homing, Multi-streaming, Initiation pro-
tection, Message framing, Configurable unordered delivery
and Graceful shutdown. Normally, the upper layer user of
SCTP would be Switched Circuit Network (SCN) signalling
adaptable module, and the lower layer would be IP network.

4.3 Major Algorithm

Comparing with traditional transport protocol, the most
important feature of SCTP is multi-homing and multi-
streaming.

One of the most important change of SCTP is its support
of multi-homed nodes, which means a server can be reached
by several diffrent IP addresses. If packages from one node
to another travels on physically different paths, and also dif-
ferent destination IP address are used, the connection be-
comes tolerant against physical network failures and other
problems of that kind. As shown in figure 2, server has two
IP addresses which are available for both ethernet and wire-
less network connection. Client can connect to server by
multi-homing, therefore if one connection break, client can
still maintain data exchanging with server by another con-
nection.

Figure 2: Multi-Homing Mechanism

Another important feature of SCTP is, it supports mul-
tiple streams within an association. In SCTP, each stream

represents a sequence of messages within a single associ-
ation, and they use their own seq number just like different
TCP sessions. Both stream identifiers and sequence numbers
are included in the data package [11]. This means that there
would be no unnecessary head-of-line blocking between in-
dependent streams of messages in case of loss in one stream.
All the streams within an association are independent but re-
lated to the association as shown in figure 3.

Figure 3: Multi-Streaming Mechanism

The congestion control mechanism of SCTP is quite simi-
lar with TCP. But for the congestion control function, STCP
uses a more aggressive method.

Ack : cwnd = cwnd + a

Loss : cwnd = cwnd− b× cwnd

Among them, a and b are set as 0.01 and 0.125. In this
case, every time congestion window decrease, only a certain
number of RTT is needed for recovering the original size of
the congestion window, which is not relevant with the size of
window now. This means, SCTP uses multiplicative increase
and multiplicative decrease algorithm for congestion control.
As TCP uses AIMD algorithm, this will cause problems with
RTT fairness and TCP friendly. SCTP’s congestion window
grows much faster than TCP’s, and occupies almost all the
bandwidth.

4.4 Advantages

Though SCTP has TCP-like congestion and flow control
mechanisms targeted for bulk data transfer, we argue that
SCTP’s feature-set makes it a better web transport than TCP.
Performance-wise, SCTP’s multistreaming avoids TCP’s
HOL blocking problem when transferring independent web
objects, and facilitates aggregate congestion control and loss
recovery [11]. Functionality-wise, SCTP’s multihoming pro-
vides fault-tolerance and scope for load balancing, and a
built-in cookie mechanism in SCTP’s association establish-
ment phase provides protection against SYN attacks.

4.5 Limitations

The major limitation of SCTP might be RTT fairness and
TCP friendly. As SCTP use a quite aggressive congestion
control function, it may occupy most of the bandwidth while
working with other TCP connection. Furthermore, the ag-
gressive algorithm would surely cause high package loss and
lead to the multiplicative decreasing of TCP connections.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

Some other limitations of SCTP are that SCTP is quite com-
plex and need extra-supports, such as it needs 4 way hand-
shake, and also multi-homing server.

5 CUBIC Transmission Control Pro-
tocol (CUBIC TCP)

5.1 Motivation
The low utilization problem of TCP in fast long-distance net-
works is well documented by S. Floyd in High Speed TCP
for Large Congestion Windows [6]. This problem came from
the slow increase of congestion window following a conges-
tion event in a network with a large bandwidth delay product
(BDP). Many experience indicates that this problem is fre-
quently observed especially under a network path with over
100ms round-trip times (RTTs). This problem is equally
applicable to all Reno style TCP standards and their vari-
ants which use the same linear increase function for window
growth. CUBIC is designed to solve this problem. It offers a
new congestion control function which is not relied on RTTs.

5.2 Overview
CUBIC is a high speed variant of standard TCP. To solve
the problem of low utilization which TCP has, it uses a cu-
bic function instead of a linear window increase for conges-
tion control mechanism in order to improve scalability and
stability under fast and long distance networks. The main
feature of CUBIC is that its window growth function is de-
fined in real-time so that its growth will be independent of
RTT. It enhances the fairness properties of BIC while retain-
ing its scalability and stability. In CUBIC, we try to find
the balance between the congestion window size before win-
dows reduction and after windows reduction. Despite this,
although the real-time increase of the window enormously
enhances the TCP friendliness of the protocol, in short RTT
network, CUBIC’s window growth is slower than TCP. So in
order to keep the growth rate the same as TCP, CUBIC uses
a new TCP mode to help change this situation. In CUBIC’s
TCP mode, it uses the same congestion control mechanism
as TCP while the RTT is short.

5.3 Congestion Control Algorithm
Cubic’s congestion function is:

Wcubic = C(t−K)3 + Wmax

where C is a scaling factor, t is the elapsed time from the
last window reduction, Wmax is the window size just before
the last window reduction, and K = 3

√
Wmaxβ/C, where β

is a constant multiplication decrease factor applied for win-
dow reduction at the time of loss event (i.e., the window re-
duces to βWmax at the time of the last reduction). Figure 4
shows the growth function of CUBIC.

The cubic function ensures the intra-protocol fairness
among the competing flows of the same protocol [13]. Sup-
pose that two flows are competing on the same end-to-end
physical link, the two flows converge to a fair share since

Figure 4: The Window Growth Function of CUBIC [9]

they drop by the same multiplicative factor β, so a flow with
larger Wmax will reduce more, and the growth function al-
lows the flow with larger Wmax will increase more slowly,
since K is larger as Wmax is larger. Thus, the two flows
eventually converge to the same window size. This function
also offers a good RTT fairness property because the win-
dow growth rate is dominated by t, the elapsed time. Since
any competing flows with different RTT will have the same t
after a synchronized packet loss, CUBIC also ensures linear
RTT fairness while TCP offer square RTT fairness in terms
of throughput ratio.

5.4 Advantages
CUBIC TCP ia a nice solution for BDP network. With the
development of Internet, the route trip times usually become
very high (around 100 to 200ms). In this case, standard TCP
has a low utilize radio. Nowadays many High Speed TCP
variants came out and tried to fix this problem. But the dif-
ficulties are not only raising the efficiency, but also maintain
the RTT fairness and TCP friendly. CUBIC works much
more better than those previous high speed TCP variants.
And now, CUBIC TCP is implemented and used by default
in Linux kernels 2.6.19 and above.

5.5 Limitations
Although CUBIC TCP seems a nice solution for high speed
transport layer, there are some limitations of it. CUBIC TCP
suffers from slow convergence-yields poor network respon-
siveness, prolonged unfairness between flows, increases un-
fairness between long and short lived flows. CUBIC TCP
is a good solution for standard Internet environment, but it
is not aimed for special usage, such as satellite network or
mobility usage.

6 Compound Transmission Control
Protocol (CTCP)

6.1 Motivation
As we discussed before, the protocol design requirements for
high speed TCP variants are mainly two things: Efficiency
and TCP fairness. Efficiency means to effectively utilize
high-speed link even with large delay. TCP fairness means



TKK T-110.5190 Seminar on Internetworking 2009-04-27

that the protocol should be able to be progressively deployed.
It is easy to meet efficiency requirement, but it is difficult to
be both efficient and TCP fairness. One core idea of delay
based congestion control is that the increase of RTT is con-
sidered as early congestion, and the sending rate is reduced
to avoid self-induced buffer overflow. So in CTCP, we try to
find a synergy of both delay-based and loss-based approach.

6.2 Overview

CTCP is a synergy of both delay-based approach and loss-
based approach [17]. It has two components for conges-
tion control.First is the delay-based component like the algo-
rithm in FAST TCP. We notice that delay-based approaches
already have this nice property of adjusting its aggressive-
ness based on the link utilization [18]. Another component
is loss-based component like what BIC TCP and SCTP do.
For a high-speed and long delay network, it will take stan-
dard TCP an unreasonably long time to recover the sending
rate after a single loss event. And using MIMD congestion
control windows can effectively help fixing the problem. So
in Compound TCP, we aim at combining this two features to-
gether. CTCP keeps the same Slow-Start behavior of regular
TCP at the start-up of a new connection.

6.3 Congestion Control Algorithm

In CTCP, there are two window state variables: cwnd and
dwnd. cwnd represents the congest window while dwnd is
the delay window. Specifically, the TCP sending window is
now calculated as follows:

win = min(cwnd + dwnd, awnd),

where awnd is the advertised window from the receiver.
For the cwnd, it updates as standard TCP,

Ack : cwnd = cwnd + 1/win

Loss : cwnd = cwnd/2

For dwnd component calculation, we set:

Expected = win/baseRTT

Actual = win/RTT

Diff = (Expected−Actual) · baseRTT

And the control functions is:

dwnd(t + 1) =





dwnd(t) + (α · win(t)k − 1)+,(1a)
(dwnd(t)− ζ · diff)+, (1b)
(win(t) · (1− β)− cwnd/2)+,(1c)

ifdiff < γ,

ifdiff > γ,

iflossisdetected.

where (.)+ is defined as max(., 0).

If a retransmission timeout occurs, dwnd should be reset
to zero and the delay-based component is disabled. Also, fol-
lowing the common practice of high-speed protocols, CTCP
also reverts to standard TCP behavior when the window is
small. Delay-based component only kicks in when win is
larger than some threshold Wlow.

6.4 Advantages
With this combination delay-based component and loss-
based component, Compound TCP can satisfy all three re-
quirements pretty well. First, CTCP can efficiently use the
network resource and achieve high link utilization. In theory,
CTCP can be very fast to obtain free network bandwidth,
by adopting a rapid increase rule in the delay-based compo-
nent. Secondly, CTCP has similar or even improved RTT
fairness compared to regular TCP. This is due to the delay-
based component employed in the CTCP congestion control
algorithm. Thirdly, CTCP has good TCP-fairness. By em-
ploying the delay-based component, CTCP can gracefully
reduce the sending rate when the link is fully utilized.

7 Summary of Transport Protocols
This section aims at comparing the performance of the pro-
tocols above in detail in different aspects, and show the result
in a table. A good protocol should work well in real network
environment, and keep fairness while being efficient.

Network environment is almost the most important in-
fluential factor [8]. Even a little bit change may cause to-
tally different performance for those transport layer proto-
cols. I conclude those factors as: bandwidths (from 1Mb/s
to 1Gb/s), RTT (from 16ms to 200 ms), range of queue size
(from 2% to 100% BDP), and range of background traffic
levels (number of sessions, distribution of connection sizes
and network topology). Background traffic is quite impor-
tant while simulating these protocols as you can see from the
experimental results.

For the performances analysis of those protocol, I mostly
focus on the following feature: RTT Fairness, TCP Fairness,
Utilization Ratio, Packet Loss Rate, Smoothness of through-
put and Convergence Time. Namely, the most important fea-
ture are:

[Efficiency] It must improve the throughput of the connec-
tion to efficiently use the high-speed network link, including
Utilization Ratio and Smoothness of throughput.

[RTT fairness] It must also have good intra-protocol fair-
ness, especially when the competing flows have different
RTTs.

[TCP fairness] It must not reduce the performance of other
regular TCP flows competing on the same path. This means
that the high-speed protocols should only make better use of
free available bandwidth, but not steal bandwidth from other
flows.

Thanks for the experimental work done by [15] [8], I could
give out a basic comparison among those transport protocols.
All the works blow are based on these experimental results.

For the convergence time of protocols, only high speed
TCP variants are compared. We observed that STCP signifi-
cantly improved its convergence time with background traf-



TKK T-110.5190 Seminar on Internetworking 2009-04-27

Transport
Protocol

Protocol Type Congestion Control Al-
gorithm

Congestion Basement RTT Fairness

TCP Standard TCP Ack : cwnd = cwnd +
a

cwnd

Loss Based Quite Bad, only keeps
fairness when RTT is
short

UDP Standard UDP No Congestion Control No Congestion Control Do not have Ack, so in-
dependent of RTT

DCCP UDP Variant cwnd/R + k =
cwnd/(R− 1)

Loss Based Same as TCP, depends
heavily on RTT length

SCTP High Speed TCP Vari-
ant

Ack : cwnd = cwnd+a Loss Based Becomes better when
RTT increase

CUBIC
UDP

High Speed TCP Vari-
ant

Wcubic = C(t −K)3 +
Wmax

Loss Based Quite good, designed
for solving this prob-
lem

Compound
TCP

High Speed TCP Vari-
ant

win = min(cwnd +
dwnd, awnd),

Loss and Delay Based Quite good, even excel-
lent

Table 1: Comparison of Transport Protocols: Part 1

Transport
Protocol

TCP Fairness Utilization Ratio Packet Loss Rate Smoothness of
throughput

Convergence
Time

TCP Medium Bad, caused by
RTT fairness
problem, the con-
gestion window
cannot reach to
maximum size

Good due to the
low utilization ra-
tio, normally de-
pend on the condi-
tion of link

Good Medium

UDP Quite bad, since
UDP does not
have congestion
control, it won’t
care about TCP
fairness

Good. Bad, but it is not
concerned for
UDP

Not tested here Not tested here

DCCP Quite bad, DCCP
use quite aggres-
sive congestion
control.

Good, similar as
UDP

Bad, but packet
loss is acceptable
for DCCP

Not tested here Not tested here

SCTP Very bad, even
more aggressive
congestion control
than DCCP

Good, but at
the price of low
TCP fairness
and complex
multi-streaming
technology

Bad, quite high
loss rate

Bad Bad, but better
with background
traffic

CUBIC
UDP

Good, use TCP
mode and cubic
function to solve
the problem

Good Good perfor-
mance

Good Good

Compound
TCP

Good,Using loss-
based mechanism
to ensure it

Good Good Good, much better
than SCTP

Good

Table 2: Comparison of Transport Protocols: Part 2

fic. When RTT is short, the convergence time of STCP
seem to be much higher than others.

For RTT fairness, it is interesting to note that all protocols
obtained a better RTT fairness index with background traf-
fic as RTT increased, but Compound TCP and CUBIC TCP

have a better RTT fairness. They dramatically changed the
bad situation of TCP.

For TCP fairness, CUBIC TCP and Compound TCP have
better performance. Under low RTT, STCP did not show
much fairness to TCP. As the delay increases, all the high



TKK T-110.5190 Seminar on Internetworking 2009-04-27

speed protocols show less fairness to TCP (especially so for
STCP). If the background data stream is DCCP, it appears
similar situation.

For utilization Ratio, when the propagation delays are
small, all protocols are able to obtain high link utilization.
When round-trip times increases, link utilization for SCTP
and DCCP degrades.

For packet loss rate, We observed that among all the high
TCP variants, STCP resulted in the highest packet loss rates.
This result indicates that it is more aggressive than other
protocols in achieving a high transmission rate. This also
explains why STCP obtained the lowest indexes for TCP
friendliness among all protocols.

For smooth of throughput, we use coefficient of variation
(CoV) of throughput to measure the smoothness and some-
times stability of a protocol. We observe that Compound
TCP achieves small CoV values in short RTT. We note that
the CoV values for STCP are among the highest, regardless
whether background traffic is used or not.

Table 1 and 2 shows the comparison of these 6 transport
protocols in different aspects.

8 Conclusion
In this paper, I did a survey on the most popular Transport
protocols nowadays. TCP, DCCP, SCTP, CUBIC TCP and
CTCP are listed and analyzed. Especially, I focussed on the
congestion avoidance control algorithm of them. During the
analysis, I find the most important feature of TCP nowadays
is to balance efficiency with fairness. In different network
conditions, fairness, convergence time, packet loss rates, link
utilization, RTT fairness, TCP friendliness, and stability of
throughput are considered to evaluate these protocols. Con-
gestion control algorithms might directly decide the perfor-
mance of these protocols. DCCP is based on UDP and added
congestion control for real time application. SCTP use multi-
homing and multi-streaming to increase the utilization ratio.
CUBIC use New TCP mode to maintain fairness and MIMD
algorithm to improve efficiency. CTCP combines loss-based
and delay-based windows control. I do not declare any win-
ner in our evaluation but simply show contrasting difference
between them. And my analysis is just used as a reference
and of course needs experimental proof.

References
[1] M. Allman, V. Paxson, and W. Stevens. Tcp congestion

control, rfc2581.

[2] G. Anastasi, E. Ancillotti, M. Conti, and A. Passarella.
Experimental analysis of a transport protocol for ad hoc
networks (tpa). In PE-WASUN ’06: Proceedings of the
3rd ACM international workshop on Performance eval-
uation of wireless ad hoc, sensor and ubiquitous net-
works, pages 9–16, New York, NY, USA, 2006. ACM.

[3] P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlicht-
ing, and M. J. Barrick. A configurable and exten-
sible transport protocol. IEEE/ACM Trans. Netw.,
15(6):1254–1265, 2007.

[4] L. M. de Sales, H. O. Almeida, and A. Perkusich. On
the performance of tcp, udp and dccp over 802.11 g
networks. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 2074–2078,
New York, NY, USA, 2008. ACM.

[5] H. Elaarag. Improving tcp performance over mobile
networks. ACM Comput. Surv., 34(3):357–374, 2002.

[6] S. Floyd. High speed tcp for large congestion windows,
rfc3649. 2003.

[7] Y. Gu, X. Hong, and R. L. Grossman. Experiences
in design and implementation of a high performance
transport protocol. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 22,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu. A step toward
realistic performance evaluation of high-speed tcp vari-
ants. In Fourth International Workshop on Protocols
for Fast Long-Distance Networks, 2006.

[9] S. Ha, I. Rhee, and L. Xu. Cubic: a new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev.,
42(5):64–74, 2008.

[10] S. Iren, P. D. Amer, and P. T. Conrad. The trans-
port layer: tutorial and survey. ACM Comput. Surv.,
31(4):360–404, 1999.

[11] H. Kamal, B. Penoff, and A. Wagner. Sctp versus
tcp for mpi. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 30,
Washington, DC, USA, 2005. IEEE Computer Society.

[12] E. Kohler, M. Handley, and S. Floyd. Designing dccp:
congestion control without reliability. In SIGCOMM
’06: Proceedings of the 2006 conference on Appli-
cations, technologies, architectures, and protocols for
computer communications, pages 27–38, New York,
NY, USA, 2006. ACM.

[13] D. Leith, R. Shorten, and G. McCullagh. Experimen-
tal evaluation of cubic tcp. In In Proc. Workshop on
Protocols for Fast Long Distance Networks, 2007.

[14] P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart.
Sctp: an innovative transport layer protocol for the web.
In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 615–624, New
York, NY, USA, 2006. ACM.

[15] F. Nivor. Experimental study of dccp for multime-
dia applications. In CoNEXT ’05: Proceedings of the
2005 ACM conference on Emerging network experi-
ment and technology, pages 272–273, New York, NY,
USA, 2005. ACM.

[16] L. Ong and J. Yoakum. An introduction to the stream
control transmission protocol. 2002.

[17] K. Tan, J. Song, Q. Zhang, and M. Sridharan. Com-
pound tcp: A scalable and tcp-friendly congestion con-
trol for high-speed networks. In In Proc. of PFLDnet,
2006.



TKK T-110.5190 Seminar on Internetworking 2009-04-27

[18] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A com-
pound tcp approach for high-speed and long distance
networks. pages 1–12, April 2006.


