Build Mobile Phone Connectivity Over IP Networks

Harri Kukkonen
Helsinki University of Technology
Harri.Kukkonen@tkk.fi

Abstract

Connecting two mobile phones through IP networks is chal-
lenging since mobile phones usually don’t have a specific
IPv4 address and connected through NATs and firewalls.
Various methods can be used to build up connections for mo-
bile devices over IP networks, such as Teredo, IPsec tunnel-
ing, OpenVPN, ICE, STUN and TURN. All those methods
have their advantages and disadvantages, this paper evalu-
ates those methods and tries to identify the best approaches
to build data connections for mobile phone devices over IP
networks.

KEYWORDS: mobile, connectivity, nat traversal, teredo,
ipsec, openvpn, ice, stun, turn

1 Introduction

Mobile phones are usually connected to the Internet using
IPv4 protocol through various systems like Network Address
Translators (NAT) [18] and firewalls. Usually NAT prevents
new TCP or UDP connections from being opened towards
the client behind NAT, which in turn makes it impossible for
two mobile nodes to connect each other. Although firewalls
are not as restricting, the end result is most of the time the
same as with NAT.

To solve this problem several issues need to be addressed,
most import of which is connecting to the client from Inter-
net through NAT. Methods that are used to accomplish this
are usually referred to as NAT Traversal. Multiple differ-
ent techiques exist, many of which require a public server
between the clients to assist in creating a connection. One
of such methods, Traversal Using Relay NAT (TURN) [14],
employs a public server to relay all traffic between the two
clients. Another technique is Session Traversal Utilities for
NAT (STUN) [15], which utilizes a public server to find the
clients external addresses that are visible to the Internet. The
public server is also used to open ports in NAT for UDP com-
munication. Clients can then use their external addresses and
the open ports for communication with other clients.

Teredo [6] is a complete solution that encapsulates IPv6
traffic inside the IPv4 UDP protocol so it can be routed
through NATs and the IPv4 Internet. In addition to the nor-
mal IPv4 address, globally routable IPv6 addresses are also
assigned for the Teredo hosts. The IPv6 addresses are then
used for communication with other Teredo hosts or normal
native IPv6 hosts. For NAT Traversal, Teredo uses a similar
method to STUN i.e. by employing a public server to deter-
mine the NAT type and open UDP ports for communication

between clients. Maintaining these servers does not require
much bandwidth since they only forward ICMPv6 packets
between the clients. Teredo relays, however, require lot of
network bandwidth. Teredo hosts use the nearest relay to
forward all their IPv6 traffic to other Teredo or IPv6 hosts
over UDP IPv4. Relays are also utilized to receive packets
from other Teredo or IPv6 hosts over IPv4.

Another technique is Interactive Connectivity Establish-
ment (ICE) [13], which focuses mainly on getting UDP-
based media streams such as VoIP, video or instant messag-
ing to traverse through NATs. ICE utilizes both STUN and
TURN to find out if the clients are behind NATs and with
which IP addresses and ports connections between the clients
could be established.

IPsec Tunneling [9] is used to secure Virtual Private Net-
work (VPN) [17] connections to a safe environment where
nodes can communicate to each other more easily. When
creating secure VPN connections IPsec is used in a tunnel
mode in which entire IP packets, data and header, are en-
crypted and encapsulated into new IP packets with new head-
ers. NAT Traversal is implemented using Nat Traversal in the
IKE (NAT-T) [10] that encapsulates the [Psec packet with an-
other UDP and IP headers to protect the original IPsec header
from being modified by the NAT.

OpenVPN is an alternative to IPsec tunneling and provides
a complete package for creating secure VPN connections [1].
It uses OpenSSL library for all encryption and authentication
functionality. OpenVPN prefers running connections over
UDP, which is also the default choice, but also TCP is sup-
ported. It works by multiplexing all connections to a single
TCP or UDP port and is capable of passing through most
HTTP Proxies and doing NAT traversal.

2 Teredo

Teredo consists of several different components, namely
clients, servers, relays and host-specific relays. Clients
are IPv4 or IPv6 hosts, the endpoints of communication,
that support the Teredo interface and communicate to other
Teredo clients or non-Teredo nodes in the IPv6 network.
Servers assist clients in communication by providing them
an address prefix that is used to configure a Teredo based
IPv6 address; they also facilitate connection creation of
Teredo clients to other Teredo clients or IPv6 hosts. Servers
are nodes that have addresses both in IPv4 Internet and IPv6
Internet and listen for Teredo traffic on UDP port 3544.
Teredo relays route the traffic between Teredo clients in [Pv4
network and IPv6 hosts and listen for Teredo traffic on UDP
port 3544 in the same way as Teredo servers. Teredo host-

TKK T-110.5190 Seminar on Internetworking

2010-05-05

specific relays run on the same host as the Teredo client and
are used when the client in the IPv4 network communicates
with an IPv6 host that also has IPv4 connectivity. In this case
all traffic can stay in the IPv4 network without the need to use
external Teredo relays. IPv6 addresses assigned to clients in
Teredo have much information encoded within. Total length
of the address is 128-bits and it is divided in the following
way.

e 32-bits, Teredo prefix, 2001:0000::/32
e 32-bits, IPv4 address of the clients Teredo server.

e 16-bits, Flags, may describe the type of NAT server
used.

e 16-bits, UDP port used by the NAT server.
e 32-bits, NAT server’s public address.

UDP port and the IPv4 address of the NAT server are used in
connecting to the client located behind the NAT server from
the Internet.

For connection initialization and upkeep, Teredo nodes
use ’bubble packets’ which contain IPv4 header (20 bytes),
UDP header (8 bytes) and IPv6 header (40 bytes) without
any payload. The actual traffic payload is wrapped inside the
same headers, which creates in total 68-bytes of overhead for
each packet when using Teredo.

2.1 Connection initialization

All Teredo clients first utilize the Teredo server to determine
what kind of NAT server is between them and the Internet by
using a qualification prodecure that is a simplified version
of STUN. The ability for the server to contact clients at any
time is maintained by sending regularly, approximately every
30 seconds, bubble packets to the server, which then sends a
bubble packet as a reply thus ensuring that UDP packets can
be sent using the same port back to the client through NAT.

Teredo Server 1

Teredo Server 2

Teredo !"l o - |
Client & [P * ooy

15

Restricted NAT X |

@ v

1. Bubble to Teredo Client B)
2. Bubble to Teredo Server 2 A .
3. Forwarded bubble to Teredo Client B I.’ &
4. Bubble to Teredo Client A N
5. Initial packet to Teredo Client B Teredo Client B

Figure 1: Teredo connection initialization, source Microsoft
TechNet[12]

Complexity and details of connection initiation between
clients depends on the type of NATs used and whether the

clients are located in IPv4 or IPv6 Internet. A similar prin-
ciple does, however, apply in most cases so a case between
two clients behind restricted NAT systems initiating commu-
nication is described here as an example (See Figure 1).

When client A wants to connect to client B, it first tries
to send a bubble packet directly to B but the NAT in front
of B blocks the packet. This does however open the NAT in
front of client A so client B can subsequently send a reply.
In the next step client A uses client B’s Teredo server, whose
address is determined from client B’s Teredo IPv6 address,
to forward a bubble packet to client B, which goes through
B’s NAT. Client B replies directly to client A, which creates
an opening in client B’s NAT, and finally the clients are able
to communicate directly to each other.

3 IPsec tunneling

IPsec is to encrypt and/or authenticate transferred data. If
only authentication is required IPsec encapsulates the data
payload inside an AH (Authentication Header). When it is
necessary to also encrypt the payload data, ESP (Encapsulat-
ing Security Payload) is utilized. Encapsulating data inside
new headers causes overhead, 24 bytes for AH and 24 to
40 bytes when using ESP. Additionally tunnel mode adds 20
bytes of headers on top of everything else. Using encryp-
tion requires lot of calculation power, which is an important
factor when considering suitability for mobile use.

IPsec requires the use of IKEv2 (Internet Key Exchange
Protocol) [8] protocol when creating new connections be-
tween clients. IKEv2 establishes shared authentication keys
and security parameters called SA (Security Association) so
a secure encrypted IPsec connection can be formed between
the clients. Cryptographic calculations required by this intro-
duce some need for additional computational power, which
results in bigger power consumption.

3.1 Connection initialization

When negotiating a new connection, NAT-T first determines
if both clients can perform NAT-T and if there are NAT
servers between them. If both are true, NAT-T is used be-
fore normal negotiation is performed.

The NAT Traversal algorithm used in IPsec, NAT-T [11],
encapsulates the ESP header with another UDP header us-
ing the same ports as IKE. This enables the original IPsec
headers to pass unchanged through NAT.

In normal connection negotiation IKEv2 establishes the
connection by sending a IKE_SA_INIT message and wait-
ing for a reply. The first message negotiates used cryp-
tographic algorithms, exchanges nonces and does Diffie-
Hellman key exchange so further communication can be en-
crypted. The second message pair IKE_AUTH authenticates
the first message pair, exhcanges identities and certificates
and a child SA is established.

4 OpenVPN

Like IPsec, OpenVPN provides a secure tunnel for network
traffic. There are however some fundamental differences.

TKK T-110.5190 Seminar on Internetworking

2010-05-05

Security layer in OpenVPN is located in the application
layer, implemented using OpenSSL [19], rather than ip layer
as with IPsec. This gives the possibility to use all of the dif-
ferent ciphers implemented in OpenSSL as the cryptographic
algorithm, also authentication is handled by OpenSSL. Au-
thentication can be done using pre-shared secret key, cer-
tificates or username and password although non-encrypted
tunnels are also an option.

Traffic inside OpenVPN is usually encapsulated inside
UDP packets, TCP may also be used but it is not recom-
mended. There are several reasons why UDP should be pre-
ferred, most important being the lower network overhead
when using UDP. Encapsulating TCP packets inside TCP
packets may also cause problems because the congestion
control protocol is applied for both streams. In a case of
large amount of packet loss their efforts to correct the prob-
lem can cascade and break the connection altogether.

Traffic overhead caused by OpenVPN depends on config-
uration, but UDP encapsulation without encryption causes
on average 51 bytes of overhead. Encryption adds more to
this but the exact amount is dependant on the used cipher [3].

4.1 NAT Traversal

NAT Traversal in OpenVPN is implemented by hole punch-
ing [2], either with UDP or TCP depending on the encapsu-
lation used, which does not support symmetric NAT’s. UDP
hole punching, which works in a similar fashion as Teredo’s
NAT traversal, is presented here as an example.

Client A NAT

Figure 2: UDP Hole Punching

1. Client A sends a packet to server S which creates an
opening in NAT A for communication back to client A.

2. Client B sends a packet to server S which creates an
opening in NAT B for communication back to client B.

3. Server S sends client A client B’s port information.
4. Server S sends client B client A’s port information.

5. Client A can now communicate directly with client B
and vice versa.

S ICE, STUN and TURN
5.1 STUN and TURN

In STUN an external STUN server located in the open In-
ternet is requested by the client A to determine what type

of NAT server is between it and the Internet. The STUN
server does this by sending series of UDP packets to the
client and observing the changes NAT servers make to the
source address of the reply packet. Based on the nature of
these changes STUN can determine NAT server’s type and
the address and port which can be used to send UDP packets
to client A from Internet. Information is then forwarded back
to the client. STUN does have some limitations, it does not
work with symmetric NATs and the connection address and
port determined for the client might not work for all other
clients trying to connect client A, depending on the network
topology.

TURN also requires the use of external servers in the open
Internet. Bandwidth requirements are however much steeper
than with STUN, as the TURN server functions as a relay
between two clients transferring all traffic through the server.

5.2 ICE

ICE provides NAT Traversal for media-stream protocols that
are based on offer-answer methodology, such as SIP [16]
which is used as the example case here. ICE is based on
using multiple methods to achieve connectivity between two
clients, most important being STUN and TURN.

Step 1. Address gathering

All possible addresses and ports that can be used to cre-
ate a connection to a client are gathered. All locally defined
addresses clients have, like the ip addresses of network in-
terfaces or the address acquired from an existing VPN con-
nection, are stored. Then STUN is used to gather addresses
and ports that can be used to get through NAT servers, same
is done using TURN, which uses external relay servers to
achieve connectivity through NAT.

Step 2. Priorization

Client prioritizes the gathered addresses for optimal la-
tency and bandwidth usage in candidates. More direct routes
such as local or VPN interfaces are usually preferred over
using STUN. Relayed addresses like those collected using
TURN are set as last.

Step 3. Encoding

Extra information is added and encoded into the SIP re-
quest called SDP, such as the preferred candidate addresses
and ports for connection for each different media stream.

Step 4. Offer and answer

The SIP request is sent to a client to start a call, if the
target client also supports ICE it performs the same three
steps and sends its own candidate addresses and ports back
to the caller.

Step 5. Checking

When the caller and target client have exchanged their
SDP’s they construct pairs of the other client’s and their own
candidate addresses for each media stream creating all possi-
ble combinations. Priority for each pair is then calculated by
combining the priority of both addresses. After priorization
each pair is tested for connectivity using a STUN transaction.
Because the number of address combinations grows expo-
nentially testing is done in priority order and sequentially to
avoid flooding the network. When a working combination is
found testing of connections is stopped.

Step 6. Completing

TKK T-110.5190 Seminar on Internetworking

2010-05-05

Found working address pair is usually the one with high-
est priority because of the sequential testing. Final check is
then made, usually initiated by the caller, to confirm that the
found address pair is the same for both. After this the called
client can ring the phone to start the call.

Doing this many checks introduces a delay before a call is
started, but eliminates for example ghost calls that could hap-
pen with other methods when connection was tried only after
ringing. If connecting then failed no sound was transferred.
Additionally the checking is complex only when connecting
using direct means does not succeed, as those are checked
first in the best case the delay before starting the call caused
by ICE is minimal.

6 Comparison of methods

All of the methods analyzed in this paper are primarily meant
for communication between two clients, so each point-to-
point connection requires a new tunnel. OpenVPN is the
exception, it can be used in bridge mode to connect two sep-
arate LANs together. But when considering mobile use and
especially VoIP communication the bridge mode does not
give OpenVPN an advantage over the others.

All of the methods support IPv6 communication, although
Teredo’s implementation seems to be most advanced in this
group. Teredo’s IPv6 support does have a drawback. A
Teredo relay is needed if one of the clients is in IPv4 In-
ternet and other in IPv6 Internet. Additionally because the
relay has to transmit all traffic, not just facilicate connection
establishment, the bandwidth requirements are very high.

Teredo, IPsec tunneling and OpenVPN have similar fea-
ture sets when it comes to NAT Traversal. Only symmet-
ric NAT’s are not supported. ICE offers also symmetric
NAT support through the use of TURN. Implementation and
complexity does differ between the methods, OpenVPN and
IPsec tunneling implement their NAT Traversal without the
need for external servers. Teredo needs an external Teredo
server and ICE requires STUN servers and TURN servers.
There is a method to enable symmetric NAT support also
in Teredo, called SymTeredo [5]. However, the method re-
mains on theoretical level, currently there are no practical
implementations of SymTeredo.

Teredo server and STUN servers have low bandwidth re-
quirements and are able to serve a large number of clients at
the same time, so this is not an overly large drawback. Both
TURN servers and Teredo relays require lot of bandwidth as
they transmit all traffic between clients, but it is the only way
to enable connections for clients behind symmetric NAT’s.

All of the methods introduce some level of network over-
head. Teredo and IPsec are the heaviest protocols, Open VPN
is slightly better and ICE has the lowest network overhead.

All except Teredo support some form of encryption for
the encapsulated data. OpenVPN and IPsec support the best
encryption ciphers and key management with ICE taking
a lighter approach. All forms of encryption do increase
network overhead and especially computational overhead,
particularly the encryption methods used by OpenVPN and
IPsec. The lack of encryption is therefore not a big problem
because we are targeting mobile use. In addition, encryption
brings with it the need for key exchange, which complicates

and lengthens the problematic initial connection establish-
ment even more.

7 Conclusion

When the theoretical and practical benefits and disadvan-
tages of these various methods are compared ICE seems to
be the best candidate for use with mobile VoIP traffic as it is
specially designed for UDP media streams. It is the only one
that can traverse through every kind of NAT server between
clients and is also the lightest protocol of the analyzed pro-
tocols. It also has a relatively mature implementation stack
for various platforms thus supporting it does not require ex-
traordinary amount of effort. Teredo is also a good choice,
however it does not bring any improvement over ICE and has
higher network overhead. IPsec is still complicated to set up
and isn’t the best for this sort of ad-hoc connectivity. The
same applies for OpenVPN: the protocols are designed more
for static configurations and complete security than lightness
and flexibility.

References

[1] M. Feilner. OpenVPN: Building and Integrating Virtual
Private Networks. Packt Publishing, 2006.

[2] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer com-
munication across network address translators.

[3] M. Hall. Performance Analysis of OpenVPN on a Con-
sumer Grade Router.

[4] H. Hansen. IPsec and Mobile-IP in Mobile Ad
hoc Networking. Department of Computer Science,
Helsinki University of Technology, http://www. hut.
firhansen/papers/adhoc.

[5] S.-M. Huang, Q. Wu, and Y.-B. Lin. Enhancing teredo
ipv6 tunneling to traverse the symmetric nat. Commu-
nications Letters, IEEE, 10(5):408-410, may 2006.

[6] C.Huitema. Teredo: Tunneling IPv6 over UDP through
network address translations (NATSs). Technical report,
RFC 4380, February 2006, 2006.

[7] N.Kang, L. Lo Iacono, C. Rulan, and Y. Kim. Efficient
application of IPsec VPNs in wireless networks. In
Wireless Pervasive Computing, 2006 Ist International
Symposium on, Jan. 2006.

[8] C.Kaufman. Internet Key Exchange (IKEv2) Protocol.
RFC 4306 (Proposed Standard), Dec. 2005. Updated
by RFC 5282.

[9] S. Kent and K. Seo. RFC 4301: Security architecture
for the Internet protocol. The Internet Society, Stan-
dards Track, 2005.

T. Kivinen, B. Swander, A. Huttunen, and V. Volpe.
Negotiation of NAT-Traversal in the IKE. Technical
report, RFC 3947, January 2005, 2005.

TKK T-110.5190 Seminar on Internetworking

2010-05-05

[11] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe.
Negotiation of NAT-Traversal in the IKE. RFC 3947
(Proposed Standard), Jan. 2005.

[12] Microsoft. Teredo Overview. World
Wide Web, http://technet.microsoft.com/en-
us/library/bb45701 1.aspx, Last visited 17.3.2010.

[13] J. Rosenberg. Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols. Technical
report, 2007.

[14] J. Rosenberg, R. Mahy, and P. Matthews. Traversal
Using Relays around NAT (TURN). Technical report,
2009.

[15] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Ses-
sion Traversal Utilities for NAT (STUN). RFC 5389
(Proposed Standard), Oct. 2008.

[16] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. RFC
3261 (Proposed Standard), June 2002. Updated by
RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630.

[17] C. Scott, P. Wolfe, and M. Erwin. Virtual private net-
works. O’Reilly Media, Inc., 1999.

[18] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022 (In-
formational), Jan. 2001.

[19] E. Young, T. Hudson, and R. Engelschall. OpenSSL.
World Wide Web, http://www.openssl.org/, Last visited
17.3.2010.

[20] J. Zao and M. Condell. Use of IPSec in mobile IP.
November 1997, 10:381-390.

